On the Structure of Time in Computational Semanticof
a Variable-Step Solver for Hybrid Behavior Analysis

Justyna Zander*, Pieter J. Mosterman**, Grégoire Hamon**, Ben Denckla***

* Harvard University, HHI, 14 Story St., Cambridd¢A 02138 USA (e-mailjustyna.zander@gmail.com)
** MathWorks, 3 Apple Hill Drive, Natick, MA 0176QSA (e-mail: pieter.mosterman@mathworks.com)
*** Independent Researcher (e-mail: bdenckla@aiuitedu)

Abstract: Hybrid dynamic systems combine continuous andreiscbehavior. Often, computational
approaches approximate behavior of an analytic tisolu for example, numerical integration to
approximate differential equation behavior. Theuaacy and computational efficiency of the integrati
usually depend on the complexity of the method isménplicated approximation errors, especially whe
repeated over iterations. This work formally definthe computational semantics of a solver in a
denotational sense so as to analyze discrete- @mthaous-time behavior of time-based block diagram
models. A stream-based approach is used to antidgzeumerical integration implemented by the solver
The resulting solver applies the principle of nommionic time and so consecutive values may be
computed in a temporally nonmonotonic manner. BHsws shifting the evaluation points backward and
forward in time. Stratification recovers a partjairdered structure in time. Solver dynamics angsth

made explicit and can be studied in concert withalvéor of discontinuous models parts.

1. INTRODUCTION

dynamics for engineered systems.
The behavior of hybrid dynamic systems is typically

Innovation in engineered systems such as airplaneifined on a domain that at least includes timeaas

automobiles, and mobile phones is increasingly émgnted
in software (see, e.g., Brogt al, 2007). As exceedingly
sophisticated features are demanded, the sizeftofsse that
implements the corresponding functionality is gnogvi
rapidly. As a consequence, software producibilag become
prohibitively complex to a timely design and implemation
of modern systems such as the F22 fighter airpldt®.
Government Accountability Office, 2006) and cybégical
systems in general. Therefore, new paradigms gperiative
for efficient and effective software production.
Model-Based Design (Shenogt al, 2007) relies on
computational representations of a system undeigmiess
first class deliverables. Sharing such deliveralilesveen
teams of engineers significantly enhances the patefor
reuse of effort. For example, the implementatiora afesign
specification can exploit automatic code generatireduce
the overall effort required. To this end, it istical to
precisely define the semantics of each of the caatiomal
representations. For example, the execution ofraatically

independent variable. A successful approach to \heha
generation for hybrid dynamic systems is the caet of
continuous-time blocks in Simulink® (Simulink, 2010
extended with triggered and enabled subsystems.

The structure of time as a continuous domain caléne
intervals was found insufficient in work studyibattering
behavior (Iwasaket al, 1995). Here, a system was defined to
evolve according to two different sets of diffeiaht
equations, while discrete logic caused it to swittimitely
fast between the two. In order to facilitate anislysme was
defined in terms of hyperreals obnstandard analysiso
allow infinitesimal steps. More recent work revsésihe use of
nonstandard analysis to provide hybrid dynamic esyst
semantics in a more general sense (Benveeisit 2010).

In case of sophisticated switching logic, a hytsigtem
may move through a series of discrete states béfiavior
is governed by a set of differential equations agao called
event iteratioh. This motivated a structure of time as a series
of abutting closed intervals as introduced by Gutlegmer

generated code should be unambiguously definedhén tand Johnson (1995). Since interval bounds overtap,
corresponding model of this software that is used fintervals were adorned with an index to establisiin@ue

simulation. Where semantics definition is well ursieod for
discrete-event and discrete-time formalisms, timeasgics of

independent domain. As a consequence, behaviod doail
defined to only hold at a point in time, which peoivto be a

a computational implementation of solvers for medeluseful abstraction of physics (e.g., Mosterman,2200The

developed with continuous-time formalisms has béess
investigated. This work attempts to formally defitiee
computational semantics of a solver for ordinarffedential
equations (ODE) in terms that apply to discretestiand
discrete-event formalisms to facilitate the analysi hybrid

use of a tuple consisting of time and an index hasn
revisited in work by Lee and Sangiovanni-Vincemntgdb96).

