

On the Structure of Time in Computational Semantics of
a Variable-Step Solver for Hybrid Behavior Analysis

Justyna Zander*, Pieter J. Mosterman**, Grégoire Hamon**, Ben Denckla***

* Harvard University, HHI, 14 Story St., Cambridge, MA 02138 USA (e-mail: justyna.zander@gmail.com)
** MathWorks, 3 Apple Hill Drive, Natick, MA 01760 USA (e-mail: pieter.mosterman@mathworks.com)

*** Independent Researcher (e-mail: bdenckla@alum.mit.edu)

Abstract: Hybrid dynamic systems combine continuous and discrete behavior. Often, computational
approaches approximate behavior of an analytic solution, for example, numerical integration to
approximate differential equation behavior. The accuracy and computational efficiency of the integration
usually depend on the complexity of the method and its implicated approximation errors, especially when
repeated over iterations. This work formally defines the computational semantics of a solver in a
denotational sense so as to analyze discrete- and continuous-time behavior of time-based block diagram
models. A stream-based approach is used to analyze the numerical integration implemented by the solver.
The resulting solver applies the principle of nonmonotonic time and so consecutive values may be
computed in a temporally nonmonotonic manner. This allows shifting the evaluation points backward and
forward in time. Stratification recovers a partially ordered structure in time. Solver dynamics are thus
made explicit and can be studied in concert with behavior of discontinuous models parts.

1. INTRODUCTION

Innovation in engineered systems such as airplanes,
automobiles, and mobile phones is increasingly implemented
in software (see, e.g., Broy et al., 2007). As exceedingly
sophisticated features are demanded, the size of software that
implements the corresponding functionality is growing
rapidly. As a consequence, software producibility has become
prohibitively complex to a timely design and implementation
of modern systems such as the F22 fighter airplane (U.S.
Government Accountability Office, 2006) and cyber-physical
systems in general. Therefore, new paradigms are imperative
for efficient and effective software production.

Model-Based Design (Shenoy et al., 2007) relies on
computational representations of a system under design as
first class deliverables. Sharing such deliverables between
teams of engineers significantly enhances the potential for
reuse of effort. For example, the implementation of a design
specification can exploit automatic code generation to reduce
the overall effort required. To this end, it is critical to
precisely define the semantics of each of the computational
representations. For example, the execution of automatically
generated code should be unambiguously defined in the
corresponding model of this software that is used for
simulation. Where semantics definition is well understood for
discrete-event and discrete-time formalisms, the semantics of
a computational implementation of solvers for models
developed with continuous-time formalisms has been less
investigated. This work attempts to formally define the
computational semantics of a solver for ordinary differential
equations (ODE) in terms that apply to discrete-time and
discrete-event formalisms to facilitate the analysis of hybrid

dynamics for engineered systems.
The behavior of hybrid dynamic systems is typically

defined on a domain that at least includes time as an
independent variable. A successful approach to behavior
generation for hybrid dynamic systems is the core set of
continuous-time blocks in Simulink® (Simulink, 2010),
extended with triggered and enabled subsystems.

The structure of time as a continuous domain covered by
intervals was found insufficient in work studying chattering
behavior (Iwasaki et al., 1995). Here, a system was defined to
evolve according to two different sets of differential
equations, while discrete logic caused it to switch infinitely
fast between the two. In order to facilitate analysis, time was
defined in terms of hyperreals of nonstandard analysis to
allow infinitesimal steps. More recent work revisits the use of
nonstandard analysis to provide hybrid dynamic system
semantics in a more general sense (Benveniste et al., 2010).

In case of sophisticated switching logic, a hybrid system
may move through a series of discrete states before behavior
is governed by a set of differential equations again (so called
event iteration). This motivated a structure of time as a series
of abutting closed intervals as introduced by Guckenheimer
and Johnson (1995). Since interval bounds overlap, the
intervals were adorned with an index to establish a unique
independent domain. As a consequence, behavior could be
defined to only hold at a point in time, which proved to be a
useful abstraction of physics (e.g., Mosterman, 2002). The
use of a tuple consisting of time and an index has been
revisited in work by Lee and Sangiovanni-Vincentelli (1996).

