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tDynami
 behavior of 
omplex physi
al systemsis often nonlinear and in
ludes multiple tempo-ral s
ales. For eÆ
ient model analysis, singularperturbation methods 
an be employed to de-
ouple and analyze the fast and slow behaviorin two steps: (i) by assuming the fast behaviorqui
kly rea
hes a quasi steady state, and (ii)by analyzing the slow behavior of the system.The de
oupling a
hieved by applying the quasisteady state solution redu
es the 
omplex sys-tem of ordinary di�erential equations (ODEs)to simpler ODEs. This pro
ess of abstra
t-ing fast 
ontinuous behavior into algebrai
 
on-straints may 
ause dis
ontinuous jumps in vari-able values when 
on�guration 
hanges o

ur,requiring the system variables to be reinitial-ized 
orre
tly. The appli
ation of traditionalsingular perturbation approa
h 
orrespond todis
ontinuous 
hanges resulting from parame-ter abstra
tion. This paper extends this no-tion to analysis of dis
ontinuous 
hanges 
ausedby time s
ale abstra
tion. Deriving the ex-pli
it dis
ontinuous jumps 
aused requires anal-ysis of the intera
tions between model 
ompo-nents, therefore, they are 
on�guration depen-dent. Therefore, redu
ed order model 
om-ponents (or fragments) may not be valid inother 
on�gurations, and, therefore, may notbe dire
tly usable in a 
ompositional modelingframework.1 Introdu
tionThe pressure to a
hieve optimal performan
e and meetrigorous safety standards in industrial pro
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ontrol surfa
es.modeling and analysis of these systems. In embeddedsystems, the inherently 
ontinuous physi
al pro
ess in-tera
ts with digital 
ontrol signals that have very fasttime 
onstants. In general, 
omplex systems exhibitnonlinearities attributed to small parameters that man-ifest as behaviors on very fast time s
ales. These fasttransients make it hard to simulate and analyze sys-tem behavior. Sophisti
ated numeri
al simulation al-gorithms that vary their time step to a

ommodatemulti time s
ale behaviors have been developed, butthe variable step size makes it hard to bound theirruntime 
omputational 
omplexity. This makes themunsuitable for real-time analysis. As an alternative,modeling methodologies have been developed re
entlythat 
ombine 
ontinuous and dis
rete, i.e., hybrid mod-els into an integrated framework. The resultant sys-tems have pie
ewise 
ontinuous modes of behavior evo-lution with dis
rete transitions between the modes. Ourprevious work in
ludes hybrid modeling and analysisof both embedded systems and abstra
tions of 
om-plex nonlinear behavior in physi
al systems [11; 13;15℄.As an example, 
onsider the primary aerodynami

ontrol surfa
es of the airplane in Fig. 1 [19℄. Modernavioni
s systems employ ele
troni
 
y-by-wire 
ontrol,where ele
troni
 signals generated by a digital pro
es-sor are transformed into the power domain by ele
tro-hydrauli
 a
tuators. The primary 
ight 
ontrol systemdemonstrates the paradigm for hybrid modeling of em-bedded 
ontrol systems. At the lowest level in the 
on-trol hierar
hy, 
ontinuous PID 
ontrol moves the rud-der, elevators, and ailerons to set positions. Desired set-



point values are generated dire
tly by the pilot or by asupervising 
ontrol algorithm implemented on a digitalpro
essor. Digital 
ontrol may mandate mode 
hangesat di�erent stages of a 
ight plan (e.g., take-o�, 
ruise,go-around). Dete
tion of failures may lead to dis
rete
hanges in system 
on�guration. Model simpli�
ations
reated by dis
retizing fast, nonlinear transients produ
edis
ontinuous variable 
hanges.To a

ommodate these s
enarios, hybrid dynami
modeling paradigms [1; 5; 9; 15℄ abstra
t the detailed
ontinuous behavior represented as a system of 
om-plex ordinary di�erential equations, 
ODE, into pie
e-wise simpler sODEs. In the singular perturbation ap-proa
h [7℄, the sODEs are derived by de
oupling fastand slow behavior in the 
ODE and assuming the fastbehavior has rea
hed its steady state. In the qualita-tive reasoning domain [20℄, QSIM [8℄ uses the fast andslow de
ompositions to 
reate a hierar
hy of 
onstraintnetworks to simulate 
omplex physi
al system behav-ior that o

urs at di�erent temporal and spatial s
alesa
ross multiple time s
ales. Iwasaki and Bhandari [6℄have used relative magnitudes of 
oeÆ
ients in an in-
uen
e matrix (i.e., the A matrix) of a linear systemto determine \nearly de
omposable" substru
tures. Ig-noring the weak intera
tions (i.e., the small parameters)between the substru
tures results in simpler aggregatedsystems that ignore insigni�
ant small time 
onstant dy-nami
 e�e
ts on overall system behavior.Our goal is to extend and generalize these approa
hesto linear and nonlinear systems. We have shown thatsmall time 
onstant e�e
ts 
annot always be ignored inanalyzing dynami
 system behavior. Abstra
ting fasttransients may lead to jumps in the system state ve
-tor variable values when 
on�guration 
hanges o

