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Abstract

This paper develops a mathematical framework for hybrid phys-
ical system models. Hybrid models of dynamic physical systems are
characterized by time scale and parameter abstractions which lead to
sequences of discrete changes in the system between modes of contin-
uous behavior evolution. The goal is to develop formal execution se-
mantics for characterizing hybrid behaviors in terms of three distinct
modes of system operation: (i) continuous, (ii) pinnacles, and (iii)
mythical. Continuous modes represent normal physical system behav-
ior, where the system variables evolve continuously in time. Pinnacles,
an artifact of time scale abstraction, represent behaviors at a point in
real time. Mythical modes, an artifact of parameter abstractions, are
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defined by sequences of instantaneous local switching transitions in
the hybrid model, and have no real existence on the time line. A key
aspect of the work is the link established between the switching transi-
tions and the a priori and a posteriori state vector values, which leads
to the definition of recursive mode switching functions that govern the
interactions between the continuous and discrete components of the
system models. The mathematical specifications are developed into an
implementation model that allows for a direct mapping of system com-
ponents into model fragments, and facilitates simulation of physical
system behavior. The simulation model encompasses discrete switch-
ing implemented as instantaneous transition functions, and continuous
behavior generation based on differential equation models.

1 Introduction

Physical system dynamics, governed by the principles of conservation of en-

ergy and continuity of power [27], continuously evolve in real space as a

function of time. System behaviors are often complex, and occur at different

temporal and spatial scales. At a specified level of interest determined by

the task at hand, the system model can be simplified by abstraction, so that

the system seems to exhibit simpler piecewise continuous behavior. In other

situations, physical systems with embedded digital control are designed to

operate in multiple configurations or modes. Within each mode system be-

havior evolves continuously, but discrete mode changes can occur at points

in time, resulting in discontinuities in overall system behavior. These mode

changes, governed by state and external events, occur when system variables

cross threshold values.

Our work is focused on developing formal methodologies for hybrid mod-

eling and analysis of dynamic physical systems [12, 20]. In this framework, we

have developed a set of unambiguous and consistent principles that define the

interaction between the continuous and discrete modeling formalisms. This

paper establishes a formal mathematical model and execution semantics for

system behavior generation based on the physical principles derived in the
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Figure 1: Physical system with discontinuities.
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Figure 2: A series of mode switches may occur.

previous work.

Consider the electrical circuit shown in Fig. 1. The manually operated

switch Sw and the diode D are considered to be ideal, i.e., they switch on

and off instantaneously. When the switch is closed (mode 10 in Fig. 2), the

circuit is complete, and the inductor draws a current to build up flux, p0.

The diode is inactive (off) in this mode of operation. When the switch is

opened, creating an open circuit, the current drawn by the inductor drops

to 0, causing its flux, p0, to discharge instantaneously. The constituent rela-

tion for the inductor, VL = Ldp
dt

, implies an infinite negative voltage across

the diode because of the instantaneous change of flux in the inductor. How-

ever, as soon as the threshold voltage of the diode, Vdiode, is exceeded the

diode comes on instantaneously. The mode where the switch was open and

the diode inactive (mode 00 in Fig. 2) never occurs in real time. If it did,

the energy stored as flux in the inductor would be released instantaneously,

and the observed behavior where the inductor discharges through the diode

cannot be predicted by the idealized model. Therefore, the flux in the in-

ductor is invariant across these idealized instantaneous switching changes in

the system.

Typically a diode requires a threshold current Ith > 0 to remain on. If the
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inductor has built up a positive flux, the diode comes on when the switch

opens. However, if the flux in the inductor is such that it is too low to

maintain a current above the threshold value, Ith, the diode will switch off

instantaneously. But the computed voltage drop when the switch and diode

are both off exceeds the threshold voltage, Vdiode, which implies the diode

must come on again. This model predicts that the system goes into a loop

of instantaneous changes (see dashed arrow in Fig. 2). Therefore, system

behavior in real time does not progress or diverge, which conflicts with the

notion that behavior of any physical system cannot halt in time.

This simple example illustrates a number of characteristics specific to

hybrid system modeling and analysis:

• changes in the model configuration may cause discontinuities, which

complicates the computation of the correct system state vector in the

new mode of operation. In some cases, configuration changes may cause

dependencies among state variables causing the dimensions of the state

vector to change.

• in systems with multiple switching elements, a mode change may trigger

a sequence of additional instantaneous changes. This further compli-

cates behavior generation because:

– the sequence of instantaneous mode changes must terminate in a

real mode where behavior continues to evolve continuously, and

– the state vector in the final mode has to be computed across the

sequence of mode changes.

The rest of this paper extends these notions into formal mathematical

specifications and execution semantics. An implementation model for physi-

cal systems and a simulation algorithm are developed. A number of successful

applications of this approach are discussed elsewhere [14, 15, 16, 24].
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2 Background

A general hybrid system, illustrated in Fig. 3, operates on a domain that

combines discrete and continuous dimensions. Behavior in this space is spec-

ified by piecewise continuous intervals xα(p) a function of both α ∈ ℵ and

p ∈ ℜ dimensions. Hybrid dynamic system behavior [6, 7] evolves over time,

has an established direction of flow, and must necessarily cover the complete

interval with no gaps on the time line (see Fig. 3). Piecewise continuous in-

terval behavior is represented by well-behaved, continuous functions f , called

fields, often specified as a set of ordinary differential equations [7]. An in-

stance of temporal behavior in a field is called a flow, F . Switching from one

flow to another occurs at well-defined points in time when system variable

values reach or exceed prespecified threshold values. This defines an interval-

point paradigm where flows are piecewise continuous and any discontinuous

changes that occur have to be simple, i.e., limit values exist at points of

discrete switching [28].

Therefore, hybrid dynamic systems consist of three distinct subdomains:

• A continuous domain, T , with time, t ∈ T , as the special continuous

variable.

• A piecewise continuous domain, Vα, that specifies variable flow, xα(t),

uniquely on the time-line.
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Figure 4: A planar hybrid system [7].

• A discrete domain, I, that captures the operative piecewise continuous

domain, Vα.

We adapt notation similar to Guckenheimer and Johnson [7] and specify I

to be a discrete indexing set, where α ∈ I represents the mode of the system.

Fα is a continuous C2 flow on a possibly open subset Vα of ℜn, called a

chart (Fig. 4). The sub-domain of Vα where a continuous flow in time occurs

is called a patch, Uα ⊂ Vα. The flows constitute the piecewise continuous

part of the hybrid system. Points within the system are specified by xα(t),

a location in chart Vα in mode α at time t. An explicitly defined isolated

point that does not embody continuous behavior is called a pinnacle, Pα.

