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1 Introduction

This article shows how xPC Target [44] facilitates embedded control system
design by turning general-purpose personal computer (PC) hardware into a
rapid prototyping platform. The PC-based platform used is the MathWorks
xPC TargetBox

TM

[45], an industrial PC. xPC Target is integrated in SimulinkR© [31],
enabling the use of Simulink as a graphical front-end with MathWorks tools
for parameter estimation, response optimization, and linearization throughout
the design cycle.

1.1 What is an embedded control system?

A control system is an implemented strategy used to cause a physical sys-
tem, or plant, to behave in a desired manner. There are two types of control
strategies:

• Closed-loop control uses feedback measurements to correct error between
the plant output and a reference input, i.e., the desired behavior.

• Reactive control is event driven and interacts with the plant via state
transition behavior.

As the feedback control strategy increases in complexity, it becomes more
difficult to apply analog components for its implementation. Dynamics in
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an analog feedback control loop always interact, making it more difficult to
match desired controller characteristics. For example, an analog system always
has a limited filter quality factor, Q, due to parasitic impedances and other
limitations. Conversely, it is easy to create an extremely sharp digital filter
with very large Q. Another complication is that analog integrators are always
limited by capacitor leakage, yet digital integrators can be nearly perfect.

A processor-based approach usually works best for reactive control as well.
In modern control systems, the control strategy is thus typically imple-

mented in software. A microprocessor determines the input to manipulate the
plant and this requires facilities to apply this input to the physical world. In
addition, the control strategy typically relies on measured values of the plant
behavior that have to be made available to the computing resources.

The immersion of computing power into the physical world is one char-
acteristic of an embedded control system. The other characteristic is that the
software that implements the control strategy is stored in read-only memory.
Thus, unlike a general-purpose computer, an embedded control system is not
independently programmable. In other words, an embedded control system is
expected to function without user intervention, although it may require user
interaction.

1.2 Embedded control system characteristics

The general configuration of an embedded control system is shown in Fig. 1.
Because the controller operates in the low-power electronics domain and
the plant operates in high-power hydraulics, mechanics, thermal, and other
physical domains, transducers are needed to convert between controller and
plant. These transducers are used either by actuators, to drive the plant with
controller-computed values, or by sensors, to provide measurements to the
low-power electronics domain. In embedded systems, the low-power compu-
tational electronics of the controller has to interact with high-power physical
domains of many types [42].

Fig. 1. General embedded control system configuration

For example, consider the Stewart platform in Fig. 2. This physical system
consists of six legs supporting a circular platform. The platform may be used
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to build, for example, an aircraft simulator. The legs are then used to move
the simulated aircraft so as to give the impression of being inside an actual
aircraft. This unit is sometimes called a “hexapod,” after its six legs.

Fig. 2. A Stewart platform

To move the platform, each leg is equipped with a motor that extends it.
The control strategy that computes the desired extension is implemented in
a low-power microprocessor. An amplifier turns this electrical signal into a
high-power equivalent that can be used to drive the motor. Sensors measure
the actual extension of the legs. Six linear encoders, one on each leg, send
a voltage pulse every time the leg slides a given distance. Dedicated counter
hardware counts the number of pulses. The actual distance is computed based
on this count.

In addition to the transformation between high- and low-power domains,
transformations between discrete-time and continuous-time behavior are re-
quired. The plant can be viewed as changing continuously in time [14, 27].
The controller, however, has a discrete clock that governs its behavior, and
so its values change only at discrete points in time. To obtain deterministic
behavior and ensure data integrity, the sensors must include a mechanism to
sample continuous data at discrete points in time, while the actuators need to
produce a continuous value between the time points with discrete-time data
(typically, the value is held constant).

1.3 Rapid prototyping in embedded control system design

Formal control design methods invariably rely on a plant model [1, 4]. The
plant model can be derived from first principles but often contains unknown
parameters. Experiments must be conducted to gather information on the
behavior of the plant dynamics to help estimate these parameters.
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Once a plant model is available, closed-loop feedback and reactive control
can be designed using simulation or synthesized using methods such as pole
placement, inverse dynamics, total energy control, H∞, and model predictive
control.

Rapid prototyping tools support this design paradigm. At the start of the
control design process an engineer may have an inaccurate model or no model
at all. At this stage, a skeleton control system is developed to stabilize a system
and to obtain the desired behavior for the experiment. Experiments can then
be designed and performed to acquire responses of the system under various
operating conditions. The acquired data can then be used to enhance the plant
model and to design a new control system based on the more accurate plant
model. Simulating the combined control system and plant model, the designer
can study and optimize the performance of the system using the full nonlinear
plant simulation model. Finally, the control system can be implemented on
a rapid prototyping system. If the system does not meet the performance
achieved in simulation, the model and the control system design are further
refined.

Such incremental design for embedded control systems requires that the
rapid prototype operate in real time, interact with hardware, have supporting
control functionality, and be safe.