ur.To address this, we have developed systemati
 modelingmethodologies where the task at hand is employed toderive abstra
tions that simplify the system model andabstra
t fast behaviors to o

ur at a point in time [11; 13;15℄. The resultant system model exhibits multiple modesof operation [18℄, ea
h with simpler pie
ewise 
ontinuousbehavior, but transitions between the modes may intro-du
e dis
ontinuous 
hanges in the system variables.In this paper we demonstrate the e�e
ts of abstra
tingfast 
ontinuous transients exhibited by 
omplex systems,into dis
ontinuous 
hanges of the 
ontinuous state ve
torand its e�e
t on 
ompositionality of models. In previouswork [11; 15℄, we have established the di�erent semanti
sinvolved with the dis
ontinuous state ve
tor 
hanges 
or-responding to two kinds of behavioral abstra
tion: pa-rameter abstra
tion and time s
ale abstra
tion. Thispaper demonstrates a systemati
 methodology for gen-erating the simpler ODE models from the more 
omplexODE models of system behavior. The simpler pie
ewiseODE models are then 
ompiled into hybrid automata tofa
ilitate eÆ
ient run time analysis of hybrid behavior.Hybrid automata [1℄ extend traditional �nite stateautomata with a 
ontinuous dimension. Ea
h dis
retestate (i.e., mode) has an asso
iated ODE that des
ribes
ontinuous behavior evolution of the system in time.

Changes in values of 
ontinuous variables may result indis
rete events that 
ause state (mode) 
hanges. Mode
hanges may also 
ause abrupt 
hanges in the 
ontinu-ous state ve
tor, and these are expli
itly spe
i�ed in thestate transitions of the hybrid automata.2 Hybrid Dynami
 SystemsHybrid dynami
 systems 
ombine dis
rete state 
hangeswith 
ontinuous behavior evolution [1; 5; 9; 15℄. Buildinghybrid dynami
 models of physi
al systems requires thespe
i�
ation of three 
omponent parts [9; 11; 15℄.The Continuous PartDi�erential equations form a 
ommon representation of
ontinuous system behavior. The system is des
ribed bya state ve
tor, x, and other variables 
alled signals, s,are derived algebrai
ally, s = h(x). Behavior over timeis spe
i�ed by a �eld f . Intera
tion with the environ-ment is spe
i�ed by input and output signals, u and y.The dynami
s of system behavior is expressed as a setof ODEs, _x = f(x; u).The Dis
rete PartDis
rete systems, modeled by a state ma
hine repre-sentation, 
onsist of a set of dis
rete modes, �. Mode
hanges 
aused by events, �, are spe
i�ed by the statetransition fun
tion �, i.e., �i+1 = �(�i). A transitionmay produ
e additional dis
rete events, 
ausing furthertransitions.Intera
tionIn hybrid dynami
 systems, a mode 
hange from �i to�i+1, may result in a �eld de�nition 
hange from f�ito f�i+1 , and a dis
ontinuous 
hange in the state ve
-tor governed by an algebrai
 fun
tion g, x+ = g�i+1�i (x).Dis
rete mode 
hanges are 
aused by an event genera-tion fun
tion 
 asso
iated with the 
urrent a
tive mode,�i, 
�i(x) � 0! �j .3 Abstra
ting Fast TransientsContinuous behavior in physi
al systems 
an o

ur ona hierar
hy of temporal and spatial s
ales. To simplifysystem models, parasiti
 dissipation and storage e�e
tsare abstra
ted away but they may 
ause dis
ontinuous
hanges in system behavior. Parameter abstra
tions re-move the 
orresponding small and large parameter val-ues from the model. This has no immediate e�e
t onthe system state ve
tor, but may 
ause 
on�gurational
hanges in the model that impli
itly 
ause dis
ontin-uous state 
hanges. Time s
ale abstra
tions 
ollapsethe end e�e
t of phenomena asso
iated with very fasttime 
onstants to a point in time 
ausing dis
ontinuous
hanges in state ve
tor values. In previous work [11; 12;13℄, we have developed formal semanti
s for mode tran-sitions. For parameter abstra
tions, mode swit
hing isgoverned by the a posteriori state ve
tor value, whereasfor time s
ale abstra
tions they are governed by a pri-ori state ve
tor values. In this se
tion, we formalize thederivation of simpli�ed models generated by parameterand time s
ale abstra
tions.



