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Figure 1: Primary aerodynami ontrol surfaes.modeling and analysis of these systems. In embeddedsystems, the inherently ontinuous physial proess in-terats with digital ontrol signals that have very fasttime onstants. In general, omplex systems exhibitnonlinearities attributed to small parameters that man-ifest as behaviors on very fast time sales. These fasttransients make it hard to simulate and analyze sys-tem behavior. Sophistiated numerial simulation al-gorithms that vary their time step to aommodatemulti time sale behaviors have been developed, butthe variable step size makes it hard to bound theirruntime omputational omplexity. This makes themunsuitable for real-time analysis. As an alternative,modeling methodologies have been developed reentlythat ombine ontinuous and disrete, i.e., hybrid mod-els into an integrated framework. The resultant sys-tems have pieewise ontinuous modes of behavior evo-lution with disrete transitions between the modes. Ourprevious work inludes hybrid modeling and analysisof both embedded systems and abstrations of om-plex nonlinear behavior in physial systems [11; 13;15℄.As an example, onsider the primary aerodynamiontrol surfaes of the airplane in Fig. 1 [19℄. Modernavionis systems employ eletroni y-by-wire ontrol,where eletroni signals generated by a digital proes-sor are transformed into the power domain by eletro-hydrauli atuators. The primary ight ontrol systemdemonstrates the paradigm for hybrid modeling of em-bedded ontrol systems. At the lowest level in the on-trol hierarhy, ontinuous PID ontrol moves the rud-der, elevators, and ailerons to set positions. Desired set-



point values are generated diretly by the pilot or by asupervising ontrol algorithm implemented on a digitalproessor. Digital ontrol may mandate mode hangesat di�erent stages of a ight plan (e.g., take-o�, ruise,go-around). Detetion of failures may lead to disretehanges in system on�guration. Model simpli�ationsreated by disretizing fast, nonlinear transients produedisontinuous variable hanges.To aommodate these senarios, hybrid dynamimodeling paradigms [1; 5; 9; 15℄ abstrat the detailedontinuous behavior represented as a system of om-plex ordinary di�erential equations, ODE, into piee-wise simpler sODEs. In the singular perturbation ap-proah [7℄, the sODEs are derived by deoupling fastand slow behavior in the ODE and assuming the fastbehavior has reahed its steady state. In the qualita-tive reasoning domain [20℄, QSIM [8℄ uses the fast andslow deompositions to reate a hierarhy of onstraintnetworks to simulate omplex physial system behav-ior that ours at di�erent temporal and spatial salesaross multiple time sales. Iwasaki and Bhandari [6℄have used relative magnitudes of oeÆients in an in-uene matrix (i.e., the A matrix) of a linear systemto determine \nearly deomposable" substrutures. Ig-noring the weak interations (i.e., the small parameters)between the substrutures results in simpler aggregatedsystems that ignore insigni�ant small time onstant dy-nami e�ets on overall system behavior.Our goal is to extend and generalize these approahesto linear and nonlinear systems. We have shown thatsmall time onstant e�ets annot always be ignored inanalyzing dynami system behavior. Abstrating fasttransients may lead to jumps in the system state ve-tor variable values when on�guration hanges our.To address this, we have developed systemati modelingmethodologies where the task at hand is employed toderive abstrations that simplify the system model andabstrat fast behaviors to our at a point in time [11; 13;15℄. The resultant system model exhibits multiple modesof operation [18℄, eah with simpler pieewise ontinuousbehavior, but transitions between the modes may intro-due disontinuous hanges in the system variables.In this paper we demonstrate the e�ets of abstratingfast ontinuous transients exhibited by omplex systems,into disontinuous hanges of the ontinuous state vetorand its e�et on ompositionality of models. In previouswork [11; 15℄, we have established the di�erent semantisinvolved with the disontinuous state vetor hanges or-responding to two kinds of behavioral abstration: pa-rameter abstration and time sale abstration. Thispaper demonstrates a systemati methodology for gen-erating the simpler ODE models from the more omplexODE models of system behavior. The simpler pieewiseODE models are then ompiled into hybrid automata tofailitate eÆient run time analysis of hybrid behavior.Hybrid automata [1℄ extend traditional �nite stateautomata with a ontinuous dimension. Eah disretestate (i.e., mode) has an assoiated ODE that desribesontinuous behavior evolution of the system in time.