Yet still a further extension to such a structuréime was
proposed by Nishida and Doshita (1987) to allowsoeéng
about causal effects in physical systems. In padicit was

found that in order tainderstandhow a behavior emerges, it difficult to present a comprehensive framework thpplies

was important to be able twnsidera model as moving into
a certain state, even though it may never act@abume this
state. The state that enabled reasoning was cailiedical
This notion was later formalized and relatedprameter
abstractions (as opposed tdime scale abstraction¥ in
models of physical systems (Mosterman, 2002).

A comprehensive framework based on all these studie

resulted in a formal ontology of behaviors of hghdiynamic
systems by Mosterman and Biswas (2000).
although the studies have introduced very versatitel
powerful structures in the domain on which behaioe
defined, they all attempt to address the analginantics. As
such, the effects introduced by providing a comipomal
behavior generation algorithm are often relegatednere
‘approximations’ and there are few attempts to isedy
define the effects. This holds true in particular the effects
of applying a specific numerical solver to genemateehavior
for a differential equation. Consequently, it is teof
disregarded how applying a numerical solver intesragith
other parts of the system such as discrete-evéatviim's.

To illustrate, consider a ball that is releasednfra certain
height to bounce off a floor that is modeled aystesn with
stiffness and viscous friction. The first two piedse
behaviors are the initial phase where the balhlénfy down
under the influence of gravity and the consecuimse
where the floor exerts an opposing force to revénseball
velocity. The two piecewise behaviors are modelgdvio
sets of differential equations where the systenichws from
one to the other upon contact with the floor.

The differential equations can be solved byunerical

However,

to both continuous-time and discrete-time semantics
(e.g., Hardebolle, 2007). As such, there is a t#Hck flexible,
comprehensive computational concept that appliesh®o
high-level languages with both types of semantmsas to
analyze their integration and interaction.

position

evaluated on accepted| _,"
01 time step e,

-0.12%
0.32

1 L
0.34 0.36

Fig. 1. Velocity reversal of a bouncing ball witfferent
interaction semantics between the solver and disudties

In contrasts to a more versatile imperative apptica
programming interface (e.g., the Ptolemy projectdlLand
Zheng, 2007] or the S-Function specification [SiimkilS-
Functions, 2007]), analysis of a computational
implementation is often best supported by a deivotak
approach. Previous work by Halbwaabisal. (1991, 1999)
has studied the computational semantics sgfichronous
languagesusing the synchronous model of computation (as
reviewed by Benvenistet al, 2003). Caspi (2006) has
studied computational semantic based on synchrodats
flow. In this approach functional design elemente a
considered taeact instantaneously (i.e., their evaluations do

solver that utilizes a numerical integration scheme oveiot consume time), and are activated simultanecaisty in

discrete intervals of time. The duration of eacterval may
be adapted based on active dynamics so integrationbe
sufficiently accurate, given a predefined toleraniogically,
when the numerical solver makes a step, the ewer that
step is estimated and if the error exceeds theatode, the
size of interval is reduced. Further reduction rfaiow till

synchronywith an underlying discrete-time clock.

As such, these synchronous languages have beetlystri
limited to functionality with a periodic base ratka discrete-
time nature, which has impeded its utility in theidy of
hybrid systems. As long as the continuous-time dyoa can
be discretized by a fixed step and single stageridbrward

the tolerance is satisfied and the end point of theyler) numerical integration, it can be describeg &

corresponding interval idcceptedas the next step in time.

synchronous language. The continuous part of aidybr

Now, a semantic choice can be made whether thestem, however, may evidence stiff dynamic behatliat

discontinuity because of the ground forces thabbecactive
should be effected while the interval size is shking
reduced, or whether it should only then becomevaatince
the next step in time is accepted. Figure 1 sholes
difference in computed behavior and the analytitutgm
derived with the Symbolic Math Toolbox™ (Symbolicalt
Toolbox, 2010). The comparison shows the importasfca
precise definition of the numerical solver semantind its
interaction with other model elements in a hybrighamic
system so as to reliably produce correct (as détexdnby
interaction semantics choice) and consistent (otle
semantics are chosen) results.