3.1 Parameter Abstra
tionParameter abstra
tions eliminate small1 parameters in asystem model to a
hieve a redu
ed model that is simplerto analyze. This is the basis of the singular perturba-tion method [7℄. A singular perturbation representationformulates the system behavior model into a 
omplexsystem of ordinary di�erential equations (
ODE) withtwo time s
ales:� _x = f(x; z; �; t); x(t0) = x0; x 2 <n;� _z = g(x; z; �; t); z(t0) = z0; x 2 <m; (1)where � embodies small and large parameter values that
ause fast transients. The fun
tion f models the slowerdominant system behavior. Setting � to 0 redu
es these
ond equation to an algebrai
 form. Assuming thatg(x; z; 0; t) = 0 has distin
t real roots, the fast behaviors
orresponding to z 
an be solved for algebrai
ally, andsubstituted in f . This results in a redu
ed-order quasisteady-state model that embodies an sODE,� _�x = f(�x; ��(�x; t); 0; t); �x(t0) = x0;�z = ��(�x; t): (2)We apply this approa
h to the 
ollision between twobodies shown in Fig 2. A �rst order approximation ofthe 
ollision pro
ess in
ludes two parameters: (i) C, thatmodels the elasti
 intera
tion between the bodies, and(ii) R, that models the dissipative e�e
ts. If the mo-mentum of the bodies, pi, and the displa
ement, q, ofthe spring whi
h models the elasti
ity parameter C, are
hosen as state variables, the dynami
 behavior of thesystem is des
ribed by the following ODE:8<: _p1 = � qC �R( p1m1 � p2m2 )_p2 = qC +R( p1m1 � p2m2 )_q = p1m1 � p2m2 : (3)This singular system of equations 
an be redu
ed to ase
ond order system by applying the transformationv = p1m1 � p2m2 ; (4)resulting in a se
ond order ODE:� _v_q � = � �R( 1m1 + 1m2 ) � 1C ( 1m1 + 1m2 )1 0 � � vq � :(5)In many 
ases, the detailed 
ontinuous transients
aused by the R and C parameters are not of interestto the modeler. If these parameters are removed fromthe model, a simpler system of equations would result,but the state variables may exhibit expli
it dis
ontinuousjumps. Therefore, simpli�
ation requires 
omputationof the dis
ontinuous jumps from the detailed 
ontinuoustransients. To apply singular perturbations, we assumeC to be small and R to be large and take 1R to be thesmall � parameter. Therefore,� 1R _v_q � = � �( 1m1 + 1m2 ) � 1RC ( 1m1 + 1m2 )1 0 �� vq � ;(6)1Also, large, be
ause the re
ipro
al of a large parametervalue is small.
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m2Figure 2: Collision of a body m1 with velo
ity vand a body m2.where v 
ontains the fast behavior. Substituting 1R = 0results in v = 0. Transforming this ba
k to the originalstate variables, yields p1m1� p2m2 = 0, i.e., v1�v2 = 0. Thisis the equivalent of a perfe
t non elasti
 
ollision [13℄.3.2 Time S
ale Abstra
tionInstead of eliminating the fast transient due to dissipa-tive e�e
ts, if we were to redu
e the e�e
t of elasti
ity too

ur at a point in time, we get a time s
ale abstra
tion.Consider the system of 
olliding bodies again (Fig. 2)with detailed behavior given by Eq. (5). If C is taken tobe the small � parameter, this gives� C _v_q � = � �RC( 1m1 + 1m2 ) ( 1m1 + 1m2 )1 0 � � vq � ;(7)For � = 0, this yields q = 0, and, therefore, _q = 0 whi
hrequires v = 0. When C be
omes small but not 0, thesolution of the system in Eq. (5) has eigenvalues withimaginary 
omponents and the resultant dynami
 be-havior for the transient is:v(t) = v(0)e�R2 ( 1m1+ 1m2 )t
os((r 4C �R2( 1m1 + 1m2 )2)t):(8)This shows that v = 0 is the steady state solution. How-ever, in 
ase of 
olliding bodies this behavior transientis aborted long before steady state is attained, be
ausethe v and q values generated by the transient 
ause thetwo bodies to dis
onne
t.To analyze this in detail, 
onsider the 
ase of twopoint masses. The 
ollision pro
ess be
omes a
tive whenx1 � x2, where x1 and x2 are the positions of body m1and m2, respe
tively. The bodies dis
onne
t when thefor
e between them be
omes negative, i.e., F12 < 0. Atthis point, the state variable values (i.e., the two body ve-lo
ities) 
onstitute the �nal, a posteriori, values aroundthe dis
ontinuous jump 
orresponding to the 
ollision.Sin
e F12 = qC < 0 at the dis
onne
t point, this im-plies q < 0 sin
e C > 0. The time point at whi
h thedis
onne
t o

urs is 
omputed to betd = �q 4C �R2( 1m1 + 1m2 ) : (9)At td, v has 
hanged from v(0) to v(td) = �v(0) with(
os(�) = �1), therefore,� = �e�R2 ( 1m1+ 1m2 )td (10)



