

Verification and Validation Integrated within Processes Using
Model-Based Design

Brett Murphy, Chris Hayhurst, Jon Friedman, Coorous Mohtadi, Richard Anderson and Pieter
Mosterman

The MathWorks, Inc.

Abstract: Verification and Validation have always been a key part of the process for
producing embedded control systems. With the advent of Model-Based Design as an
alternative method for generating embedded software, the need for verification and
validation remains and, up to the present, conventional approaches for doing
verification and validation have largely been followed. However, conventional and
new techniques fully integrated into Model-Based Design have the potential for
greater returns, and will be presented in this paper.

Keywords: Model-Based Design, Verification, Validation, Coverage, Static
Analysis

1. INTRODUCTION
Traditional control system software development
involves paper specifications, design and hand
coding followed by verification activities such as
code inspections and unit/integration test. Many of
these activities lack tool automation and involve
manual interaction. Thus they are error prone and
time consuming. Lack of tool chain integration
provides another opportunity for errors to be injected
into the software that are often detected late and at
high costs to the development process.
In addition, two trends exacerbate the traditional
development problems:

• the increasing amount of software in
embedded control systems

• the need to meet safety-critical software
development standards like DO-178B and
IEC61508.

To help address these development challenges,
controls engineers are increasingly adopting Model-
Based Design for creating executable specifications
and automatically generating control code. This
approach is now widespread in the automotive
industry and adoption is increasing rapidly in
aerospace and industrial automation.
Experience now shows that a key enabler of maturity
and effectiveness in this approach is the use of
integrated Verification and Validation (V&V)

techniques. Without a repeatable and tool based
approach to V&V, errors found in the
implementation tend not to be corrected at the source
of the problem but further down the 'V'. The barriers
to refining or changing the design after the initial
cycle are therefore too high to fully realize the
potential benefits of Model-Based Design. Tool
based V&V, fully integrated in Model-Based Design
enables the engineer to have confidence to make
changes in the executable specification model and re-
test quickly at every stage of the 'V' this retaining the
integrity of the whole process.

This paper will:
• Give a brief overview of Model-Based Design

for embedded control design
• Describe the current possibilities of V&V

techniques that are integrated into Model-Based
Design

• Explain the various levels of adoption of Model-
Based Design that such integration makes
possible and the potential returns

2. MODEL-BASED DESIGN FOR EMBEDDED
CONTROL

Control software development using Model-Based
Design often begins with system requirements. The
requirements are allocated to hardware and software
and a refinement phase occurs. Eventually a detailed
software design model is produced and a V&V
analysis/model test phase are performed to ensure the
model satisfies the known and derived requirements.
The test results are also examined to ensure that the
design satisfies the requisite structural model
coverage – see Aldrich, B. (2002).
Requirements traceability between model design
components and the requirements specification is
usually involved. Designs specified using state
machines and block diagrams can have automated
links that support bi-directional traceability to
higher-level requirements in popular documentation
and requirements management tools. Industry
standards such as DO-178B RTCA (1992) and IEC-
61508 require these high degrees of traceability.
Automated documentation tools help complete the
design phase by making it easy to prepare and
execute formal and informal requirements and design
reviews. These software development reviews are
now executed much more quickly and easily than
before by having rigorously tested models with high
degrees of traceability easily accessible.
After satisfying the design phase, the “golden
reference model” is placed into configuration
management and code is automatically generated.
The code is then assessed for performance, size, and
resource consumption. Iterations on the model will
often occur to optimize the generated code for a
particular hardware platform. Model guidelines used
during design can make it easier to get more efficient
code during the first iteration. Software integration
gradually takes place during the iterations.
Integration involves application software and real-
time operating system software; external or legacy
code integration for some software components such
as look-up tables, calibration data, scaling choices
and low level device drivers for software to hardware
interaction.

3. INTEGRATED VERIFICATION AND
VALIDATION
As implementation and integration winds down,
V&V of the generated software takes place. However
the sooner V&V efforts occur, the sooner errors are
detected and resolved.
With recent technology developed from lessons
learned in aerospace and automotive development
programs, it is now possible to perform enhanced
V&V of the models and the generated code. The
techniques and methods described here are based on
approaches from Erkinnen (2006) but are updated to
include new tools and technology. This section
describes the main approaches and their use in
Model-Based Design.

