
Deutsches Zentrum
für Luft- und Raumfahrt e.V.

Bericht DLR-IB-515-01-02

Higher Intelligence in Embedded
Systems Design and Operation: A
research and development proposal

Pieter J. Mosterman

Institute of Robotics and
Mechatronics
Oberpfaffenhofen

Higher Intelligence in Embedded
Systems Design and Operation: A
research and development proposal

Pieter J. Mosterman

Institute of Robotics and
Mechatronics
Oberpfaffenhofen

12 Seiten
0 Bilder
0 Tabellen

63 Literaturstellen

Higher Intelligence in Embedded Sys-
tems Design and Operation: A research
and development proposal

Deutsches Zentrum
für Luft- und Raumfahrt e.V.

Abstract

Models are used in systems engineering for knowledge representation, structured anal-
ysis, and to bridge conceptual differences between domains, e.g., to facilitate hard-
ware/software co-design. Additionally, with the advent of ubiquitous computing,
model-based applications, e.g., in control, diagnosis, and maintenance, will become
pervasive and ultimately become as proliferated as embedded computing power. To
handle the multitude of formalisms for model design and analysis and to combine and
relate these, the emerging field of computer automated multi-paradigm modeling re-
lies on the notion of meta-modeling, i.e., modeling the model. When extended with
sophisticated model transformation facilities, the multi-paradigm modeling notions
can thus be exploited further to facilitate a suite of technologies and applications that
implement a form of higher intelligence.

Contents

1 Introduction 1

2 The Proposal 3
2.1 Model Complexity Transformation . 3

2.2 Model Representation Transformation . 3

2.3 Formalism Modeling . 4

2.4 Model Execution . 4

3 Deliverables 5

v

List of Figures

vii

List of Tables

ix

1 Introduction

The use of models has found widespread application in systems engineering as a
(semi-)formal method to manage the complexity and heterogeneity of large scale sys-
tems and their design teams and tools because they are amenable to analysis and syn-
thesis tasks. For example, models are used for knowledge representation, require-
ments engineering [48, 63], structured analysis [24, 61], to manage complexity and
achieve high quality of engineered systems [62], to handle the heterogeneous nature
of embedded systems [21], as a high level programming method [23, 22, 55], and to
bridge conceptual differences between domains [54]. With the advent of ubiquitous
computing, model-based applications, e.g., in control, diagnosis, and maintenance,
will become pervasive and ultimately become as proliferated as embedded comput-
ing power [35, 12].

To avoid overspecification and attain optimal performance, new design paradigms
based on holistic views (e.g., mechatronics [57, 56]) are a necessity to analyze sub-
tle interaction between information processing components and the physical environ-
ment as well as between the different design tasks. This requires tight integration
of the separate individual design activities. However, each of the engineering disci-
plines involved in system design and operation have developed domain and problem
specific (often proprietary) formalisms that match their needs optimally but compli-
cate the integration process. The goal of this research is to develop and prototype a
core of next generation multi-paradigm modeling1 methods and technologies that ad-
dress this incompatibility and enable the development of novel applications. This is
a powerful approach that allows the generation (instantiation) of domain and prob-
lem specific methods, formalisms, and tools and because of a common meta language,
these different instances can be integrated by combination, layering, heterogeneous
refinement, and multiple views [18, 60]. At present this is still very much a topic of on-
going research that breaks down into two types of activities: (i) heterogeneous mod-
eling [14, 28, 31, 47] and formalism [6] and tool coupling [15, 16], and (ii) behavior
generation [7, 29, 36, 46, 51, 58]. The first is mainly concerned with the symbiotics
(symbols, syntax, and static semantics) of modeling formalisms, whereas the second
addresses analysis and behavior generation using the dynamic semantics of such het-
erogeneous models. Important issues include but are not limited to the design of sys-
tem engineering ontologies [8], integrated development environment design, hetero-
geneous execution models [34], code synthesis (software and hardware description
language) [49, 25, 32], and formal methods [11].

1The special sessions on computer automated multi-paradigm modeling at the IEEE Symposium on
Computer-Aided Control System Design in September 2000 present a good overview of the state-of-the-
art in this field. See http://www-er.df.op.dlr.de/kondisk/campam.html for more information.

