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Abstract: Verification and Validation have always been a key part of the process for 
producing embedded control systems. With the advent of Model-Based Design as an 
alternative method for generating embedded software, the need for verification and 
validation remains and, up to the present, conventional approaches for doing 
verification and validation have largely been followed. However, conventional and 
new techniques fully integrated into Model-Based Design have the potential for 
greater returns, and will be presented in this paper.  
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1. INTRODUCTION 
Traditional control system software development 
involves paper specifications, design and hand 
coding followed by verification activities such as 
code inspections and unit/integration test. Many of 
these activities lack tool automation and involve 
manual interaction. Thus they are error prone and 
time consuming. Lack of tool chain integration 
provides another opportunity for errors to be injected 
into the software that are often detected late and at 
high costs to the development process. 
In addition, two trends exacerbate the traditional 
development problems:  

• the increasing amount of software in 
embedded control systems 

• the need to meet safety-critical software 
development standards like DO-178B and 
IEC61508. 

To help address these development challenges, 
controls engineers are increasingly adopting Model-
Based Design for creating executable specifications 
and automatically generating control code. This 
approach is now widespread in the automotive 
industry and adoption is increasing rapidly in 
aerospace and industrial automation.  
Experience now shows that a key enabler of maturity 
and effectiveness in this approach is the use of 
integrated Verification and Validation (V&V) 

techniques.  Without a repeatable and tool based 
approach to V&V, errors found in the 
implementation tend not to be corrected at the source 
of the problem but further down the 'V'. The barriers 
to refining or changing the design after the initial 
cycle are therefore too high to fully realize the 
potential benefits of Model-Based Design. Tool 
based V&V, fully integrated in Model-Based Design 
enables the engineer to have confidence to make 
changes in the executable specification model and re-
test quickly at every stage of the 'V' this retaining the 
integrity of the whole process. 
 
This paper will: 
• Give a brief overview of Model-Based Design 

for embedded control design 
• Describe the current possibilities of V&V 

techniques that are integrated into Model-Based 
Design 

• Explain the various levels of adoption of Model-
Based Design that such integration makes 
possible and the potential returns 

 
 
2. MODEL-BASED DESIGN FOR EMBEDDED 
CONTROL 



     

Control software development using Model-Based 
Design often begins with system requirements. The 
requirements are allocated to hardware and software 
and a refinement phase occurs. Eventually a detailed 
software design model is produced and a V&V 
analysis/model test phase are performed to ensure the 
model satisfies the known and derived requirements. 
The test results are also examined to ensure that the 
design satisfies the requisite structural model 
coverage – see Aldrich, B. (2002). 
Requirements traceability between model design 
components and the requirements specification is 
usually involved. Designs specified using state 
machines and block diagrams can have automated 
links that support bi-directional traceability to 
higher-level requirements in popular documentation 
and requirements management tools. Industry 
standards such as DO-178B RTCA (1992) and IEC-
61508 require these high degrees of traceability. 
Automated documentation tools help complete the 
design phase by making it easy to prepare and 
execute formal and informal requirements and design 
reviews. These software development reviews are 
now executed much more quickly and easily than 
before by having rigorously tested models with high 
degrees of traceability easily accessible. 
After satisfying the design phase, the “golden 
reference model” is placed into configuration 
management and code is automatically generated. 
The code is then assessed for performance, size, and 
resource consumption. Iterations on the model will 
often occur to optimize the generated code for a 
particular hardware platform. Model guidelines used 
during design can make it easier to get more efficient 
code during the first iteration. Software integration 
gradually takes place during the iterations. 
Integration involves application software and real-
time operating system software; external or legacy 
code integration for some software components such 
as look-up tables, calibration data, scaling choices 
and low level device drivers for software to hardware 
interaction. 
 
3. INTEGRATED VERIFICATION AND 
VALIDATION  
As implementation and integration winds down, 
V&V of the generated software takes place. However 
the sooner V&V efforts occur, the sooner errors are 
detected and resolved. 
With recent technology developed from lessons 
learned in aerospace and automotive development 
programs, it is now possible to perform enhanced 
V&V of the models and the generated code. The 
techniques and methods described here are based on 
approaches from Erkinnen (2006) but are updated to 
include new tools and technology. This section 
describes the main approaches and their use in 
Model-Based Design. 
 