The discrete switching function γβ
α is defined as a threshold function on Vα.

If γβ
α ≤ 0 in mode α, the system transitions to β, defined by the mapping

gβ
α : α → β. The piecewise continuous level curves γβ

α = 0, denoted as Sβ
α,

define patch boundaries. If a flow Fα includes the level curve, Sβ
α, it contains

the boundary point, Bα (see Fig. 4). A hybrid dynamic system is defined by

the 5-tuple1

H =< I, Xα, fα, γβ
α, gβ

α > . (1)

Trajectories in the system start at an initial point xα1(t) and if γα2
α1

> 0,

∀α2, the point flows in α1 as specified by Fα1 until the minimal time ts at

1Guckenheimer and Johnson refer to the respective parts as < Vα, Xα,Fα, hβ
α, T β

α >

[7].
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Figure 5: Redirected trajectory because the transported point is not
in the domain of the new patch.

which γα2
α1

(xα1(t)) = 0 for some α2. Computing xα1(t
−
s ) = limt↑ts Fα1(t) the

transformation gα2
α1

takes the trajectory from xα1(t
−
s ) ∈ Vα1 to xα2(ts) ∈ Vα2 .

The point xα2(ts) = gα2
α1

(xα1(t
−
s )) is regarded as a new initial point.

If there exists α3 ∈ I, such that γα3
α2

(xα2(ts)) ≤ 0, the trajectory is im-

mediately transferred to gα3
α2

(xα2(ts)) ∈ Vα3 (see Fig. 5). A characteristic of

hybrid systems is the possibility of a number of these immediate changes

occurring before a new patch is arrived at, where again a flow defined by a

field governs system behavior [1, 7, 13, 26]. In general, this situation occurs

if γαk+1
αk

transports a trajectory to αk+1, and the initial point is transported

by gαk+1
αk

to a value that results in γαk+2
αk+1
≤ 0, i.e., gαk+1

αk
(xαk

) 6∈ Uαk+1
, and an-

other mode αk+2 is instantaneously arrived at. These immediate transitions

continue till a mode αm is arrived at where the initial point is within Uαm
.

To deal with these sequences of transitions, Alur et al. [1, 2], Guckenheimer

and Johnson [7] and Deshpande and Varaiya [6] propose model semantics

based on temporal sequences of abutting intervals.

x0 7→ x1

[t0 t1]
︸ ︷︷ ︸

Vα0

γ
α1
α0

(x)

g
α1
α0

(x)
→֒

x+
1 7→ x2

[t1 t2]
︸ ︷︷ ︸

Vα1

γ
α2
α1

(x)

g
α2
α1

(x)
→֒ . . .

γ
αm
αm−1

(x)

gαm
αm−1

(x)

→֒
x+

m 7→ xm+1

[tm tm+1]
︸ ︷︷ ︸

Vαm

. (2)

Since these intervals overlap in time, a trajectory may be in several locations
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at a point in time, ts. Therefore, these points in time are complemented

with an index that specifies their order of transition. During a series of dis-

crete switches, (ts, i), (ts, i + 1) . . . (ts, n) the trajectory moves through these

ordered points in time, repeatedly applying gβ
α, and depending on the order-

ing, different initial points of a new flow may be derived. Fig. 6 shows a

schematic representation of semantics that produce a sequence of transitions

of the form

{

x = xα1

ẋ = fα1(x, t)
︸ ︷︷ ︸

α1

γ
α2
α1

(x)

xα2=g
α2
α1

(x)
−→

{

x = xα2

ẋ = fα2(x, t)
︸ ︷︷ ︸

α2

γ
α3
α2

(x)

xα2=g
α3
α2

(x)
−→ . . .

γ
αm
αm−1

(x)

xαm−1=gαm
αm−1

(x)
−→

{

x = xαm

ẋ = fαm
(x, t).

︸ ︷︷ ︸

αm

(3)

This paper extends the mathematical model of hybrid dynamic systems

to physical system models by introducing constraints on the state vector

function gβ
α during discrete transitions. Furthermore, it modifies the defini-

tion of γβ
α to closely match requirements of object oriented modeling meth-

ods [4, 5, 8].

3 Hybrid Modeling of Physical Systems

Our previous work [12, 20], formulated a systematic approach to hybrid mod-

eling of dynamic physical systems based on a local switching mechanism. The
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dynamically generated topology in a mode is used to translate these switch-

ing specifications to conditions based on state variables. Switching conditions

may be expressed in terms of the state variables immediately before switching

occurred (a priori values), or in terms of state variables computed by solving

the initial value problem for the newly activated mode (a posteriori values).

The a priori and a posteriori values may differ when the number of degrees

of freedom in the system reduces and energy storage elements become de-

pendent. Previous work [18, 20] identified two types of abstraction that lead

to discontinuities in physical system models: (i) parameter abstraction, and

(ii) time scale abstraction. In this paper, we show that switching conditions

that result from parameter abstractions have to be in terms of a posteriori

values and conditions due to time scale abstraction have to be in terms of a

priori values. We develop formal modeling specifications as a mathematical

model.

3.1 Abstractions in Physical System Models

Parameter abstractions occur when small, often parasitic, dissipation and

storage parameters are abstracted away causing discontinuous changes in

system behavior. Time scale abstractions represent behavior that occurs on

a small time scale by a discontinuous change at a point in time. The behavior

is not abstracted away but compressed to occur at a point in time.

3.1.1 Parameter Abstraction

Consider the ideal rigid body collision between a thin rod and a floor in Fig. 7.

Upon collision, small deformation effects may occur which forces the vertical

velocity of the rod-tip, A, to quickly become 0. If this phenomenon occurs

on a time scale much smaller than the time scale of interest, these effects

can be abstracted away. As a result, the model will show a discontinuous

change when computing vA,y at the point of contact. Given the existence

of Coulomb friction [10] between the rod and floor, the rod may stick and
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Figure 7: A collision between a thin rod and a floor.

rotate around the point of initial contact (mode α01 in Fig. 8). Alternately,

if the rod-tip exerts a force in the horizontal direction that is larger than the

product of the normal force and friction coefficient, i.e., |FA,x| > µFn, the

rod starts to slide (mode α11 in Fig. 8). To evaluate which scenario occurs,

the forces need to be calculated at the point of collision. Since the impact

is idealized, the forces, referred to as impulses [3], take on the form of Dirac

functions (δ). These impulses occur at the time of impact, and their areas

are determined by the state vectors immediately prior to the impact, x, and

immediately after the impact, x+.

To calculate x+, conservation of state is applied which requires that the

total momentum before impact equals the total momentum after impact [16].