1

2

Three orthogonal dimensions of multi-paradigm modeling are multi-abstraction mod-
eling, concerned with the relationship between models at different levels of abstrac-
tion, possibly described in different formalisms, multi-formalism modeling, concerned
with the coupling of and transformation between models described in different for-
malisms, and meta-modeling, concerned with the description of model representations
and instantiation of domain specific formalisms [45]. When extended with sophis-
ticated model transformation facilities, the multi-paradigm modeling notions can be
exploited to facilitate a suite of technologies and applications that manipulate a model
into a different representation, possibly changing the abstraction, partitioning, and hi-
erarchical structure to render it suitable for particular tasks, i.e., it is operated on the
model rather than its generated information.

Though some model transformation schemes exist within [13, 27, 33, 59] and between
formalisms [4, 5, 53, 58], a hiatus in this multi-paradigm modeling effort is the preva-
lent need to manually design models in different representations for analyses, consis-
tency checks, and execution. The model transformations that are available and cur-
rent development efforts tend to focus on the goal of system realization from design
(e.g., automatic code synthesis) while models embody knowledge, and as such they
also form the core of intelligent applications (e.g., model-predictive control [1], model-
based diagnosis [10, 26, 37, 39, 40, 43], and self maintenance). When extended with
sophisticated model transformation facilities, the multi-paradigm modeling notions
can thus be exploited further to facilitate a suite of technologies and applications that
implement a form of higher intelligence: Where present intelligent applications utilize a
formal representation of some form of a process or system to derive information about
its state and predict future behavior, higher intelligence manipulates this model into a
different representation, possibly changing the abstraction, partitioning, and hierarchi-
cal structure to render it suitable for required tasks, i.e., it operates on the model rather
than its generated information.

DLR-IB-515-01-02

2 The Proposal

It is proposed to support a coherent pervasive model-based technology paradigm that
addresses three branches of research to be pursued to facilitate higher intelligence in
embedded systems design and operation: (i) model manipulation, e.g., for reuse, (ii)
cross correlating models, and (iii) exploiting and further developing model-based tech-
nologies.

2.1 Model Complexity Transformation

It is investigated how to systematically derive models of different complexity. These
may be simplified models in the same formalism [50] but also more abstract models in
a different representation [44]. This methodology can be applied, e.g.,

• to perform optimization with increasingly complex models, which may be more
likely to find a global optimum [20],

• to allow vendor models (destined to replace electronic data sheets) to be com-
bined into one extensive and complex base model that can be used in a reduced
form for the different design and operation tasks (e.g., control design, perfor-
mance assessment, and model-based diagnosis) [38],

• to design intelligent numerical solvers that adapt the complexity of the model to
the efficiency requirements (e.g., real-time simulation constraints) [30],

• to support reactive learning environments (so called microworlds) by increasingly
adding detail to the world model [42], and

• to infer the required level of detail of model parts in different representations
to ensure consistency of analysis results of the overall combined model against
given criteria.

Note that in general it may be possible to automatically add model detail as well as to
automatically reduce complexity of a base model [9].

2.2 Model Representation Transformation

Another part of the research investigates transforming a model representation based
on the specification of its initial and target formalism [22]. This allows one to:

3

4

• Generate a functional model from software or even execution trace (e.g., a solver
procedure can be synthesized from the concepts that are part of the domain spe-
cific ontology, i.e., function calls, and their respective execution ordering);

• Automate generation of different views on a system (e.g., scenario diagrams from
a functional model) or even an implementation model when translating to a do-
main specific formalism;

• Automate design by generating specifications from requirements, ultimately lead-
ing to automated code synthesis (or at least stub generation), which, in turn, can
be integrated in an automated optimization and run-time architecture reconfigu-
ration scheme for hardware and software, or software only (e.g., for System-on-
Chip applications [52]);

• Automatically derive a reconfiguration model for guiding run-time system changes
from functional and architectural models [3];

• Use best-of-class methods and tools by generating the required data and model
representation format to prevent inconsistencies at the boundaries between en-
gineering teams, engineering software, and multiple modeling paradigms, and
to enable the sharing and coordinating of information flow with minimal over-
head [17].