Yet still a further extension to such a structure of time was
proposed by Nishida and Doshita (1987) to allow reasoning
about causal effects in physical systems. In particular, it was

found that in order to understand how a behavior emerges, it
was important to be able to consider a model as moving into
a certain state, even though it may never actually assume this
state. The state that enabled reasoning was called mythical.
This notion was later formalized and related to parameter
abstractions (as opposed to time scale abstractions) in
models of physical systems (Mosterman, 2002).

A comprehensive framework based on all these studies
resulted in a formal ontology of behaviors of hybrid dynamic
systems by Mosterman and Biswas (2000). However,
although the studies have introduced very versatile and
powerful structures in the domain on which behavior are
defined, they all attempt to address the analytic semantics. As
such, the effects introduced by providing a computational
behavior generation algorithm are often relegated to mere
‘approximations’ and there are few attempts to precisely
define the effects. This holds true in particular for the effects
of applying a specific numerical solver to generate a behavior
for a differential equation. Consequently, it is often
disregarded how applying a numerical solver interacts with
other parts of the system such as discrete-event behaviors.

To illustrate, consider a ball that is released from a certain
height to bounce off a floor that is modeled as a system with
stiffness and viscous friction. The first two piecewise
behaviors are the initial phase where the ball is falling down
under the influence of gravity and the consecutive phase
where the floor exerts an opposing force to reverse the ball
velocity. The two piecewise behaviors are modeled by two
sets of differential equations where the system switches from
one to the other upon contact with the floor.

The differential equations can be solved by a numerical
solver that utilizes a numerical integration scheme over
discrete intervals of time. The duration of each interval may
be adapted based on active dynamics so integration can be
sufficiently accurate, given a predefined tolerance. Typically,
when the numerical solver makes a step, the error over that
step is estimated and if the error exceeds the tolerance, the
size of interval is reduced. Further reduction may follow till
the tolerance is satisfied and the end point of the
corresponding interval is accepted as the next step in time.

Now, a semantic choice can be made whether the
discontinuity because of the ground forces that become active
should be effected while the interval size is still being
reduced, or whether it should only then become active once
the next step in time is accepted. Figure 1 shows the
difference in computed behavior and the analytic solution
derived with the Symbolic Math Toolbox™ (Symbolic Math
Toolbox, 2010). The comparison shows the importance of a
precise definition of the numerical solver semantics and its
interaction with other model elements in a hybrid dynamic
system so as to reliably produce correct (as determined by
interaction semantics choice) and consistent (once the
semantics are chosen) results.

This work aims to find a structure of time that allows such
a precise definition of the computational semantics of a
hybrid dynamic system. In previous work, Denckla and
Mosterman (2006, 2008) have studied the formal definition
of semantics of temporal behavior. However, it has proven

difficult to present a comprehensive framework that applies
to both continuous-time and discrete-time semantics
(e.g., Hardebolle, 2007). As such, there is a lack of a flexible,
comprehensive computational concept that applies to the
high-level languages with both types of semantics so as to
analyze their integration and interaction.

0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

time

po
si

tio
n

evaluated on accepted
time step

analytic solution

always evaluated

Fig. 1. Velocity reversal of a bouncing ball with different
interaction semantics between the solver and discontinuities

In contrasts to a more versatile imperative application
programming interface (e.g., the Ptolemy project [Lee and
Zheng, 2007] or the S-Function specification [Simulink S-
Functions, 2007]), analysis of a computational
implementation is often best supported by a denotational
approach. Previous work by Halbwachs et al. (1991, 1999)
has studied the computational semantics of synchronous
languages using the synchronous model of computation (as
reviewed by Benveniste et al., 2003). Caspi (2006) has
studied computational semantic based on synchronous data-
flow. In this approach functional design elements are
considered to react instantaneously (i.e., their evaluations do
not consume time), and are activated simultaneously and in
synchrony with an underlying discrete-time clock.

As such, these synchronous languages have been strictly
limited to functionality with a periodic base rate of a discrete-
time nature, which has impeded its utility in the study of
hybrid systems. As long as the continuous-time dynamics can
be discretized by a fixed step and single stage (often forward
Euler) numerical integration, it can be described by a
synchronous language. The continuous part of a hybrid
system, however, may evidence stiff dynamic behavior that
requires different numerical integration methods for efficient
computation, for example, during simulation.

