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Abstract. The comprehensive use of models in design has created a set
of challenges beyond that of supporting one isolated design task. In par-
ticular, the need to combine, couple, and integrate models at different
levels of abstraction and in different formalisms is posing a set of specific
problems that the field of Computer Automated Multiparadigm Model-
ing (CAMPaM) is aiming to address. This paper summarizes the results
of the 2nd Workshop on Multi-Paradigm Modeling: Concepts and Tools.

1 Introduction

Computational modeling has become the norm in industry to remain competitive
and be successful [23]. As such, Model-Based Design of, for example, embedded
software has enterprise-wise implications and modeling is not limited to isolated
uses by a single engineer or team. Instead, it has reached a proliferation much
akin to large software design, with requirements for infrastructure support such
as version control, configuration management, automated processing, etc.

The comprehensive use of models in design has created a set of challenges
beyond that of supporting one isolated design task. In particular, the need to
combine, couple, and integrate models at different levels of abstraction and in
different formalisms is posing a set of specific problems that the field of Computer
Automated Multi-paradigm Modeling (CAMPaM) is aiming to address [16, 22].

The essential element of multi-paradigm modeling is the use of explicit mod-
els throughout. This leads to a framework with models to represent the syntax
of formalisms used for modeling, models of the transformations that represent
the operational semantics, as well as model-to-model transformations for inter-
formalism transformation [12]. These models are then used to facilitate genera-
tive tasks in a language engineering, such as evolving a domain-specific modeling
formalism as its requirements change, but also in a tool engineering space, such
as automatic generation of integrated development environments. Moreover, an
explicit model of a model transformation allows analyses such as termination
characteristics, consistency, and determinism [4].

Thus, CAMPaM addresses two orthogonal problem directions:

1. Multi-Formalism Modeling [21], concerned with the coupling of, and trans-
formation between, models described in different formalisms. In Figure 1, a
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part of the “formalism space” is depicted in the form of a formalism trans-
formation graph (FTG). The different formalisms are shown as nodes in
the graph. The arrows denote a homomorphic relationship “can be mapped
onto”. The mapping consists of transforming a model in the source formalism
into one in the target formalism preserving certain pertinent properties.
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Fig. 1. The Formalism Transformation Graph (FTG).

The specification of a composite system may include the coupling of het-
erogeneous components expressed in different formalisms. For the analysis
of its properties the composite system must be assessed by looking at the
whole multi-formalism system. Components may have to be transformed to a
common formalism, which can be found in the FTG [21]. Formalisms can be
meta-modelled and the transformations denoted by the arrows of the FTG
can be modelled as model transformations.

In contrast, in the co-simulation approach [6], each component is simulated
with a formalism-specific simulator. Interaction because of component cou-
pling is resolved at the trajectory (simulation data) level. Questions about
the overall system can only be answered at the level of input/output (state
trajectory). It is no longer possible to answer symbolic, higher-level questions
which could be answered within the formalisms of the individual components.

2. Model Abstraction, concerned with the relationship between models at differ-
ent levels of abstraction. Models described in either the same or in different
formalisms can be related through the abstraction relationship, and its dual,
refinement. A foundation for the notion of abstraction, is the information
contained in a model M , defined as the different questions (properties) P =
I(M) which can be asked concerning the model (|P | and p, p′ ∈ P : p 6= p′).
These questions either result in true or false (M |= p or M 6|= p).
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A relation between two models M1 and M2 can have the character of an ab-
straction, refinement, or equivalence relative to a non empty set of questions
(properties) P .
– In case of an equivalence, it is required that for all p ∈ P holds: M1 |=

p ⇐⇒ M2 |= p. This is written M1 =P M2.
– If M1 is an abstraction of M2 with respect to P it holds for all p ∈ P

holds: M1 |= p ⇒ M2 |= p. This is written M1 wP M2.
– Furthermore, M1 is said to be a refinement of M2 iff M1 is an abstraction

of M2. This is written M1 vP M2.
Further discussion of this is included in the summary of the 1st Workshop
on Multi-Paradigm Modeling: Concepts and Tools in 2006 [7].

