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Abstract 
 
The need to bring innovative, high-quality products to market faster is driving the use of models during the design 
and realization process. Model-based design provides efficiencies in product development that enable companies 
to deliver products on time, remain within budget, and fulfill initial requirements. The latest model-based design 
tools can also generate prototype and production code from a model automatically, significantly decreasing 
development time. This paper applies the model-based design process to the design of a power window control 
system and considers various aspects of the validation process via testing both during simulation and physical 
realization.  
 
1. Introduction 
 
Given competitive temporal and cost constraints, developing a product on time and within budget requires a 
systematic approach to design and realization. A systematic approach ensures that the final product meets the 
initial requirements and lets engineering teams with different specializations work together and communicate 
between stages in the overall process. In addition, this approach also ensures that the design process and the 
final product are documented for maintenance and future development. 
 
The systematic design and realization process in the aerospace and automotive industries is typically represented 
by a V diagram as shown in Figure 1 (e.g., see [3,4]). Each of the two branches of the V corresponds to distinctly 
different activities: 
1. The left branch captures the decomposition of the initial system requirements into subsystems and 

components that are specified and implemented at a detailed level.  
2. The right branch represents the realization of these subsystems and components and their integration. 
 
In the traditional approach, engineering teams observe strict boundaries between their design activities and they 
communicate by passing design documents back and forth. This approach has the following drawbacks: 
1. Documents can be unwieldy and unsuitable for recording functionality. 
2. It is difficult to keep the documentation synchronized with the current state of the design. 
3. Once the design is approved, coding the application becomes a separate, manual activity. 
4. When documents are used as deliverables and shared electronically, engineers often duplicate efforts. It is 

difficult to trace the source of errors along a paper trail. 

Engineering teams have turned to model-based design and realization to address these problems. The model-
based approach lets them address increasing product complexity, more stringent performance requirements, and 
shorter product development cycles. By using models in the early design stages, engineers can create what are 
known as "executable specifications" that enable them to immediately validate and verify specifications against 
the requirements. Validation ensures that the requirements are correct and that they represent the intended 
behavior. Verification ensures that the outputs of each step satisfy the step�s inputs (i.e., the system satisfies its 
requirements). Less formally, verification checks whether the model is built correctly and validation checks 



whether the correct model is built. This model-based design approach allows engineers to detect errors earlier 
when the cost to fix them is less.   
 

 

Figure 1: A V Diagram of the System Design and Realization Process 
 
Further down the design process, models can be used to communicate between engineering teams with different 
specializations, allowing them to work together and to communicate between stages in the overall process. 
Moreover, initial design models can be incrementally extended to include increasing implementation detail. Thus, 
model-based design allows experimenting with different design alternatives, even in very early conceptual design 
stages, while having an executable specification and taking detailed implementation effects into account. This is 
in contrast to a document-centered approach where each of the design stages generates new models of the 
same system under design from the specification of the previous design stage.  
 
Even more sophisticated is the use of model transformation to generate different representations of the same 
system, which further minimizes the effort to move from one design stage to another. In particular, the use of 
automatic code generation technology and hardware-in-the-loop testing alleviates errors introduced during 
manual implementation and realization tasks and shortens the path to product delivery by generating code for 
testing, calibration, and the final production. An important benefit of this model-based design paradigm is the 
traceability of design decisions all the way down to the implementation. So test results can be directly interpreted 
as high-level design decisions. Finally, even though electronic models are easier to navigate than paper 
documents, the formal system design process still requires detailed documentation. Advanced tools allow 
automatic generation of this documentation from a model while model-based design forces the design process as 
well as the final product to be documented for maintenance and future developments. 
 
This paper applies the model-based design process to the design of a power window control system (shown in 
Figure 2) as typically found in modern automobiles, and the verification and validation of the developed models 
through real-time implementation. This verification and validation process covers both testing during simulation 
and testing on the real system to tune the model so that it approximates the behavior of the real system well. The 
MATLAB

®
-Simulink

®
 environment [6,7] is used throughout the design process since it provides high-level 

formalisms such as SimMechanics [9] and SimPowerSystems [10] to support detailed modeling of the window 
system, the plant. Similarly, high-level formalisms such as Stateflow

®
 [8] allow intuitive and elegant modeling of 

intricate control behavior such as fixed-point effects. This unprecedented level of detail brings the design process 
much closer to the realization before committing to an implementation, uncovers incompatibilities (e.g., different 
system of units for quantities) while the system is still in its electronic form and can be modified easily.