Upon contact, mode α01, the linear velocities of the center of mass, vx and

vy, are completely determined by the angular velocity, ω, and the algebraic

relations {

v+
x = lω+sinθ

v+
y = −lω+cosθ

(4)

Conservation of state yields the new state vector [12]

ω+ =
ωJ −ml(cosθvy − sinθvx)

J + ml2
. (5)

These a posteriori values may be such that the corresponding impulses

result in |PA,x| > µPn and the rod starts to slide (mode α11). However, in this
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mode v+
x is not algebraically dependent on ω, and only v+

y = −lω+cosθ holds.

Thus the rod-tip moves freely in the x-direction, and its vertical momentum

immediately before contact (mode α00), is distributed only over its posteriori

angular momentum and vertical momentum to ensure yA does not change

(i.e., it satisfies the constraint to remain in contact with the floor). If the

continuous state vector in the sliding mode, α11, was computed from the

previously inferred mode, α01, because of the v+
x dependency on ω+ in that

mode, it would have a horizontal velocity associated with its center of mass

which would keep the rod-tip from moving in the x-direction as well, which

is incorrect. So the consecutive mode switch to α11 has to occur before the

state vector is updated to its a posteriori values, x = x+. Mathematically
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this can be represented as







x+ = gα1(x)
x = x+

ẋ = fα1(x, t)
︸ ︷︷ ︸

α1

γ
α2
α1

(x,x+)
−→







x+ = gα2(x)

︸ ︷︷ ︸

α2

γ
α3
α2

(x,x+)
−→







x+ = gα3(x)
x = x+

ẋ = fα3(x, t)
︸ ︷︷ ︸

α3

(6)

where α2 is a so-called mythical mode [13, 26].

It is clear that switching in this example has to be based on x+ rather

than x, as shown in Fig. 7. This figure also shows the constraint on the

rod-tip position, yA, to achieve the contact mode of operation. As long

as the rod exerts a negative, i.e., downward, force on the floor it stays in

contact. Otherwise, the normal force, Fn, becomes negative which means

the rod disconnnects and lifts off the floor. Note that when the rod starts

sliding, vA,x 6= 0 which causes a friction force Ff in the opposite direction.

When Coulomb friction is included, the force changes discontinuously around

vA,x = 0 (Fig. 9), and that causes another immediate mode change to α21.

3.1.2 Time Scale Abstraction

Consider the perfect elastic collision of two bodies in Fig. 10. In reality,

upon collision small elasticity effects store and return the kinetic energy

over a short period of time. Becasue the time scale of this phenomenon is

very small compared to the behavior of interest, it can be modeled as an

12



instantaneous change at a point in time governed by Newton’s collision rule

v+
2 − v+

1 = −ǫ(v2 − v1) (7)

and conservation of momentum (m1 = m2)

v+
2 + v+

1 = v2 + v1 (8)

which yields
{

v+
1 = 1−ǫ

2
v1 + 1+ǫ

2
v2

v+
2 = 1+ǫ

2
v1 + 1−ǫ

2
v2

(9)

This algebraic relation only holds at a point in time. Therefore, the switching

specifications have to ensure that the collide mode is departed immediately

after the state vector is updated, x = x+. Mathematically this is represented

as






x+ = gα1(x)
x = x+

ẋ = fα1(x, t)
︸ ︷︷ ︸

α1

γ
α2
α1

(x,x+)
−→







x+ = gα2(x)
x = x+

︸ ︷︷ ︸

α2

γ
α3
α2

(x,x+)
−→







x+ = gα3(x)
x = x+

ẋ = fα3(x, t)
︸ ︷︷ ︸

α3

(10)

where α2 is a pinnacle. Fig. 10 illustrates that switching specifications have

to be in terms of a priori state variable values. Moreover, a switching specifi-

cation used for the falling rod to make the bodies disconnect, F12 < 0, cannot

be used here because on collision F12 > 0, and the constraint would not move

the ball into a free mode immediately after collision. Thus, ẋ = fα(x, t) would

be executed, but fα does not exist for the collision mode where behavior is

defined by algebraic relations (Eqs. 7 and 8).

3.1.3 Summary

The two types of abstraction have a distinctly different effect on how to

formulate switching specifications and introduce the fundamentally different

behavior between mythical modes and pinnacles. As illustrated, time scale

abstraction collapses behavior during small intervals into points, and the
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Figure 10: A collision between two bodies.

switching model uses a priori state values. In contrast, parameter abstraction

abstracts away complex nonlinear behaviors, which are modeled by switching

conditions based on a posteriori state values computed by gβ
α. The mythical

modes that result from these conditions are modeling artifacts and have no

real representation, and, therefore, do not affect the state vector, x. This is

called the principle of invariance of state [14].

Mythical modes can be replaced by direct transitions to the final real

mode (either a pinnacle, Pα, or a continuous mode, Fα). However, finding

these direct transitions requires considerable effort and because of its global

character needs to be performed whenever local changes to the model are

made. A more pragmatic approach is to incorporate systematic techniques

in the compositional modeling formalism to deal with these artifacts. Fur-

thermore, translating a system model into a model where only a priori state

variable values are used complicates the model verification task considerably.

If a posteriori values are used, invariance of state can be conveniently applied

for model verification purposes [14, 15].

3.2 Physical Model Semantics

We can now present a mathematical model that embodies the physical ab-

straction semantics. It relies on a switching function γβ
α that depends on

values xα, prior to the jump, and values x+
α just after the jump. The seman-

tics are specified by the recursive relation between γβ
α and gβ

α which takes the

14
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form {

x+
αk

= gαi
αk

(xαk
)

γαi+1
αi

(xαk
, x+

αk
) ≤ 0

(11)

Note the αk subscript in gαi
αk

. If gβ
α is independent of α, this results in the

general sequence







x+ = gα1(x)
x = x+

ẋ = fα1(x, t)
︸ ︷︷ ︸

α1

γ
α2
α1

(x,x+)
−→







x+ = gα2(x)
x = x+

ẋ = fα2(x, t)
︸ ︷︷ ︸

α2

γ
α3
α2

(x,x+)
−→ . . .

γαm
αm−1

(x,x+)
−→







x+ = gαm(x)
x = x+

ẋ = fαm
(x, t)

︸ ︷︷ ︸

αm

(12)

In this sequence, each mode, α, may be departed when any of the three as-

signment statements is executed. The difference between Eq. (3) and Eq. (12)

is the use of (x, x+) as argument to γβ
α. This can be justified by physical sys-

tem principles, and the resultant model is illustrated in Fig. 11. In relation

to the model in Fig. 6, there is an additional feedback, x+ into γ, which

introduces a loop between g and γ. Overall, three cases can be distinguished

(Fig. 12):

(a) Mythical mode: This occurs when x+ = gαi(x) leads to γαi+1
αi

(x, x+) ≤ 0.

