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Abstract

Models are used in systems engineering for knowledge representation, structured anal-
ysis, and to bridge conceptual differences between domains, e.g., to facilitate hard-
ware/software co-design. Additionally, with the advent of ubiquitous computing,
model-based applications, e.g., in control, diagnosis, and maintenance, will become
pervasive and ultimately become as proliferated as embedded computing power. To
handle the multitude of formalisms for model design and analysis and to combine and
relate these, the emerging field of computer automated multi-paradigm modeling re-
lies on the notion of meta-modeling, i.e., modeling the model. When extended with
sophisticated model transformation facilities, the multi-paradigm modeling notions
can thus be exploited further to facilitate a suite of technologies and applications that
implement a form of higher intelligence.
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1 Introduction

The use of models has found widespread application in systems engineering as a
(semi-)formal method to manage the complexity and heterogeneity of large scale sys-
tems and their design teams and tools because they are amenable to analysis and syn-
thesis tasks. For example, models are used for knowledge representation, require-
ments engineering [48, 63], structured analysis [24, 61], to manage complexity and
achieve high quality of engineered systems [62], to handle the heterogeneous nature
of embedded systems [21], as a high level programming method [23, 22, 55], and to
bridge conceptual differences between domains [54]. With the advent of ubiquitous
computing, model-based applications, e.g., in control, diagnosis, and maintenance,
will become pervasive and ultimately become as proliferated as embedded comput-
ing power [35, 12].

To avoid overspecification and attain optimal performance, new design paradigms
based on holistic views (e.g., mechatronics [57, 56]) are a necessity to analyze sub-
tle interaction between information processing components and the physical environ-
ment as well as between the different design tasks. This requires tight integration
of the separate individual design activities. However, each of the engineering disci-
plines involved in system design and operation have developed domain and problem
specific (often proprietary) formalisms that match their needs optimally but compli-
cate the integration process. The goal of this research is to develop and prototype a
core of next generation multi-paradigm modeling1 methods and technologies that ad-
dress this incompatibility and enable the development of novel applications. This is
a powerful approach that allows the generation (instantiation) of domain and prob-
lem specific methods, formalisms, and tools and because of a common meta language,
these different instances can be integrated by combination, layering, heterogeneous
refinement, and multiple views [18, 60]. At present this is still very much a topic of on-
going research that breaks down into two types of activities: (i) heterogeneous mod-
eling [14, 28, 31, 47] and formalism [6] and tool coupling [15, 16], and (ii) behavior
generation [7, 29, 36, 46, 51, 58]. The first is mainly concerned with the symbiotics
(symbols, syntax, and static semantics) of modeling formalisms, whereas the second
addresses analysis and behavior generation using the dynamic semantics of such het-
erogeneous models. Important issues include but are not limited to the design of sys-
tem engineering ontologies [8], integrated development environment design, hetero-
geneous execution models [34], code synthesis (software and hardware description
language) [49, 25, 32], and formal methods [11].

1The special sessions on computer automated multi-paradigm modeling at the IEEE Symposium on
Computer-Aided Control System Design in September 2000 present a good overview of the state-of-the-
art in this field. See http://www-er.df.op.dlr.de/kondisk/campam.html for more information.
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Three orthogonal dimensions of multi-paradigm modeling are multi-abstraction mod-
eling, concerned with the relationship between models at different levels of abstrac-
tion, possibly described in different formalisms, multi-formalism modeling, concerned
with the coupling of and transformation between models described in different for-
malisms, and meta-modeling, concerned with the description of model representations
and instantiation of domain specific formalisms [45]. When extended with sophis-
ticated model transformation facilities, the multi-paradigm modeling notions can be
exploited to facilitate a suite of technologies and applications that manipulate a model
into a different representation, possibly changing the abstraction, partitioning, and hi-
erarchical structure to render it suitable for particular tasks, i.e., it is operated on the
model rather than its generated information.

Though some model transformation schemes exist within [13, 27, 33, 59] and between
formalisms [4, 5, 53, 58], a hiatus in this multi-paradigm modeling effort is the preva-
lent need to manually design models in different representations for analyses, consis-
tency checks, and execution. The model transformations that are available and cur-
rent development efforts tend to focus on the goal of system realization from design
(e.g., automatic code synthesis) while models embody knowledge, and as such they
also form the core of intelligent applications (e.g., model-predictive control [1], model-
based diagnosis [10, 26, 37, 39, 40, 43], and self maintenance). When extended with
sophisticated model transformation facilities, the multi-paradigm modeling notions
can thus be exploited further to facilitate a suite of technologies and applications that
implement a form of higher intelligence: Where present intelligent applications utilize a
formal representation of some form of a process or system to derive information about
its state and predict future behavior, higher intelligence manipulates this model into a
different representation, possibly changing the abstraction, partitioning, and hierarchi-
cal structure to render it suitable for required tasks, i.e., it operates on the model rather
than its generated information.