1
 Further, 

experimenting with different design alternatives is possible, even in very early conceptual design stages, while 

                                                 
1 The functionality is what a system does, the implementation models how the system does it, and the realization is the actual 

physical system. 



having an executable specification and taking detailed implementation effects into account. Finally, automation 
shortens the path to product delivery by generating code for testing and calibration as well as the final production 
code. 

 

 

 
Figure 2: A Typical Automobile Power Window 
 
The paper is organized as follows: Section 2 discusses the behavioral modeling of a power window control 
system, and presents simulation results that demonstrate concept feasibility. The detailed software design 
aspects including model-based testing, requirements management, source control management, and 
documentation for the power window control system are covered in Section 3. Section 4 focuses on production 
code generation and embedded system integration. The results of hardware validation are presented in Section 5, 
and the conclusions are outlined in Section 6.   
 
2. Behavioral Modeling of a Power Window Control System 
 
A typical power window system is designed to meet various requirements. For the system under consideration the 
following requirements drive the design process: 
1. The window has to start moving within 200 [ms] after the command is issued. 
2. The window has to be fully opened and fully closed within 4 [s].  
3. The force to detect when an object is present should be less than 100 [N].  
4. If the up or down command is issued for at least 200 [ms] and at most 1 [s], the window has to be fully opened 
or closed, respectively.  
5. When an object is present, the window should be lowered by approximately 10 [cm].  
6. The driver command has priority over the passenger command. 
 
Given these initial requirements, the discrete event core control algorithm can be modeled elegantly by exploiting 
the hierarchical state behavior of Stateflow (e.g., priority of driver commands over any of the passenger 
commands), as shown in Figure 3. The behavior of the discrete event control algorithm can be verified by 
submitting it to a variety of inputs that correspond to driver and passenger commands, in order to verify that the 
requirements are correctly captured in the Stateflow diagram. The animation capability of Stateflow provides 
visual feedback regarding the functioning of the control algorithm. 
 



 
 
Figure 3: Discrete Event Control Algorithm Model 
 
In order to study the continuous-time behavior (e.g., the 10 [cm] bounce-back in case an obstacle is detected), the 
Stateflow control algorithm can then be connected to a second order plant model in Simulink, as shown in Figure 
4. This second order plant model allows calibration of the parameter that governs the downward movement of the 
power window to ensure that the 10 [cm] bounce-back requirement is met. 
 

 
 
Figure 4: Simple Second Order Power Window Plant Model 
 
Other requirements (e.g., the maximum force of 100 [N] on an obstacle) necessitate a more detailed plant model. 
This is facilitated by modeling formalisms that capture the physics in terms of energy flow. Tools such as 
SimPowerSystems for the electrical and SimMechanics for the mechanical part can model the energy exchange 
between physical components, so the designer does not have to perform the tedious analysis of the underlying 
signal flow in the physical model to implement it in Simulink. 
 
For the power window, the direct-current (DC) motor and the electrical circuit driving the power window can be 
modeled using the SimPowerSystems blockset. The motion of the DC motor can be connected to a model of the 
scissors mechanism (which moves the window glass up and down), built using rigid bodies, joints, and other 
components from the SimMechanics blockset. Finally, the physical layout and geometry of the power window 
mechanism can be visualized by the Virtual Reality Toolbox [11] (e.g., to study the rotation direction of the worm 
gear). This integrates computer aided design (CAD) with the controller development as many CAD tools can 
export the virtual reality modeling language (VRML) format used by the Virtual Reality Toolbox. Figure 5 shows 
the various elements of the power window model.   
 



 
 
Figure 5: Power Window Electrical and Mechanical System Model and 3-D Visualization 
Once the detailed model is constructed it can be used to run simulations of the discrete control algorithm 
interacting with the electro-mechanical plant model. These simulations can verify that the behavior of the control 
algorithm approximates the desired behavior as specified in the requirements. This involves subjecting the model 
to various test cases approximating the driver and passenger commands, and verifying that the system outputs 
(such as window position and force exerted on the obstacle) are within the limits outlined in the requirements. The 
control commands can be observed in the same environment to ensure that control response requirements are 
met as well. Figure 6 shows simulation results for a test case verifying that after 1 [s], the window is commanded 
to go up automatically and an obstacle is present. 
  