The immediate transition caused by x+ results in the integrator (
∫

)

element not playing a role in the computation of state vector x, which

remains unchanged through the transition.
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Figure 12: Classes of modes of operation.

(b) Pinnacle: This occurs when x = x+ results in γαi+1
αi

(x, x+) ≤ 0. Updat-

ing of x through the
∫

element causes a mode transition, and, therefore,

mode αi only exists at a point in time.

(c) Continuous mode: This occurs when ẋ = f(x, t) results in γαi+1
αi

(x, x+) >

0. The system goes into a period of continuous evolution, till γαi+1
αi

(x, x+) ≤

0, and the mode is departed.

Pinnacles and continuous modes are also referred to as real modes because

they change x through the
∫

element. Comparison with the general sequence

in Eq. (3) shows that the gβ
α operation can be associated with the transition or

the new operational mode. This is equivalent to the difference between Moore

and Mealy state machines, and does not result in conceptual differences as far

as behavior generation is concerned [23]. We chose to associate gβ
α with modes

for two reasons: (i) it affects the energy distribution in the system, therefore,

it should correspond to a physical mode of operation, and (ii) for mythical

mode transitions, the state vector x remains unchanged, therefore, it makes

it easier to implement a simulator if g is associated with a mode rather than

a transition. For these reasons, we follow the Moore-type specification.
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3.3 Notes

The point xα initiates switching and controls point-interval evolution in time,

whereas x+
α drives the recursive switching function that determines the in-

termediate mythical modes that are traversed before xα is updated. Fur-

thermore, switching conditions of the form γαi+1
αi

< 0 are a special case of

γαi+1
αi
≤ 0. The latter includes Bαi

, the endpoint of flow Fαi
in mode αi. Con-

sider a transition sequence αk −→ αm −→ αn. If γαn
αm

(x, gαm
αk

(x)) > 0 then

αm is real, i.e., it is either a continuous mode or a pinnacle. If (x = xαk
(ts))

Fαm
: gαm

αk
(x) = x (13)

αm is continuous.

If gαm
αk

(x) 6= x then αm is continuous and contains a flow if

Fαm
: γαn

αm
(x, gαm

αk
(x)) > 0 ∧ γαn

αm
(gαm

αk
(x), gαm

αk
(x)) > 0. (14)

The first condition in Eq. 14 ensures the mode is real because there exists

no αn for which the transition function is ≤ 0. The second ensures that it is

not a pinnacle.

αm is a pinnacle if

Pαm
: γαn

αm
(x, gαm

αk
(x)) > 0 ∧ γαn

αm
(gαm

αk
(x), gαm

αk
(x)) ≤ 0. (15)

If αm is continuous, the flow may not contain the boundary where it exits

the mode to transition to αn (x = xαm
(ts))

Fαm
\ Bαm

: Fαm
∧ γαn

αm
(x, gαn

αm
(x)) ≤ 0. (16)

This implies that αn is a pinnacle or contains a flow that includes its initial

point,

Fαm
\ Bαm

⇒ Pαn
∨ (Fαn

∩ Bαn). (17)
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4 Model Verification

Our previous work [21] on hybrid modeling of physical systems has estab-

lished three necessary conditions to ensure meaningful behavior generation:

(i) interval-point paradigm, (ii) divergence of time, and (iii) temporal evolu-

tion of state. This section discusses these principles. Examples of colliding

bodies and falling rod models are used to illustrate these principles.

4.1 The Interval-Point Paradigm

The interval-point paradigm requires that the generated system behavior

cover all points on the real time line. Note that a hybrid model includes a

number of piecewise continuous domains Vα, and discrete transitions between

these domains. To ensure coverage, the transitions or jumps in behavior have

to be one of two types:

1. interval to point jump: αk
c- s αm. A discontinuity at ts moves

xαk
from an interval where behavior is defined by a flow that does not

include the boundary point Fαk
\ Bαk

, to a point, pinnacle Pαk1
, or a

new interval with flow Fαk1
. In this case, xαk

(t−s ) = limt↑ts Fαk
(t) is

transported to x+
αk

= g
αk1
αk (xαk

) (see Eq. (11)). The jump may generate

recursive switching before the new flow or pinnacle is reached which

terminates when γαm
αki

(xαk
, x+

αk
) > 0. The state vector xαm

(ts) = x+
αk

=

gαm
αk

(xαk
).

2. point to interval jump: αk
s- c αm. A discontinuity at ts moves

xαk
from a point, pinnacle Pαk

, or boundary point Bαk
, to a flow,

Fαk1
. In this case, the state vector xαk

= xαk
(ts) is transported to

x+
αk

computed by Eq. (11) as x+
αk

= g
αk1
αk (xαk

). The recursive switch-

ing terminates when γαm
αki

(xαk
, x+

αk
) > 0 and the function value xαm

=

limt↓ts Fαm
(t) is taken as x+

αk
= gαm

αk
(xαk

). A s- c transition results in

the activation of a flow, and the system evolves continuously before a

new sequence of switches is initiated.
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A trajectory of system behavior can be described as moving along a flow,

Fαk
, with state vector x+

αk
= gαk

αk
(xαk

) = xαk
. At time ts, γ

αk1
αk (xαk

, x+
αk

) = 0,

i.e., a boundary point in the current patch is arrived at, and state vector

xαk
= limt↑tsFαk

(t). This produces a discrete c- s change, and the trajec-

tory is transported from xαk
(t−s ) to the point g

αk1
αk (xαk

(t−s )) which results in

the a posteriori state vector x+
αk

= g
αk1
αk (xαk

(t−s )). If x+
αk
6∈ Uαk1

the trajec-

tory is redirected by the switching function γ
αk2
αk1

(xαk
, x+

αk
) ≤ 0 (see Fig. 5),

and this immediately transports the trajectory to the point g
αk2
αk (xαk

(t−s )).

The trajectory may be redirected again by the switching function γ using

x+
αk

= g
αk2
αk (xαk

(t−s )) to a new mode αk3. This recursive process continues

until a state vector xαm
is arrived at that is within the corresponding patch

Uαm
, i.e., γαm

αki
(xαk

, x+
αk

) > 0. After the successful transition is made, the a

priori value is updated to xαm
(ts) = gαm

αk
(xαk

(t−s )). If the new point is a pin-

nacle, again γ
αm1
αm (xαm

, x+
αm

) ≤ 0, s- c switching occurs, and the trajectory

is transported from xαm
(ts) to g

αm1
αm (xαm

(ts)). The new value x+
αm

can cause

another sequence of recursive switches until a state vector x+
αn

is generated

within the domain of a patch Uαn
. When switching ends, a new flow, Fαn

in Vαn
, is reached and the point xαn

(t+s ) = gαn
αm

(xαm
(ts)) becomes the initial

point and system behavior continues to evolve. In real time, the active real

modes (αk, αm, and αn) follow each other immediately.