Changes in values of ontinuous variables may result indisrete events that ause state (mode) hanges. Modehanges may also ause abrupt hanges in the ontinu-ous state vetor, and these are expliitly spei�ed in thestate transitions of the hybrid automata.2 Hybrid Dynami SystemsHybrid dynami systems ombine disrete state hangeswith ontinuous behavior evolution [1; 5; 9; 15℄. Buildinghybrid dynami models of physial systems requires thespei�ation of three omponent parts [9; 11; 15℄.The Continuous PartDi�erential equations form a ommon representation ofontinuous system behavior. The system is desribed bya state vetor, x, and other variables alled signals, s,are derived algebraially, s = h(x). Behavior over timeis spei�ed by a �eld f . Interation with the environ-ment is spei�ed by input and output signals, u and y.The dynamis of system behavior is expressed as a setof ODEs, _x = f(x; u).The Disrete PartDisrete systems, modeled by a state mahine repre-sentation, onsist of a set of disrete modes, �. Modehanges aused by events, �, are spei�ed by the statetransition funtion �, i.e., �i+1 = �(�i). A transitionmay produe additional disrete events, ausing furthertransitions.InterationIn hybrid dynami systems, a mode hange from �i to�i+1, may result in a �eld de�nition hange from f�ito f�i+1 , and a disontinuous hange in the state ve-tor governed by an algebrai funtion g, x+ = g�i+1�i (x).Disrete mode hanges are aused by an event genera-tion funtion  assoiated with the urrent ative mode,�i, �i(x) � 0! �j .3 Abstrating Fast TransientsContinuous behavior in physial systems an our ona hierarhy of temporal and spatial sales. To simplifysystem models, parasiti dissipation and storage e�etsare abstrated away but they may ause disontinuoushanges in system behavior. Parameter abstrations re-move the orresponding small and large parameter val-ues from the model. This has no immediate e�et onthe system state vetor, but may ause on�gurationalhanges in the model that impliitly ause disontin-uous state hanges. Time sale abstrations ollapsethe end e�et of phenomena assoiated with very fasttime onstants to a point in time ausing disontinuoushanges in state vetor values. In previous work [11; 12;13℄, we have developed formal semantis for mode tran-sitions. For parameter abstrations, mode swithing isgoverned by the a posteriori state vetor value, whereasfor time sale abstrations they are governed by a pri-ori state vetor values. In this setion, we formalize thederivation of simpli�ed models generated by parameterand time sale abstrations.