3.1 Requirements Tracing

Industry standards, such as DO-178B, see RTCA
(1992) and CMMI, see CMMI web page, require
bidirectional traceability of requirements, perhaps
originating in other requirements tools, throughout
development. It is also important for the code to be
traceable to the model, so that it may be reviewed
and verified. Using a requirements management
interface, textual requirements can be traced to the
model and then the C code and vice versa. Together,
these capabilities provide a complete traceability path
from the code to the requirement (FIG. 2). Even
more important, linking the requirements to the
whole design flow including test vectors ensures the
requirements are consistent and unambiuous and the
design minimal – see Ghidella, J (2005). Production
code generators place high emphasis on code clarity,
and can include the generation of HTML links into
the generated C code that when clicked highlight the
source block(s) used to create the code and the
requirements that motivated the use of the block so
creating end to end tracebility.

FIG. 1: Requirements Tracing

3.2 Structural Coverage Testing
Because of the cost and scarcity of physical
prototypes, it is very useful to test the model before
deploying it on the target embedded controller for
build and integration. Source code-based testing has
existed for many years, but new tools and techniques
now allow for model testing and structural coverage,
see Aldrich (2002) and Edwards (2004). The usage
scenario is that a developer fully stresses the control
algorithm to verify its design integrity using
simulation and coverage analysis. Examples of poor
design integrity include numerical overflow and/or
unreachable logic. Stress testing of the model using
minimum and maximum numerical values helps
ensure that overflow conditions will not occur. This
type of testing is easy with simulation, but
unreachable logic is not so easily detected because
detection requires structural coverage.
Unreachable logic differs from deactivated logic in
that the latter is known to the developer and is
deactivated for a reason. Unreachable logic means
that something was missed during specification,
implementation, or test creation.

Model assertions are then used to determine if the
tests passed or failed. If a signal exceeds its boundary
during a simulation or test, an assertion is raised that
can either stop the execution or be recorded for post
analysis.
Model coverage analysis assesses the cumulative
results of single or multiple test suites to determine
which modeling elements were executed and which
were not. Tests can also be designed to set pass/fail
criteria based on achieving certain coverage metrics.
Although not reaching a coverage target can have
many causes, a common one is missing test cases.
Also, lack of coverage can also result from
unreachable logic, discussed above. Coverage
analyses are well established in imperative
programming languages such as C, and Ada, but
these types of analysis were not made available at the
model level until recently. Modified Condition/
Decision Coverage (MC/DC) is considered by the
Federal Aviation Administration (FAA) to be the
most stringent coverage level and is necessary in the
development of safety-critical systems. This
coverage analysis, among others, is now available as
an integrated part of software tools using Model-
Based Design and is conducted by performing
simulation runs. When done within the modeling and
simulation stage this enables the automatic logging
and reporting of coverage metrics for the model
(FIG. 1).

FIG. 2: Model Coverage Analysis

An important aspect of performing this model testing
and structural coverage is the definition of
appropriate test patterns that exercise all aspects of
the model and, equivalently, of the code that is
generated from the model. Many of these test
patterns are identified interactively during the model
development and from requirements.
Writing out a set of tests that achieve 100% MC/DC
is challenging and often takes a design engineer
longer than the original model took to design.
Finding the right sequence of inputs to trigger a
complex piece of logic may be close to impossible.

At best it is an art which is learned from years of
experience and is a skill not easily transferable from
engineer to engineer. New tools and techniques
based on formal methods or other analysis
technologies are now available to automatically
generate tests from models. Automatic test
generation can be useful to a design group handing
off a model to a software group as a software
specification. The designers can use test generation
technology applied to the models to create tests that
they can use as acceptance criteria once the software
is delivered by the software group. The software
group can generate tests from a more detailed version
of the model to ensure the code they develop matches
the behavior of the model before they deliver the
software. Both sides are better assured that the code
is correct before it is integrated into a controller.

3.3 Taking Advantage of Style Checking and
Patterns in Models
The models that are used to design and implement
embedded systems undergo a series of
transformations, some small, others more significant.
Initially, the models may serve the system engineer
or algorithm developer as an executable specification
or algorithm description. Later, the models may serve
as a description of how the algorithm will be
partitioned – See Schlosser (2006). The evolving
models now serve as the entry point for software
engineering, thanks to automatic embedded code
generation. As the models move closer to the
implementation phases, software engineers want to
annotate and transform the models, adding
constraints on system behavior or describing
characteristics that are required for implementation,
such as fixed-point details, see Erkinnen (2004).
These transformations of the model also provide an
opportunity to constrain the design in a manner that
makes the implementation easier to test and verify.
Large organizations that use Model-Based Design
have worked together to define common model style
guidelines and best practices. In addition, these
industry style guidelines are often tailored by
individual organizations (and sometimes specific
development teams working on a specific type of
application) to ensure that the design is safe,
complete, unambiguous, and appropriate for
embedded code generation. These modeling style
guidelines are analogous to coding style guidelines.
Depending on the preferred workflow, whether a
design represents a new feature or a modification to
an existing feature, and what the development team
prefers, there are two basic approaches: A priori and
midstream/a posteriori. The constraints are applied a
priori by only giving the designer a palette of
authorized blocks that can be used. This might be
more relevant to safety-critical systems or designs
that are small modification to an existing
implementation. The resulting constrained subset of
designs does not need to be checked in every case,
because it adheres to these restrictions by