αk
︷ ︸︸ ︷

<←, ts >,

αm
︷︸︸︷

[ts] ,

αn
︷ ︸︸ ︷

< ts,→> . (18)

Due to modeling abstractions, a system may move through a series of

pinnacles before a new flow is arrived at. An example of four balls involved

in a chain of collisions is illustrated in Fig. 13. Ball 1 which is initially mov-

ing collides with ball 2 resulting in a sequence of collisions, before ball 4

moves away. Fig. 14 shows the result of applying Newton’s collision law to

the sequence of collisions among the four balls. Ball 2 takes on the entire

initial velocity of ball 1 before transferring it to ball 3, and so on. Each of

the individual collisions represents a pinnacle, and the simulation indicates
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Figure 13: A collision between four bodies.

that the transfers in velocity all occur at the same point in time. Therefore,

in simulation several pinnacles may be traversed at the same point in time.

In reality, these collisions follow each other immediately in time [23]. Small

elasticity coefficients in each ball store the kinetic energy passed on to it

from the previous ball, before passing it on to the next ball, and this trans-

formation process requires a small amount of time. Using a more complete

model with the elasticity coefficients, simulation shows that the point where

body 2 takes on all velocity does not coincide with the point where energy

was transferred from body 2 to 3 (Fig. 15). No matter how small the elas-

ticity coefficient used (this directly affects the transfer rate), it takes a finite

amount of time for body 2 to take on the entire initial velocity from ball 1

before it can be passed on to ball 3. In reality, if this collision were modeled

to occur at the exact same time, body 2 and body 3 would act as one body

with mass 2m, and the observed behavior would be distinctly different.

The sequence of collisions due to time scale abstraction should not be

considered to occur at the same point in time as advocated by the traditional,

mathematical, hybrid dynamic systems approach [1, 7, 25]. The sequences of

pinnacles are captured by our the hybrid modeling semantics, but it violates

the interval-point paradigm and may result in poorly defined models or even

inconsistent models [23]. In certain situations, these models may predict a

gain of energy [23].
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Figure 14: Simulation of an ideal elastic collision between four bod-
ies.
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Figure 15: An elastic collision between four bodies with small linear
elasticity coefficients.
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4.2 Divergence of Time

A transition from an operational mode to another may generate a trajectory

that goes through a sequence of mythical modes before a new real mode is

reached. In this sequence, if a mythical mode is generated more than once,

the trajectory can end up in a loop of discrete changes. The implication

is that the behavior trajectory does not progress to a real mode where its

behavior continues to evolve in time. This is in conflict with known behaviors

of physical systems, i.e., they always evolve or diverge in time.

To illustrate divergence of time, consider the elastic collision between the

two balls in Fig. 10. The transition function specifies that the two balls

collide when x1 ≥ x2. The collision rule is then applied to compute the new

velocities v1 and v2, and this moves the system through a pinnacle into its

free mode. Since no time has elapsed and x1 ≥ x2 still holds, the transition

function applies again, and the system switches to the collide mode.2 This

mode is departed immediately, which implies that it is mythical. However,

the behavior trajectory is now caught in a loop of instantaneous mode changes

where no time elapses, and the divergence of time principle is violated.

Divergence of time can be enforced by

• adding more detail to models so that discontinuous phenomena are now

modeled as continuous effects, and

• modifying the switching conditions to ensure there is only one possible

mode associated with a given value of a state vector.

Adding more continuous detail is undesirable because it may increase com-

putational complexity of the model significantly. Modification of switching

specifications require revisiting the assumptions under which the discontinu-

ous approximations were made. In case of the elastic collision, the coefficient

of restitution is normally a function of impact velocities [3]. For collisions

2This also occurs if the state change due to the collision is modeled as a transition
action rather than a separate state [23].
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at low velocities, the collision phenomenon discussed above does not occur,

and the coefficient of restitution is a poor discrete approximation of the un-

derlying continuous behavior. Therefore, the transition conditions for the

collision may be modified by adding the constraint v1−v2 ≥ vth, In the limit

as vth → 0 the original transition condition v1 > v2 is attained. If the transi-

tion condition to collide adds on this constraint, one notes that the behavior

trajectory does not switch back from the free mode to the collide mode, and

divergence of time is enforced for the collision model. Similarly, in the falling

rod example, the condition for making contact can be extended by vA,x < 0

(the floor is at rest, i.e., vfloor = 0) to ensure divergence of time. In previous

work we have shown how a multi-dimensional energy phase space analysis

can be applied to establish divergence of time [14].

4.3 Temporal evolution of state

When discontinuous state changes occur at ts (Fig. 16), from an interval to a

pinnacle (x(t−s ) to x(ts)) or a pinnacle to an interval (x(ts) to x(t+s )), energy

balance in the system may require the generation of Dirac pulses δ1(t − ts)

and δ2(t − ts), respectively, to account for exchange of energy. Dirac pulses

have finite area and occur at a point in time. Since both pulses occur at ts,

the total pulse can be defined as the aggregate δc(t−ts) = δ1(t−ts)+δ2(t−ts).

However, δ2(t − ts) is not known at ts, therefore, δc(t − ts) is unknown and

the conditions that govern the configuration change from t−s to ts are also

unknown. Correct physical models are enforced by determining the actual δc

based on an interval to interval change c- c . To prevent ill-defined acausal

models, an execution semantics in the form of temporal evolution of state

is imposed on hybrid models so that discontinuous state changes only occur

from t−s to ts (i.e., δ2 = 0) [21]. The signal that is involved has to be

continuous on the left-closed interval, [ts,→> in time. This is the principle

of temporal evolution of state.

Temporal evolution of state may be violated when one considers the stic-
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Figure 17: Impulses upon collision when a sliding mode with stiction
is reached.

tion force between the rod and floor in Fig. 7. When the rod collides with the

floor at time ts, the horizontal and vertical velocities of the center of mass of

the rod change discontinuously. So, vx(t
−
s ) = limt↑ts vx(t) differs from vx(ts)

which results in a collision impulse Px,c(ts) and vy(t
−
s ) = limt↑ts vy(t) differs

from vy(ts) which results in a normal impulse Pn(ts) (see Fig 17). Since

no other forces are active PA,x(ts) = Px,c(ts). If |PA,x| > µPn another mode

change to α21,a occurs, and the rod starts to slide. A stiction impulse may be-

come active when the rod starts to slide (mode α21,b) causing a discontinuous

change in the horizontal velocity of the rod, and vx(t
+
s ) = limt↓ts vx(t) differs

from vx(ts). The aggregate impulse, expressed as PA,x(ts) = Px,c(ts)+Ps(ts),

may not satisfy the criterion for sliding, |PA,x| > µPn.

