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Abstract:  Hybrid dynamic systems combine continuous and discrete behavior. Often, computational 
approaches approximate behavior of an analytic solution, for example, numerical integration to 
approximate differential equation behavior. The accuracy and computational efficiency of the integration 
usually depend on the complexity of the method and its implicated approximation errors, especially when 
repeated over iterations. This work formally defines the computational semantics of a solver in a 
denotational sense so as to analyze discrete- and continuous-time behavior of time-based block diagram 
models. A stream-based approach is used to analyze the numerical integration implemented by the solver. 
The resulting solver applies the principle of nonmonotonic time and so consecutive values may be 
computed in a temporally nonmonotonic manner. This allows shifting the evaluation points backward and 
forward in time. Stratification recovers a partially ordered structure in time. Solver dynamics are thus 
made explicit and can be studied in concert with behavior of discontinuous models parts. 

 

1. INTRODUCTION 

Innovation in engineered systems such as airplanes,   
automobiles, and mobile phones is increasingly implemented 
in software (see, e.g., Broy et al., 2007). As exceedingly 
sophisticated features are demanded, the size of software that 
implements the corresponding functionality is growing 
rapidly. As a consequence, software producibility has become 
prohibitively complex to a timely design and implementation 
of modern systems such as the F22 fighter airplane (U.S. 
Government Accountability Office, 2006) and cyber-physical 
systems in general. Therefore, new paradigms are imperative 
for efficient and effective software production. 

Model-Based Design (Shenoy et al., 2007) relies on 
computational representations of a system under design as 
first class deliverables. Sharing such deliverables between 
teams of engineers significantly enhances the potential for 
reuse of effort. For example, the implementation of a design 
specification can exploit automatic code generation to reduce 
the overall effort required. To this end, it is critical to 
precisely define the semantics of each of the computational 
representations. For example, the execution of automatically 
generated code should be unambiguously defined in the 
corresponding model of this software that is used for 
simulation. Where semantics definition is well understood for 
discrete-event and discrete-time formalisms, the semantics of 
a computational implementation of solvers for models 
developed with continuous-time formalisms has been less 
investigated. This work attempts to formally define the 
computational semantics of a solver for ordinary differential 
equations (ODE) in terms that apply to discrete-time and 
discrete-event formalisms to facilitate the analysis of hybrid 

dynamics for engineered systems. 
The behavior of hybrid dynamic systems is typically 

defined on a domain that at least includes time as an 
independent variable. A successful approach to behavior 
generation for hybrid dynamic systems is the core set of 
continuous-time blocks in Simulink® (Simulink, 2010), 
extended with triggered and enabled subsystems.  

The structure of time as a continuous domain covered by 
intervals was found insufficient in work studying chattering 
behavior (Iwasaki et al., 1995). Here, a system was defined to 
evolve according to two different sets of differential 
equations, while discrete logic caused it to switch infinitely 
fast between the two. In order to facilitate analysis, time was 
defined in terms of hyperreals of nonstandard analysis to 
allow infinitesimal steps. More recent work revisits the use of 
nonstandard analysis to provide hybrid dynamic system 
semantics in a more general sense (Benveniste et al., 2010). 

In case of sophisticated switching logic, a hybrid system 
may move through a series of discrete states before behavior 
is governed by a set of differential equations again (so called 
event iteration). This motivated a structure of time as a series 
of abutting closed intervals as introduced by Guckenheimer 
and Johnson (1995). Since interval bounds overlap, the 
intervals were adorned with an index to establish a unique 
independent domain. As a consequence, behavior could be 
defined to only hold at a point in time, which proved to be a 
useful abstraction of physics (e.g., Mosterman, 2002). The 
use of a tuple consisting of time and an index has been 
revisited in work by Lee and Sangiovanni-Vincentelli (1996). 

Yet still a further extension to such a structure of time was 
proposed by Nishida and Doshita (1987) to allow reasoning 
about causal effects in physical systems. In particular, it was 



 
 

     

 

found that in order to understand how a behavior emerges, it 
was important to be able to consider a model as moving into 
a certain state, even though it may never actually assume this 
state. The state that enabled reasoning was called mythical. 
This notion was later formalized and related to parameter 
abstractions (as opposed to time scale abstractions) in 
models of physical systems (Mosterman, 2002). 