2.3 Formalism Modeling

The third branch of research investigates the theory and application of meta-modeling [2,
19], the enabling technology for (i) the design of tailored formalisms and tools by
constituting an infinitely fine grained spectrum of formalisms, (ii) the use of domain
specific formalisms and tools to facilitate high level model-based programming, and
(iii) finding analogies, similarities, and differences between models of different system
views and aspects.

2.4 Model Execution

At the execution level, the dynamic semantics of such systems are of a mixed contin-
uous/discrete, hybrid, nature.1 This requires dedicated tools and algorithms to handle
a number of idiosynchracies in behavior generation such as event detection and loca-
tion, chattering, and consistent initial value computation [41]. This research will inves-
tigate and advance state of the art in the hybrid dynamic systems field by addressing
(i) sequences of discrete transitions, (ii) consistent semantics of hybrid dynamic sys-
tems formalisms, (iii) sensitivity to initial conditions, (iv) sliding mode behavior, and
(v) hybrid models for diagnosis and to design observers.

1See the hybrid dynamic systems virtual action group web-site http://www-
er.df.op.dlr.de/cacsd/hds for more information.

DLR-IB-515-01-02

3 Deliverables

The deliverables of the research will be a meta-modeling tool to facilitate the model
transformation research activities and a collection of application modules. The tool
will be designed to generate tailored formalisms and integrated development environ-
ments. One or more transformation formalisms will be developed that allow model
transformation all the way to an executable specification. This tool forms the basis for
additional functionality based on artificial intelligence techniques to perform model
complexity and representation transformation tasks. In turn, this will be coupled to
software modules that implement the application tasks such as optimization and sim-
ulation. Apart from the research aspects involved in this, the specific applications of
the inter- and intra-formalism model transformation will be further developed and
investigated.

5

Bibliography

[1] Karl J. Åström and Björn Wittenmark. Computer Controlled Systems: Theory and
Design. Prentice-Hall, Englewood Cliffs, New Jersey, 1984.

[2] Colin Atkinson. Metamodeling for Distributed Object Environments. In First
International Enterprise Distributed Object Computing Workshop (EDOC’97), pages
90–101, Brisbane, Australia, 1997.

[3] Ted Bapty, Sandeep Neema, Jason Scott, Janos Sztipanovits, and Sameh Asaad.
Model-Integrated Tools for the Design of Dynamically Reconfigurable Systems.
Technical Report ISIS-99-01, Vanderbilt University, Nashville, TN, 2000.

[4] Luciano Baresi, Alessandro Orso, and Mauro Pezz‘e. Introducing Formal Specifi-
cation Methods in Industrial Practice. In 19th International Conference on Software
Engineering (ICSE’97), pages 56–66, Boston, MA, May 1997.

[5] Luciano Baresi and Mauro Pezz‘e. On Formalizing UML with High-Level Petri
Nets. In F. De Cindio and G. Agha, editors, Concurrent Object-Oriented Program-
ming and Petri Nets, pages 271–300. Springer-Verlag, Berlin, 1999.

[6] Fernando J. Barros. Modeling formalisms for dynamic structure systems. ACM
Transactions on Modeling and Computer Simulation, 7(4):501–515, 1997.

[7] Paul I. Barton. Modeling, Simulation, and Sensitivity Analysis of Hybrid Systems:
Mathematical Foundations, Numerical Solutions, and Sofware Implementations.
In Proceedings of the IEEE International Symposium on Computer-Aided Control System
Design, pages 117–122, Anchorage, Alaska, September 2000.

[8] Willem Nico Borst. Construction of Engineering Ontologies for Knowledge Sharing and
Reuse. PhD dissertation, University of Twente, The Netherlands, 1997.

[9] Arno P. J. Breunese, Theo J. A. de Vries, Job van Amerongen, and Peter C. Breed-
veld. Maximizing Impact of Automation on Modeling and Design. In ASME
Dynamic Systems & Control Div. ’95, pages 421–430, San Francisco, CA, 1995.