Applying the temporal evolution of state implies that the stiction impulse
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cannot become active after the rod-tip has started sliding. It has to be

activated at the point in time ts when it is determined that the rod starts

sliding. In this case, the effect of the stiction impulse is taken into account

along with Px,c(ts), and PA,x(ts) is derived correctly.

To ensure no δ pulses occur on s- c switching, transition conditions that

result in discontinuous changes in state variable values have to be of the

form ≥ or ≤. Discontinuous changes in the state vector occur when its size

changes and can be derived by inspection of a hybrid bond graph model or

by mechanical analysis [12]. For the falling rod, the state vector reduces

in size upon collision, which is why the = sign is included in the condition

yA ≤ 0. Furthermore, the state vector may reduce in size when the rod gets

stuck after sliding, which is why the = sign is included in the |vA,x| ≤ vth

condition.

5 A Hybrid Dynamic System Implementa-

tion Model

The mathematical specifications for hybrid system models developed in Sec-

tions 3 and 4 are applied to generate models of dynamic physical systems.

For physical system models, the event generation function γ is based on con-

tinuous signals linked to the state variables in the system. A mode change

may result in a change in functional relations between state variables and

signals. The recomputed signal values can cause further mode changes.

The hybrid system model in Eq. (1) is extended to a complete hybrid

physical system model defined by the 9-tuple [9, 21]

H =< I, Σ, φ, Xα, Uα, fα, gα, hα, γβ
α > . (19)

Xα and Uα the state and input vectors, and field fα represent the continuous

model in mode α. I the discrete indexing set corresponding to the possible

modes in the system, Σ, the set of events that cause mode transitions, and
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φ, the discrete state transition function represent the discrete model. γ and

g defined earlier, and h, the signal generation function represent the interac-

tions between the discrete and continuous models. These three components

are described in greater detail next.

5.1 The Continuous Model

Continuous physical system behaviors are governed by energy interactions.

Physical system behaviors are typically represented as state space models

with the dynamic behaviors expressed as a set of ordinary differential equa-

tions (ODEs). For hybrid models, the continuous behavior in each real mode

α is expressed as:

ẋ(t) = fα(xα(t), uα(t), t),

t ∈ ℜ and α ∈ ℵ. Xα ∈ ℜ
m is the continuous state vector, and Uα ∈ ℜ

p is

the vector of input signals. For every continuous mode α, there is one and

only one field, fα that defines system behavior.

As an example, the continuous model for the falling rod system (Fig. 7)

in the stuck mode, i.e., its rotational behavior at the point of contact, A is

expressed as:

fα01 :







ω̇ = −mlcosθ
J+ml2

ag

v̇x = lsinθω̇

v̇y = −lcosθω̇

(20)

vx and vy, the linear velocities, are not state variables since they are alge-

braic functions of ω. Note that the size of the state vector changes when

the rod moves from the free fall mode, α00, to the contact mode, α01. As

discussed earlier, this can produce discontinuous changes in the state vector.

In contrast, if the rod bounces back up after contact, the system moves from

the contact mode to the free mode, and the state vector increases in size. No

discontinuous changes can occur in this case.
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5.2 The Discrete Model

Discrete events in hybrid dynamic systems are modeling artifacts attributed

to parameter and time scale abstractions. The discrete changes are modeled

by transition function, φ, and transitions are invoked by events in a set Σ.

In our compositional modeling approach, we systematically derive φ from a

set of independent state machines that define local switching effects. A mode

is defined as the combination of the individual states of the state machines.

Theoretically, with n switching functions 2n different modes are possible, but

many of these modes do not have a physical representation. They may be

traversed as mythical modes that occur between two real modes of operation.

An important contribution of our work is to establish execution semantics

that handle these sequences of mode changes correctly.

The discrete model can be implemented by Petri nets or finite state au-

tomata. It is represented as:

• I = {α0, . . . , αk}, is a set of states describing the modes of the system.

• Σ = {σ0, . . . , σl}, is the set of events that can cause state transitions.

Events are generated from signal values in the physical process (Σs),

or they can be external control signals (Σx), Σ = Σs × Σx.

• φ : I × Σ → I, represents a discrete state transition function that

defines the new mode after an event occurs.

5.3 Interactions

Lygeros, Godbole and Sastry [11] have shown that independent determina-

tion and proofs about the continuous behavior and the discrete phenomena

in a hybrid model do not constitute proofs of correctness of their combined

effects. Hybrid system verification requires formal specifications of the inter-

actions between the continuous and discrete models. Interactions between

the continuous and discrete models are specified by (i) events generated in
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the continuous model, and (ii) mode changes defined by the discrete model.

More formally they can be expressed as:

• S ∈ ℜn, the signals used for event generation.

• h : X × U × I → S, returns signals from the input and state variable

values in a given mode.

• g : X×I → X+, computes the a posteriori state vector, X+, in the new

mode from the a priori state vector, X. There may be a discontinuous

change from X to X+.

• γ : S × S+ → Σs, where Σs generates discrete events from the signal

values. These signal values may be computed from the a priori state

vector, S, or the a posteriori state vector, S+.

The function γ generates discrete events when signals cross prespecified

threshold values. The collision transition for the falling rod is defined by

the following constraints:

γ :

{

y+
A ≤ 0 ∧ vA,y < 0 ⇒ σcontact

F+
n ≤ 0 ⇒ σfree

(21)

The output function, h, computes the values of these signals from the con-

tinuous state vector. For the signals used in the collision transition for the

falling rod this yields

h :







yA =
∫

vydt− lsinθ

vA,y = m(vy + lωcosθ)

Fn =

{

0 if α00

m(v̇y − ag) otherwise

(22)

The generated events applied to the model may indicate that the system

changes its mode of continuous operation. When mode switching occurs, the

continuous state vector of the system may change. The function g transforms

the continuous state vector as mode changes occur. In general, these transfor-

mations may be hard to derive, but for physical system models, this function
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has to satisfy the principle of conservation of state. When the falling rod

first makes contact with the floor, conservation of state is applied to derive

the state vector transformation function [17]:

gα01 :







ω+ = ωJ−ml(cosθvy−sinθvx)
J+ml2

v+
x = lω+sinθ

v+
y = −lω+cosθ

(23)

In mode α00, the rod has three degrees of freedom, and the state mapping

does not cause discontinuous changes

gα00 :







ω+ = ω

v+
x = vx

v+
y = vy

(24)

5.4 The Implementation Model

Fig. 18 shows a block diagram of the operation of a hybrid system correspond-

ing to the 9-tuple model discussed above. Three loops can be identified in

the interactions between continuous and discrete operations:

• Mythical modes can occur in the loops

(i) φ→ h→ γ. This results in mythical modes without discontinuous

changes in the state vector. Sequences of mythical modes may

occur on s- c transitions.