As the C parameter be
omes very small, td does too,and in the limit, v(td) ! v(0)+. The dis
ontinuous
hange in v 
an then be represented by an algebrai
equation v(0)+ = �v(0) (11)Transforming this ba
k to the original state variables,yields p1m1 + � p2m2 + = �( p1m1 � p2m2 ): (12)Written in terms of the body velo
ities,v+1 � v+2 = �(v1 � v2): (13)This form is the well known Newton's 
ollision rule [2℄,where � is 
alled the 
oeÆ
ient of restitution that de-s
ribes the amount of kineti
 energy loss in the 
ollision.If R = 0 in Eq. (10), � = �1 and this des
ribes a per-fe
t elasti
 
ollision with no loss of energy. Note thatC 
annot be taken to equal 0, as this would remove allelasti
ity and the 
orresponding ideal rigid body 
ollisionhas no me
hanism for storing kineti
 energy as potentialenergy and returning it as kineti
 energy. Therefore, thisimmediately 
auses v = 0. Consequently, behavior doesnot 
onverge uniformly as C ! 0.3.3 SummaryThe previous two abstra
tion types demonstrate thatsingular perturbation methods apply well in 
ase of pa-rameter abstra
tion, where small parameters are ab-stra
ted away by setting their 
orresponding � in Eq. (1)to 0.When eigenvalues that have imaginary parts are ab-stra
ted away, reversible behavior of the fast variablesaround steady state is 
ollapsed to a point in time. Thisreversible behavior often 
orresponds to energy restitu-tion during fast transients, and swit
hing 
onditions mayabort these transients. Su
h energy restitution 
orre-sponds to a time s
ale abstra
tion and requires a moreextensive analysis of the detailed fast behavior. If thetransient for the elasti
 
ollision was not aborted whenF12 < 0, then the fast behavior would show a damped os-
illation (
orresponding to a spring-mass-damper model)that also a
hieves x = 0, i.e., the same gross behavior asthat of a nonelasti
 
ollision.The di�eren
e between a parameter and a time s
aleabstra
tion in this 
ase depends on the presen
e of imag-inary parts in the eigenvalues that are abstra
ted away.Therefore, the 
riterion for applying a parameter ab-stra
tion 
orresponds to4C �R2( 1m1 + 1m2 )2 � 0:Otherwise, a time s
ale abstra
tion is applied.A 
orresponding physi
al interpretation is that param-eter abstra
tions relate to abstra
tions of behavior dom-inated by dissipative (or resistive) e�e
ts, and time s
aleabstra
tion relates to abstra
tion of behavior dominatedby 
apa
itive and indu
tive e�e
ts.
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1Figure 3: Elevator system.4 The Elevator SystemAir
raft are safety 
riti
al systems and their 
ontrol sys-tems in
orporate several forms of redundan
y. Atti-tude 
ontrol in an air
raft is a
hieved by the elevator
ontrol subsystem [4; 19℄. This system may 
onsist oftwo me
hani
al elevators (Fig. 3) that are positioned byele
tro-hydrauli
 a
tuators. When a failure o