DLR-IB-515-01-02



2 The Proposal

It is proposed to support a coherent pervasive model-based technology paradigm that
addresses three branches of research to be pursued to facilitate higher intelligence in
embedded systems design and operation: (i) model manipulation, e.g., for reuse, (ii)
cross correlating models, and (iii) exploiting and further developing model-based tech-
nologies.

2.1 Model Complexity Transformation

It is investigated how to systematically derive models of different complexity. These
may be simplified models in the same formalism [50] but also more abstract models in
a different representation [44]. This methodology can be applied, e.g.,

• to perform optimization with increasingly complex models, which may be more
likely to find a global optimum [20],

• to allow vendor models (destined to replace electronic data sheets) to be com-
bined into one extensive and complex base model that can be used in a reduced
form for the different design and operation tasks (e.g., control design, perfor-
mance assessment, and model-based diagnosis) [38],

• to design intelligent numerical solvers that adapt the complexity of the model to
the efficiency requirements (e.g., real-time simulation constraints) [30],

• to support reactive learning environments (so called microworlds) by increasingly
adding detail to the world model [42], and

• to infer the required level of detail of model parts in different representations
to ensure consistency of analysis results of the overall combined model against
given criteria.

Note that in general it may be possible to automatically add model detail as well as to
automatically reduce complexity of a base model [9].

2.2 Model Representation Transformation

Another part of the research investigates transforming a model representation based
on the specification of its initial and target formalism [22]. This allows one to:
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• Generate a functional model from software or even execution trace (e.g., a solver
procedure can be synthesized from the concepts that are part of the domain spe-
cific ontology, i.e., function calls, and their respective execution ordering);

• Automate generation of different views on a system (e.g., scenario diagrams from
a functional model) or even an implementation model when translating to a do-
main specific formalism;

• Automate design by generating specifications from requirements, ultimately lead-
ing to automated code synthesis (or at least stub generation), which, in turn, can
be integrated in an automated optimization and run-time architecture reconfigu-
ration scheme for hardware and software, or software only (e.g., for System-on-
Chip applications [52]);

• Automatically derive a reconfiguration model for guiding run-time system changes
from functional and architectural models [3];

• Use best-of-class methods and tools by generating the required data and model
representation format to prevent inconsistencies at the boundaries between en-
gineering teams, engineering software, and multiple modeling paradigms, and
to enable the sharing and coordinating of information flow with minimal over-
head [17].

2.3 Formalism Modeling

The third branch of research investigates the theory and application of meta-modeling [2,
19], the enabling technology for (i) the design of tailored formalisms and tools by
constituting an infinitely fine grained spectrum of formalisms, (ii) the use of domain
specific formalisms and tools to facilitate high level model-based programming, and
(iii) finding analogies, similarities, and differences between models of different system
views and aspects.

2.4 Model Execution

At the execution level, the dynamic semantics of such systems are of a mixed contin-
uous/discrete, hybrid, nature.1 This requires dedicated tools and algorithms to handle
a number of idiosynchracies in behavior generation such as event detection and loca-
tion, chattering, and consistent initial value computation [41]. This research will inves-
tigate and advance state of the art in the hybrid dynamic systems field by addressing
(i) sequences of discrete transitions, (ii) consistent semantics of hybrid dynamic sys-
tems formalisms, (iii) sensitivity to initial conditions, (iv) sliding mode behavior, and
(v) hybrid models for diagnosis and to design observers.

1See the hybrid dynamic systems virtual action group web-site http://www-
er.df.op.dlr.de/cacsd/hds for more information.

DLR-IB-515-01-02



3 Deliverables

The deliverables of the research will be a meta-modeling tool to facilitate the model
transformation research activities and a collection of application modules. The tool
will be designed to generate tailored formalisms and integrated development environ-
ments. One or more transformation formalisms will be developed that allow model
transformation all the way to an executable specification. This tool forms the basis for
additional functionality based on artificial intelligence techniques to perform model
complexity and representation transformation tasks. In turn, this will be coupled to
software modules that implement the application tasks such as optimization and sim-
ulation. Apart from the research aspects involved in this, the specific applications of
the inter- and intra-formalism model transformation will be further developed and
investigated.
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