1.4 Chapter overview

In Section 2, the concept of rapid prototyping is elaborated. In Section 3, the
Stewart platform is presented that will be used throughout the chapter to illus-
trate the concepts put forward. Section 4 discusses the PC-based xPC Target
for rapid prototyping, and Section 5 describes the industrial xPC TargetBox
that is used to implement the embedded control for the Stewart platform. In
Section 6, generation of the embedded code for control is discussed. Section 7
discusses how models are obtained. Section 8 explains how to acquire the data
necessary for modeling. Section 9 gives an overview of how models are used in
the embedded control system design. Section 10 describes the control strategy
as used for the Stewart platform, and Section 11 presents conclusions.

2 What Is Rapid Prototyping?

Much research has been devoted to the analysis, design, and synthesis of
a controller based on a plant model. Note that this research pertains to a
model of the controller as well. Once this controller model has been designed,
however, it still has to be realized and connected to the actual plant, and
most of the actual control system engineering effort is devoted to taking the
controller model to such a realization. In particular, accounting for some of
the implementation details such as, for example, the resolution of a fixed-point
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microprocessor that will be used, may affect the originally designed controller
model and require it to be modified [20].

A rapid prototype is a quick way to validate the controller code by exe-
cuting it with the actual plant, sensors and actuators, the plant model, or any
combination of these components [19].

The purpose of rapid prototyping is to obtain confidence and pinpoint
flaws and errors in a partial design before committing to a completed design.
This is a common design approach. For example, in software, a core algorithm
is typically implemented and tested before extensive comments, exception
handling, and robustness functionality are added.

In scientific research and education, where a system is rarely taken into
production, rapid prototyping serves an important purpose. In industry, rapid
prototyping allows testing of a partial design before expending the effort to
include robustness measures and optimizing the design.

There are three different rapid prototyping configurations: functional,
bypass, and on-target (Fig. 3).

• Functional rapid prototyping is used for testing new ideas and research
projects where there is no controller or the controller is too primitive to
support advanced control strategies. In such cases, the rapid prototyping
controller controls the entire system. As the focus is on proving the con-
cept, the size of the generated code and the fixed-point characteristics of
the software are not important. The hardware used for functional rapid
prototyping is often PC-type hardware and is not intended for production
controller applications. The flexibility to add I/O hardware is important in
rapid prototyping as various hardware contingencies cannot be accounted
for ahead of time.

• Bypass rapid prototyping replaces only a part of the existing control system
with the new controller. This is useful if the system control demands high
current capacity drivers that are typically not available in rapid prototyp-
ing controllers or if only part of the functionality of the controller needs
to be replaced with the new features.

• On-target rapid prototyping uses the production hardware directly and
captures all the hardware dependencies and I/O limitations [5, 12]. It
allows engineers to assess the ability of the algorithm to control a vehicle
under various test track conditions, especially those, such as ice, that are
hard to simulate using a model.

3 A Stewart Platform

This example describes the rapid prototyping of the Stewart platform shown
in Fig. 2, using xPC Target [44] and xPC TargetBox [45].
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Fig. 3. Rapid prototyping configurations.

3.1 Control objectives

One control objective is to enable the Stewart platform to assume a prescribed
position as accurately and quickly as possible. Another is to move the platform
at specific speeds.

3.2 System configuration

The Stewart platform system in Fig. 4 shows the hexapod plant and xPC
TargetBox controller connected by sensors and actuators. xPC TargetBox
includes a 400 MHz Intel Pentium III (floating-point) processor, with 128 MB
RAM, and 32 MB flash RAM.

3.3 The peripherals

The peripheral hardware consists of force actuators and position sensors.

Force actuators

Mounted on the legs of the Stewart platform are Nanomotion H1 piezoceramic
motors that extend the legs, so there are six actuators. The motors are driven
by Nanomotion amplifiers that read the control voltage from one of the six
channels of the RTD DM6604 analog output of the xPC TargetBox. The input
to the amplifiers is a low-power analog reference signal that they convert into
a high-power sinusoidal voltage. By varying the amplitude of the sinusoid, the
motor moves the leg up and down.7

7http://www.nanomotion.com/data/docs/Tech%20notes%20102.pdf
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Fig. 4. Stewart platform hardware configuration

Position sensors

Six MicroE Mercury 3110 incremental encoders8 measure the extension of
each of the six legs. To measure the extension, these sensors use an optical
beam that produces a sequence of electrical pulses when a grated slider is
passed by. The slider has 65,536 counts on it over about 4 cm of travel, giving
a precision of about 0.61 µm of travel per count.

A slide with a reference marking calibrates the zero location from which to
start counting incrementally. In this particular hardware setup, the encoder
pickups cannot see the reference marking and so have a purely incremental
capability. Because the encoder cannot be reset at a given location based on a
reference reset pulse, the only option is to drive it to the stops of the actuator
slider and define that to be zero.

The sensor is powered by a 5 V supply at 300 mA. It delivers the electrical
pulses with a power and impedance that allow it to be directly connected to a
counter board. xPC TargetBox includes an RTD DM6814 incremental encoder
board that counts how many pulses it receives from the encoder pickup and
passes this count to the model. Two counter I/O boards, each supporting
three channels, are used.

4 xPC Target

4.1 General-purpose hardware

A rapid prototyping platform needs to be more powerful and flexible than
the eventual target processor. For example, if the software has not yet been

8http://www.microesys.com/
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optimized, it will not run as efficiently. To achieve real-time behavior, a more
powerful microprocessor is necessary. Furthermore, additional measurements
may need to be made to obtain insight in the functioning of the controller.