(ii) φ→ g → h→ γ. This results in mythical modes with discontinu-

ous changes in the state vector. The principle of temporal evolu-

tion of state indicates that this can only occur on c- s transitions.

• Pinnacles arise from the φ→ g →
∫

→ h→ γ loops since they require

the state vector to be updated in the
∫

element.

• Continuous modes arise from the φ→ f →
∫

→ h→ γ loops. g is not

part of this loop because x+ = x during continuous behavior.

29



s

h

g

α

γφxσ sσ

+x

+s

u

αf x x

+x

Figure 18: A general hybrid system.

5.5 Establishing Temporal Evolution of State

Dirac pulses occur at mode transitions when associated signals involved in

derivative relationships change discontinuously because (i) the function that

derives its value from the system state, h, changes between modes, or (ii)

the system state itself undergoes a discontinuous change. For convenience,

all signals used in event generation that have derivative relations are labeled

hd. In the falling rod example, v̇y used in the Fn constraint (Eq. (22)) is

in derivative form. So also is v̇x used to determine transition to the sliding

mode:

γ :

{

|F+
A,x| − µF+

n > 0 ⇒ σslide

|v+
A,x| − vth ≤ 0 ⇒ σstuck

(25)

with signals other than Fn

h :







vA,x = vx − lωsinθ

FA,x =

{

0 if α00

mv̇x otherwise
(26)

These represent all the mode changes αk → αm for which hαk

d 6= hαm

d . Equa-

tions (22) and (26) yield αk = α00 ∧ αm = {α01, α11, α21}. To ensure that

temporal evolution of state is not violated, it has to be verified that α00 → αm

and αm → α00 are c- s transitions.

Lemma 5.1 α00 → αm is a c- s transition for αm = {α01, α11, α21}.
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Proof: αi → α00 → αm with αi = {α01, α11, α21} (Equations (24) and

(21)) establish

α00 : (gα00
αi

(x) = x)⇒ Fα00

σcontact : (γαm
α00
≤ 0)⇒ Fα00 \ Bα00

}

⇒ α00
c- s αm

Lemma 5.2 αm → α00 is a c- s transition for αm = {α01, α11, α21}.

Proof: For αm → α00 (Eq. (24) and Eq. (21))

α00 : (gα00
αm

(x) = x)⇒ Fα00

σfree : (γα00
αm
≤ 0)⇒ Fα00 ∩ B

α00

}

⇒ αm
c- s α00

Then dependent state variables, xd, that cause discontinuous changes

are identified. In the falling rod example, this occurs on a mode switch to

α01 from either α11 or α21 (Eq. (23)). Since the α00 → α01 switching has

been verified to satisfy temporal evolution of state, the implication is that

xd 6= gα01
αm

(xd) for αm = {α11, α21} with xd = vx, and it has to be verified that

αm → α01 is a c- s transition.

Lemma 5.3 αm → α01 is a c- s transition for αm = {α11, α21}.

Proof: From Eq. (25) γ generates σslide for αm → α01 → αi if |F+
A,x| −

µF+
n > 0, for αi = {α00, α11, α21}, αm = {α11, α21}. From Eq. (26) F+

A,x =

mv̇+
x and from Eq. (22) F+

n = mv̇+
y −mag; for a mode change from α01 → αi,

σslide is generated if (δ[a] represents a Dirac pulse with area a).

|mδ[v+
x − vx]| − µmδ[v+

y − vy] + µmag > 0.

For x+ = x = gαi
α01

this yields µmag > 0 with ag the only negative constant,

and, therefore, no immediate mode transition occurs. So,

α01 : (γαi
α01

(gαi
α01

(x), gαi
α01

(x))) > 0⇒ Fα01

σstuck : (γα01
αm
≤ 0)⇒ Fα01 ∩ B

α01

}

⇒ αm
c- s α01

In this case α01 → αm need not be proved because xd = gαm
α01

(xd) and hα01
d =

hαm

d .
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5.6 Establishing Divergence of Time

For the colliding rod, divergence of time is violated in mode α01 if the hor-

izontal rod-tip velocity falls below vth but its angle and length are such

that |FA,x| > µFn. This would cause σslide to be true, but in the sliding

mode |vA,x| ≤ vth and the mode switch to σstuck occurs. This inconsistency

can be eliminated by a modeling decision, where the constraints are mod-

ified so that σstuck is generated only if the forces in α01 are such that the

switch to σslide will not occur instantaneously. This requires adding the con-

straint |F α01
A,x | ≤ µF α01

n to σstuck, where F α01
A,x and µF α01

n are calculated from

h(gα01(x)).

In general, transition conditions are likely to be more complex because

of the greater interaction among modes. In such situations, an exhaustive

multi-dimensional phase space analysis has to be performed [14, 15, 19].

6 The Hybrid Dynamic Simulator

The hybrid dynamic simulator implements the three components discussed in

Section 5. The integrator is the core of the continuous simulation component.

Since the state vector can change discontinuously when mode transitions oc-

cur, an integrator that looks back a number of time steps is inconvenient. To

simplify the implementation, a forward Euler integrator that approximates

derivatives by ẋ = xk+1−xk

∆t
, or xk+1 = f∆t + xk is used because it looks back

only one time step for each computation. For example, the state equations

in Eq. (20) would be implemented as

fα01 :







ωk+1 = −cosθk

J+ml2
ag∆t + ωk

vx,k+1 = lsinθk+1ωk+1

vy,k+1 = −lcosθk+1ωk+1.

(27)

The h function is also implemented in a similar manner. For the falling
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rod example, the h function implementation is listed below.

h :







y+
A = y+

M,k+1 − lsinθ+
k+1

v+
A,x = v+

x,k+1 − lsinθ+
k+1ω

+
k+1

vA,y = vy,k + lcosθkωk

F+
n =







0 if α00

m(
v+

y,k+1
−vy,k

∆t
− ag) otherwise

F+
A,x =







0 if α00

m
v+

x,k+1
−vx,k

∆t
otherwise.

(28)

The derivative terms in Fn and FA,x may produce Dirac pulses. If no dis-

continuous changes occur (e.g., v+
y,k+1 = vy,k+1) the forces Fn and FA,x can

be estimated numerically using the above equation. When discontinuous

changes occur (e.g., v+
y,k+1 6= vy,k+1) the derivative term is a Dirac pulse

of infinite magnitude that dominates all the other terms in the equation.