This work aims to find a structure of time thabals such
a precise definition of theomputational semantics of a

requires different numerical integration methodsédtiicient
computation, for example, during simulation.

Previous work by Denckla and Mosterman (2008) has
tshown that more complex variable-step integraticeethmds
for generating continuous-time behavior can beuidet by
hierarchical decomposition. This, however, requistsct
modularization so as to isolate the variable-siep sf the
computation. Furthermore, the numerical integrativas
implemented using a state-based approach whicheds |
amenable to analyses of behavior than a streandbase
approach with true stateless functions. As otherkviny Lee
and Zheng (2005) also employs a stateful apprasafdrgoes
the advantages of stateless functions suchrefsrential
transparency(e.g., Backus, 1978).

hybrid dynamic system. In previous work, Denckladan This paper attempts to support the variable-stepreaf

Mosterman (2006, 2008) have studied the formalnitédn
of semantics of temporal behavior. However, it pagven

differential equation solvers in combination witlisatete-

time behavior. Further, this work provides streamsdul
semantics where block diagrams are functions wlioget
and output are streams and a stream consists ateatjally
infinite sequence of values (Denckla and Mostern298)
with continuous-time behavior that is generatedvasiable-
step integration. To this end, the synchronous Uaggs
framework is adapted to support a variable time.stdis is
related to theagged signal model of computationroduced
by Lee and Sangiovanni-Vincentelli (1996) that aHotags
to be an annotation to signal values. In this pajplee
associated tags represent an evaluation indextimet The
evaluation index is then projected into a sepagatension
that captures the temporal aspect. By that, thed toter of
time is not required. Instead, the notion of anirmet
partially ordered model of computation is employed.

The benefit of this approach is that only the esttin
index increases monotonically and time can noweganded
as anonmonotonicallyincreasing quantity, which allows
analysis of variable-step solvers by explicitly ognizing
time steps that are discarded by the solver but #na
essential to its computational semantics.

algorithm may be even less amenable to combinatiibin
discrete-time elements. Consider a second ordeg&kKutta
numerical integration with a fixed-integration stap(3-5)

a = hif(x(t,).t)

3-5
8, =NCF (G + 2.x(0) +) o

X(ta) = X(t) + &,

which consists of two stages in the evaluation fas
evaluated at, as well as at the midpoint betwegrandty.;.
This illustrates that now the gradient functidn,must be
evaluated at an undefined point in the discrete-tinterval.

In previous work, Denckla and Mosterman (2006, 2008
argued that an explicit rate transition is helpfal the
modeler of the hybrid system to understand the dexity
and potential semantic implication.

Though the second order Runge-Kutta numerical
integration scheme is multistage, it is still offiaed-step
nature. In other words, the step sibg is uniform and
independent ok. In contrast, this work provides a semantic

The remainder of this paper is structured as falowframework to analyze a variable-step approach implaed

Section 2 presents the details of related workSéation 3,
the proposed approach in the context of block diagr is
described. Section 4 introduces the realizatiothefstream-
based execution framework, which supports the desfga
discrete- and continuous-time model. Conclusionspiete
the paper.

2. BACKGROUND

by asolver The illustrative solver employs two numerical
integration schemes and adapts the step size basaud error
bound evaluation of the states computed by the two
integration schemes. Such solvers are essentialdtivess
industrial simulation needs as is exemplified by thmily of
different solvers supported for Simuliiknodels.