The necessary flexibility, computing power, and memory capacity may
make rapid prototyping platforms much more expensive than the hardware
that is ultimately used in production. Because of the cost, rapid prototyp-
ing platforms are often used for more than one project, an approach that is
supported by the inherent flexible nature of such platforms.

xPC Target [44] provides the means to turn general-purpose PC hardware
into a prototyping environment that can be used for signal acquisition, rapid
prototyping, and hardware-in-the-loop simulation.

4.2 PC form factor

The form factor of a device is its physical shape and size. There are a number
of specific form factors available for PC-based systems. A form factor may
encompass design components such as connector types, bus protocols, board
sizes, power specifications, and mechanical enclosures. Rarely does the form
factor directly influence processor selection, but a particular form factor is
often indirectly tied to a processor family. Thus, it is common to couple the
choice of a form factor to the processor selected. This can be a regular desktop
PC, rack-mounted PC, or an industrial PC. The advantages of using PC-based
platforms are their scalable computing power, flexibility, and expandability.

xPC Target can be used with any PC containing IntelR© 386/486, PentiumR©,
or AMD K5/K6/Athlon processors as the real-time target. This includes
desktop computers, industrial computers such as xPC TargetBox, PC/104,
PC/104+, CompactPCI, all-in-one embedded PC, or any other PC-compatible
form factor. Thanks to economies of scale and competition, these devices have
performances in the order of millions of floating-point operations per second
(MFLOPS), relative to cost. Moreover, the large range of available form fac-
tors allows xPC Target to be used in small PC/104 systems as well as in much
larger expanded PCI systems. For example, it is common to perform early de-
sign work using a standard desktop PC and then immediately retarget the
control algorithm to an industrial computer for field testing.

4.3 Real-time operating system

The xPC Target kernel provides a real-time operating system that supports
both interrupt handling and polling and is tuned to provide maximum per-
formance with minimal overhead. High-performance hardware allows sample
rates that approach 100 kHz.

4.4 Drivers

A key step in transforming software into a real-time system is the requirement
to have device drivers that communicate between the I/O devices on the target
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PC and the application code running on this target. These drivers thus enable
interaction between the real-time application and the real physical system.
The device driver contains the code that runs on the target hardware for in-
terfacing to I/O devices such as analog-to-digital (A/D) converters, encoders,
digital signals, and communication ports. Each device driver is implemented
as a Simulink S-function using C-code MEX files.

Figure 5 shows the Simulink blocks for the six encoder channels supported
by two DM6814 boards used on the Stewart platform. These blocks result in
automatically generated code for the hardware drivers.
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Fig. 5. Simulink model of Stewart platform host and target software

The code for the entire system identification application can be generated
without manually producing glue or driver software.

4.5 Writing device drivers

To understand the process of writing device drivers, it is essential to under-
stand S-functions and low-level programming of I/O boards.

An S-function is a description of a Simulink block written in a language
such as M or C [31]. S-functions have a special calling syntax, referred to as
a call-back, that allows these custom blocks to interact with Simulink in the
same manner as built-in Simulink blocks do. A C S-function can be compiled
and dynamically linked into the Simulink environment, thereby allowing cus-
tom blocks to be added to the Simulink environment. Thus, S-functions and
S-function routines form an application program interface (API) that allows
the flexible implementation of generic algorithms within the Simulink envi-
ronment. This flexibility cannot always be maintained when S-functions are
used with Real-Time WorkshopR© [28] to generate code. For example, it is not
possible to access the MATLABR© [18] workspace from an S-function that is
used with Real-Time Workshop, but it is possible when using the S-function
with Simulink for simulation purposes only.
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To incorporate a device driver block in the Simulink model requires an S-
function, which in turn requires the C source code for the device driver. xPC
Target provides a comprehensive device driver library supporting more than
250 boards of various types, including A/D converters, digital input/output,
Controller Area Network (CAN) [3], and ARINC 429. Thus, xPC Target
greatly simplifies the process of generating a real-time application by pro-
viding the library of device driver S-functions.

Writing a device driver that is not yet available is simpler for xPC Tar-
get than writing a general configuration since xPC Target does not contain
the many layers typically found in an operating system (OS). For example,
the xPC Target kernel has direct virtual-to-physical address mapping, which
means that declaring a pointer at a particular address will lead to bus access
at the same physical address. Moreover, the source code for the existing xPC
Target device drivers is provided with the product, enabling users to gain
familiarity with the way device drivers are implemented.

Device drivers for xPC Target can be developed in one of two ways:

• Obtaining the source code for the driver from the hardware manufacturer
and porting it to the xPC Target kernel

• Using the register programming manual of the I/O board from the hard-
ware manufacturer to develop a driver from the very beginning

The xPC Target kernel provides a set of functions for accessing ports and
memory, PCI initialization space, and performing time measurements that
can be used in an S-function compiled for xPC Target.

PCI boards are better than ISA boards for adding I/O functionality to
a real-time system because they provide plug-and-play allocation of access,
interrupt resources, a wider and faster bus, and software calibration.