urs, re-dundan
y management may swit
h a
tuator systems toensure maximum 
ontrol. Continuous feedba
k 
ontroldrives the elevator to its desired set point, while higherlevel redundan
y management sele
ts the a
tive a
tua-tor.Figure 4 shows the operation of one a
tuator. The
ontinuous PID 
ontrol me
hanism for elevator position-ing is implemented by a servo valve. The output of theservo valve 
ontrols the dire
tion and speed of travel ofthe piston in the 
ylinder by means of a spool valve me
h-anism, illustrated in Fig. 5. When the a
tuator is a
tivethe spool valve is in its supply mode, and the 
ontrolsignal generated by the servo valve is transferred to the
ylinder that positions the elevator. When the a
tuatoris passive, the spool valve is in its loading mode that dis-allows 
ontrol signals to be transferred to the 
ylinder.In this mode, 
ow of oil between the 
hambers is allowedthrough a loading passageway, otherwise the 
ylinderwould blo
k movement of the elevator, 
an
eling 
ontrolsignals from the redundant a
tive a
tuator. The pistonin the positioning 
ylinder and 
onne
ted elevator 
ap
onstitute the load. In the servo valve me
hanism, thefeedba
k signal may be provided by the 
uid pressure,me
hani
al linkage, ele
tri
al signals, and a 
ombinationof the three.4.1 The Servo ValveThe servo valve 
onsists of a 
ylinder that 
onne
ts itssupply side with its loading side. A piston inside the
ylinder 
an be adjusted to 
hange the size of the ori�
esbetween supply and loading, and, therefore, 
ontrols theamount of oil 
ow from supply to loading. The amountof oil 
owing in, qs, has to equal the amount of oil 
owingout ql. This oil 
ow is determined by the pressure drop,ps � pl, a
ross the ori�
e that is opened by an amountx, � qs = (ps � pl)xqs = ql (14)
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Figure 4: Hydrauli
s of one a
tuator.4.2 The Spool ValveA typi
al spool valve (Fig. 5) 
onsists of a piston thatmoves in a 
ylinder. A number of 
ylinder ports 
onne
tthe supply and return part of the hydrauli
 system withthe load. Cylindri
al blo
ks 
alled lands, 
onne
ted tothe piston, 
an be pla
ed at di�erent positions to renderthe servo valve me
hanism and thus the a
tuator a
tiveor passive. Figures 5(a) and (
) show two possible oil 
ow
on�gurations of the a
tuator. In Fig. 5(a) the 
ontrolsignal passes through the spool valve to the load, i.e.,the a
tuator is a
tive. In Fig. 5(
) the spool valve 
ausesdamping behavior, i.e., the a
tuator is passive.When the a
tuator is a
tive, the spool valve is in itssupply mode, �2, and the 
ontrol signal generated by theservo valve is transferred to the 
ylinder that positionsthe elevator. In this mode, the pressure on the supplyside of the valve, ps, equals the pressure on load side,pl. Also, the oil 
ow from the supply, qs, equals the oil
ow to the load, ql. When the a
tuator is passive, thespool valve is in its loading mode, �0, and 
ontrol sig-nals 
annot be transferred to the 
ylinder. However, oil
ow between the 
hambers is possible through a load-ing passageway with 
uid 
ow resistan
e Rl, as shownin Fig. 5(
). When moving between supply and loading,the spool valve passes through the 
losed 
on�guration,�1, where oil 
ow is blo
ked, as shown in Fig. 5(b). Thisis 
aptured by the following equations:�2 : � ps = plqs = ql �1 : � ql = 0qs = 0 �0 : � pl = qlRlqs = 0(15)4.3 The Pressure Relief ValveIn addition to the servo-spool valve 
on�guration ofFig. 4, 
onsider a pressure relief valve (Fig. 6) as a safetydevi
e 
onne
ted to the positioning 
ylinder. This valveis normally 
losed (mode �0), but it may open (mode�1) when the pressure in the elevator positioning 
ylin-der, i.e., the input pressure to the relief valve, pr, ex-
eeds a threshold value, pth. This may happen be
auseof a rapid buildup in pressure in the positioning 
ylin-der, 
aused by 
hanges in the elevator velo
ity, ve. The
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x

supply

(a) (b) (c)

to load

piston

land

port

return

Figure 5: A typi
al spool valve.
cylinder

pressure relief valveFigure 6: A pressure relief valve may prevent highpressure.pressure and 
ow relations in the two modes are�0 : f qr = 0 �1 : f pr = qrRl (16)When the relief valve is open, it allows an oil 
ow, qr,through a 
uid path with resistan
e Rl.4.4 Modeling the Elevator Dynami
sThe dynami
s of the elevator are studied in terms of themovement of the piston in the positioning 
ylinder, ex-pressed as the velo
ity, ve. The behavior 
an be derivedby 
omposing models of the servo valve, spool valve, re-lief valve, and the positioning 
ylinder. We express thisas a se
ond order system with two state variables: (i) p
,the pressure of the oil in the 
ylinder, and (ii) ve, the el-evator velo
ity.8><>: C
 _p
 = qin + qr � qeqe = ApveApFe = p
 +R
(qin + qr � qe)me _ve = Fe (17)C
 models the elasti
ity e�e
ts and R
 models the dissi-pative e�e
ts of the oil in the positioning 
ylinder. Thevariables qin and qr represent the in
ow of oil into the
ylinder from the servo and relief valves, respe
tively,and qe represents the oil 
ow due to movement of thepiston. The value of qe is a fun
tion of Ap, the area ofthe piston and ve, the elevator velo
ity. The for
e ex-erted on the piston is a fun
tion of p
, and the produ
tof internal dissipation of the oil, R
, and the overall 
owrate. Newton's Se
ond Law relates the elevator velo
-ity to the for
e exerted on the piston. In state equation