Previous work by Denckla and Mosterman (2008) has
shown that more complex variable-step integration methods
for generating continuous-time behavior can be included by
hierarchical decomposition. This, however, requires strict
modularization so as to isolate the variable-step size of the
computation. Furthermore, the numerical integration was
implemented using a state-based approach which is less
amenable to analyses of behavior than a stream-based
approach with true stateless functions. As other work by Lee
and Zheng (2005) also employs a stateful approach, it forgoes
the advantages of stateless functions such as referential
transparency (e.g., Backus, 1978).

This paper attempts to support the variable-step nature of
differential equation solvers in combination with discrete-

time behavior. Further, this work provides stream-based
semantics where block diagrams are functions whose input
and output are streams and a stream consists of a potentially
infinite sequence of values (Denckla and Mosterman, 2008)
with continuous-time behavior that is generated by variable-
step integration. To this end, the synchronous languages
framework is adapted to support a variable time step. This is
related to the tagged signal model of computation introduced
by Lee and Sangiovanni-Vincentelli (1996) that allows tags
to be an annotation to signal values. In this paper, the
associated tags represent an evaluation index, not time. The
evaluation index is then projected into a separate dimension
that captures the temporal aspect. By that, the total order of
time is not required. Instead, the notion of an untimed
partially ordered model of computation is employed.

The benefit of this approach is that only the evaluation
index increases monotonically and time can now be regarded
as a nonmonotonically increasing quantity, which allows
analysis of variable-step solvers by explicitly recognizing
time steps that are discarded by the solver but that are
essential to its computational semantics.

The remainder of this paper is structured as follows.
Section 2 presents the details of related work. In Section 3,
the proposed approach in the context of block diagrams is
described. Section 4 introduces the realization of the stream-
based execution framework, which supports the design of a
discrete- and continuous-time model. Conclusions complete
the paper.

2. BACKGROUND

Previous work (Caspi, 2006; Denckla and Mosterman,
2006, 2008) has extensively concentrated on defining the
computational semantics of discrete-time systems. These
efforts employ state-based and stream-based approaches. In
general, the latter are preferred for analysis whereas the
former are more efficient for behavior generation.

Continuous-time systems, much less the subject of study,
can be made to fit the discrete-time framework by means of
time discretization. Complication may arise in case of a
multistage numerical integration scheme (Denckla and
Mosterman, 2006), though. For example, consider the ODE

),()(txf
dt

dx
tx ==& (1)

where x is the state of the differential equation, t represents
time, and f is a well-behaved function. A forward Euler
integration scheme computes the state according to

)),(()()(1 kkkkk ttxfhtxtx +=+
 (2)

where tk represents a time point, and hk is the step size
between two consecutive time points (tk and tk+1). This allows
a straightforward combination with discrete-time system
elements although in strict production/consumption based
computation, this may already cause difficulty when x(tk) is
consumed twice for a single production.

A more complex integration scheme such as a multistage

algorithm may be even less amenable to combination with
discrete-time elements. Consider a second order Runge-Kutta
numerical integration with a fixed-integration step, h, (3–5)

21

1
2

1

)()(

)
2

)(,
2

(

)),((

atxtx

a
tx

h
tfha

ttxfha

kk

kk

kk

+=

++⋅=

⋅=

+

 (3−5)

which consists of two stages in the evaluation as f is
evaluated at tk as well as at the midpoint between tk and tk+1.
This illustrates that now the gradient function, f, must be
evaluated at an undefined point in the discrete-time interval.
In previous work, Denckla and Mosterman (2006, 2008)
argued that an explicit rate transition is helpful for the
modeler of the hybrid system to understand the complexity
and potential semantic implication.

Though the second order Runge-Kutta numerical
integration scheme is multistage, it is still of a fixed-step
nature. In other words, the step size hk is uniform and
independent of k. In contrast, this work provides a semantic
framework to analyze a variable-step approach implemented
by a solver. The illustrative solver employs two numerical
integration schemes and adapts the step size based on an error
bound evaluation of the states computed by the two
integration schemes. Such solvers are essential to address
industrial simulation needs as is exemplified by the family of
different solvers supported for Simulink® models.