4.6 xPC Target configuration

The xPC Target host-target arrangement is shown schematically in Fig. 6.
On the host PC (which runs MATLAB, Simulink, Real-Time Workshop, and
xPC Target), xPC Target works with the code generated from the Simulink
application and a C compiler to build the real-time target application. The
target application can run in real time on a target PC once it is downloaded
to the target PC from the host PC. The target hardware is booted from a
real-time kernel in xPC Target. However, the xPC Target kernel needs the PC
basic input/output system (BIOS) because when the target PC boots and the
BIOS is loaded, the BIOS prepares the target PC environment for running
the kernel and then starts the kernel.

The kernel initiates the host-target communication, activates the appli-
cation loader, and waits for the target application to be downloaded from
the host PC. The host-target communication can occur through either serial
or TCP/IP communication protocols. Once the target application has been
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downloaded to the target PC, it can be controlled and modified from the host
PC.

TCP/IP
(Ethernet)

10/100 Mb/s

RS-232
< 115 kbaud

MATLAB
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Stateflow

Real-Time Workshop
xPC Target

xPC Target
Application

Physical
System

xPC Target
Real-Time Kernel
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I/O

MS Windows

Host Target Plant

Real-TimeNon Real-Time

Fig. 6. xPC Target system

In the annotated Simulink model of the Stewart platform setup shown in
Fig. 5, the shaded area in the bottom-right corner marks the software that
is running on the host PC. The shaded area at the top indicates the actual
hardware. The rest of the blocks are running on the target PC.

4.7 Host and target interaction

It is frequently necessary to interact with the real-time application to either
observe signals or change parameters.

Data logging and on-line monitoring

During the rapid prototyping stage, it is important to have access to many
variables. For this reason, the plant is typically instrumented with more sen-
sors than will be included in the “production” configuration. In addition, the
data needs to be stored in a persistent form or made visible in real time.

Oscilloscopes such as the Agilent 54621A 2-Channel 60 MHz Oscilloscope
allow communication over, for example, an RS-232 connection [39]. This con-
nection supports sending commands to the oscilloscope such as the time base
to use. It also supports communicating the display data.

Alternatively, monitoring software can be used to manage data. xPC Tar-
get supports several monitoring and data logging methods, including xPC
Target scopes, outport blocks in the Simulink model of the target application,
and a Web browser interface.

xPC Target scopes are data display options for the target. Any signal in
the target application can be associated with the target scope. In addition to
being displayed on the display monitor attached to the target, the data that
is sent to the scope can be stored in RAM or on the xPC Target file system
and transferred to the host when the execution of the target application stops.
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The availability of a file system on the target hardware allows large amounts
of data to be logged, especially useful in prototyping applications. The data
display and logging can be controlled by other signals in the model so that
bursts of logged data can be acquired.

Outport blocks in the Simulink model of the target application can be used
to log data to an object in the MATLAB workspace once the execution of the
target application is terminated. From here, the data can be manipulated as
regular workspace variables, one option being saving it to a file and another
being displaying it in a MATLAB plot. The outport blocks must be at the top
level in the model hierarchy and are considered model output. Time and the
model state can be logged in the same way in which this data can be written
to the MATLAB workspace during operation of the target application.

A Web browser interface can be used to retrieve the data logged by the
target application in a comma-separated list that can be easily handled by
spreadsheet or similar programs.

Note that the task execution time is a variable that is available for logging
by an xPC Target real-time application, although it is not available when
simulating the application in Simulink.

For the Stewart platform described in Section 3, the sample rate of the in-
put and output blocks is chosen at 1 ms, yielding a data acquisition frequency
of 1 kHz. This frequency is fairly standard for mechanical systems. Because it
is much higher than the mechanical dynamics (around 10 or 20 Hz), it is high
enough to eliminate aliasing concerns [8, 23]. The powerful xPC TargetBox
processors and memory allow sampling at this high a frequency. To prevent
data files from becoming too large, the data logging frequency is down-sampled
by a factor of 10 to about 100 Hz.

Parameter tuning

xPC Target supports the modification of parameters in the Simulink blocks
while the application is running. The parameter changes are immediately re-
flected in the real-time application. The tight integration between MATLAB,
Simulink, Real-Time Workshop, and xPC Target makes it possible to write
a script that incrementally changes a parameter and monitors a signal out-
put. The script can then be run on the host PC to optimize the value of the
parameter.

5 xPC TargetBox

xPC TargetBox provides a complete hardware capability for prototyping con-
trol systems. It combines xPC Target software with a Pentium-based computer
in a rugged enclosure that is suitable for industrial environments. The micro-
processor can be augmented with a number of I/O configurations that are
commonly required for control applications, such as counters/timers, A/D,
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D/A, pulse-width modulation (PWM), digital I/O, and CAN bus. xPC Tar-
getBox is a PC-compatible computer configured to use a standard PC/104
stack but with all physical considerations incorporated to create a rugged and
powerful controller.

xPC TargetBox includes chassis, enclosure, connector breakouts, and an
internal power supply. It enables the design of embedded systems for appli-
cations such as mobile controllers like PC/104 and single-board computers
(SBCs). The acquisition cost for an all-in-one embedded PC is slightly higher
than for a PC/104 or SBC system, but there is no additional cost for designing
and manufacturing an enclosure because the system includes the enclosure.

xPC TargetBox systems can achieve sample rates approaching 60 kHz.
They accommodate up to four PC/104 expansion boards and support a se-
lection of commonly used I/O options.