3.1 Parameter AbstrationParameter abstrations eliminate small1 parameters in asystem model to ahieve a redued model that is simplerto analyze. This is the basis of the singular perturba-tion method [7℄. A singular perturbation representationformulates the system behavior model into a omplexsystem of ordinary di�erential equations (ODE) withtwo time sales:� _x = f(x; z; �; t); x(t0) = x0; x 2 <n;� _z = g(x; z; �; t); z(t0) = z0; x 2 <m; (1)where � embodies small and large parameter values thatause fast transients. The funtion f models the slowerdominant system behavior. Setting � to 0 redues theseond equation to an algebrai form. Assuming thatg(x; z; 0; t) = 0 has distint real roots, the fast behaviorsorresponding to z an be solved for algebraially, andsubstituted in f . This results in a redued-order quasisteady-state model that embodies an sODE,� _�x = f(�x; ��(�x; t); 0; t); �x(t0) = x0;�z = ��(�x; t): (2)We apply this approah to the ollision between twobodies shown in Fig 2. A �rst order approximation ofthe ollision proess inludes two parameters: (i) C, thatmodels the elasti interation between the bodies, and(ii) R, that models the dissipative e�ets. If the mo-mentum of the bodies, pi, and the displaement, q, ofthe spring whih models the elastiity parameter C, arehosen as state variables, the dynami behavior of thesystem is desribed by the following ODE:8<: _p1 = � qC �R( p1m1 � p2m2 )_p2 = qC +R( p1m1 � p2m2 )_q = p1m1 � p2m2 : (3)This singular system of equations an be redued to aseond order system by applying the transformationv = p1m1 � p2m2 ; (4)resulting in a seond order ODE:� _v_q � = � �R( 1m1 + 1m2 ) � 1C ( 1m1 + 1m2 )1 0 � � vq � :(5)In many ases, the detailed ontinuous transientsaused by the R and C parameters are not of interestto the modeler. If these parameters are removed fromthe model, a simpler system of equations would result,but the state variables may exhibit expliit disontinuousjumps. Therefore, simpli�ation requires omputationof the disontinuous jumps from the detailed ontinuoustransients. To apply singular perturbations, we assumeC to be small and R to be large and take 1R to be thesmall � parameter. Therefore,� 1R _v_q � = � �( 1m1 + 1m2 ) � 1RC ( 1m1 + 1m2 )1 0 �� vq � ;(6)1Also, large, beause the reiproal of a large parametervalue is small.
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m2Figure 2: Collision of a body m1 with veloity vand a body m2.where v ontains the fast behavior. Substituting 1R = 0results in v = 0. Transforming this bak to the originalstate variables, yields p1m1� p2m2 = 0, i.e., v1�v2 = 0. Thisis the equivalent of a perfet non elasti ollision [13℄.3.2 Time Sale AbstrationInstead of eliminating the fast transient due to dissipa-tive e�ets, if we were to redue the e�et of elastiity toour at a point in time, we get a time sale abstration.Consider the system of olliding bodies again (Fig. 2)with detailed behavior given by Eq. (5). If C is taken tobe the small � parameter, this gives� C _v_q � = � �RC( 1m1 + 1m2 ) ( 1m1 + 1m2 )1 0 � � vq � ;(7)For � = 0, this yields q = 0, and, therefore, _q = 0 whihrequires v = 0. When C beomes small but not 0, thesolution of the system in Eq. (5) has eigenvalues withimaginary omponents and the resultant dynami be-havior for the transient is:v(t) = v(0)e�R2 ( 1m1+ 1m2 )tos((r 4C �R2( 1m1 + 1m2 )2)t):(8)This shows that v = 0 is the steady state solution. How-ever, in ase of olliding bodies this behavior transientis aborted long before steady state is attained, beausethe v and q values generated by the transient ause thetwo bodies to disonnet.To analyze this in detail, onsider the ase of twopoint masses. The ollision proess beomes ative whenx1 � x2, where x1 and x2 are the positions of body m1and m2, respetively. The bodies disonnet when thefore between them beomes negative, i.e., F12 < 0. Atthis point, the state variable values (i.e., the two body ve-loities) onstitute the �nal, a posteriori, values aroundthe disontinuous jump orresponding to the ollision.Sine F12 = qC < 0 at the disonnet point, this im-plies q < 0 sine C > 0. The time point at whih thedisonnet ours is omputed to betd = �q 4C �R2( 1m1 + 1m2 ) : (9)At td, v has hanged from v(0) to v(td) = �v(0) with(os(�) = �1), therefore,� = �e�R2 ( 1m1+ 1m2 )td (10)