This work adopts thesynchronous assumptiorof
languages such as LUSTRE (Halbwaehsl, 1991). It then

Previous work (Caspi, 2006; Denckla and Mostermamlefines a declarative model of computation inspitsd

2006, 2008) has extensively concentrated on defirihve
computational semantics of discrete-time systemises&
efforts employ state-based and stream-based apgm®amn
general, the latter are preferred for analysis e&®rthe
former are more efficient for behavior generation.
Continuous-time systems, much less the subjectunfys
can be made to fit the discrete-time framework tBans of
time discretization. Complication may arise in cadea
multistage numerical
Mosterman, 2006), though. For example, consideD&

dx 1
)@(t)—dt f(x1) D

wherex is the state of the differential equatidrepresents

integration scheme (Dencklad an

lambda calculug(i.e., a formal system, where the notion of
computable function is defined by this system [§&espi,
2006; Nielsen and Nielson, 1988]) to establishgbmantics

of block diagrams with discrete-time and continutiose
behavior. This practice abstracts from the impeeatiotion
that is necessitated by an executable implementatial thus
again, allows reasoning about the semantics without
consideration of the implementation and runtimeitiet

3. STREAM-BASED SOLVER

The integrated and comprehensive description aatysis
of discrete-time and continuous-time behavior geld
unified semantic of a variable-step discretized ODEa
stream-based execution framework. This enables/sinabf
hybrid system behavior as discussed by Mosteretaal.

time, andf is a well-behaved function. A forward Euler(2009). This section describes the meaning ofeasirbased

integration scheme computes the state according to

X(tsn) = X(t) + e F(x(). 8) 2
where t, represents a time point, ang is the step size
between two consecutive time pointsandty.,). This allows
a straightforward combination with discrete-timesteyn
elements although in strict production/consumptizased
computation, this may already cause difficulty whe€g) is
consumed twice for a single production.

A more complex integration scheme such as a madfést

approach and introduces the principles of the agpinethod
of computation. The next section presents thezaiadin of a
discretized ODE solver (diODE)s a Simulink® model.

3.1 A Stream-based Approach

The semantics of an ODE in mathematical terms is no
explicitly considered but left implicit in the numeal
integration scheme. Instead, only the computational
semantics of an ODE based on the selected solgestadied.
The resultingdiODEs allow a constructive unified stream-

based computational representation. In other wotbs,
meaning of execution will be defined from the pexdjve of
computer science, not as a mathematical repregamtand
will be given in a discretized manner.

The benefits of a stream-based approach are tlosving:
(1) A set of pure functions can be analyzed in terof
function composition, in contrast to complicatingate
behavior of a state-based execution. For exampée state-
based approach cannot easily describe multi-ragtes)s,
whereas the stream-based model can (cf. Caspi)2006
(2) A declarative general computational represemaivoids
the additional complexity of an implementation a®oi

Capturing the semantics in a computational serew/ala
very precise formulation of the execution of a egstwith
differential equation behavior (Mostermanal., 2009). This
precision is especially important when continudoset and
discrete-event behaviors interact, given the itdigiensitivity
to perturbations of the latter. Moreover, because érror
approximation of the numerical mathematics is olalyal,
global error accumulates and the long term beha&soomes
poorly defined as studied by Guckenheimer (2002).

3.2 Time versus Evaluation

To formalize a framework, a model of computatioattis
related to thetagged signal modelLee and Sangiovanni-
Vincentelli, 1996) is used, where a tag represgntiam
evaluation is associated with each computed valuéme

numerical solver, the following assumptions hol@nd in its
general form refers tdogical time which is the time
corresponding to an evaluation. The logical time aat
evaluation where the solver satisfies its tolerandgerion
(i.e., anacceptedntegration point) is calledimulation time
Simulation time does not change at evaluations atibe
solver fails to meet its tolerance criterion. Atoske
evaluations, simulation time equates the logicaletiof the
previous accepted integration point.