Figure 7: Continuous transients when swit
hing tothe 
losed mode.
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Figure 8: Continuous transients when swit
hing tothe loading mode.form, Eq. (17) is:� _p
_ve � = " 0 �ApC
1meAp �R
me # � p
ve �+" 1C
 1C
R
meAp R
meAp # � qinqr � : (18)Consider a s
enario where a sudden pressure drop isdete
ted in the hydrauli
s supply system of an elevatora
tuator. Redundan
y 
ontrol moves the spool valve ofthis a
tuator from supply to loading and the spool valveof another a
tuator from loading to supply to take overthe 
ontrol a
tions. When the spool valve of an a
tuatormoves to its 
losed mode, oil 
ow into and out of the po-sitioning 
ylinder is blo
ked. This implies that the 
ylin-der piston that 
ontrols elevator position 
annot move,and the elevator stops moving as well. In more detail,the internal dissipation and small elasti
ity parametersof the oil 
ause the elevator velo
ity to 
hange 
ontin-uously during the transition. The 
ontinuous transientbehavior between supply and 
losed is shown in Fig. 7.How qui
kly the system rea
hes 0 velo
ity in the 
losedmode depends on the elasti
ity and internal dissipationparameters of the oil. Typi
ally, soon after the 
losedmode, the spool valve starts opening and goes into theloading mode. The e�e
t on elevator velo
ity for the de-tailed 
ontinuous behavior when swit
hing from supplyto loading is shown in Fig. 8.The elasti
ity and dissipative e�e
ts of the oil de�nethe transient and the �nal elevator velo
ity, before these
ond a
tuator be
omes a
tive. The details of the 
on-tinuous transients are not of mu
h interest for analysis ofthe 
ontrol behavior. Model simpli�
ation by parameter

and time s
ale abstra
tions results in removal of smallelasti
ity and large dissipative e�e
ts. At the same time,
on�guration 
hanges in the system (e.g., the spool valvemoving into the 
losed mode) may 
ause dis
ontinuous
hanges in the oil in
ow into the 
ylinder. The result-ing fast transient a�e
ts the elevator velo
ity, ve, andthese e�e
ts need to preserved a
ross the 
on�guration
hanges. A detailed analysis of the transient behavior,its simpli�
ation by parameter and time s
ale abstra
-tion, and the resultant hybrid automata that des
ribesoverall system behavior is presented in [14℄.We systemati
ally derive the simpler models for thehybrid automata and the transition 
onditions using themethods based on singular perturbation des
ribed inSe
tion 3 and repla
e the detailed 
ontinuous transientsde�ned by Eq. (18) by an equation that 
aptures thefast 
ontinuous 
hange as an instantaneous dis
ontinu-ous jump. We analyze the transient about the pointwhere the spool valve 
loses, and the relief valve is also
losed, i.e., qin = qr = 0. The determinant of the eigen-value equation 
orresponding to this behavior is givenby R2
m2e � 4meC
 ; (19)indi
ating that there are two types of transients. The�rst 
an be attributed to the large oil dissipation param-eter, R
, whi
h results in the determinant being positivewith real eigenvalues. The se
ond 
an be linked to thesmall oil elasti
ity 
oeÆ
ient, C
, whi
h results in a neg-ative determinant and 
omplex eigenvalues.In 
ase of real eigenvalues, the elevator dynami
s 
anbe 
omputed to beve(t) = e� R
2me t(k1e 12 (q R
2me2� 4meC
 )t+k2e� 12 (q R
2me2� 4meC
 )t);(20)where k1 and k2 are 
onstants that depend on ve(0) andp
(0). Like before, the restitution 
oeÆ
ient for the oil,a�e
ted by the spool valve 
losing, i.e., �s, 
an be 
om-puted by determining the value of td at the point whenthe ports are opened again. If x is the displa
ementof the piston in the spool valve, the piston may �rstblo
k the ports when x = 0 and open them again whenx > xth, where xth is a parameter depending on theparti
ular type of spool valve. The value of td is thendetermined by xth and the speed with whi
h the piston ismoved by an external 
ontrol signal. The 
orrespondingtime interval during whi
h the oil 
ow into the 
ylinderis 0 results in an elevator velo
ity 
hange as a fun
tionof ve(0) and p
(0).In 
ase of 
omplex eigenvalues, the elevator dynami
behavior is governed byve(t) = e� R
2me t(k1
os(12(s 4meC
 � R
2me2 )t) (21)+k2sin(12(s 4meC
 � R
2me2 )t)) (22)
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Figure 9: Individual hybrid automata for the spoolvalve, positioning 
ylinder, and relief valve.where k1 and k2 are 
onstants depending on ve(0) andp
(0). Again, the 
hange of elevator velo
ity at td 
an be
omputed as a fun
tion of ve(0) and p
(0). In this 
ase,the elevator velo
ity may reverse mu
h like the velo
ityof a boun
ing ball reverses.4.5 A S
enarioFig. 9 explains the phenomena. When the spool valvegoes from supply mode (�2) to 
losed mode (�1), 
aus-ing qs, and, therefore, qin, in the positioning 
ylinderto 
hange dis
ontinuously, the fast transient that a�e
tsve 
an be simpli�ed by parameter and time s
ale ab-stra
tion, and ve goes through an instantaneous 
hangein velo
ity given by ve+ = �sve. Be
ause the behaviorof the spool valve around x = 0 is abstra
ted away, thespool valve swit
hes into its 
losed mode when the pistonin the valve rea
hes 0 from the right, x < 0, or from theleft, x > 0. Immediately after the dis
ontinuous 
hangesdue to this mode are e�e
ted, q+s = qs, the spool valveswit
hes out of the 
losing mode.If the oil is assumed to be in
ompressible, the 
or-responding simpli�ed ODE for elevator velo
ity in thepositioning 
ylinder is 
al
ulated by setting C
 = 0:8><>: 0 = qin + qr � qeqe = ApveApFe = p
me _ve = Fe (23)The number of equations and unknowns are still thesame, though the sODE is �rst order, whereas the 
ODEwas se
ond order.To 
ompute variable values for this system, the equa-tions of all 
omponents in their a
tive mode are gatheredand solved with respe
t to the unknown variables, i.e.,exogenous and state variables. If the a
tuator is a
tive,the servo valve equations, the spool valve equations inmode �2, the pressure relief valve equation in mode �0,