As the C parameter beomes very small, td does too,and in the limit, v(td) ! v(0)+. The disontinuoushange in v an then be represented by an algebraiequation v(0)+ = �v(0) (11)Transforming this bak to the original state variables,yields p1m1 + � p2m2 + = �( p1m1 � p2m2 ): (12)Written in terms of the body veloities,v+1 � v+2 = �(v1 � v2): (13)This form is the well known Newton's ollision rule [2℄,where � is alled the oeÆient of restitution that de-sribes the amount of kineti energy loss in the ollision.If R = 0 in Eq. (10), � = �1 and this desribes a per-fet elasti ollision with no loss of energy. Note thatC annot be taken to equal 0, as this would remove allelastiity and the orresponding ideal rigid body ollisionhas no mehanism for storing kineti energy as potentialenergy and returning it as kineti energy. Therefore, thisimmediately auses v = 0. Consequently, behavior doesnot onverge uniformly as C ! 0.3.3 SummaryThe previous two abstration types demonstrate thatsingular perturbation methods apply well in ase of pa-rameter abstration, where small parameters are ab-strated away by setting their orresponding � in Eq. (1)to 0.When eigenvalues that have imaginary parts are ab-strated away, reversible behavior of the fast variablesaround steady state is ollapsed to a point in time. Thisreversible behavior often orresponds to energy restitu-tion during fast transients, and swithing onditions mayabort these transients. Suh energy restitution orre-sponds to a time sale abstration and requires a moreextensive analysis of the detailed fast behavior. If thetransient for the elasti ollision was not aborted whenF12 < 0, then the fast behavior would show a damped os-illation (orresponding to a spring-mass-damper model)that also ahieves x = 0, i.e., the same gross behavior asthat of a nonelasti ollision.The di�erene between a parameter and a time saleabstration in this ase depends on the presene of imag-inary parts in the eigenvalues that are abstrated away.Therefore, the riterion for applying a parameter ab-stration orresponds to4C �R2( 1m1 + 1m2 )2 � 0:Otherwise, a time sale abstration is applied.A orresponding physial interpretation is that param-eter abstrations relate to abstrations of behavior dom-inated by dissipative (or resistive) e�ets, and time saleabstration relates to abstration of behavior dominatedby apaitive and indutive e�ets.
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1Figure 3: Elevator system.4 The Elevator SystemAirraft are safety ritial systems and their ontrol sys-tems inorporate several forms of redundany. Atti-tude ontrol in an airraft is ahieved by the elevatorontrol subsystem [4; 19℄. This system may onsist oftwo mehanial elevators (Fig. 3) that are positioned byeletro-hydrauli atuators. When a failure ours, re-dundany management may swith atuator systems toensure maximum ontrol. Continuous feedbak ontroldrives the elevator to its desired set point, while higherlevel redundany management selets the ative atua-tor.Figure 4 shows the operation of one atuator. Theontinuous PID ontrol mehanism for elevator position-ing is implemented by a servo valve. The output of theservo valve ontrols the diretion and speed of travel ofthe piston in the ylinder by means of a spool valve meh-anism, illustrated in Fig. 5. When the atuator is ativethe spool valve is in its supply mode, and the ontrolsignal generated by the servo valve is transferred to theylinder that positions the elevator. When the atuatoris passive, the spool valve is in its loading mode that dis-allows ontrol signals to be transferred to the ylinder.In this mode, ow of oil between the hambers is allowedthrough a loading passageway, otherwise the ylinderwould blok movement of the elevator, aneling ontrolsignals from the redundant ative atuator. The pistonin the positioning ylinder and onneted elevator aponstitute the load. In the servo valve mehanism, thefeedbak signal may be provided by the uid pressure,mehanial linkage, eletrial signals, and a ombinationof the three.4.1 The Servo ValveThe servo valve onsists of a ylinder that onnets itssupply side with its loading side. A piston inside theylinder an be adjusted to hange the size of the ori�esbetween supply and loading, and, therefore, ontrols theamount of oil ow from supply to loading. The amountof oil owing in, qs, has to equal the amount of oil owingout ql. This oil ow is determined by the pressure drop,ps � pl, aross the ori�e that is opened by an amountx, � qs = (ps � pl)xqs = ql (14)
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Figure 4: Hydraulis of one atuator.4.2 The Spool ValveA typial spool valve (Fig. 5) onsists of a piston thatmoves in a ylinder. A number of ylinder ports onnetthe supply and return part of the hydrauli system withthe load. Cylindrial bloks alled lands, onneted tothe piston, an be plaed at di�erent positions to renderthe servo valve mehanism and thus the atuator ativeor passive. Figures 5(a) and () show two possible oil owon�gurations of the atuator. In Fig. 5(a) the ontrolsignal passes through the spool valve to the load, i.e.,the atuator is ative. In Fig. 5() the spool valve ausesdamping behavior, i.e., the atuator is passive.When the atuator is ative, the spool valve is in itssupply mode, �2, and the ontrol signal generated by theservo valve is transferred to the ylinder that positionsthe elevator. In this mode, the pressure on the supplyside of the valve, ps, equals the pressure on load side,pl. Also, the oil ow from the supply, qs, equals the oilow to the load, ql. When the atuator is passive, thespool valve is in its loading mode, �0, and ontrol sig-nals annot be transferred to the ylinder. However, oilow between the hambers is possible through a load-ing passageway with uid ow resistane Rl, as shownin Fig. 5(). When moving between supply and loading,the spool valve passes through the losed on�guration,�1, where oil ow is bloked, as shown in Fig. 5(b). Thisis aptured by the following equations:�2 : � ps = plqs = ql �1 : � ql = 0qs = 0 �0 : � pl = qlRlqs = 0(15)4.3 The Pressure Relief ValveIn addition to the servo-spool valve on�guration ofFig. 4, onsider a pressure relief valve (Fig. 6) as a safetydevie onneted to the positioning ylinder. This valveis normally losed (mode �0), but it may open (mode�1) when the pressure in the elevator positioning ylin-der, i.e., the input pressure to the relief valve, pr, ex-eeds a threshold value, pth. This may happen beauseof a rapid buildup in pressure in the positioning ylin-der, aused by hanges in the elevator veloity, ve. The
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Figure 5: A typial spool valve.
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pressure relief valveFigure 6: A pressure relief valve may prevent highpressure.pressure and ow relations in the two modes are�0 : f qr = 0 �1 : f pr = qrRl (16)When the relief valve is open, it allows an oil ow, qr,through a uid path with resistane Rl.4.4 Modeling the Elevator DynamisThe dynamis of the elevator are studied in terms of themovement of the piston in the positioning ylinder, ex-pressed as the veloity, ve. The behavior an be derivedby omposing models of the servo valve, spool valve, re-lief valve, and the positioning ylinder. We express thisas a seond order system with two state variables: (i) p,the pressure of the oil in the ylinder, and (ii) ve, the el-evator veloity.8><>: C _p = qin + qr � qeqe = ApveApFe = p +R(qin + qr � qe)me _ve = Fe (17)C models the elastiity e�ets and R models the dissi-pative e�ets of the oil in the positioning ylinder. Thevariables qin and qr represent the inow of oil into theylinder from the servo and relief valves, respetively,and qe represents the oil ow due to movement of thepiston. The value of qe is a funtion of Ap, the area ofthe piston and ve, the elevator veloity. The fore ex-erted on the piston is a funtion of p, and the produtof internal dissipation of the oil, R, and the overall owrate. Newton's Seond Law relates the elevator velo-ity to the fore exerted on the piston. In state equation