The notion of simulation time computed in this mancan
be related to the actual time it takes to perforine t
computations, the so-calleghysical time The physical
passage of time during system execution increases
monotonically. Logical time in the computations,waver,
may change nonmonotonically. Finally, if the system
executes imeal timg the advance of simulation time is paced
so it corresponds to the passage of physical time.

So, the logical time is an abstract concept intceduto
precisely explain how a solver handles the accepted
rejected integration points, how it interprets finecess when
providing the solution, and how this process ralat the
simulation time, physical time, and real time.

To illustrate, in Fig. 2 the evaluation poings,are ordered
and monotonically increasing. Projected onto tieetiaxis,
these evaluations are producing tuples of evalnatitd time
(e.g., <ept;> <ent>, <esty>), where the notion of
nonmonotonic time allows for shifting the evaluatipoints
backward, forward, or keeping them constant in time

stamp in a separate dimension is associated witth eadepending on the computational needs. This is é@rpldy

evaluation. Time (t) and evaluation (e) should be
synchronized. The evaluation points can be intéegras a

variable step solvers in general (e.g., Petzol@2)9

sequence ahdexed stampthat are classified and marked as/gica! stream evaluation points forward in time
acceptedand rejected Accepted are those, for which the progressing simulation time A
cqmputed value is based on the currently seIe.crmi size; 3 + _ﬁbﬁ\ /ﬁ
rejected are those for which the computation must t z A
; e

|
repeated applying a smaller step size. Then, stageslicited |
and the properly computed evaluation intervalsused |

In a sense, this work adopts amtimed model of

computation such as in work by Lee and Sangiovanni |
Vincentelli, (1996) Owhere the tags are abstrdojeats that ! e
may only bear a partial ordering relationship. Ihet
framework presented heanethen becomea variable It is
assumed that time increases in a stratified manneother
words, time can be described in a nonmonotonic ®&NN The evaluation dimension can be partitioned integof

Note that while in a more general hybrid systenmg@ork strata, Each evaluation point for which the curstap size of
time may have to be held constant across compofalid the solver is reset to its initial value is accepty the solver
purposes of defining the semantics ODEs this is not 5nq is called a stratum boundary point. This situatis

strictly necessary. Further, tsequence of time stamigsnot jjystrated in Fig. 2 bye; while the points betwees ande;
considered, but asequence of evaluationss. These gre rejected evaluations in the same stratum.

evaluations are ordered but without a distance area&ach The temporal dimension can be partitioned into toge

of the evaluations has a time association, whiciblas the girata as well. Within each stratum, time is montally
solver to compute thevalues of the analyzed signal at gecreasing with an increasing evaluation index hEsratum
arbitrary points within a temporal stratum (and sthupas a lower bound and upper bound on this temporal
potentially moving backwards in time). variation. An example of temporal stratificatiordispicted in

Fig. 2 where the lower bound of the first stratugt, iwhile

the upper bound i5. Though in a more general framework,
time in the succeeding strata could be equal @, lesre time

in a succeeding stratum is always larger than thee t

e

evaluation point backward in time

7] . . o o
evaluation points constant in lime

k.
»

evaluation

Fig. 2. The notion of evaluation with respect todi

3.3 The Nonmonotonic Notion of Time

Introducing the principle afionmonotonic timesed in the

associated with the final evaluation of the prengdstrata.
This lower bound on time in each stratum resultsnfrthe
error evaluation and step size control as perforrbgd
numerical solvers being local to each time steg.onl
Figure 2 also visualizes the progressangulation timeby

connecting all the accepted integration poirBanulation
time increases monotonically as opposedh® logical time.
Now, the definition ofsimulation timeis quantified and
embedded in an analysis framework that includeuatian
points, relation to the logical time, and stratheTanalysis of
the simulation results is not affected by the notaf time
applied for the solver, though it is explicitly agdd to this
notion and enhanced by its clear semantics. Thastan be

exploited for a further study of the correctnessd an An example

consistency of the solver as such. Anomalies otauer
properties (e.g., frequency of strata, monotonicifytime,
duration of certain behavior) can be easier idetifand
qguantified. In consequence, the solver dynamicsoines
clear and better understood and can help studypé¢havior
discontinuities of the model itself.