and the simpli�ed equations for the 
ylinder are gath-ered, and sorted to establish 
omputational 
ausality.Now, 
onsider the s
enario with the relief valve. Notethat the abrupt 
hange in velo
ity from ve to ve+, asthe spool valve goes from its supply mode, �2, to theloading mode, �0, through the intermediate 
losed mode,�1, will 
ause a fast pressure buildup. In the redu
edorder model, this buildup is governed by a dis
ontinuous
hange of ve, and, therefore, v+e 6= ve. The me _ve = Feequation 
auses an impulse for
e, Fe, and 
orrespondingpressure pe.In a 
omponent oriented modeling approa
h, this pres-sure impulse will always 
ause the relief valve to openbe
ause of its in�nite magnitude, no matter how smallthe v+e � ve di�eren
e. The more detailed model of the
ylinder in
ludes small elasti
ity and dissipation param-eters, and they are employed to 
ompute a more realis-ti
 value of the maximum pressure generated. This 
anbe in
luded in the redu
ed order model, by repla
ingthe me _ve = Fe equation with the algebrai
 
onstraintK
(v+e �ve) providing the value for Fe. K
 is a damping
oeÆ
ient that 
aptures the (R
C
) e�e
t. Using this�rst order approximation, the pressure buildup 
an bedes
ribed as p+
 = ApK
(ve+ � ve);If the value of p+
 ex
eeds the 
riti
al value, pth, this
auses a further dis
ontinuous mode 
hange in the reliefvalve, whi
h goes from 
losed (�0) to open (�1). In this
ase, the abrupt 
hange in elevator velo
ity is governedby a restitution 
oeÆ
ient de�ned by the 
omplex ODEmodel of the relief valve. This 
oeÆ
ient of restitution,�r, 
an be derived in a manner similar to the derivationfor the spool valve, but the �nal elevator velo
ity, afterthe mode transitions, is now given by ve+ = �rve. Thesimpli�ed ODE model for ve in the supply mode with re-lief valve open 
an also be derived similarly. Figure 9 de-�nes the individual hybrid automata for the spool valve,the positioning 
ylinder, and the relief valve. In the nextse
tion, we 
ompose the individual automata into an in-tegrated hybrid automata for real time simulation andanalysis of system behavior.5 The Hybrid Automata for theElevator SystemConsider the s
enario des
ribed in the previous se
tion,where the supervisory 
ontroller swit
hes from the 
ur-rent a
tive a
tuator to a redundant one. We 
onstru
tthe hybrid automata that models the behavior of thea
tuator that goes from its a
tive to passive mode byswit
hing the spool valve from supply (�2) to loading(�0). The goal is to repla
e the 
ODEs that des
ribethe system behavior in
luding its transients by sODEsand a dis
rete event generation fun
tion, 
, and statemapping, g. Applying parameter and time s
ale ab-stra
tions results in pie
ewise 
ontinuous models withdis
rete transitions between the models. The e�e
t ofthe fast transients are redu
ed to o

ur at a point intime, resulting in dis
ontinuous 
hanges in the elevator



velo
ity, ve. The resultant sODEs, and the 
orrespond-ing dis
rete transition fun
tions, �, 
, and g, (Se
tion 2)were derived systemati
ally in the previous se
tion.5.1 Generating the Hybrid AutomataThe 
omplete hybrid automata is shown in Fig. 10. Themodes are �ij , where the subs
ript i, represents themode of the spool valve (2 - open, 1 - 
losed, and 0- loading), and subs
ript j represents the mode of therelief valve (1 - open, and 0 - 
losed). The 
orrespond-ing sODEs are also subs
ripted a

ordingly. Initially,the a
tuator is in mode �20. In the simpli�ed hybrid au-tomata, the detailed 
ontinuous behavior around x = 0 isabstra
ted away, and the 
orresponding dis
rete events,f�
lose; �spool; �load; �relief g are generated by monitor-ing physi
al variables. Figure 10 shows the relevant gfun
tions for updating the state variable value, ve, alongwith the event generation fun
tions, 
.It is interesting to observe the role of the relief valve.Normally, 
losing the spool valve 
auses an instanta-neous 
hange in the oil 
ow rate to 0. Therefore,q+s 6= qs and a rapid drop in the elevator velo
ity, ve,o