A comprehensive framework based on all these studies 
resulted in a formal ontology of behaviors of hybrid dynamic 
systems by Mosterman and Biswas (2000). However, 
although the studies have introduced very versatile and 
powerful structures in the domain on which behavior are 
defined, they all attempt to address the analytic semantics. As 
such, the effects introduced by providing a computational 
behavior generation algorithm are often relegated to mere 
‘approximations’ and there are few attempts to precisely 
define the effects. This holds true in particular for the effects 
of applying a specific numerical solver to generate a behavior 
for a differential equation. Consequently, it is often 
disregarded how applying a numerical solver interacts with 
other parts of the system such as discrete-event behaviors. 

To illustrate, consider a ball that is released from a certain 
height to bounce off a floor that is modeled as a system with 
stiffness and viscous friction. The first two piecewise 
behaviors are the initial phase where the ball is falling down 
under the influence of gravity and the consecutive phase 
where the floor exerts an opposing force to reverse the ball 
velocity. The two piecewise behaviors are modeled by two 
sets of differential equations where the system switches from 
one to the other upon contact with the floor. 

The differential equations can be solved by a numerical 
solver that utilizes a numerical integration scheme over 
discrete intervals of time. The duration of each interval may 
be adapted based on active dynamics so integration can be 
sufficiently accurate, given a predefined tolerance. Typically, 
when the numerical solver makes a step, the error over that 
step is estimated and if the error exceeds the tolerance, the 
size of interval is reduced. Further reduction may follow till 
the tolerance is satisfied and the end point of the 
corresponding interval is accepted as the next step in time. 

Now, a semantic choice can be made whether the 
discontinuity because of the ground forces that become active 
should be effected while the interval size is still being 
reduced, or whether it should only then become active once 
the next step in time is accepted. Figure 1 shows the 
difference in computed behavior and the analytic solution 
derived with the Symbolic Math Toolbox™ (Symbolic Math 
Toolbox, 2010). The comparison shows the importance of a 
precise definition of the numerical solver semantics and its 
interaction with other model elements in a hybrid dynamic 
system so as to reliably produce correct (as determined by 
interaction semantics choice) and consistent (once the 
semantics are chosen) results. 

This work aims to find a structure of time that allows such 
a precise definition of the computational semantics of a 
hybrid dynamic system. In previous work, Denckla and 
Mosterman (2006, 2008) have studied the formal definition 
of semantics of temporal behavior. However, it has proven 

difficult to present a comprehensive framework that applies 
to both continuous-time and discrete-time semantics 
(e.g., Hardebolle, 2007). As such, there is a lack of a flexible, 
comprehensive computational concept that applies to the 
high-level languages with both types of semantics so as to 
analyze their integration and interaction. 
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Fig. 1. Velocity reversal of a bouncing ball with different 
interaction semantics between the solver and discontinuities 

In contrasts to a more versatile imperative application 
programming interface (e.g., the Ptolemy project [Lee and 
Zheng, 2007] or the S-Function specification [Simulink S-
Functions, 2007]), analysis of a computational 
implementation is often best supported by a denotational 
approach. Previous work by Halbwachs et al. (1991, 1999) 
has studied the computational semantics of synchronous 
languages using the synchronous model of computation (as 
reviewed by Benveniste et al., 2003). Caspi (2006) has 
studied computational semantic based on synchronous data-
flow. In this approach functional design elements are 
considered to react instantaneously (i.e., their evaluations do 
not consume time), and are activated simultaneously and in 
synchrony with an underlying discrete-time clock. 

As such, these synchronous languages have been strictly 
limited to functionality with a periodic base rate of a discrete-
time nature, which has impeded its utility in the study of 
hybrid systems. As long as the continuous-time dynamics can 
be discretized by a fixed step and single stage (often forward 
Euler) numerical integration, it can be described by a 
synchronous language. The continuous part of a hybrid 
system, however, may evidence stiff dynamic behavior that 
requires different numerical integration methods for efficient 
computation, for example, during simulation. 