6 Generating Embedded Code

6.1 Application execution

Simulink simulation steps

A typical Simulink block consists of inputs, states, and outputs, where the
outputs are a function of the sample time, the inputs, and the block states.
During simulation, the model execution follows a series of steps (Fig. 7). The
first step is the initialization of the model, where Simulink incorporates library
blocks into the model; propagates signal widths, data types, and sample times;
evaluates block parameters; determines block execution order; and allocates
memory. Simulink then enters a simulation loop. Each pass through the loop
is referred to as a simulation step. During each simulation step, Simulink
executes each of the model blocks in the order determined during initialization.
For each block, Simulink invokes functions that compute the values of the
block states, the derivatives, and the outputs for the current sample time.
The simulation is then incremented to the next step. This process continues
until the simulation is stopped.

Real-time execution

Real-time behavior is inherent to embedded systems design. There are differ-
ent definitions of “real-time”. For the purpose of this paper, it is defined as
“a fast enough response” for a particular application.

Real-Time Workshop takes the Simulink model and generates the applica-
tion or algorithm code that contains the system of equations derived from the
model as well as the block parameters and the code to perform initialization.
Real-Time Workshop also provides a run-time interface that allows the model
code to be built into a complete, stand-alone program that can be compiled
and executed. Figure 8 provides a high-level view of the real-time executable.
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Fig. 7. Steps in a Simulink simulation

xPC Target uses this run-time interface and combines it with a real-time clock
and scheduler to generate a real-time application, while providing the drivers
for interfacing to real-time hardware and the signal monitoring and param-
eter tuning capabilities. Based on the sample rate specified in the Simulink
model, xPC Target uses interrupts to step the execution of the model at the
appropriate rate. With each new interrupt, the target application computes
all the block outputs from the model, similar to the way Simulink computes
its block outputs.

Code generated from the modelExecution driver for the model code
Operating system interface routines
Input/output routines
Solver and data logging routines

Environment Application

Fig. 8. The object-oriented view of a real-time program

The code generated from the Simulink model is sometimes referred to as
the model code because it implements the Simulink model. The model code
contains functions that correspond to the applicable simulation steps outlined
in Fig. 7: compute the model outputs, update the discrete states, integrate
the continuous states (if applicable), and update time. xPC Target generates
its own main program. This program interacts with the execution driver for
the model code, which in turn calls these functions.

The functions then write their calculated data to the real-time model. At
each sample interval, the main program passes control to the model execution
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function, which executes one step through the model. This step reads inputs
from the external hardware, calculates the model outputs, writes outputs to
the external hardware, and then updates the states, as shown in Fig. 9.

Read system input
from A/D

Calculate and update
continuous states

Calculate system output

Write system output to D/A

Calculate and update
discrete states

Increment time

Integration algorithm

Execute model

Fig. 9. Real-time execution of the model code

If these computations require the plant output of the previous sample time,
they must be performed in one sample interval. This implies synchronization
between the execution of the logical program by the controller and the dy-
namic behavior of the plant in real time. The sample rate is determined by
control law analysis and depends on the time constants of the plant: the faster
the plant time constants, the higher the required sample rate.

Note that this scheme writes the system outputs to the hardware before the
states are updated. Separating the state update from the output calculation
minimizes the time between the input and output operations. The generated
code also contains functions to perform initialization, facilitate data access,
and complete tasks before program termination.

The requirement to have plant input computed at a given point in time
implies a fixed controller response time. As a result, the controller cannot rely
on iterative computational schemes unless the upper bound of the iterations is
fixed. This means that the controller must not employ a variable integration
step or include algebraic loops.

6.2 Model-based code

Using Simulink as a graphical front end to the embedded software combined
with automatic code generation technology makes it easy to modify the con-
troller —it is easier to change the model than to change the code (code changes
have a higher probability of introducing new defects) [22]. The controller can
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be analyzed in terms of the Simulink model, which is more intuitive than the
embedded software code, and sophisticated data analysis tools are immedi-
ately available to study and tune the controller performance.

6.3 Data acquisition code

As illustrated by the measurement setup in Section 3, the actuation of a plant
and sensing some of its signals can be an intricate matter. The transducers
used to transform signals between physical domains are often complex de-
vices with highly nonlinear characteristics, making them difficult to model.
Furthermore, careful calibration is crucial and, given that the physics of the
system change over time, conscientious recalibration is a necessity.

Selecting from among the many available sensors and actuators is an im-
portant stage in the design of an embedded control system, especially because
dedicated “signal conditioning” hardware may be required to employ particu-
lar sensors and actuators. This hardware may be used, for example, to change
the impedance of a signal, ensure its voltage range is within required bounds
(often between 0 V and 5 V), filter voltage spikes, and protect against power
surges.