[10] R.N. Clark, P.M. Frank, and R.J. Patton. Introduction. In Ron Patton, Paul Frank,
and Robert Clark, editors, Fault Diagnosis in Dynamic Systems: Theory and Applica-
tions, chapter 1, pages 1–19. Prentice-Hall, UK, 1989.

[11] Edmund M. Clarke and Jeannette M. Wing. Formal Methods: State of the Art and
Future Directions. ACM Computing Surveys, 28(4):626–643, December 1996. Report

7

8

by the Working Group on Formal Methods for the ACM Workshop on Strategic
Directions in Computing Research.

[12] Rance Cleaveland, John Anton, Jim Krause, Bruce Krogh, Harold Mortaza-
vian, and Feng Zhao. DARPA-ITO workshop on software enabled con-
trol. http://www.dyncorp-is.com/darpa/meetings/sw/software-enabled.html,
December 1997.

[13] G. Dauphin-Tanguy, P. Borne, and M. Lebrun. Order reduction of multi-time scale
systems using bond graphs, the reciprocal system and the singular perturbation
method. Journal of the Franklin Institute, 319(1/2):157–171, 1985.

[14] Eric Engstrom and Jonathan Krueger. A Meta-Modeler’s Job is Never Done:
Building and Evolving Domain-Specific Tools With DOME. In Proceedings of the
IEEE International Symposium on Computer-Aided Control System Design, pages 83–
88, Anchorage, Alaska, September 2000.

[15] Johannes Ernst. Data interoperability between CACSD and CASE tools using the
CDIF family of standards. In Proceedings of the 1996 International Symposium on
Computer-Aided Control System Design, pages 346–351, Dearborn, MI, September
1996.

[16] Johannes Ernst and Scott Washburn. Zero-latency EngineeringTM for Control De-
sign. In Proceedings of the IEEE International Symposium on Computer-Aided Control
System Design, pages 71–76, Anchorage, Alaska, September 2000.

[17] Michael Fisher. Zero-latency engineeringtm. Aviatis Corp., White Paper, 1999.

[18] Paul A. Fishwick. Heterogeneous decomposition and inter-level coupling for
combined modeling. In 1991 Winter Simulation Conference, pages 1120–1128,
Phoenix, AZ, 1991.

[19] R. Geisler, M. Klar, and C. Pons. Dimensions and Dichotomy in Metamodeling.
Technical Report 98-5, TU Berlin, Berlin, Germany, 1998.

[20] Andrew Gelsey, Mark Schwabacher, and Don Smith. Using modeling knowledge
to guide design space search. Artificial Intelligence, 101:35–62, 1998.

[21] Alain Girault, Bilung Lee, and Edward A. Lee. Hierarchical Finite State Machines
with Multiple Concurrency Models. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 18(6):742–760, June 1999.

[22] David Harel. From play-in scenarios to code: An achievable dream. Computer,
34(1):53–60, January 2001.

[23] David Harel and Eran Gery. Executable object modeling with statecharts. Com-
puter, pages 31–42, July 1997.

[24] Derek J. Hatley and Imtiaz Pirbhai. Strategies for Real-Time Systems Specification.
Dorset House Publishing Co., New York, New York, 1988.

DLR-IB-515-01-02

BIBLIOGRAPHY 9

[25] Christian Hote, Alain Roan, and Florence Flores-Fahrnow. Case study: A simple
altitude management system with SCADE. Technical report, CS Verilog, March
1999.

[26] Rolf Isermann. A review on detection and diagnosis illustrate that process faults
can be detected when based on the estimation of unmeasurable process parame-
ters and state variables. Automatica: IFAC Journal, 20(4):387–404, 1989.

[27] Yumi Iwasaki and Inderpal Bhandari. Formal basis for commonsense abstraction
of dynamic systems. In AAAI-88, pages 307–312, 1988.

[28] John James. Thoughts on Information Operation Detection as a Nonlinear, Mixed-
Signal Identification Problem: A Control Systems View. In Proceedings of the IEEE
International Symposium on Computer-Aided Control System Design, pages 77–82,
Anchorage, Alaska, September 2000.