Previous work by Denckla and Mosterman (2008) has 
shown that more complex variable-step integration methods 
for generating continuous-time behavior can be included by 
hierarchical decomposition. This, however, requires strict 
modularization so as to isolate the variable-step size of the 
computation. Furthermore, the numerical integration was 
implemented using a state-based approach which is less 
amenable to analyses of behavior than a stream-based 
approach with true stateless functions. As other work by Lee 
and Zheng (2005) also employs a stateful approach, it forgoes 
the advantages of stateless functions such as referential 
transparency (e.g., Backus, 1978). 

This paper attempts to support the variable-step nature of 
differential equation solvers in combination with discrete-



 
 

     

 

time behavior. Further, this work provides stream-based 
semantics where block diagrams are functions whose input 
and output are streams and a stream consists of a potentially 
infinite sequence of values (Denckla and Mosterman, 2008) 
with continuous-time behavior that is generated by variable-
step integration. To this end, the synchronous languages 
framework is adapted to support a variable time step. This is 
related to the tagged signal model of computation introduced 
by Lee and Sangiovanni-Vincentelli (1996) that allows tags 
to be an annotation to signal values. In this paper, the 
associated tags represent an evaluation index, not time. The 
evaluation index is then projected into a separate dimension 
that captures the temporal aspect. By that, the total order of 
time is not required. Instead, the notion of an untimed 
partially ordered model of computation is employed.  

The benefit of this approach is that only the evaluation 
index increases monotonically and time can now be regarded 
as a nonmonotonically increasing quantity, which allows 
analysis of variable-step solvers by explicitly recognizing 
time steps that are discarded by the solver but that are 
essential to its computational semantics.  

The remainder of this paper is structured as follows. 
Section 2 presents the details of related work. In Section 3, 
the proposed approach in the context of block diagrams is 
described. Section 4 introduces the realization of the stream-
based execution framework, which supports the design of a 
discrete- and continuous-time model. Conclusions complete 
the paper.  

2. BACKGROUND 

Previous work (Caspi, 2006; Denckla and Mosterman, 
2006, 2008) has extensively concentrated on defining the 
computational semantics of discrete-time systems. These 
efforts employ state-based and stream-based approaches. In 
general, the latter are preferred for analysis whereas the 
former are more efficient for behavior generation. 

Continuous-time systems, much less the subject of study, 
can be made to fit the discrete-time framework by means of 
time discretization. Complication may arise in case of a 
multistage numerical integration scheme (Denckla and 
Mosterman, 2006), though. For example, consider the ODE 

),()( txf
dt

dx
tx ==&                                                                  (1) 

where x is the state of the differential equation, t represents 
time, and f is a well-behaved function. A forward Euler 
integration scheme computes the state according to 

)),(()()( 1 kkkkk ttxfhtxtx +=+
                                                 (2) 

where tk represents a time point, and hk is the step size 
between two consecutive time points (tk and tk+1). This allows 
a straightforward combination with discrete-time system 
elements although in strict production/consumption based 
computation, this may already cause difficulty when x(tk) is 
consumed twice for a single production. 

A more complex integration scheme such as a multistage 

algorithm may be even less amenable to combination with 
discrete-time elements. Consider a second order Runge-Kutta 
numerical integration with a fixed-integration step, h, (3–5) 
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which consists of two stages in the evaluation as f is 
evaluated at tk as well as at the midpoint between tk and tk+1. 
This illustrates that now the gradient function, f, must be 
evaluated at an undefined point in the discrete-time interval. 
In previous work, Denckla and Mosterman (2006, 2008) 
argued that an explicit rate transition is helpful for the 
modeler of the hybrid system to understand the complexity 
and potential semantic implication. 

Though the second order Runge-Kutta numerical 
integration scheme is multistage, it is still of a fixed-step 
nature. In other words, the step size hk is uniform and 
independent of k. In contrast, this work provides a semantic 
framework to analyze a variable-step approach implemented 
by a solver. The illustrative solver employs two numerical 
integration schemes and adapts the step size based on an error 
bound evaluation of the states computed by the two 
integration schemes. Such solvers are essential to address 
industrial simulation needs as is exemplified by the family of 
different solvers supported for Simulink® models.  