In addition, the actuators and sensors chosen present interfacing require-
ments. For example, a DC motor may have to be driven by PWM, and so the
availability of a PWM channel to the controller is desirable.

A measured variable is made available to the embedded controller as a
voltage. To be used in control law computations, this variable must be con-
verted into the corresponding value of the physical quantity that it measured.
For example, the position measurement of the legs of the Stewart platform is
made available as a sequence of electrical pulses. These pulses are counted.
The resulting value is indicative of the extension. However, the actual value
requires computing 0.04/65536∗count number (see Section 3.3) first. Embed-
ded control systems include software to perform the computations required to
complete the data acquisition.

6.4 Supporting control algorithms

Embedded control systems typically account for different operating regions,
or modes of operation. For example, an aircraft moves through a sequence of
modes such as take-off, cruise, descent, and flare on each trip. In order to test
the algorithm for a particular mode, the plant must be in the corresponding
mode. It may be necessary to implement control algorithms for any of the
modes that the system has to move through to arrive at the desired mode.
Furthermore, additional control loops may be present in the same system.
These supporting control algorithms can, however, be of a rudimentary nature.

To estimate friction parameters in the Stewart platform in Fig. 2, the
system has to be moved to an operating point. This involves a start-up stage,
during which the system is operated in an initialization mode, before moving
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into its operational mode. This start-up is modeled in StateflowR© [36] by the
statechart [10] shown in Fig. 10.

initializing_legs
en: volts_out=init_volts;

running_legs
du: volts_out=volts_in;

Fig. 10. Stewart platform start-up procedure

Once the required measurements have been taken, the Stewart platform
must be returned to a safe and stable position. This is performed by the shut-
down stage, modeled by the statechart in Fig. 11. After the operational mode,
running legs, a reset mode, reset legs, is entered during which the extensions
of the legs are reset. Next, the final mode, done, is entered during which all
control signals are commanded to 0. Once this mode is entered, it is safe to
turn off the system power.

[clock_time>reset_time]

[clock_time>(reset_time+3)]

running_legs
du: volts_out=volts_in;

reset_legs
du: volts_out=reset_volts;

done
en: volts_out=0*reset_volts;

Fig. 11. Stewart platform shut-down procedure

6.5 Safety

Embedded control systems are fail-critical; they exhibit potentially dangerous
behavior to the point where they may trigger catastrophic events. For this
reason, the legs on the Stewart platform must not be driven beyond their
maximum extension. This condition is ensured by a control that enforces a
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hardware limit. The controller uses the current extension of each leg and
the requested force to be exerted upon this leg as shown in the statechart in
Fig. 12(a). If a leg is within 2% of its full extension, the controller will not allow
further extension. The output of this statechart, F des out, is then passed
through the force saturation computation statechart shown in Fig. 12(b).

limit_enforcer_system

[x_L<mech_limit_min]

[x_L>mech_limit_max]

out_of_bounds

beyond_min

beyond_max

in_bounds
du:F_des_out=F_des_in;

(a) Limiting

[F_in<-F_max]

[F_in<-F_max]

[F_in>F_max]

[F_in>F_max] [F_in<F_max & F_in>-F_max]

saturated
too_small
du:F_out=-F_max;

too_big
du:F_out=F_max;

unsaturated
du:F_out=F_in;

(b) Saturation

Fig. 12. Force safety computations

In many cases, emergency hardware is available that allows a safety switch
to immediately invoke a safe controller. Often, this safe controller is nothing
but a simple strategy to shut off power (the “big red button”). However,
simply shutting off power is not always a feasible approach. For example, in
aircraft, a hardware or software mode-switch may have to be present that
has a proven controller (human or automatic) immediately take over. If the
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controller that is tested is designed to deal with calamities, it requires pushing
the system to its envelope of safe behavior. In this case, the safety switch may
even have to be made before the test of the prototype controller goes awry,
as it is necessary to be in a recoverable state when the switch is made.

7 Plant Modeling

In many applications the equations of motion for the system can be described
by first principles. Simulink and Stateflow provide the functionality to de-
scribe the overall architecture of a system. Tools for domain-specific physical
behaviors include SimMechanics [30], for characterizing the dynamics of two-
dimensional and three-dimensional mechanical components, and SimPower-
Systems [11], for modeling the dynamics of electrical power systems.

The SimMechanics model of the overall Stewart platform mechanics was
exported from a computer aided design (CAD) drawing in SolidWorks [35].
Figure 13 shows a SimMechanics model of a Stewart platform leg, including
friction. The gray area shows the SimMechanics part, which consists of a
body representing the lower leg and a body representing the upper leg. The
two bodies are connected by a prismatic joint. The Lower Leg Sensor and
the Upper Leg Sensor sense the position and orientation of the lower and
upper leg bodies for display with the Virtual Reality Toolbox [41]. The Lower

Connect and Upper Connect ports connect the leg to the base and top plate
of the Stewart platform, respectively. The prismatic joint is modeled to have
stiction by the Stiction Actuator. This actuator takes forward and reverse
stiction values and evaluates whether the static friction value is between these
forward and reverse values. If it is, the joint is locked. Otherwise, the joint
moves with kinetic friction and an external actuation force. The kinetic friction
is computed by the Friction block and includes nonlinearities such as spring-
damper endstop behavior.