However, the numerical approximation may compute a pulse magnitude that

does not dominate the other terms in the equation, and this would result

in incorrect simulation results. Therefore, discontinuous changes are tracked

separately, and when they occur their time derivatives terms are replaced by

Dirac pulses. Algorithm 3 implements the derSignal function. If ∆T = 0

for a pinnacle, or if hd(x
+, α) 6= hd(x, α) for a discontinuous change, the area

of the corresponding Dirac pulse is returned. Otherwise, no discontinuous

changes have occurred, and the Euler approximation is returned as the value

of the derivative.

Algorithm 1 is the primary simulation module. The recursive relation,

Eq. (11), is implemented as function selMode (Algorithm 2). To satisfy the

interval-point requirement selMode is executed twice for each time step: (i)

when continuous evolution terminates in a new mode,3 and (ii) when pinna-

cles are traversed, and the ∆T argument in Algorithm 2 is set to 0.

The simulated trajectories of the rod in phase space for three different

values of the friction coefficient (µ) are shown in Fig. 19. The system is

3Precision is improved by varying δt and employing a bisectional search.
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Algorithm 1 Hybrid Simulation.
xk+1 = x(0); x+

k+1
= xk+1; xk = xk+1

t = 0; δt← simulation time step
αm+1 = selMode(x+

k+1
, xk+1, xk, α0, 0)

if αm+1 6= α0 then

repeat

xk+1 = x+
k+1

αm = αm+1

αm+1 = selMode(x+
k+1

, xk+1, xk, αm, 0)
until αm+1 = αm

end if{Initialization Completed}
repeat

t = t + δt
xk+1 = f(xk, t)δt

x+
k+1

= xk+1

αm+1 = selMode(x+
k+1

, xk+1, xk, αm, δt)
if αm+1 6= αm then

repeat

xk+1 = x+
k+1

αm = αm+1

αm+1 = selMode(x+
k+1

, xk+1, xk, αm, 0)
until αm+1 = αm

end if

xk = xk+1

until simulation end

Algorithm 2 selMode (x+
k+1, xk+1, xk, αm, ∆T ).

αm+1 = φ(αm, derSignal(x+
k+1

, xk+1, xk, αm,∆T ))
if αm+1 6= αm then

x+
k+1

= gα
m+1(xk+1)

ret val = selMode(x+
k+1

, xk+1, xk, αm+1,∆T )
else

ret val = αm

end if

Algorithm 3 derSignal (x+
k+1, xk+1, xk, αm, ∆T ).

if ∆T = 0 then

s = hi(xk+1, αm)
else

s = (hd(xk+1, αm)− hd(xk, αm))/∆T + hi(xk+1, αm)
end if

if ∆T = 0 ∨ hd(x+
k+1

, αm) 6= hd(xk+1, αm) then

s+ = hd(x+
k+1

, αm)− hd(xk+1, αm)
else

s+ = (hd(x+
k+1

, αm)− hd(xk, αm))/∆T + hi(x
+
k+1

, αm)
end if
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Figure 19: A number of trajectories in phase space of the colliding
rod, vth = 0.0015, θ = 0.862, l = −0.1, y0 = 0.23.

initialized with zero angular and linear velocities ((0, 0, 0)). Once the rod is

released, flow Fα00 applies, and the magnitude of its vertical velocity increases

in time. When the rod-tip, point A, touches the floor the rod may start to

slide, governed by flow Fα21 (happens when µ = 0.002 and µ = 0.004),

or it may get stuck and behavior is governed by flow Fα01 (happens when

µ = 0.005). The discontinuous jumps between flows are illustrated in Fig. 19.

Also, for simulations with µ = 0.002 and µ = 0.004, the sliding mode,

α21 is activated immediately after α00 because a force balance computation

indicates that the stuck mode α01 is departed instantaneously, i.e., it has no

real existence at the point of collision.

When sliding, the center of mass of the rod accelerates in the horizontal

direction, and the negative velocity at the rod-tip decreases. When it falls

below a threshold value, transition conditions determine that the rod gets

stuck, which implies a mode change to α01 and field Fα01 . The transition

conditions had to be properly specified so that the system does not go into a

loop of instantaneous mode changes (sliding and stuck), which would violate

the divergence of time principle.

If the simulation is repeated with a longer rod, initially the rod may slide

on hitting the ground, but the moment sliding starts, the balance of forces

indicates that the rod disconnects and lifts off the ground. In this case the

rod is in the sliding mode for a point in time, after which it transitions

back to the free mode of operation. Note that this occurs even though the
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Figure 20: A boundary in phase space of the colliding rod, vth =
0.0015, θ = 0.862, l = −10, y0 = 23.

rod is modeled to be perfectly non-elastic, i.e., there is no restitution of

momentum difference in any of the operational modes (ǫ = 0). Simulation

results for this example are shown in Fig. 20. This simulation demonstrates

how Bα21 changes the state vector between the two flows in α00. Note that a

field governs behavior in α21, so the corresponding point in phase space is a

boundary point rather than a pinnacle.

7 Conclusions

This paper has developed a formal mathematical framework for analyzing

hybrid behaviors of dynamic physical systems. This extends our previous

work on compositional modeling of hybrid systems combining bond graph

models with local discrete finite state automata [20]. Parameter and time

scale abstractions are the key to developing systematic switching specifica-

tions that are governed by both a priori and a posteriori state vector values.

Hybrid dynamic behaviors are piecewise continuous, and combine continuous

behavior over intervals of time with pinnacles that represent a real behavior

at a point in time (time scale abstraction) and mythical modes that have

no real existence on the time line (artifact of parameter abstraction). The

formal model specifications are made up of three components: (i) the contin-

uous model, (ii) the discrete model, and (iii) the interaction model define a

methodology for developing hybrid dynamic models of physical systems. A
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hybrid dynamic simulator is also developed from the mathematical execution

semantics.

State vectors have to satisfy the principle of invariance of state across

mythical mode changes, whereas discontinuous changes in state variables

that occur at pinnacles are derived using the principle of conservation of

state and explicitly defined interactions with the environment (represented

as Dirac pulses). When mode changes occur, global specifications are derived

dynamically from local switching functions. Model verification is performed

by ensuring that the principles of divergence of time and temporal evolution

of state are not violated. The use of local specifications often results in the

system going through a sequence of discrete changes, but the modeling task

is simplified because compositional modeling principles can be applied. This

contrasts other approaches that have been employed for hybrid modeling

(e.g., [1]), which require pre-defined global specifications of continuous sys-

tem behavior in terms of differential equations. Our current research efforts

are directed toward extending this methodology to design and analysis of em-

bedded (computer-based) control of complex physical systems [21, 22, 24].
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