urs before the valve opens again and goes into theloading mode. The 
hange in velo
ity is 
omputed as,ve+ = �sve. However, the 
hange in velo
ity 
auses apressure transient, p+ = K
(ve+ � ve), and if p+ > pth,�relief is generated 
ausing the relief valve to open,and the system goes into mode �11, with ve+ = �rve.Therefore, ve+ = �sve is not exe
uted and v+e not af-fe
ted by mode �10. On
e the state ve
tor is updated,qs+ = qs (i.e., the a posteriori and a priori values arethe same), and �load is generated 
ausing the spool valveto go into loading (mode �01). If �relief did not o

ur,ve+ = �sve remains valid, and after the state ve
tor isupdated qs+ = qs and the mode transition to �00 o
-
urs based on the event �load. The stroked transitionsin Fig. 10 represent transitions where the 
 fun
tion isapplied after the state ve
tor has been updated.5.2 Composability of ModelsIn the pro
ess of building the simpler ODEs and the 
and g fun
tions from the 
ODE models, one has to takeinto a

ount the intera
tions between the di�erent 
om-ponent subsystems. Therefore, the traditional notion of
omposing the system model from individual 
omponentmodels [3; 10℄ is restri
ted to model 
omponents that
ontain detailed 
ontinuous transients instead of expli
itdis
ontinuous jumps. When new 
omponents are addedto the system, one has to re-evaluate the detailed 
on-tinuous intera
tion between the di�erent states (modes)of the overall hybrid automata based on the 
omplexODEs to derive the dis
ontinuous jumps. If the inter-a
tions are analyzed systemati
ally at 
ompile time, aswas done for the a
tuator system, one 
an build eÆ
ienthybrid automata that 
an be used for real time appli-
ations. We have applied this methodology to analyze
omputationally 
omplex sliding mode simulations [17℄,and to 
onstru
t hybrid observers that tra
k real time

Figure 10: Hybrid automata for the operation ofan a
tuator.behavior of the elevator system [14℄ with promising re-sults.To 
larify this further, note that � is a parameter thatdes
ribes the elevator velo
ity 
hange be
ause of damp-ing parameters in the 
ylinder, but its value is deter-mined by the time td during whi
h the oil 
ow into the
ylinder is blo
ked. This blo
kage o

urs in a 
on�gura-tion where the spool valve and relief valve are 
losed.However, these are separate model 
omponents, and,therefore, utilizing knowledge about their individual be-havior to simplify the 
ylinder model results in a model
omponent that is 
on�guration spe
i�
. Consequently,the 
ylinder model is only valid in this spe
i�
 
on�gu-ration and new values for � have to be derived when it isapplied in a di�erent 
on�guration. For example, if an-other spool valve is 
as
aded with the existing one, thetd may 
hange, and, therefore, �s in the 
ylinder modeldi�ers.This shows that 
omposability of model fragments islimited by the abstra
tion level of the fragments them-selves. If the model fragments do not in
lude expli
itdis
ontinuous state ve
tor value 
hanges, 
omposabilityis preserved. This requires in
luding small and largeparameter values to a
hieve 
omplex ODEs that in
or-porate fast transient behavior when mode swit
hes o
-
ur. These fast transients are governed by 
onta
t behav-ior [16℄ that 
an be abstra
ted away to a
hieve simplermodels. However, the 
onta
t behavior is the result ofintera
tions between 
onne
ted model fragments, and,therefore, the abstra
tion only holds for the spe
i�
 
on-�guration.6 Con
lusionsIn this paper we have developed a systemati
 method-ology derived from singular perturbations for generatingsimpler ODE models by applying time s
ale and param-eter abstra
tions to 
omplex nonlinear system modelsthat exhibit fast transient behavior. The key to thismethodology is the ability to de
ouple the fast tran-sients from the slower behaviors, and solve for the fasttransients to obtain a quasi steady state solution. Thissolution introdu
ed to the original set of ODEs generatesa lower order set of ODEs, and this simpli�ed behavior



analysis. Enfor
ing the di�erent semanti
s asso
iatedwith the two types of abstra
tion, allows the derivationof dis
rete transition 
onditions between the modes of
ontinuous behavior. Compiling the sODEs and transi-tion 
onditions into hybrid automata generates run timemodels that 
an be used for real time simulation andanalysis of system behavior.The apparent drawba
k of 
reating pie
ewise simplerhybrid models is that the 
ompositionality property islost when intera
tions between the 
omponent subsys-tems have to be analyzed in advan
e to build the hybridautomata. We will investigate this issue in greater detailin future work.Referen
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