This work adopts the synchronous assumption of 
languages such as LUSTRE (Halbwachs et al., 1991). It then 
defines a declarative model of computation inspired by 
lambda calculus (i.e., a formal system, where the notion of 
computable function is defined by this system [see Caspi, 
2006; Nielsen and Nielson, 1988]) to establish the semantics 
of block diagrams with discrete-time and continuous-time 
behavior. This practice abstracts from the imperative notion 
that is necessitated by an executable implementation and thus 
again, allows reasoning about the semantics without 
consideration of the implementation and runtime details.  

3. STREAM-BASED SOLVER  

The integrated and comprehensive description and analysis 
of discrete-time and continuous-time behavior yields a 
unified semantic of a variable-step discretized ODE in a 
stream-based execution framework. This enables analysis of 
hybrid system behavior as discussed by Mosterman et al. 
(2009). This section describes the meaning of a stream-based 
approach and introduces the principles of the applied method 
of computation. The next section presents the realization of a 
discretized ODE solver (diODE) as a Simulink® model.  

3.1 A Stream-based Approach 

The semantics of an ODE in mathematical terms is not 
explicitly considered but left implicit in the numerical 
integration scheme. Instead, only the computational 
semantics of an ODE based on the selected solver are studied. 
The resulting diODEs allow a constructive unified stream-



 
 

     

 

based computational representation. In other words, the 
meaning of execution will be defined from the perspective of 
computer science, not as a mathematical representation and 
will be given in a discretized manner.  

The benefits of a stream-based approach are the following: 
(1) A set of pure functions can be analyzed in terms of 
function composition, in contrast to complicating state 
behavior of a state-based execution. For example, the state-
based approach cannot easily describe multi-rate systems, 
whereas the stream-based model can (cf. Caspi, 2006).  
(2) A declarative general computational representation avoids 
the additional complexity of an implementation choice.  

Capturing the semantics in a computational sense allows a 
very precise formulation of the execution of a system with 
differential equation behavior (Mosterman et al., 2009). This 
precision is especially important when continuous-time and 
discrete-event behaviors interact, given the infinite sensitivity 
to perturbations of the latter. Moreover, because the error 
approximation of the numerical mathematics is only local, 
global error accumulates and the long term behavior becomes 
poorly defined as studied by Guckenheimer (2002). 

3.2 Time versus Evaluation  

To formalize a framework, a model of computation that is 
related to the tagged signal model (Lee and Sangiovanni-
Vincentelli, 1996) is used, where a tag representing an 
evaluation is associated with each computed value. A time 
stamp in a separate dimension is associated with each 
evaluation. Time (t) and evaluation (e) should be 
synchronized. The evaluation points can be interpreted as a 
sequence of indexed stamps that are classified and marked as 
accepted and rejected. Accepted are those, for which the 
computed value is based on the currently selected step size; 
rejected are those for which the computation must be 
repeated applying a smaller step size. Then, states are elicited 
and the properly computed evaluation intervals are used 

In a sense, this work adopts an untimed model of 
computation such as in work by Lee and Sangiovanni-
Vincentelli, (1996)  0where the tags are abstract objects that 
may only bear a partial ordering relationship. In the 
framework presented here, time then becomes a variable. It is 
assumed that time increases in a stratified manner. In other 
words, time can be described in a nonmonotonic manner. 
Note that while in a more general hybrid system framework 
time may have to be held constant across computation, for 
purposes of defining the semantics of diODEs, this is not 
strictly necessary. Further, the sequence of time stamps is not 
considered, but a sequence of evaluations is. These 
evaluations are ordered but without a distance measure. Each 
of the evaluations has a time association, which enables the 
solver to compute the values of the analyzed signal at 
arbitrary points within a temporal stratum (and thus 
potentially moving backwards in time).  