Figure 7: Continuous transients when swithing tothe losed mode.
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Figure 8: Continuous transients when swithing tothe loading mode.form, Eq. (17) is:� _p_ve � = " 0 �ApC1meAp �Rme # � pve �+" 1C 1CRmeAp RmeAp # � qinqr � : (18)Consider a senario where a sudden pressure drop isdeteted in the hydraulis supply system of an elevatoratuator. Redundany ontrol moves the spool valve ofthis atuator from supply to loading and the spool valveof another atuator from loading to supply to take overthe ontrol ations. When the spool valve of an atuatormoves to its losed mode, oil ow into and out of the po-sitioning ylinder is bloked. This implies that the ylin-der piston that ontrols elevator position annot move,and the elevator stops moving as well. In more detail,the internal dissipation and small elastiity parametersof the oil ause the elevator veloity to hange ontin-uously during the transition. The ontinuous transientbehavior between supply and losed is shown in Fig. 7.How quikly the system reahes 0 veloity in the losedmode depends on the elastiity and internal dissipationparameters of the oil. Typially, soon after the losedmode, the spool valve starts opening and goes into theloading mode. The e�et on elevator veloity for the de-tailed ontinuous behavior when swithing from supplyto loading is shown in Fig. 8.The elastiity and dissipative e�ets of the oil de�nethe transient and the �nal elevator veloity, before theseond atuator beomes ative. The details of the on-tinuous transients are not of muh interest for analysis ofthe ontrol behavior. Model simpli�ation by parameter

and time sale abstrations results in removal of smallelastiity and large dissipative e�ets. At the same time,on�guration hanges in the system (e.g., the spool valvemoving into the losed mode) may ause disontinuoushanges in the oil inow into the ylinder. The result-ing fast transient a�ets the elevator veloity, ve, andthese e�ets need to preserved aross the on�gurationhanges. A detailed analysis of the transient behavior,its simpli�ation by parameter and time sale abstra-tion, and the resultant hybrid automata that desribesoverall system behavior is presented in [14℄.We systematially derive the simpler models for thehybrid automata and the transition onditions using themethods based on singular perturbation desribed inSetion 3 and replae the detailed ontinuous transientsde�ned by Eq. (18) by an equation that aptures thefast ontinuous hange as an instantaneous disontinu-ous jump. We analyze the transient about the pointwhere the spool valve loses, and the relief valve is alsolosed, i.e., qin = qr = 0. The determinant of the eigen-value equation orresponding to this behavior is givenby R2m2e � 4meC ; (19)indiating that there are two types of transients. The�rst an be attributed to the large oil dissipation param-eter, R, whih results in the determinant being positivewith real eigenvalues. The seond an be linked to thesmall oil elastiity oeÆient, C, whih results in a neg-ative determinant and omplex eigenvalues.In ase of real eigenvalues, the elevator dynamis anbe omputed to beve(t) = e� R2me t(k1e 12 (q R2me2� 4meC )t+k2e� 12 (q R2me2� 4meC )t);(20)where k1 and k2 are onstants that depend on ve(0) andp(0). Like before, the restitution oeÆient for the oil,a�eted by the spool valve losing, i.e., �s, an be om-puted by determining the value of td at the point whenthe ports are opened again. If x is the displaementof the piston in the spool valve, the piston may �rstblok the ports when x = 0 and open them again whenx > xth, where xth is a parameter depending on thepartiular type of spool valve. The value of td is thendetermined by xth and the speed with whih the piston ismoved by an external ontrol signal. The orrespondingtime interval during whih the oil ow into the ylinderis 0 results in an elevator veloity hange as a funtionof ve(0) and p(0).In ase of omplex eigenvalues, the elevator dynamibehavior is governed byve(t) = e� R2me t(k1os(12(s 4meC � R2me2 )t) (21)+k2sin(12(s 4meC � R2me2 )t)) (22)