3.4 SimulinR Realization of diODE

The implementation ofiODE was realized using a subset

of Simulink blocks that do not have a temporal asmther

than theMemory block. Though this does not exploit the ' T

sophisticated mechanism built into Simulink to Haniime,
it does make the temporal semantics explicit ascadative
specification. Moreover, it still takes advantagé the
facilities in Simulink to transform a declarativenstraint
based formulation into an operational form. To thix, a
discrete solver is employed with a normalized siep of 1.

—»| reject vie)
seriest
»
PHUE) seriesn
P h erorforh series
Euler integration 3 Euler
selected y
Computation of h —»| trapezoidal v
—1h N1 Solver output
uie) computation
——reject h2 [—
P rejection status
accepted output
| reject) P! raw output y_accept
»
P ule) Accepted
»|h error for h—— solver output
computation

Trapezoidal

Fig. 3.Simulink® realization of diODE

one evaluation delay to obtain the gradient atfithed state.
In a more general implementation described by Moseet
al. (2009), however, the gradient at the final statyrbe
obtained by first employing the forward Euler corgtion to
obtain an estimate of the end state and then awerabe
gradient at this end state with the gradient asthe state

X(tyw) = () + h F(x(t,),t,)

X)) + F(RC)iten) =7
X(ty.) = X(t,) +hy — 2 e
4. AN APPLICATION EXAMPLE
illustrates the computational analysis

framework as implemented by a Simulink block diagra
Integrating a constant gradient (i.e., a ramp) wéhpect to
time is studied. While in simulation time the ranmput to

the solver may be monotonically increasing, thevesol
computations may require logical time at some etiuas to
decrease in order to satisfy the accuracy tolerance
requirement. When the solver moves time backwahnd, t
ramp input must produce previous values and so a
nonmonotonic implementation of the ramp is required

Nonmonotonic Gradient
T T T

+
+
07 R
+ + 0+
+ + 0+
08 + + T+
+ e
ggus» stratum P P
o= T
8= 04 RN
+ +
03 + + O+
+ +
+
02F 4 T4 stratum
+
orp

L n n L
10 20 0 40 50 &0
evaluation

Fig. 4. lllustration of the nonmonotonic gradient

Figure 4 depicts a scenario where tti€®DE method
computes the time-integrated values of the rampr @@
evaluations. This shows the evaluation and tempstralta
during which time may decrease. The accepted catipos
are the lower bounds of each stratum and thosesmond to
the monotonically increasing output of a traditiosalver.

Note that the first two evaluations have a timengtaf 0
seconds. This is because the trapezoidal integratiquires
two evaluations to obtain the average gradiemhflemented
without the use of an estimate. Also note that 6@

The realization ofdiODE then employs two numerical evaluations cover a time interval of a little 0¥ seconds

integration schemes Euler and Trapezoidal (reptedeby

of simulation time and about 0.85 seconds of Iddioze.

the Euler and Trapezoidalblocks in Fig. 3) that are applied The bouncing ball example of Section 1 can now be

independently and their error estimates are condpdoe
determine the error for the step sibe Based on this
comparison, the step size for current integrationamputed
(represented by th€omputation of hblock). This process is
elaborated in previous work (Mostermetral,, 2009).

In particular, Trapezoidal is implemented as adraidal
numerical integration algorithm that averages tredignt of
the start state and of the end state to computera atcurate
approximation of the end state. The forcing functalows

revisited in this formal framework. Figure 5 zoom=on the
point of ball contact with the floor. It shows thadividual
evaluations as made by the numerical solver inolydhe
ones that are not accepted (the lines between spairg
included for readability only). If the discontingitin the
ground force is only evaluated at accepted timesstéhe
numerical solver finds the discontinuity that occwhen the
ball reaches the floor after a full step with thiial step size.