3.1 Requirements Tracing 

Industry standards, such as DO-178B, see RTCA 
(1992) and CMMI, see CMMI web page, require 
bidirectional traceability of requirements, perhaps 
originating in other requirements tools, throughout 
development. It is also important for the code to be 
traceable to the model, so that it may be reviewed 
and verified. Using a requirements management 
interface, textual requirements can be traced to the 
model and then the C code and vice versa. Together, 
these capabilities provide a complete traceability path 
from the code to the requirement (FIG. 2). Even 
more important, linking the requirements to the 
whole design flow including test vectors ensures the 
requirements are consistent and unambiuous and the 
design minimal – see Ghidella, J (2005). Production 
code generators place high emphasis on code clarity, 
and can include the generation of HTML links into 
the generated C code that when clicked highlight the 
source block(s) used to create the code and the 
requirements that motivated the use of the block so 
creating end to end tracebility. 
 

 
FIG. 1: Requirements Tracing 
 
3.2 Structural Coverage Testing 
Because of the cost and scarcity of physical 
prototypes, it is very useful to test the model before 
deploying it on the target embedded controller for 
build and integration. Source code-based testing has 
existed for many years, but new tools and techniques 
now allow for model testing and structural coverage, 
see Aldrich (2002) and Edwards (2004). The usage 
scenario is that a developer fully stresses the control 
algorithm to verify its design integrity using 
simulation and coverage analysis. Examples of poor 
design integrity include numerical overflow and/or 
unreachable logic. Stress testing of the model using 
minimum and maximum numerical values helps 
ensure that overflow conditions will not occur. This 
type of testing is easy with simulation, but 
unreachable logic is not so easily detected because 
detection requires structural coverage. 
Unreachable logic differs from deactivated logic in 
that the latter is known to the developer and is 
deactivated for a reason. Unreachable logic means 
that something was missed during specification, 
implementation, or test creation. 



     

Model assertions are then used to determine if the 
tests passed or failed. If a signal exceeds its boundary 
during a simulation or test, an assertion is raised that 
can either stop the execution or be recorded for post 
analysis. 
Model coverage analysis assesses the cumulative 
results of single or multiple test suites to determine 
which modeling elements were executed and which 
were not. Tests can also be designed to set pass/fail 
criteria based on achieving certain coverage metrics. 
Although not reaching a coverage target can have 
many causes, a common one is missing test cases. 
Also, lack of coverage can also result from 
unreachable logic, discussed above. Coverage 
analyses are well established in imperative 
programming languages such as C, and Ada, but 
these types of analysis were not made available at the 
model level until recently. Modified Condition/ 
Decision Coverage (MC/DC) is considered by the 
Federal Aviation Administration (FAA) to be the 
most stringent coverage level and is necessary in the 
development of safety-critical systems. This 
coverage analysis, among others, is now available as 
an integrated part of software tools using Model-
Based Design and is conducted by performing 
simulation runs. When done within the modeling and 
simulation stage this enables the automatic logging 
and reporting of coverage metrics for the model 
(FIG. 1).  
 
 

 
FIG. 2: Model Coverage Analysis 
 
An important aspect of performing this model testing 
and structural coverage is the definition of 
appropriate test patterns that exercise all aspects of 
the model and, equivalently, of the code that is 
generated from the model. Many of these test 
patterns are identified interactively during the model 
development and from requirements. 
Writing out a set of tests that achieve 100% MC/DC 
is challenging and often takes a design engineer 
longer than the original model took to design. 
Finding the right sequence of inputs to trigger a 
complex piece of logic may be close to impossible. 

At best it is an art which is learned from years of 
experience and is a skill not easily transferable from 
engineer to engineer.  New tools and techniques 
based on formal methods or other analysis 
technologies are now available to automatically 
generate tests from models. Automatic test 
generation can be useful to a design group handing 
off a model to a software group as a software 
specification. The designers can use test generation 
technology applied to the models to create tests that 
they can use as acceptance criteria once the software 
is delivered by the software group. The software 
group can generate tests from a more detailed version 
of the model to ensure the code they develop matches 
the behavior of the model before they deliver the 
software. Both sides are better assured that the code 
is correct before it is integrated into a controller. 
 