[29] Karl Henrik Johansson, John Lygeros, Jun Zhang, and Shankar Sastry. Hybrid
Automata: A formal paradigm for heterogeneous modeling. In Proceedings of the
IEEE International Symposium on Computer-Aided Control System Design, pages 123–
128, Anchorage, Alaska, September 2000.

[30] M. S. Kamel, K. S. Ma, and W. H. Enright. ODEXPERT - an expert system to select
numerical solvers for initial value ODE systems. ACM Transactions on Mathemati-
cal Software, 19(1):44–62, 1993.

[31] Gabor Karsai, Greg Nordstrom, Akos Ledeczi, and Janos Sztipanovits. Specifying
Graphical Modeling Systems Using Constraint-based Metamodels. In Proceedings
of the IEEE International Symposium on Computer-Aided Control System Design, pages
89–94, Anchorage, Alaska, September 2000.

[32] Gabor Karsai, Janos Sztipanovits, and Hubertus Franke. Towards Specification of
Program Synthesis in Model-Integrated Computing. In Proceedings of the ECBS-98,
pages 226–233, Jerusalem, Israel, 1998.

[33] Petar V. Kokotović, Hassan K. Khalil, and John O’Reilly. Singular Perturbation
Methods in Control: Analysis and Design. Academic Press, London, 1986. ISBN
0-12-417635-6.

[34] Edward A. Lee. Embedded Software – An Agenda for Research. Technical Report
M99/63, Department of EECS, University of California, Berkeley, CA 94720, 1999.

[35] Edward A. Lee. What’s Ahead for Embedded Software. Computer, 33(9):18–26,
September 2000.

[36] Jie Liu and Edward A. Lee. Component-Based Hierarchical Modeling of Systems
with Continuous and Discrete Dynamics. In Proceedings of the IEEE International
Symposium on Computer-Aided Control System Design, pages 95–100, Anchorage,
Alaska, September 2000.

DLR-IB-515-01-02

10

[37] Jan Lunze. Diagnosis of quantised systems by means of timed discrete-event rep-
resentations. In Nancy Lynch and Bruce H. Krogh, editors, Lecture Notes in Com-
puter Science, Hybrid Systems: Computation and Control, pages 258–271, Berlin, 2000.
Springer-Verlag.

[38] Heřman Mann. A versatile modeling and simulation tool for mechatronics control
system development. In 1996 IEEE Symposium on Computer-Aided Control System
Design, pages 524–529, Dearborn, 1996.

[39] A. Misra, J. Sztipanovits, and R. Carnes. Robust diagnostic system: Structual
redundancy approach. In Proceedings of the SPIE’s International Symposium on
Knowledge-Based Artificial Intelligence Systems in Aerospace and Industry, pages 249–
260, Orlando, FL, April 1994.

[40] Amit Misra. Sensor-Based Diagnosis of Dynamical Systems. PhD dissertation, Van-
derbilt University, Nashville, TN, 1994.

[41] Pieter J. Mosterman. An Overview of Hybrid Simulation Phenomena and Their
Support by Simulation Packages. In Frits W. Vaandrager and Jan H. van Schup-
pen, editors, Hybrid Systems: Computation and Control, volume 1569, pages 164–
177. Lecture Notes in Computer Science; Springer-Verlag, March 1999.

[42] Pieter J. Mosterman. Towards Model Manipulation for Efficient and Effective Sim-
ulation and Instructional Methods. In Distributed Modelling and Simulation of Com-
plex Systems for Education, Training and Knowledge Capitalisation, Eze, France, May
1999.

[43] Pieter J. Mosterman and Gautam Biswas. Diagnosis of continuous valued systems
in transient operating regions. IEEE Transactions on Systems, Man, and Cybernetics,
November 1999.

[44] Pieter J. Mosterman and Gautam Biswas. Towards Procedures for Systematically
Deriving Hybrid Models of Complex Systems. In Nancy Lynch and Bruce Krogh,
editors, Hybrid Systems: Computation and Control, pages 324–337, 2000. Lecture
Notes in Computer Science.

[45] Pieter J. Mosterman and Hans Vangheluwe. ACM transactions on modeling
and computer simulation, 2003. Special Issue on Computer Automated Multi-
Paradigm Modeling.