Alternatively, if the discontinuities are alwaysatwated,

the numerical solver finds the discontinuity assireducing
the interval of the step size to improve the accyraith
which the differential equations are approximafEie effect
is that the discontinuity is immediately (so soornbBan
before) accounted for, a phenomenon documentedetiieC
(1979) in previous work but now formulated in a ldeative
framework. Consequently, this framework can be yaeal
for correctness and consistency (e.g., to providefarence
semantics) whilst providing unifying quantifiablesults.

In the example from Fig. 5 the immediate detectidn
discontinuity in force acting on the ball (cf. ‘adys evaluated
scenario’) results in interaction of solver dynasnigthin one
stratum. This interaction can now be quantified assessed
more precisely than in the case where an impliaie r
transition is inserted to only allow discontinuitien the
boundary of strata (cf. ‘evaluated on accepted 8tag’).

0.04H— — — — 4 = l— - —— = [
| | | |
| | | |
L N e |
0.02 always evaluated | | |
|
|

position

evaluated on
accepted time step| .

50

‘lml il

100 150

evaluations

Fig. 5. Computations upon impact for different satits

5. CONCLUSIONS

The introduced separation of evaluation from timaldes
reasoning on computation, where time becomes aisirhe
presented work attempts to formally define the cotafional
semantics of a solver for time-based block diagrams
unifying framework. The ultimate target is to prepahe
background for analysis of hybrid behavior of entded
systems that emerges by applyingagiable-stepdifferential
equation solver. The presented work mainly focuses
continuous-time behavior. The formalization aims
facilitate a stream-based approach to analyze ahsidered
numerical integration method. The resulting solepplies
the principle ohonmonotonic timeThat is, a new evaluation
of model values isexplicitly computed in a temporally
nonmonotonic manner, which allows for shifting th
evaluation points backward and forward, or holdithgm
constant in time and for analysis of the interactiath other
modeling semantics.

© Simulink is a registered trademark of The MathWépinc.
See www.mathworks.com/trademarks for a list of tolidal
trademarks.

REFERENCES

Backus, J. (1978). “Can Programming Be Liberatedhfthe von Neumann
Style?,” inCommunications of the ACMol. 21, Nr. 8, pp.: 613-641.

to

e

Benveniste, A., Caillaud, B., Pouzet, M. (2010).h&T Fundamentals of
Hybrid Systems Modelers,” iProc. of the49th IEEE International
Conference on Decision and Contraklanta, GA.

Benveniste, A., Caspi, P., Edwards, S.A., HalbwabhsLe Guernic, P., de
Simone, R. (2003). “The Synchronous Languages Tavelears
Later,” Proc. of the IEEEVoI. 91, Iss. 1, pp.: 64-83.

Broy, M., Kriger, I.H., Pretschner, A., Salzmann, (2007). “Engineering
Automotive Software,” irfProc. of the IEEEVol. 95, no. 2, pp.: 356—
373.

Caspi, P. (2006). “Some Issues in Model-Based Dgveént for Embedded
Control Systems,” inFrom Model-Driven Design to Resource
Management for Distributed Embedded Systewaume 225/2006,
ISSN: 1571-5736. Springer Boston.

Cellier, F.E. (1979)Combined Continuous/Discrete System Simulation by
Use of Digital Computers: Techniques and Todh.D. dissertation,
Swiss Federal Institute of Technology, ETH ZiriSlwitzerland.

Denckla, B., Mosterman, P.J. (2006Block Diagrams as a Syntactic
Extension to Haskell,” ifProc. of theWorkshop on Multi-Paradigm
Modeling: Concepts and Togl®ctober 3, Genova, ltaly.

Denckla, B., Mosterman, P.J. (2008). “Stream- atadeSBased Semantics of
Hierarchy in Block Diagrams,” in17" IFAC World Congress
pp. 7955-7960, July 6-11, Seoul, Korea.