This work adopts the synchronous assumption of
languages such as LUSTRE (Halbwachs et al., 1991). It then
defines a declarative model of computation inspired by
lambda calculus (i.e., a formal system, where the notion of
computable function is defined by this system [see Caspi,
2006; Nielsen and Nielson, 1988]) to establish the semantics
of block diagrams with discrete-time and continuous-time
behavior. This practice abstracts from the imperative notion
that is necessitated by an executable implementation and thus
again, allows reasoning about the semantics without
consideration of the implementation and runtime details.

3. STREAM-BASED SOLVER

The integrated and comprehensive description and analysis
of discrete-time and continuous-time behavior yields a
unified semantic of a variable-step discretized ODE in a
stream-based execution framework. This enables analysis of
hybrid system behavior as discussed by Mosterman et al.
(2009). This section describes the meaning of a stream-based
approach and introduces the principles of the applied method
of computation. The next section presents the realization of a
discretized ODE solver (diODE) as a Simulink® model.

3.1 A Stream-based Approach

The semantics of an ODE in mathematical terms is not
explicitly considered but left implicit in the numerical
integration scheme. Instead, only the computational
semantics of an ODE based on the selected solver are studied.
The resulting diODEs allow a constructive unified stream-

based computational representation. In other words, the
meaning of execution will be defined from the perspective of
computer science, not as a mathematical representation and
will be given in a discretized manner.

The benefits of a stream-based approach are the following:
(1) A set of pure functions can be analyzed in terms of
function composition, in contrast to complicating state
behavior of a state-based execution. For example, the state-
based approach cannot easily describe multi-rate systems,
whereas the stream-based model can (cf. Caspi, 2006).
(2) A declarative general computational representation avoids
the additional complexity of an implementation choice.

Capturing the semantics in a computational sense allows a
very precise formulation of the execution of a system with
differential equation behavior (Mosterman et al., 2009). This
precision is especially important when continuous-time and
discrete-event behaviors interact, given the infinite sensitivity
to perturbations of the latter. Moreover, because the error
approximation of the numerical mathematics is only local,
global error accumulates and the long term behavior becomes
poorly defined as studied by Guckenheimer (2002).

3.2 Time versus Evaluation

To formalize a framework, a model of computation that is
related to the tagged signal model (Lee and Sangiovanni-
Vincentelli, 1996) is used, where a tag representing an
evaluation is associated with each computed value. A time
stamp in a separate dimension is associated with each
evaluation. Time (t) and evaluation (e) should be
synchronized. The evaluation points can be interpreted as a
sequence of indexed stamps that are classified and marked as
accepted and rejected. Accepted are those, for which the
computed value is based on the currently selected step size;
rejected are those for which the computation must be
repeated applying a smaller step size. Then, states are elicited
and the properly computed evaluation intervals are used

In a sense, this work adopts an untimed model of
computation such as in work by Lee and Sangiovanni-
Vincentelli, (1996) 0where the tags are abstract objects that
may only bear a partial ordering relationship. In the
framework presented here, time then becomes a variable. It is
assumed that time increases in a stratified manner. In other
words, time can be described in a nonmonotonic manner.
Note that while in a more general hybrid system framework
time may have to be held constant across computation, for
purposes of defining the semantics of diODEs, this is not
strictly necessary. Further, the sequence of time stamps is not
considered, but a sequence of evaluations is. These
evaluations are ordered but without a distance measure. Each
of the evaluations has a time association, which enables the
solver to compute the values of the analyzed signal at
arbitrary points within a temporal stratum (and thus
potentially moving backwards in time).

3.3 The Nonmonotonic Notion of Time

Introducing the principle of nonmonotonic time used in the

numerical solver, the following assumptions hold. Time in its
general form refers to logical time which is the time
corresponding to an evaluation. The logical time at an
evaluation where the solver satisfies its tolerance criterion
(i.e., an accepted integration point) is called simulation time.
Simulation time does not change at evaluations where the
solver fails to meet its tolerance criterion. At those
evaluations, simulation time equates the logical time of the
previous accepted integration point.

The notion of simulation time computed in this manner can
be related to the actual time it takes to perform the
computations, the so-called physical time. The physical
passage of time during system execution increases
monotonically. Logical time in the computations, however,
may change nonmonotonically. Finally, if the system
executes in real time, the advance of simulation time is paced
so it corresponds to the passage of physical time.

So, the logical time is an abstract concept introduced to
precisely explain how a solver handles the accepted and
rejected integration points, how it interprets the process when
providing the solution, and how this process relates to the
simulation time, physical time, and real time.