construction. Alternatively, the constraints can be
applied midstream or a posteriori by permitting the
designer to use a larger palette of blocks, then
checking the model to ensure that it follows a given
set of rules or guidelines. Ideally, this ability to
check the model is done in the model creation
environment, so that the developer can quickly flag
issues and edit the model in an efficient and iterative
manner. By applying a set of custom rules to models,
exceptions will be flagged, and the user can go
immediately to the modeling environment to address
the exceptions. Such an advisor tool, being closely
related to an organization’s model style guides, helps
keep models from different authors similar in style
and structure, and at the same time easily usable for
production code generation.

FIG. 3: Model Style Checking

3.4 Approaches to Code Compliance Checking
Based on Models and Code
The Motor Industry Software Reliability Association
(MISRA) published the “Guidelines for the use of
the C language in critical systems” in Edwards
(2004). MISRA-C has been adopted as a coding
standard by a growing number of organizations. A
significant amount of checking for MISRA-C
compliance can be done by looking at what the
automatic code generation tool systematically
generates, rather than looking at each instance of the
generated code based on the assumption that each
code segment will have unforeseen variation.
However, MISRA-C is still important, for at least
two scenarios that might occur in Model-Based
Design:
• Importing or interfacing to legacy code that

violates a rule or rules.
• Making conscious or accidental changes to

simulation and code generation targets and
settings, resulting in violations.

A vital verification technique to enforce such
compliance is to define and run industry and
organization level rule checks on the model. Using
this approach, the checks are performed after model
creation and then prior to code generation to ensure
that code passes the checks. Another option is to

include a MISRA-C code checker or static analysis
into the code generation and build process. For these
and other reasons, it makes sense to add a code-based
checker to your software development process
including those using Model-Based Design.

3.5 Property Proving
Testing and checking of the model and code are
important, particularly to ensure that the system has
the desired functionality. For many embedded
systems, particularly those with safety implications,
it is important to go further and prove certain
properties of both the model and the generated code;

3.5.1 Model checking to prove functional
properties
While many functional requirements can be verified
in a design model using testing in simulation, some
cannot. For example, there is no way to ensure the
following requirement using testing alone: “Reverse
thrust operation shall not engage while aircraft is in
flight,” even with tests that generate 100% structural
coverage. Property proving on the model can verify
these types of requirements. The designer uses some
scripting or modeling mechanism for capturing the
property to be proven. For functional requirements,
the designer is essentially modeling the requirements
to be proven.
Beyond requirements, property proving is valuable as
a model “debug” technique that provides deeper and
more extensive insight into a design than simulation
alone. With property proving on the model, designers
can explore edge cases, answer complex logical
questions about the design and discover unexercised
or “dead” logic.

3.5.2 Code checking to prove non-functional
properties
For algorithm developers and system engineers,
model testing and structural coverage are powerful
techniques and can be done early in the design
process. However, there is a particular category of
errors that can be difficult to detect via simulation
that can cause significant problems during software
development and testing: runtime errors.
These are problematic for several reasons
MathWorks (2007):
• Runtime errors are latent faults that often surface

under very specific combinations of data values,
thus making them very costly to find by dynamic
testing. Moreover, to truly find “all” runtime
errors, one would have to exhaustively test for
all combinations of values, which is impossible.

• Runtime errors cannot be readily associated with
the code using dynamic testing. In fact, they are
generally caught through their consequences on
functional behaviors, including sending
unexpected commands to actuators, as well as
unexplained and hard-to-reproduce software
failures. Moreover, once a functional failure

presents itself, a lengthy debugging is then
necessary to trace the problem to its source.

• Likewise, the detection of runtime errors during
tests implies exponentially increasing debugging
efforts. Finding and debugging an overflow from
an engine controller crash during system test is
arduous, time-consuming, and indicative of the
kind of effort required to solve the problem
through dynamic testing.

• Runtime errors often negatively impact
functional tests. If such an error is found during
test, it has to be fixed and regression tests
performed so as to make sure the error did not
mask other problems and its solution did not
create a bug elsewhere. In other words, a passed
test scenario may become a failed test later on if
a runtime error is detected and fixed.