Guckenheimer, J. (2002). “Numerical analysis of atyical systems,” in
Handbook of Dynamical Systenis Fiedler (ed.), vol. 2, pp.: 345-390.
Elsevier, Amsterdam, Netherlands.

Guckenheimer, J., Johnson, S. (1995). “Planar Hyksistems,”Hybrid
Systems |ILecture Notes in Computer Science, 999, pp.: 22&-
Halbwachs, N., Caspi, P., Raymond, P., Pilaud1891). “The synchronous
data-flow programming language LUSTRE,"Rnoc. of the IEEEVoI.

79, No. 9, pp.: 1305-1320.

Halbwachs, N., Raymond, P. (1999). “Validation ghehronous reactive
systems: from formal verification to automatic tegt’ in Asian
Computing Science Conference (ASIAN'92huket, Thailand. LNCS
1742, Springer Verlag.

Hardebolle, C., Boulanger, F., Marcadet, D., ViNalquet, G. (2007). “A
Generic Execution Framework for Models of Compuotati in Proc. of
MOMPES'07 pp.: 45-54.

lwasaki Y., Farquhar A., Saraswat V., Bobrow Dup@&, V. (1995)
“Modeling Time in Hybrid Systems: How Fast Is ‘lagtaneous’?,” in
Proceedings of the Ninth International Workshop Qualitative
Reasoningpp.: 1773-1780.

Lee, E.A., Sangiovanni-Vincentelli, A. (199@}he Tagged Signal Model: A
Preliminary Version of a Denotational Framework f@omparing
Models of Computatign Memorandum UCB/ERL M96/33, ERL,
University of California, Berkeley, CA 94720.

Lee, E. A., Zheng, H. (2005). “Operational semant€ hybrid systems,” in
Proc. of HSCC'05, Volume LNCS 3414, pp.: 25-35.

Lee, E. A, Zheng, H. (2007). “Leveraging Synchnambanguage Principles
for Heterogeneous Modeling and Design of Embeddgstesis,” in
Proc. of EMSOFT'07Salzburg, Austria, pp.: 114-123.

Mosterman, P.J. (2002). “HYBRSIM—A Modeling and $iation
Environment for Hybrid Bond Graphs,” idournal of Systems and
Control EngineeringVol. 216, Part |, pp.: 35-46.

Mosterman, P.J., Zander, J., Hamon, G., Denckla(2B09). “Towards

Computational Hybrid System Semantics for Time-Badglock

Diagrams,” inProc. of ADHS'09 A. Giua, C. Mahulea, M. Silva, J.

Zaytoon (eds.), pp.: 376-385, plenary paper, Zaagdpain.

Mosterman, P.J. and Biswas, G. (2000). “A ComprsivenMethodology for
Building Hybrid Models of Physical SystemsJournal of Artificial
Intelligence 121, pp.: 171-209.

Nishida, T., Doshita, S. (1987). “Reasoning abastahtinuous change,” in

Proceedings of National Conference on Artificiateliigence (AAAI-

87), pp.: 643-648.

Petzold, L.R. (1982)A description of DASSL: A differential/algebraic
system solver Technical Report SAND82-8637, Sandia National
Laboratories, Livermore, CA.

Simulink® 7 User’s Guide, MathWorRs Natick, MA, March, 2010.

Simulink® 7, Writing S-FunctionsMathWork€, Natick, MA, 2007.

Symbolic Math Toolbox™MVathWork€, Natick, MA, March, 2010.

Nielsen, H.R., Nielson, F. (1988). “Automatic binditime analysis for a
typed» calculus,”Science of Computer Programmirid:139-176.

Shenoy, R., McKay, B., Mosterman, P.J. (2007). “Smulation of
Simulink Models for Model-Based Design,” Hiandbook of Dynamic
System ModelingPaul A. Fishwick (ed.), Chapter 37, CRC Press.

United States Government Accountability Office, g0, 2006, GAO-06-
455R F-22A Tactical Aircraft, Washington, DC 20548.