 
 
Figure 6: Simulation Results  
 
During all of these design and implementation stages, the controller specification remains in an executable form 
and allows validation against the specific requirements under investigation. Modeling and simulation play a critical 
role in ensuring that the requirements are valid and in determining if any requirements conflict. Simulation is thus 



a key validation step since it ensures that a system can be realized such that it satisfies the requirements.  In 
addition, simulation can form the basis for multi-objective parameter synthesis methods for robust control design. 
 
Since models of physical systems are approximate in nature, it is important to note that the validation steps 
carried out so far are limited by the fidelity of the plant model. One way to mitigate this risk is by rapidly 
prototyping the control system with a real physical system instead of the approximate plant model. This allows 
determining whether the control algorithm can ensure that the performance of the real system meets the 
requirements. Thus, it provides an estimate of the accuracy of the models and also validates the requirements. 
 
A typical approach to rapid prototyping involves the use of a powerful, general-purpose computer with flexible 
input and output hardware as the controller. Real-Time Workshop [12] and xPC Target [14] provide this rapid 
prototyping capability by automatically generating the control model in the form of C code that runs on a real-time 
operating system. The real-time general-purpose computer is an xPC TargetBox that is capable of running the 
real-time application generated by xPC Target. This configuration is used to interactively test and calibrate 
controller parameters such as armature current thresholds for obstacle detection. Because automatic code 
generation allows a seamless transition between model and realization, even control structure changes can be 
quickly experimented with at this point. 
 
3. Detailed Software Design for the Power Window Control System 
 
As mentioned before, recent advances in code generation enable very efficient code to be synthesized directly 
from models that were used for control system specification, development, verification, and validation.  Software 
engineers accomplish this by adding software-specific detail to the existing model. When automatically generated 
code is used without modification the models serve as the final implementation.    
 
A variety of tools and techniques are used throughout this key step in the design process. Requirements capture 
and traceability tools are used to associate the requirements with the implementation, so that when the 
requirements change their effect on the design can be evaluated. Once software is generated, it is subjected to 
testing and code coverage tools are used to evaluate the completeness of the testing process. Code coverage 
analysis involves dynamically analyzing the way the code executes and then reporting on measurements such as 
statement coverage, decision coverage, condition coverage, and modified condition/decision coverage. Model-
based coverage involves analyzing the model execution behavior and then reporting on the decision coverage, 
condition coverage, and modified condition/decision coverage metrics [2]. The basic goal of model-based 
coverage is to provide the equivalent information of code coverage in the context of the model under simulation. 
The entire process of creating test vectors, generating expected outputs based on requirements, and coverage 
analysis in the context of a model is referred to as model-based testing.  
 
For the case of the power window control system, the various test cases were manually generated and 
incorporated into the model using the Signal Builder component of Simulink, as shown in Figure 7. This allows all 
the test cases to be defined and facilitates running the test cases either individually or as a test suite in order to 
obtain model coverage metrics.  
 

 
 
Figure 7: Test Vectors for Power Window Model 
 



To associate the model with the system requirements, the Requirements Management Interface [16] is used and 
allows each requirement to be tied to the appropriate hierarchical level of the model where that requirement is 
realized. 
 
Once the requirements have been associated with the model they can be used to derive the expected behavior of 
the model, which in turn can be used to create self-validating models by using the blocks from the Model 
Verification library in Simulink, as shown in Figure 8. When the results of the simulation do not meet the 
requirements, the blocks from the model verification library can be set up to stop the simulation and report on the 
requirement being violated. Combining the Signal Builder with the Model Verification blocks allows an automated 
approach to subjecting the model to various test conditions and ensuring that all requirements are being met.   

 
 
Figure 8: Power Window Verification Model 
 
As mentioned before, it is necessary to assess the completeness of the testing, to ensure the model meets all the 
requirements in various operating modes. This is accomplished by using the model coverage tools in Simulink, 
which assess the cumulative results of a test suite to determine which blocks were not executed or which states 
were not reached. A coverage analysis report is generated after a simulation run as shown in Figure 9.  
 

 
 
Figure 9: Coverage Analysis Report 
 
Once the model-based testing process is complete, the model is ready for deployment. The model is often 
documented at this point in order to capture the various design decisions, and report on simulation results that 
demonstrate the verification and validation work. This can be accomplished in an automated fashion by using the 
MATLAB and Simulink Report Generator [17]. These tools together with the DocBlock component of Simulink are 



used to create a self-contained report of the requirements, models, test cases, and simulation results, as shown in 
Figure 10. 
 