• Runtime errors represent between 30–40% of
errors found during maintenance, see Sullivan
(1991). Static analysis is one approach with
which software engineers may be familiar.
Vendors of code-based checking tools
acknowledge, see MathWorks (2007) that
traditional static analysis promised substantial
savings in terms of testing time and costs, but
was unable to fully deliver on these promises for
two reasons:

o The number of “false positive”
messages is generally too high—which
can waste precious engineering time;

o Since traditional static analyzers are
partial in nature, code still needs to be
manually inspected or tested for
robustness as it includes numerous
hidden “false negative”.

In order to solve those issues, static code verification
based on abstract interpretation techniques has been
applied to detect runtime errors. These techniques
can handle dynamic properties of programs by solely
relying on source code (without code compilation)
and can exhaustively diagnose the sections of code
that may or may not lead to failures.

FIG. 4: Prove the absence of errors in code

That analysis is the same, regardless of whether the
code was hand-written or automatically generated
from a model but the integration of these techniques
with modeling tools provides significant
improvements to the workflow. By connecting the
analyzed code and the model from which it was

automatically generated, the static verification tool
can present its results in both the source code and the
model. Being able to navigate from the code to the
model, make the change, then automatically
regenerate and recheck the code, provides a powerful
way to analyze, debug, and modify algorithms using
both high-level and detailed perspectives. It
encourages a development process in which changes
are made to the model rather than directly in the
code, which contributes to the reusability of the
models from project to project. System and software
engineers can see the results in the model or code
context depending on their preferences, yet
communicate with each other because the analysis
results are the same. It permits each team to work in
tools with which they are already familiar, which
leads to more reliable results and more efficient use.

4. LEVELS OF ADOPTION OF MODEL-
BASED DESIGN
The Japanese delegates of the MathWorks
Automotive Advisory Board has suggested that there
are 5 levels of adoption that organizations go through
as they become more mature in their use of Model-
Based Design:

It is clear that Verification and Validation techniques
are significant in increasing the maturity of Model-
Based Design. It is unlikely that organizations will
adopt automatic code generation with all of its
associated benefits without first putting in place a
reasonable level of V&V and an organization will not
reach the highest level without a thorough and
integrated approach to V&V.

5. CONCLUSION
Verification and validation activities are critical to
the success of any development process. Using
Model-Based Design to start verifying and validating
a design early and continuously throughout the
design process, can lead to more successful
embedded system deployments than when traditional

LEVEL 1: Simulation in control specification
development

LEVEL 2: Providing Simulink/Stateflow

specification to suppliers

LEVEL 3: Heuristic verification and validation

including Hardware in the loop
simulation

LEVEL 4: Code generation for target controller

in production developments

LEVEL 5: Systematic verification and validation

including test vector generation in
production developments

methods are used, which rely on verification,
validation and testing at the end of the process. There
are a variety of ways a development organization
could apply verification and validation techniques
when using Model-Based Design, but our experience
with a number of process adoptions shows there are a
number of clear best practices. Applying these best
practices helps ensure a development process that
takes full advantage of Model-Based Design to
provide systematic verification and validation.

REFERENCES
Aldrich, B. (2002) Using model coverage analysis to
improve the controls development process. In AIAA
Modeling and Simulation Technologies Conference
and Exhibit, Montreal, Canada

CMMI (Capability Maturity Model Integrated) web
page. http://www.sei.cmu.edu/cmmi , visited on
05.07.2004.

Edwards, P., S. Fisher, G. McCall, et al (2004):
MISRAC: – Guidelines For The Use Of The C Lan-
4Two tool vendors in this category are PolySpace
Technologies and LDRA Soft-ware Technology.

Erkkinen, T. (2004): Production code generation for
safety-critical systems. In 2004 SAE World Congress

Erkkinen, T. and Hote, C (2006): Automatic flight
code generation with integrated static run-time error
checking and code analysis. In AIAA Modeling and
Simulation Technologies Conference and Exhibit,
AIAA 2006-6257, Keystone, Colorado

Ghidella, J (2005): Requirements-Based Testing in
Aircraft Control Design

MathWorks (2007), White Paper: “Code Verification
and Run-time Error Detection Through Abstract
Interpretation”

 RTCA (1992) Radio Technical Commission for
Aeronautics, Inc. DO 178b: Software Considerations
in Airborne Systems and Equipment Certification,

Schlosser, J (2006) Architektursimulation von
verteilten Steuergerätesystemen. Logos Verlag,
Berlin, 2006. Technische Universität München,
Fakultät für Informatik.

Sullivan, M. and Chillarege (1991): Software defects
and their impact on system availability. In proc. 21th
International Symposium On Fault-Tolerant
Computing (FTCS-21, pp. 2–9, Montreal. IEEE Press.