To illustrate, in Fig. 2 the evaluation points, ei, are ordered
and monotonically increasing. Projected onto the time axis,
these evaluations are producing tuples of evaluation and time
(e.g., <e1,t1>, <e2,t4>, <e3,t2>), where the notion of
nonmonotonic time allows for shifting the evaluation points
backward, forward, or keeping them constant in time
depending on the computational needs. This is exploited by
variable step solvers in general (e.g., Petzold, 1982).

Fig. 2. The notion of evaluation with respect to time

The evaluation dimension can be partitioned into a set of
strata. Each evaluation point for which the current step size of
the solver is reset to its initial value is accepted by the solver
and is called a stratum boundary point. This situation is
illustrated in Fig. 2 by e3 while the points between e2 and e3

are rejected evaluations in the same stratum.
The temporal dimension can be partitioned into a set of

strata as well. Within each stratum, time is monotonically
decreasing with an increasing evaluation index. Each stratum
has a lower bound and upper bound on this temporal
variation. An example of temporal stratification is depicted in
Fig. 2 where the lower bound of the first stratum is t1 while
the upper bound is t2. Though in a more general framework,
time in the succeeding strata could be equal or less, here time
in a succeeding stratum is always larger than the time

associated with the final evaluation of the preceding strata.
This lower bound on time in each stratum results from the
error evaluation and step size control as performed by
numerical solvers being local to each time step only.

Figure 2 also visualizes the progressing simulation time by
connecting all the accepted integration points. Simulation
time increases monotonically as opposed to the logical time.
Now, the definition of simulation time is quantified and
embedded in an analysis framework that includes evaluation
points, relation to the logical time, and strata. The analysis of
the simulation results is not affected by the notion of time
applied for the solver, though it is explicitly related to this
notion and enhanced by its clear semantics. The strata can be
exploited for a further study of the correctness and
consistency of the solver as such. Anomalies or certain
properties (e.g., frequency of strata, monotonicity of time,
duration of certain behavior) can be easier identified and
quantified. In consequence, the solver dynamics becomes
clear and better understood and can help study the behavior
discontinuities of the model itself.

3.4 Simulink® Realization of diODE

The implementation of diODE was realized using a subset
of Simulink blocks that do not have a temporal aspect other
than the Memory block. Though this does not exploit the
sophisticated mechanism built into Simulink to handle time,
it does make the temporal semantics explicit as a declarative
specification. Moreover, it still takes advantage of the
facilities in Simulink to transform a declarative constraint
based formulation into an operational form. To this end, a
discrete solver is employed with a normalized step size of 1.

Fig. 3. Simulink® realization of diODE

The realization of diODE then employs two numerical
integration schemes Euler and Trapezoidal (represented by
the Euler and Trapezoidal blocks in Fig. 3) that are applied
independently and their error estimates are compared to
determine the error for the step size h. Based on this
comparison, the step size for current integration is computed
(represented by the Computation of h block). This process is
elaborated in previous work (Mosterman et al., 2009).

In particular, Trapezoidal is implemented as a trapezoidal
numerical integration algorithm that averages the gradient of
the start state and of the end state to compute a more accurate
approximation of the end state. The forcing function allows

one evaluation delay to obtain the gradient at the final state.
In a more general implementation described by Mosterman et
al. (2009), however, the gradient at the final state may be
obtained by first employing the forward Euler computation to
obtain an estimate of the end state and then averaging the
gradient at this end state with the gradient at the start state

2

)),(ˆ()),((
)()(

)),(()()(ˆ

11
1

1

++
+

+

+
+=

+=

kkkk
kkk

kkkkk

ttxfttxf
htxtx

ttxfhtxtx

(6−7)

4. AN APPLICATION EXAMPLE

An example illustrates the computational analysis
framework as implemented by a Simulink block diagram.
Integrating a constant gradient (i.e., a ramp) with respect to
time is studied. While in simulation time the ramp input to
the solver may be monotonically increasing, the solver
computations may require logical time at some evaluations to
decrease in order to satisfy the accuracy tolerance
requirement. When the solver moves time backward, the
ramp input must produce previous values and so a
nonmonotonic implementation of the ramp is required.