 
 
Figure 10: Model Documentation Report 
 
Formal software development processes emphasize the use of Software Configuration Management (SCM) [3] for 
storing, versioning, and retrieving the various developmental stages of software, so that changes to the software 
are carefully controlled. Software engineers check out software, make changes, and then check in the software so 
their changes may be merged with others. The same process can be applied to the model-based design 
environment via the SCM interface available for Simulink, as shown below in Figure 11. 
 

 
 
Figure 11: Model Source Configuration Management 
 
4. Production Code Generation and Embedded Systems Integration 
 
Once the model has been verified, validated, and documented, code can be generated from the model for 
implementation purposes. The production code is automatically generated by the Real-Time Workshop 
Embedded Coder [13] either in fixed-point or floating-point format. If fixed-point code is desired, the block diagram 
specification can be enhanced to include the fixed-point parameter settings. Thus, the same model can be refined 
further for software engineering purposes. Since the Motorola MPC555 processor was selected for implementing 
the power window control algorithm, the Embedded Target for Motorola MPC555 [18] is used to customize the 
generated code to run on an MPC555 processor, and target the I/O devices on the processor to achieve real-time 
control of the actual window. An important consideration in generating code from a model is traceability between 
code and model. This is accomplished by an HTML report created as part of the code generation process. It 
hyperlinks code back to the corresponding portion of the model, as shown in Figure 12. 
 



 
 
Figure 12: Traceability Between Generated Code and Model 
 
When the generated code is specific to a particular processor and the associated compiler-debugger toolchain, 
the code generation report can be enhanced with measurements of ROM/RAM usage. These measurements can 
be used as a guide to further optimize the generated code, using various optimization settings and user 
configuration options available in Real-Time Workshop Embedded Coder and the Embedded Target for Motorola 
MPC555. Further, the task of interactively testing and calibrating controller parameters, such as armature current 
thresholds, using commercial controller area network (CAN) [5] Calibration Protocol (CCP) based tools is 
facilitated by an ASAP2 file created during the code generation process.  
 
The generated code is implemented on a Phytec MPC555 evaluation board, and the power window system is 
controlled using the digital output and PWM ports on the MPC555. An H-Bridge is used to convert the digital and 
PWM outputs from the MPC555 to the high voltage, current, and direction reversal capabilities required for driving 
the power window DC motor. The switches and the current feedback for obstacle detection are read using the 
analog to digital converter blocks on the MPC555. The code for these blocks is automatically generated using the 
corresponding I/O blocks from the Embedded Target for Motorola MPC555 library.  
 
5. Verification and Validation of the Power Window Control System  
 
Once the design has been physically realized on the target embedded system, the Data Acquisition Toolbox [19] 
is used to measure window position and force, to verify that the physical system behavior meets the initial 
requirements. The Data Acquisition Toolbox can also be used in earlier stages of the design process to acquire 
data for calibrating the plant model at different levels of detail, as required by the design of the control algorithm. 
Figure 13 shows a plot of the position response of the power window in the presence of an obstacle, obtained 
from a position sensor added to the system for data acquisition purposes. It is clear that the power window 
bounces back approximately 10 [cm] in the presence of an obstacle, and therefore the design meets the initial 
bounce-back requirement. 



 

Figure 13: Position Response of Power Window 

 
Figure 14 shows a plot of the force exerted on the obstacle, obtained via a load cell added to the system for data 
acquisition purposes. As shown, the force generated on the obstacle is well within the 100 [N] limit specified in the 
requirements. Satisfaction of the other requirements can be verified as well, so the developed model is fully 
realized in real-time, and meets the requirements for the system.  

 

Figure 14: Force Response of Power Window 

 
6. Conclusion 
 
This paper illustrates how the entire embedded control systems development process from conceptualization to 
implementation can be realized using a model-based design approach in combination with an integrated tools 
suite. Following the model-based design approach results in designs that are consistent with requirements, and 
allows verification and validation throughout the development process. Errors can be detected early when the cost 
to correct them is less than at any later stage of the development process. Further, automatic generation of code 
avoids the errors associated with manual implementation approaches. The same model can be used and refined 
for a variety of tasks carried out in a typical development process. The net benefit of model-based design is 
improved efficiency of the development process, which translates to faster time-to-market, reduced development 
costs, and higher quality. 
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