3.3 Taking Advantage of Style Checking and 
Patterns in Models 
The models that are used to design and implement 
embedded systems undergo a series of 
transformations, some small, others more significant. 
Initially, the models may serve the system engineer 
or algorithm developer as an executable specification 
or algorithm description. Later, the models may serve 
as a description of how the algorithm will be 
partitioned – See Schlosser (2006). The evolving 
models now serve as the entry point for software 
engineering, thanks to automatic embedded code 
generation. As the models move closer to the 
implementation phases, software engineers want to 
annotate and transform the models, adding 
constraints on system behavior or describing 
characteristics that are required for implementation, 
such as fixed-point details, see Erkinnen (2004). 
These transformations of the model also provide an 
opportunity to constrain the design in a manner that 
makes the implementation easier to test and verify. 
Large organizations that use Model-Based Design 
have worked together to define common model style 
guidelines and best practices. In addition, these 
industry style guidelines are often tailored by 
individual organizations (and sometimes specific 
development teams working on a specific type of 
application) to ensure that the design is safe, 
complete, unambiguous, and appropriate for 
embedded code generation. These modeling style 
guidelines are analogous to coding style guidelines. 
Depending on the preferred workflow, whether a 
design represents a new feature or a modification to 
an existing feature, and what the development team 
prefers, there are two basic approaches: A priori and 
midstream/a posteriori. The constraints are applied a 
priori by only giving the designer a palette of 
authorized blocks that can be used. This might be 
more relevant to safety-critical systems or designs 
that are small modification to an existing 
implementation. The resulting constrained subset of 
designs does not need to be checked in every case, 
because it adheres to these restrictions by 



     

construction. Alternatively, the constraints can be 
applied midstream or a posteriori by permitting the 
designer to use a larger palette of blocks, then 
checking the model to ensure that it follows a given 
set of rules or guidelines. Ideally, this ability to 
check the model is done in the model creation 
environment, so that the developer can quickly flag 
issues and edit the model in an efficient and iterative 
manner. By applying a set of custom rules to models, 
exceptions will be flagged, and the user can go 
immediately to the modeling environment to address 
the exceptions. Such an advisor tool, being closely 
related to an organization’s model style guides, helps 
keep models from different authors similar in style 
and structure, and at the same time easily usable for 
production code generation. 

 
FIG. 3: Model Style Checking 
 
3.4 Approaches to Code Compliance Checking 
Based on Models and Code 
The Motor Industry Software Reliability Association 
(MISRA) published the “Guidelines for the use of 
the C language in critical systems” in Edwards 
(2004). MISRA-C has been adopted as a coding 
standard by a growing number of organizations. A 
significant amount of checking for MISRA-C 
compliance can be done by looking at what the 
automatic code generation tool systematically 
generates, rather than looking at each instance of the 
generated code based on the assumption that each 
code segment will have unforeseen variation. 
However, MISRA-C is still important, for at least 
two scenarios that might occur in Model-Based 
Design: 
• Importing or interfacing to legacy code that 

violates a rule or rules. 
• Making conscious or accidental changes to 

simulation and code generation targets and 
settings, resulting in violations. 

A vital verification technique to enforce such 
compliance is to define and run industry and 
organization level rule checks on the model. Using 
this approach, the checks are performed after model 
creation and then prior to code generation to ensure 
that code passes the checks. Another option is to 

include a MISRA-C code checker or static analysis 
into the code generation and build process. For these 
and other reasons, it makes sense to add a code-based 
checker to your software development process 
including those using Model-Based Design. 
 
3.5 Property Proving 
Testing and checking of the model and code are 
important, particularly to ensure that the system has 
the desired functionality. For many embedded 
systems, particularly those with safety implications, 
it is important to go further and prove certain 
properties of both the model and the generated code; 
 
3.5.1 Model checking to prove functional 
properties  
While many functional requirements can be verified 
in a design model using testing in simulation, some 
cannot. For example, there is no way to ensure the 
following requirement using testing alone: “Reverse 
thrust operation shall not engage while aircraft is in 
flight,” even with tests that generate 100% structural 
coverage. Property proving on the model can verify 
these types of requirements. The designer uses some 
scripting or modeling mechanism for capturing the 
property to be proven. For functional requirements, 
the designer is essentially modeling the requirements 
to be proven. 
Beyond requirements, property proving is valuable as 
a model “debug” technique that provides deeper and 
more extensive insight into a design than simulation 
alone. With property proving on the model, designers 
can explore edge cases, answer complex logical 
questions about the design and discover unexercised 
or “dead” logic. 
 
3.5.2 Code checking to prove non-functional 
properties  
For algorithm developers and system engineers, 
model testing and structural coverage are powerful 
techniques and can be done early in the design 
process. However, there is a particular category of 
errors that can be difficult to detect via simulation 
that can cause significant problems during software 
development and testing: runtime errors. 
These are problematic for several reasons 
MathWorks (2007): 
• Runtime errors are latent faults that often surface 

under very specific combinations of data values, 
thus making them very costly to find by dynamic 
testing. Moreover, to truly find “all” runtime 
errors, one would have to exhaustively test for 
all combinations of values, which is impossible. 