Fig. 4. Illustration of the nonmonotonic gradient

Figure 4 depicts a scenario where the diODE method
computes the time-integrated values of the ramp over 60
evaluations. This shows the evaluation and temporal strata
during which time may decrease. The accepted computations
are the lower bounds of each stratum and those correspond to
the monotonically increasing output of a traditional solver.

Note that the first two evaluations have a time stamp of 0
seconds. This is because the trapezoidal integration requires
two evaluations to obtain the average gradient if implemented
without the use of an estimate. Also note that the 60
evaluations cover a time interval of a little over 0.7 seconds
of simulation time and about 0.85 seconds of logical time.

The bouncing ball example of Section 1 can now be
revisited in this formal framework. Figure 5 zooms in on the
point of ball contact with the floor. It shows the individual
evaluations as made by the numerical solver including the
ones that are not accepted (the lines between points are
included for readability only). If the discontinuity in the
ground force is only evaluated at accepted time steps, the
numerical solver finds the discontinuity that occurs when the
ball reaches the floor after a full step with the initial step size.

Alternatively, if the discontinuities are always evaluated,

the numerical solver finds the discontinuity as it is reducing
the interval of the step size to improve the accuracy with
which the differential equations are approximated. The effect
is that the discontinuity is immediately (so sooner than
before) accounted for, a phenomenon documented by Cellier
(1979) in previous work but now formulated in a declarative
framework. Consequently, this framework can be analyzed
for correctness and consistency (e.g., to provide a reference
semantics) whilst providing unifying quantifiable results.

In the example from Fig. 5 the immediate detection of
discontinuity in force acting on the ball (cf. ‘always evaluated
scenario’) results in interaction of solver dynamics within one
stratum. This interaction can now be quantified and assessed
more precisely than in the case where an implicit rate
transition is inserted to only allow discontinuities on the
boundary of strata (cf. ‘evaluated on accepted time step’).

50 100 150 200 250 300
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

evaluations

po
si

tio
n

evaluated on
accepted time step

always evaluated

Fig. 5. Computations upon impact for different semantics

5. CONCLUSIONS

The introduced separation of evaluation from time enables
reasoning on computation, where time becomes abstract. The
presented work attempts to formally define the computational
semantics of a solver for time-based block diagrams in a
unifying framework. The ultimate target is to prepare the
background for analysis of hybrid behavior of embedded
systems that emerges by applying a variable-step differential
equation solver. The presented work mainly focuses on
continuous-time behavior. The formalization aims to
facilitate a stream-based approach to analyze the considered
numerical integration method. The resulting solver applies
the principle of nonmonotonic time. That is, a new evaluation
of model values is explicitly computed in a temporally
nonmonotonic manner, which allows for shifting the
evaluation points backward and forward, or holding them
constant in time and for analysis of the interaction with other
modeling semantics.

© Simulink is a registered trademark of The MathWorks, Inc.
See www.mathworks.com/trademarks for a list of additional
trademarks.

REFERENCES

Backus, J. (1978). “Can Programming Be Liberated from the von Neumann
Style?,” in Communications of the ACM, Vol. 21, Nr. 8, pp.: 613-641.

Benveniste, A., Caillaud, B., Pouzet, M. (2010). “The Fundamentals of
Hybrid Systems Modelers,” in Proc. of the 49th IEEE International
Conference on Decision and Control, Atlanta, GA.

Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le Guernic, P., de
Simone, R. (2003). “The Synchronous Languages Twelve Years
Later,” Proc. of the IEEE, Vol. 91, Iss. 1, pp.: 64–83.

Broy, M., Krüger, I.H., Pretschner, A., Salzmann, C. (2007). “Engineering
Automotive Software,” in Proc. of the IEEE, Vol. 95, no. 2, pp.: 356–
373.

Caspi, P. (2006). “Some Issues in Model-Based Development for Embedded
Control Systems,” in From Model-Driven Design to Resource
Management for Distributed Embedded Systems. Volume 225/2006,
ISSN: 1571-5736. Springer Boston.

Cellier, F.E. (1979). Combined Continuous/Discrete System Simulation by
Use of Digital Computers: Techniques and Tools, Ph.D. dissertation,
Swiss Federal Institute of Technology, ETH Zürich, Switzerland.

Denckla, B., Mosterman, P.J. (2006). “Block Diagrams as a Syntactic
Extension to Haskell,” in Proc. of the Workshop on Multi-Paradigm
Modeling: Concepts and Tools, October 3, Genova, Italy.