3.3 The Nonmonotonic Notion of Time 

Introducing the principle of nonmonotonic time used in the 

numerical solver, the following assumptions hold. Time in its 
general form refers to logical time which is the time 
corresponding to an evaluation. The logical time at an 
evaluation where the solver satisfies its tolerance criterion 
(i.e., an accepted integration point) is called simulation time. 
Simulation time does not change at evaluations where the 
solver fails to meet its tolerance criterion. At those 
evaluations, simulation time equates the logical time of the 
previous accepted integration point.  

The notion of simulation time computed in this manner can 
be related to the actual time it takes to perform the 
computations, the so-called physical time. The physical 
passage of time during system execution increases 
monotonically. Logical time in the computations, however, 
may change nonmonotonically. Finally, if the system 
executes in real time, the advance of simulation time is paced 
so it corresponds to the passage of physical time.  

So, the logical time is an abstract concept introduced to 
precisely explain how a solver handles the accepted and 
rejected integration points, how it interprets the process when 
providing the solution, and how this process relates to the 
simulation time, physical time, and real time.  

To illustrate, in Fig. 2 the evaluation points, ei, are ordered 
and monotonically increasing. Projected onto the time axis, 
these evaluations are producing tuples of evaluation and time 
(e.g., <e1,t1>, <e2,t4>, <e3,t2>), where the notion of 
nonmonotonic time allows for shifting the evaluation points 
backward, forward, or keeping them constant in time 
depending on the computational needs. This is exploited by 
variable step solvers in general (e.g., Petzold, 1982).  

 

Fig. 2. The notion of evaluation with respect to time 

The evaluation dimension can be partitioned into a set of 
strata. Each evaluation point for which the current step size of 
the solver is reset to its initial value is accepted by the solver 
and is called a stratum boundary point. This situation is 
illustrated in Fig. 2 by e3 while the points between e2 and e3 

are rejected evaluations in the same stratum. 
The temporal dimension can be partitioned into a set of 

strata as well. Within each stratum, time is monotonically 
decreasing with an increasing evaluation index. Each stratum 
has a lower bound and upper bound on this temporal 
variation. An example of temporal stratification is depicted in 
Fig. 2 where the lower bound of the first stratum is t1 while 
the upper bound is t2. Though in a more general framework, 
time in the succeeding strata could be equal or less, here time 
in a succeeding stratum is always larger than the time 



 
 

     

 

associated with the final evaluation of the preceding strata. 
This lower bound on time in each stratum results from the 
error evaluation and step size control as performed by 
numerical solvers being local to each time step only.  

Figure 2 also visualizes the progressing simulation time by 
connecting all the accepted integration points. Simulation 
time increases monotonically as opposed to the logical time. 
Now, the definition of simulation time is quantified and 
embedded in an analysis framework that includes evaluation 
points, relation to the logical time, and strata. The analysis of 
the simulation results is not affected by the notion of time 
applied for the solver, though it is explicitly related to this 
notion and enhanced by its clear semantics. The strata can be 
exploited for a further study of the correctness and 
consistency of the solver as such. Anomalies or certain 
properties (e.g., frequency of strata, monotonicity of time, 
duration of certain behavior) can be easier identified and 
quantified. In consequence, the solver dynamics becomes 
clear and better understood and can help study the behavior 
discontinuities of the model itself. 

3.4 Simulink® Realization of diODE 

The implementation of diODE was realized using a subset 
of Simulink blocks that do not have a temporal aspect other 
than the Memory block. Though this does not exploit the 
sophisticated mechanism built into Simulink to handle time, 
it does make the temporal semantics explicit as a declarative 
specification. Moreover, it still takes advantage of the 
facilities in Simulink to transform a declarative constraint 
based formulation into an operational form. To this end, a 
discrete solver is employed with a normalized step size of 1. 

 

Fig. 3. Simulink® realization of diODE 

The realization of diODE then employs two numerical 
integration schemes Euler and Trapezoidal (represented by 
the Euler and Trapezoidal blocks in Fig. 3) that are applied 
independently and their error estimates are compared to 
determine the error for the step size h. Based on this 
comparison, the step size for current integration is computed 
(represented by the Computation of h block). This process is 
elaborated in previous work (Mosterman et al., 2009).  