The connections within the SimMechanics domain are energy connections
that carry two conjugate variables, velocity and force. The product of these
variables constitutes power [27]. The SimMechanics compiler automatically
derives the computational direction of the velocity and force (the computa-
tional causality) that needs to be made explicit in a Simulink model [43].
Because the connections carry two variables that are computed from opposite
ends, the connections are undirected, and, therefore, instead of an arrowhead,
a direction-neutral line ending (such as a solid circle or a square) is used.

Typically, values for physical parameters such as moments of inertia,
masses, rod lengths, and gear ratios are well known and can be incorporated
into the model. Parameters such as friction coefficients, viscosity, and stiction
behavior, however, are not precisely known. Measured data from the rapid pro-
totyping system can be used with the first-principle description to calibrate
these parameters using Simulink Parameter Estimation [6]. Simulink Param-
eter Estimation estimates parameters and dynamic states in Simulink and
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Fig. 13. A SimMechanics model of one leg of the Stewart platform

related modeling environments such as SimMechanics and SimPowerSystems.
Simulink Parameter Estimation allows the selection of a set of parameters
and states to be estimated. Minimum and maximum values of the parame-
ters and initial states can be set, in addition to the expected values. Simulink
Parameter Estimation uses optimization algorithms from the Optimization
Toolbox [26] and, optionally, the Genetic Algorithm and Direct Search Tool-
box [9].

Linear system identification tools are useful if the dynamics of a system
behave in a near-linear manner about a given operating condition, but cannot
be modeled from first principles. The System Identification Toolbox [38] com-
putes linear discrete and continuous models using both time and frequency
domain data.

Transfer function estimation is another process that takes experimental
data and converts it using spectral estimation techniques to compute the
frequency response of a system. The Signal Processing Toolbox [29] has many
functions to support the estimation of a transfer function.

If linear models do not describe the model accurately and the underlying
equations of motion are not well known, a nonlinear black box neural network
can be created using the Neural Network Toolbox [21].
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8 Data Acquisition

8.1 Experiment design

An experiment to acquire input/output data requires input signals that ad-
equately excite the system. Experiment design must address [15, 25]: sample
time selection, signal-to-noise ratio, and signal persistency.

Experiment validation and analysis is a post-processing step that involves
the cleanup and initial analysis of the data. The post-processing steps include
detrending, filtering, and outlier removal. Other experimental validation steps
include [2, 6, 38]:

• Spectral estimation—the process of converting experimental data using
spectral estimation techniques to compute the frequency response of a
system. This type of estimation can be used to assess the order, the band-
width, and a model for the system.

• Performing correlation calculations—to test for the existence of feedback,
nonlinearities, and delays in the data.

• Data acquisition—two sets of data should be acquired from the rapid pro-
totyping system: input for model estimation and validation. The form of
the signals used in the validation data set should be different from the
signals used for estimation data set generation.

8.2 Real-time needs in data acquisition

While data acquisition systems are useful for gathering data to build physical
models, they cannot perform real-time data processing.

In a general data acquisition configuration, plant sensors provide a stream
of measurements that are logged at a given sample rate. The plant may be ex-
cited by feedforward control, but the data acquisition system does not include
any feedback control. In a real-time data acquisition configuration, closed-loop
feedback control may pose stringent real-time constraints. The data acquisi-
tion part, however, can be run at a lower, and less demanding, frequency.

Rapid prototyping systems are preferable to standard data acquisition
tools in the following cases:

• When the plant must be operated in a given mode to obtain data to
estimate model parameters. For example, to determine the static friction
of each of the legs of the Stewart platform, they have to be movable in both
the positive and negative directions. An initial start-up phase is, therefore,
necessary to extend all the legs to a point where they can move in both
directions.

• When a plant is unstable and requires feedback to stabilize the dynamics
for an experiment.
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• When other control loops must be in operation while performing the ex-
periment (e.g., when designing the spark control for a combustion engine
while keeping the rest of the engine control strategy and I/O interfacing
the same).

• When safety control functionality must be in place to protect the system.

8.3 Data acquisition techniques

There are three basic techniques for data acquisition. Each has advantages
and drawbacks [44]:

• Polling reads the status of a device regularly and is easiest to understand
and debug.

• Interrupt-based data acquisition directs attention to a device only when it
requests attention and is more flexible but suffers from “interrupt latency.”

• Direct memory access (DMA) moves blocks of data directly into memory
but requires the data to be processed as it comes in.

8.4 Parameter estimation

Once the acquired data has been uploaded from the target to the host (see
Section 4), Simulink Parameter Estimation can be used to estimate the pa-
rameters of a plant model.

For example, in Fig. 14, three sets of data were acquired from the Stew-
art platform. The input is the voltage with which one of the piezoceramic
actuators is driven. The output is the extension of the corresponding leg as
measured by the grated slide.
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Fig. 14. Excitation

These data sets are used to estimate the static and dynamic friction be-
havior of one of the legs. Figure 15 shows the response of the Stewart platform
to each of the excitations in Fig. 14.