Denckla, B., Mosterman, P.J. (2008). “Stream- and State-Based Semantics of
Hierarchy in Block Diagrams,” in 17th IFAC World Congress,
pp. 7955-7960, July 6-11, Seoul, Korea.

Guckenheimer, J. (2002). “Numerical analysis of dynamical systems,” in
Handbook of Dynamical Systems, B. Fiedler (ed.), vol. 2, pp.: 345–390.
Elsevier, Amsterdam, Netherlands.

Guckenheimer, J., Johnson, S. (1995). “Planar hybrid systems,” Hybrid
Systems II, Lecture Notes in Computer Science, 999, pp.: 202-225.

Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D. (1991). “The synchronous
data-flow programming language LUSTRE,” in Proc. of the IEEE, Vol.
79, No. 9, pp.: 1305–1320.

Halbwachs, N., Raymond, P. (1999). “Validation of synchronous reactive
systems: from formal verification to automatic testing,” in Asian
Computing Science Conference (ASIAN’99), Phuket, Thailand. LNCS
1742, Springer Verlag.

Hardebolle, C., Boulanger, F., Marcadet, D., Vidal-Naquet, G. (2007). “A
Generic Execution Framework for Models of Computation,” in Proc. of
MOMPES‘07, pp.: 45–54.

Iwasaki Y., Farquhar A., Saraswat V., Bobrow D., Gupta, V. (1995)
“Modeling Time in Hybrid Systems: How Fast Is ‘Instantaneous’?,” in
Proceedings of the Ninth International Workshop on Qualitative
Reasoning, pp.: 1773-1780.

Lee, E.A., Sangiovanni-Vincentelli, A. (1996). The Tagged Signal Model: A
Preliminary Version of a Denotational Framework for Comparing
Models of Computation, Memorandum UCB/ERL M96/33, ERL,
University of California, Berkeley, CA 94720.

Lee, E. A., Zheng, H. (2005). “Operational semantics of hybrid systems,” in
Proc. of HSCC’05, Volume LNCS 3414, pp.: 25-35.

Lee, E. A., Zheng, H. (2007). “Leveraging Synchronous Language Principles
for Heterogeneous Modeling and Design of Embedded Systems,” in
Proc. of EMSOFT’07, Salzburg, Austria, pp.: 114–123.

Mosterman, P.J. (2002). “HYBRSIM—A Modeling and Simulation
Environment for Hybrid Bond Graphs,” in Journal of Systems and
Control Engineering, Vol. 216, Part I, pp.: 35–46.

Mosterman, P.J., Zander, J., Hamon, G., Denckla, B. (2009). “Towards
Computational Hybrid System Semantics for Time-Based Block
Diagrams,” in Proc. of ADHS'09, A. Giua, C. Mahulea, M. Silva, J.
Zaytoon (eds.), pp.: 376–385, plenary paper, Zaragoza, Spain.

Mosterman, P.J. and Biswas, G. (2000). “A Comprehensive Methodology for
Building Hybrid Models of Physical Systems,” Journal of Artificial
Intelligence, 121, pp.: 171-209.

Nishida, T., Doshita, S. (1987). “Reasoning about discontinuous change,” in
Proceedings of National Conference on Artificial Intelligence (AAAI-
87), pp.: 643-648.

Petzold, L.R. (1982). A description of DASSL: A differential/algebraic
system solver, Technical Report SAND82-8637, Sandia National
Laboratories, Livermore, CA.

Simulink® 7 User’s Guide, MathWorks®, Natick, MA, March, 2010.
Simulink® 7, Writing S-Functions, MathWorks®, Natick, MA, 2007.
Symbolic Math Toolbox™, MathWorks®, Natick, MA, March, 2010.
Nielsen, H.R., Nielson, F. (1988). “Automatic binding time analysis for a

typed λ calculus,” Science of Computer Programming, 10:139-176.
Shenoy, R., McKay, B., Mosterman, P.J. (2007). “On Simulation of

Simulink Models for Model-Based Design,” in Handbook of Dynamic
System Modeling, Paul A. Fishwick (ed.), Chapter 37, CRC Press.

United States Government Accountability Office, June 20, 2006, GAO-06-
455R F-22A Tactical Aircraft, Washington, DC 20548.