In particular, Trapezoidal is implemented as a trapezoidal 
numerical integration algorithm that averages the gradient of 
the start state and of the end state to compute a more accurate 
approximation of the end state. The forcing function allows 

one evaluation delay to obtain the gradient at the final state. 
In a more general implementation described by Mosterman et 
al. (2009), however, the gradient at the final state may be 
obtained by first employing the forward Euler computation to 
obtain an estimate of the end state and then averaging the 
gradient at this end state with the gradient at the start state 
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4. AN APPLICATION EXAMPLE 

An example illustrates the computational analysis 
framework as implemented by a Simulink block diagram. 
Integrating a constant gradient (i.e., a ramp) with respect to 
time is studied. While in simulation time the ramp input to 
the solver may be monotonically increasing, the solver 
computations may require logical time at some evaluations to 
decrease in order to satisfy the accuracy tolerance 
requirement. When the solver moves time backward, the 
ramp input must produce previous values and so a 
nonmonotonic implementation of the ramp is required. 

 

 

Fig. 4. Illustration of the nonmonotonic gradient 

Figure 4 depicts a scenario where the diODE method 
computes the time-integrated values of the ramp over 60 
evaluations. This shows the evaluation and temporal strata 
during which time may decrease. The accepted computations 
are the lower bounds of each stratum and those correspond to 
the monotonically increasing output of a traditional solver. 

Note that the first two evaluations have a time stamp of 0 
seconds. This is because the trapezoidal integration requires 
two evaluations to obtain the average gradient if implemented 
without the use of an estimate. Also note that the 60 
evaluations cover a time interval of a little over 0.7 seconds 
of simulation time and about 0.85 seconds of logical time.  

The bouncing ball example of Section 1 can now be 
revisited in this formal framework. Figure 5 zooms in on the 
point of ball contact with the floor. It shows the individual 
evaluations as made by the numerical solver including the 
ones that are not accepted (the lines between points are 
included for readability only). If the discontinuity in the 
ground force is only evaluated at accepted time steps, the 
numerical solver finds the discontinuity that occurs when the 
ball reaches the floor after a full step with the initial step size.  

Alternatively, if the discontinuities are always evaluated, 



 
 

     

 

the numerical solver finds the discontinuity as it is reducing 
the interval of the step size to improve the accuracy with 
which the differential equations are approximated. The effect 
is that the discontinuity is immediately (so sooner than 
before) accounted for, a phenomenon documented by Cellier 
(1979) in previous work but now formulated in a declarative 
framework. Consequently, this framework can be analyzed 
for correctness and consistency (e.g., to provide a reference 
semantics) whilst providing unifying quantifiable results. 

In the example from Fig. 5 the immediate detection of 
discontinuity in force acting on the ball (cf. ‘always evaluated 
scenario’) results in interaction of solver dynamics within one 
stratum. This interaction can now be quantified and assessed 
more precisely than in the case where an implicit rate 
transition is inserted to only allow discontinuities on the 
boundary of strata (cf. ‘evaluated on accepted time step’). 
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Fig. 5. Computations upon impact for different semantics 

5. CONCLUSIONS 

The introduced separation of evaluation from time enables 
reasoning on computation, where time becomes abstract. The 
presented work attempts to formally define the computational 
semantics of a solver for time-based block diagrams in a 
unifying framework. The ultimate target is to prepare the 
background for analysis of hybrid behavior of embedded 
systems that emerges by applying a variable-step differential 
equation solver. The presented work mainly focuses on 
continuous-time behavior. The formalization aims to 
facilitate a stream-based approach to analyze the considered 
numerical integration method. The resulting solver applies 
the principle of nonmonotonic time. That is, a new evaluation 
of model values is explicitly computed in a temporally 
nonmonotonic manner, which allows for shifting the 
evaluation points backward and forward, or holding them 
constant in time and for analysis of the interaction with other 
modeling semantics.  
 
© Simulink is a registered trademark of The MathWorks, Inc. 
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