To address the problems from the use of multiple formalisms and multiple lev-
els of abstraction, meta-modeling and model transformation are used. Meta-
Modeling [23] is based on the explicit modeling of modeling formalisms. For-
malisms are described as models using meta-formalisms that are expressive
enough to describe other formalisms’ syntax and semantics. Examples are the
Entity Relationship formalism and UML class diagrams. Model transformation
is based on the explicit modeling of model transformations.

2 The Workshop

The objective of the workshop was to provide a forum to discuss the concepts as
well as the tool building aspects required for multi-paradigm modeling. It was
oriented to researchers and practitioners working in the modeling, simulation
and analysis of complex systems, dealing with multiple paradigms in a model-
driven manner. This includes tool vendors, academic researchers which address
tool building as well as users of these tools.

This year workshop included five research paper presentations and one invited
talk by Gabor Karsai (ISIS/Vanderbilt University) entitled “Multi-paradigm
Modeling: Some past projects, lessons learned, and research challenges”. The
presentation addressed how the model-based engineering of large-scale embed-
ded information systems often necessitates the use of different, heterogeneous
modeling paradigms. Multiple-aspect, multi-paradigm, domain-specific models
capture not only the physical and functional views of the hardware and the soft-
ware architecture, but they should also represent interactions among different
physical domains, as well as non-functional aspects like faults and their effects,
safety properties, and many others. The presentation highlighted the experience
from four different projects in last fifteen years, where multi-paradigm model-
ing had to be used to solve complex design and operational problems. Various
examples were given for the modeling paradigms used in specific engineering
systems. The research issues discussed included the problems of interacting en-
gineering domains, the integration of models and their modeling languages, and
the semantics of modeling paradigms and their precise specification.

The papers were presented in two sessions, both chaired by Pieter Mosterman.
The first session was entitled MPM Concepts and Applications and included
three papers:
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– “ModHel’X: A Component-Oriented Approach to Multi-Formalism Model-
ing”, by C. Hardebolle and F. Boulange [9]. In this paper, the authors address
two important issues: to provide support for the specification of the seman-
tics of a modeling formalism, and to allow the specification of the interactions
between parts of a model described using different modeling formalisms. For
this purpose, they present the ModHel’X system, which focuses on model
execution, including simulation, code generation and real-time execution.

– “From UML State Charts to DEVS State Machines using XML”, by J.L.
Risco-Mart́ın, S. Mittal, B. Zeigler and J.M. de la Cruz [18]. In this contri-
bution, the authors present an integrated approach towards using UML state
machines transformed as DEVS [24] models. The transformation mechanism
is available as an upcoming standard, State Chart XML (SCXML) that pro-
vides a generic execution environment based on CCXML and Harel State
tables. The transformation is ilustrated by taking a UML state machine and
augmenting it with information during the process using SCXML to make it
DEVS capable. The obtained DEVS models are indeed Finite Deterministic
DEVS, able to be encoded as a W3C XML schema.

– “Applying Multi-Paradigm Modeling to Multi-Platform Mobile Development”,
by L. Lengyel, T. Levendovszky and C. Hassan [14]. In this work, the au-
thors introduce some CAMPaM ideas in their meta-modeling and model
transformation framework, the Visual Modeling and Transformation System
(VMTS). The concepts are illustrated with an example in model-based de-
velopment for mobile platforms.

The second session was entitled MPM Tools, and included two papers:
– “Towards Parallel Model Transformations”, by G. Mezei, H. Charaf, T. Lev-

endovszky [15]. In this contribution, the authors tackle the problem of effi-
ciency of graph transformation by proposing the execution of model trans-
formations in parallel. The paper presents algorithms to find and apply steps
of the transformations in parallel, and an implementation is given the Visual
Modeling and Transformation System (VMTS).

– “Domain-specific Model Editors with Model Completion”, by S. Sen, B.
Baudry and H. Vangheluwe [20]. In this paper, the authors propose an in-
tegrated software system capable of generating recommendations for model
completion of partial models built in arbitrary domain-specific model editors.
The automatic completion is powered by a Prolog engine whose input is a
constraint logic program derived from the specification (meta-model with
constraints) of the modeling language to which the partial models belong.

3 Working Group Results

The workshop included two working group discussion sessions.