Figure 16 shows the resulting output for the excitation in Fig. 14(a). The
solid curve is the measured output, also shown in Fig. 15(a). The initial model
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Fig. 15. Response

output using parameter values as chosen by an educated guess is depicted
by the dotted curve. The parameter values that result from the estimation
are given in Table 1. The corresponding trace is the dashed curve shown in
Fig. 16. The estimated parameter values produce a model output that, while it
better approximates the measured output, still deviates significantly from the
actual output. Investigation of the model and the deviations reveals position-
dependent stiction. This dependency can be added to the model structure and
the parameter estimation process can be repeated.
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Fig. 16. Parameter estimation result

9 Stages in Control System Design

Once a model is available, the design of a control system can commence as
follows:

1. Transform the model of the physical system into a form suitable for con-
troller design. If the model is nonlinear, use the linearization tools to
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Table 1. Estimated parameter set

Name Value Estimate Initial Guess Minimum Maximum Typical Value

Kf 0 .74713
√

Kf 0 +Inf 0 .75

Kfv 15
√

Kfv 0 +Inf 15

Kk 1 .0015
√

Kk 0 +Inf 1

Kv 40
√

Kv 0 +Inf 40

sf f -3 .5004
√

sf f -Inf 0 -3 .5

sf r 3 .5
√

sf r 0 +Inf 3 .5

sg f 0 .99998
√

sg f 0 +Inf 1

sg r 1
√

sg r 0 +Inf 1

xL offset 17 .814 xL offset 17 .814 +Inf 17 .814

extract a linear model of the plant at various operating points [7, 32].
Simulink Control Design [32] provides tools to automatically extract a
linear model from a Simulink block diagram.

2. Using a linear plant model, employ classical, modern, and robust control
design tools to get a close estimate of the feedback control system com-
ponents [7, 17, 24, 34, 46]. Linearization of a nonlinear model will usually
result in a number of modes of operation for which different linearized
models are derived. Such systems are called hybrid dynamic systems, and
they require dedicated synthesis and analysis techniques [16, 40]. Care
should be taken to account for computational delays and sampling ef-
fects. These variables can affect the stability and robustness of a control
system design. [37].

3. Implement the feedback control system design in the nonlinear Simulink
plant model. Optimize controller performance on the full nonlinear model [13].
Simulink Response Optimization [33] lets users specify constraints on the
response of the control system and pick parameters to optimize.

4. Simulate the nonlinear control and plant model to validate the design. A
set of test cases that “lock down” required behavior may be used.

5. Generate code for the designed control and test this code against a non-
linear plant model or a real-time plant model. The real-time version tends
to be more accurate in time but less accurate in terms of variable val-
ues because real-time simulation typically requires less accurate models
to satisfy the response time constraints.

6. Test and tune the control system performance. Simulink can communicate
directly with embedded software running on a target. Changes in param-
eters in the Simulink model from which the target embedded software is
generated are communicated to the target application to take effect while
the software is running.
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10 The Stewart Platform Controller

A feedback control law was designed that drives the Stewart platform to a
commanded position. In this feedback control law, the offset and hysteresis
need to be accounted for. If a proportional-integral-derivative (PID) controller
were used, the proportional gain would be excessively high.

For the Stewart platform in Fig. 2, the offset at which the piezoceramic
motors actually start moving is determined from acquired data. Because of
the physics of the motors, a significant force is required to ensure that the leg
starts moving. This force corresponds to approximately ± 3.2 V of command
voltage, depending on the extension of the leg and the direction in which it
is required to start moving. The velocity against voltage profile is linear once
this offset is established, causing some hysteresis around 0 V.

The control algorithm used is shown in Fig. 17. The input and output
of this control algorithm are six-dimensional variables, corresponding to the
six legs of the hexapod. The algorithm takes as input the desired extension of
each of the legs, x Ldes, the error between the actual and desired extension of
each of the legs, x Le, and the time derivative of the actual extension, xdot L.
The output of the algorithm is the desired force to be exerted by each motor
that drives the extension of each leg, F des. The desired force is the sum
of a PID control that uses a first-order filter to approximate the derivative,
an offset term to compensate for the stiction nonlinearity of the prismatic
joints, and the derivative of the desired leg extension to improve tracking of
the prescribed movement. Note that, to drive the motor, the computed force
is translated into a voltage. This translation is not shown in Fig. 17.
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Fig. 17. Stewart platform feedback control

Using Simulink Response Optimization, the parameters for the respective
control terms could be quickly estimated. If the performance of the imple-
mented system does not meet the requirements, additional data can be ac-
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quired from the Stewart platform and used to refine the plant and controller
models.

11 Conclusions

This chapter has discussed the use of MathWorks products for embedded con-
trol system design, with emphasis on rapid prototyping. xPC Target and xPC
TargetBox play a central role in this process, as the use of general-purpose
PC-based hardware makes them particularly well suited for prototyping appli-
cations. In addition, xPC Target can be equally well employed in other system
configurations [19], providing hardware-in-the-loop simulation and testing ca-
pabilities to assist in the development of embedded controllers.

The characteristics of embedded control systems and the relevant features
of xPC Target were discussed. The industrial PC, xPC TargetBox, was de-
scribed in the context of a Stewart platform application.
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