[46] Simin Nadjm-Tehrani. Formal Methods for Analysis of Heterogeneous Mod-
els of Embedded Systems. In Proceedings of the IEEE International Symposium
on Computer-Aided Control System Design, pages 141–146, Anchorage, Alaska,
September 2000.

[47] Gregory G. Nordstrom. Metamodeling – Rapid Design and Evoluion of Domain-
Specific Modeling Environments. PhD dissertation, Vanderbilt University, Electrical
Engineering, May 1999.

[48] Bashar Nuseihbeh, Jeff Kramer, and Anthony Finkelstein. A framework for ex-
pressing the relationships between multiple views in requirements specification.
IEEE Transactions on Software Engineering, 20(10):760–773, October 1994.

DLR-IB-515-01-02

BIBLIOGRAPHY 11

[49] Robert öpler and Pieter J. Mosterman. Model Integrated Computing in Robot
Control to Synthesize Real-time Embedded Code. In Proceedings of the IEEE Inter-
national Conference on Control Applications, Mexico, Mexico, September 2001.

[50] George J. Pappas, Gerardo Lafferriere, and Shankar Sastry. Hierarchically consis-
tent control systems. Technical Report UCB/ERL M98/16, University of Califor-
nia at Berkeley, Berkeley, California, 1998.

[51] Taeshin Park. Verification of Large-Scale Hybrid Systems Using Implicit Model
Representation. In Proceedings of the IEEE International Symposium on Computer-
Aided Control System Design, pages 135–140, Anchorage, Alaska, September 2000.

[52] Kenneth H. Peters. Migrating to single-chip systems. Embedded Systems Program-
ming, 12(4):30–45, April 1999.

[53] Manuel A. Pereira Remelhe. Simulation and Visualization Support for User-
defined Formalisms Using Meta-Modeling and Hierarchical Formalism Transfor-
mation. In Proceedings of the IEEE International Conference on Control Applications,
Mexico, Mexico, September 2001.

[54] J. Sztipanovits, G. Karsai, C. Biegl, T. Bapty, A. Ledeczi, and A. Misra. MULTI-
GRAPH: An Architecture for Model-Integrated Computing. In Proceedings of the
International Conference on Engineering of Complex Computer Systems (ICECCS’95),
pages 361–368, Ft. Lauderdale, Florida, November 1995.

[55] Janos Sztipanovits, Gabor Karsai, and Hubertus Franke. Model-integrated pro-
gram synthesis environment. In IEEE Symposium on Engineering of Computer Based
Systems, Friedrichshafen, Germany, March 1996.

[56] Job van Amerongen. Mechatronic Design. In The 7
th Mechatronics Forum Interna-

tional Conference, Atlanta, GA, August 2000. plenary paper.

[57] Job van Amerongen. The Role of Control in Mechatronics. Engineering Science and
Educational Journal, 9(3):105–112, 2000.

[58] Hans Vangheluwe. DEVS As a Common Denominator for Multi-formalism
Hybrid System Modeling. In Proceedings of the IEEE International Symposium
on Computer-Aided Control System Design, pages 129–134, Anchorage, Alaska,
September 2000.

[59] Andreas Varga. On modal techniques for model reduction. Technical Report TR
R136-93, Institute of Robotics and System Dynamics, DLR Oberpfaffenhofen, P.O.
Box 1116, D-82230 Wessling, Germany, 1993.

[60] Steve Vestal. Software Architecture Workshop, July 1994.

[61] Paul T. Ward and Stephen J. Mellor. Structured Development for Real-Time Systems.
Prentice-Hall, Englewood Cliffs, New Jersey, 1985.

[62] K.C.J. Wijbrans. Twente Hierarchical Embedded Systems Implementation by Simulation:
a structured method for controller realization. PhD dissertation, University of Twente,
Enschede, The Netherlands, 1993. ISBN 90-9005933-4.

DLR-IB-515-01-02

12

[63] Pamela Zave and Michael Jackson. Where do operations come from? a mul-
tiparadigm specification technique. IEEE Transactions on Software Engineering,
22(7):508–528, July 1996.

DLR-IB-515-01-02