3.1 Consistency

This working group consisted of K. Cerans, B. Latronico, D. Matheson, E. Syr-
iani, and H. Vangheluwe. The discussion focused on model consistency.
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In the development of complex systems, multiple views on the system-to-be-
built are often used. These views typically consist of models in different for-
malisms. Different views usually pertain to various partial aspects of the overall
system. In a multi-view approach, individual views are (mostly) less complex
than a single model describing all aspects of the system. As such, multi-view
modeling, like modular, hierarchical modeling, simplifies model development.
Most importantly, it becomes possible for individual experts on different as-
pects of a design to work in isolation on individual, possibly domain-specific
views without being encumbered with other aspects. These individual experts
can work mostly independently, thereby considerably speeding up the develop-
ment process. This approach does however have a cost associated with it. As
individual view models evolve, inconsistencies between different views are often
introduced and those need to be corrected.

Ensuring consistency between different views requires periodic concerted ef-
forts from the model designers involved. In general, the detection of inconsis-
tencies and recovering from them is a tedious, error-prone and manual process.
Automated techniques can alleviate the problem and this has been investigated
in the Concurrent Engineering community over the last two decades [2]. These
solutions were often based on some form of constraint propagation between the
different views. Al-Anzi and Spooner [1] give a classification of inconsistencies
that may occur in the context of Concurrent Engineering. Easterbrook et. al [3]
introduce the notion of ViewPoints and describe how consistency between them
can be checked. In the Software Engineering community, the consistency between
different views of a design has also been studied extensively [5, 8].

For the sake of the discussions, a working definition of consistency was pro-
posed: A set of models M is consistent with respect to a set of consistency
constraints C over M if all constraints in C are satisfied. M is inconsistent when
at least one of the constraints in C is not satisfied. Consistency constraints may
pertain to syntax as well as to semantics of models. In the former case, the con-
straints may pertain to the structure of models or to values of model attributes.
In the case of semantics, the consistency constraints are defined over the se-
mantic domain. This implies that models may have to be simulated to check
consistency.

Whereas checking consistency constraints over a set of models can be done in
isolation, often one starts from a consistent set of models and then incrementally
makes changes to some of the models (usually one at a time). In this case, incon-
sistencies should be detected and where possible, modifications to (other) models
in M must be made to maintain consistency. As such, changes in one model are
propagated to other models. Which changes need to be made is determined by
the consistency constraints. It is noted that a consistency check of a set of models
in isolation can sometimes be performed by incrementally constructing the set
from an empty set, keeping consistency at each intermediate step.

Triple Graph Grammars (TGGs) [19] were proposed as a reasonable start-
ing point for automating consistency checking and enforcement, at least at a
structural level (and initially, only for two models). In TGGs, two meta-model
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graphs are connected via a correspondence graph. This declarative model allows
for checking consistency of the models, both with the meta-models and with each
other. Furthermore, a collection of unidirectional change propagation rules can
be inferred from the TGG model [10]. Related work has demonstrated this and
has shown how conflict situations can be detected [11]. Furthermore, potential
rules to resolve a conflict can be presented to the user for manual intervention. At
the level of attribute relationships, a declarative specification would be desirable
and Modelica (www.modelica.org) was suggested as a starting point.

3.2 Simulation

This working group consisted of C. Hardebolle, T. Levendovszky, P.J. Moster-
man, and J.L. Risco-Mart́ın.

The discussion focused on models of time for the execution of models that are
designed using different formalisms. A concrete application example is formed
by the networked power window control system that is sketched in Fig. 2. In the
example a bus, depicted by a double straight line at the bottom, connects three
controllers; a window controller, a lights controller, and a mirror controller. These
three controllers may be implemented by different microcontrollers. To connect
the controllers to the physical part of the system, actuators and sensors are
employed. This is illustrated for the power window system where the controller
actuates the window by a dc motor and obtains feedback measurements from a
current sensor [17].

window

dc motor current
sensor

window
controller

lights
controller

mirror
controller

Fig. 2. A networked power window control system.

In the design of such a networked embedded system, a number of different
formalisms are routinely employed. For example, the physics of the window move-
ment includes the dynamics because of the window mass, the lift mechanism,
and friction coefficients, and may be best modeled using differential equations,
either as a system of ordinary differential equations (ODE) or as a system of
differential and algebraic equations (DAE). This is schematically presented in
Fig. 3(a), which shows a behavior that varies continuously with respect to time.