• Runtime errors cannot be readily associated with 
the code using dynamic testing. In fact, they are 
generally caught through their consequences on 
functional behaviors, including sending 
unexpected commands to actuators, as well as 
unexplained and hard-to-reproduce software 
failures. Moreover, once a functional failure 



     

presents itself, a lengthy debugging is then 
necessary to trace the problem to its source. 

• Likewise, the detection of runtime errors during 
tests implies exponentially increasing debugging 
efforts. Finding and debugging an overflow from 
an engine controller crash during system test is 
arduous, time-consuming, and indicative of the 
kind of effort required to solve the problem 
through dynamic testing. 

• Runtime errors often negatively impact 
functional tests. If such an error is found during 
test, it has to be fixed and regression tests 
performed so as to make sure the error did not 
mask other problems and its solution did not 
create a bug elsewhere. In other words, a passed 
test scenario may become a failed test later on if 
a runtime error is detected and fixed. 

• Runtime errors represent between 30–40% of 
errors found during maintenance, see Sullivan 
(1991). Static analysis is one approach with 
which software engineers may be familiar. 
Vendors of code-based checking tools 
acknowledge, see MathWorks (2007) that 
traditional static analysis promised substantial 
savings in terms of testing time and costs, but 
was unable to fully deliver on these promises for 
two reasons: 

o The number of “false positive” 
messages is generally too high—which 
can waste precious engineering time; 

o Since traditional static analyzers are 
partial in nature, code still needs to be 
manually inspected or tested for 
robustness as it includes numerous 
hidden “false negative”. 

In order to solve those issues, static code verification 
based on abstract interpretation techniques has been 
applied to detect runtime errors. These techniques 
can handle dynamic properties of programs by solely 
relying on source code (without code compilation) 
and can exhaustively diagnose the sections of code 
that may or may not lead to failures. 

 
FIG. 4: Prove the absence of errors in code 
 
That analysis is the same, regardless of whether the 
code was hand-written or automatically generated 
from a model but the integration of these techniques 
with modeling tools provides significant 
improvements to the workflow. By connecting the 
analyzed code and the model from which it was 

automatically generated, the static verification tool 
can present its results in both the source code and the 
model. Being able to navigate from the code to the 
model, make the change, then automatically 
regenerate and recheck the code, provides a powerful 
way to analyze, debug, and modify algorithms using 
both high-level and detailed perspectives. It 
encourages a development process in which changes 
are made to the model rather than directly in the 
code, which contributes to the reusability of the 
models from project to project. System and software 
engineers can see the results in the model or code 
context depending on their preferences, yet 
communicate with each other because the analysis 
results are the same. It permits each team to work in 
tools with which they are already familiar, which 
leads to more reliable results and more efficient use. 
 
 
4. LEVELS OF ADOPTION OF MODEL-
BASED DESIGN 
The Japanese delegates of the MathWorks 
Automotive Advisory Board has suggested that there 
are 5 levels of adoption that organizations go through 
as they become more mature in their use of Model-
Based Design: 
 

 
 
It is clear that Verification and Validation techniques 
are significant in increasing the maturity of Model-
Based Design. It is unlikely that organizations will 
adopt automatic code generation with all of its 
associated benefits without first putting in place a 
reasonable level of V&V and an organization will not 
reach the highest level without a thorough and 
integrated approach to V&V. 
 
5. CONCLUSION 
Verification and validation activities are critical to 
the success of any development process.  Using 
Model-Based Design to start verifying and validating 
a design early and continuously throughout the 
design process, can lead to more successful 
embedded system deployments than when traditional 

LEVEL 1:  Simulation in control specification 
development 

 
LEVEL 2: Providing Simulink/Stateflow 

specification to suppliers 
 
LEVEL 3:  Heuristic verification and validation 

including Hardware in the loop 
simulation 

 
LEVEL 4:  Code generation for target controller 

in production developments 
 
LEVEL 5:  Systematic verification and validation 

including test vector generation in 
production developments 



     

methods are used, which rely on verification, 
validation and testing at the end of the process. There 
are a variety of ways a development organization 
could apply verification and validation techniques 
when using Model-Based Design, but our experience 
with a number of process adoptions shows there are a 
number of clear best practices. Applying these best 
practices helps ensure a development process that 
takes full advantage of Model-Based Design to 
provide systematic verification and validation. 
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