The behavior of the controller, on the other hand, often is implemented as
periodic using a given sample time to determine the period. The controller may
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Fig. 3. State trajectories.

implement a number of tasks that may execute with different periods. This is
illustrated in Fig. 3(b), where the sample time is represented by the distance in
time between the dashed lines. Two tasks are shown, one at the bottom with a
period of two and one at the top with a period of three.

The window controller may obtain its setpoint commands (i.e., whether to
move the window up, down, or not at all) from a user operated switch that is
located elsewhere in the vehicle. The commands are then communicated over a
network that is also utilized by other control systems. To study the effects of
the network and to determine the quality of service, the events at which data is
transferred across the network are modeled. This is depicted in Fig. 3(c) by events
that occur at points in time that may be arbitrarily spaced. This illustrates how
over certain intervals of time, the event density may be high, whereas at other
times the event density may be low.

The discussion centered around three different types of temporal semantics
of models

– continuous-time, ẋ(t) = f(x(t), u(t), t(t))
– discrete-time, x(tk + h) = f(x(tk), u(tk), tk)
– discrete-event, x(tk + hk) = f(x(tk), u(tk), tk)

This classification has been discussed in detail by Zeigler, Kim, and Praehofer [24]
The working group concentrated specifically on the efficient generation of behav-
iors of the separate computational systems in isolation and in combination.

Continuous-time systems are typically executed by discretizing the continu-
ous trajectory by using a numerical integration routine, embodied by a solver.
The discretized points in time are indicated in Fig. 3(a) by the circles along
the continuous trace. To efficiently execute an ODE, a specific solver has to be
selected based on the characteristics of the behavior that the ODE embodies.

Discrete-time systems that represent embedded control can often be executed
based on a static schedule, for example derived to be rate-monotonic. This results
in little overhead in determining when a period starts (e.g., by doing an integer
comparison) but the sample time that is employed may result in scheduled points
in time at which no changes in the system occur. This is illustrated in Fig. 3(b)
by the first sample hit where no change in either of the two tasks occurs.

To avoid such superfluous sample time hits, an event calendar can be imple-
mented which allows very efficient handling of variable event densities such as in
discrete event systems. In Fig. 3(c) it is illustrated how for a discrete event sys-
tem values in between two events may be considered irrelevant. This in contrast
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with the zero-order hold that is typically applied in discrete-time systems. The
event calendar to handle such variable event density consists of a data structure
that has to very efficiently order new events based on their future time of occur-
rence. Similarly, scheduled events that are retracted have to be found with low
time complexity.

This leads to three different types of execution engines, each with their re-
spective benefits and drawbacks. Where a continuous-time execution engine can
efficiently determine the step size based on differential equations, the integration
mechanism is overly complex for determining the sample time hits in a discrete
time system. A static schedule is more efficient, even in the face of superfluous
sample time hits. However, in case of discrete-event systems, the sample time
would have to be chosen arbitrarily small, which would result in excessive su-
perfluous events whilst still resulting in error in the exact event time. While for
discrete-event systems an event calendar is more efficient, such a heavy-weight
data structure is excessively complex for executing a discrete-time system. Like-
wise, the static scheduling as implemented for discrete-time systems is often not
applicable for continuous-time simulation as it would result in a fixed time-step
of the numerical integration. A notable exception is real-time simulation where
such a fixed time-step is a necessity.

The discussion then was directed towards potential solutions to obtain the
best of each of the separate execution technologies without arriving at a conclu-
sive assessment of the best approach.
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Peter Bunus Linköping University
Michel Chaudron Eindhoven University of Technology
Jean-Marie Favre University of Grenoble
Holger Giese Universität Paderborn
Mirko Conrad The MathWorks, Inc.
David Hill Blaise Pascal University
Jozef Hooman Embedded Systems Institute
Gabor Karsai Vanderbilt University
Thomas Kühne Victoria University of Wellington, New Zealand
Klaus Müller-Glaser University of Karlsruhe
Hessam S. Sarjoughian Arizona State University
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