loading
q = qs s

+

x > 0
supply closed

spool valve

relief valve

positioning
cylinder

x < 0

q = qs s

+

supply closed
p > p+

th

positioning

q = qs s

+ / v = ve s e

+ λ

q = qr r

+ / v = ve r e

+ λ

Figure 9: Individual hybrid automata for the spoolvalve, positioning ylinder, and relief valve.where k1 and k2 are onstants depending on ve(0) andp(0). Again, the hange of elevator veloity at td an beomputed as a funtion of ve(0) and p(0). In this ase,the elevator veloity may reverse muh like the veloityof a bouning ball reverses.4.5 A SenarioFig. 9 explains the phenomena. When the spool valvegoes from supply mode (�2) to losed mode (�1), aus-ing qs, and, therefore, qin, in the positioning ylinderto hange disontinuously, the fast transient that a�etsve an be simpli�ed by parameter and time sale ab-stration, and ve goes through an instantaneous hangein veloity given by ve+ = �sve. Beause the behaviorof the spool valve around x = 0 is abstrated away, thespool valve swithes into its losed mode when the pistonin the valve reahes 0 from the right, x < 0, or from theleft, x > 0. Immediately after the disontinuous hangesdue to this mode are e�eted, q+s = qs, the spool valveswithes out of the losing mode.If the oil is assumed to be inompressible, the or-responding simpli�ed ODE for elevator veloity in thepositioning ylinder is alulated by setting C = 0:8><>: 0 = qin + qr � qeqe = ApveApFe = pme _ve = Fe (23)The number of equations and unknowns are still thesame, though the sODE is �rst order, whereas the ODEwas seond order.To ompute variable values for this system, the equa-tions of all omponents in their ative mode are gatheredand solved with respet to the unknown variables, i.e.,exogenous and state variables. If the atuator is ative,the servo valve equations, the spool valve equations inmode �2, the pressure relief valve equation in mode �0,

and the simpli�ed equations for the ylinder are gath-ered, and sorted to establish omputational ausality.Now, onsider the senario with the relief valve. Notethat the abrupt hange in veloity from ve to ve+, asthe spool valve goes from its supply mode, �2, to theloading mode, �0, through the intermediate losed mode,�1, will ause a fast pressure buildup. In the reduedorder model, this buildup is governed by a disontinuoushange of ve, and, therefore, v+e 6= ve. The me _ve = Feequation auses an impulse fore, Fe, and orrespondingpressure pe.In a omponent oriented modeling approah, this pres-sure impulse will always ause the relief valve to openbeause of its in�nite magnitude, no matter how smallthe v+e � ve di�erene. The more detailed model of theylinder inludes small elastiity and dissipation param-eters, and they are employed to ompute a more realis-ti value of the maximum pressure generated. This anbe inluded in the redued order model, by replaingthe me _ve = Fe equation with the algebrai onstraintK(v+e �ve) providing the value for Fe. K is a dampingoeÆient that aptures the (RC) e�et. Using this�rst order approximation, the pressure buildup an bedesribed as p+ = ApK(ve+ � ve);If the value of p+ exeeds the ritial value, pth, thisauses a further disontinuous mode hange in the reliefvalve, whih goes from losed (�0) to open (�1). In thisase, the abrupt hange in elevator veloity is governedby a restitution oeÆient de�ned by the omplex ODEmodel of the relief valve. This oeÆient of restitution,�r, an be derived in a manner similar to the derivationfor the spool valve, but the �nal elevator veloity, afterthe mode transitions, is now given by ve+ = �rve. Thesimpli�ed ODE model for ve in the supply mode with re-lief valve open an also be derived similarly. Figure 9 de-�nes the individual hybrid automata for the spool valve,the positioning ylinder, and the relief valve. In the nextsetion, we ompose the individual automata into an in-tegrated hybrid automata for real time simulation andanalysis of system behavior.5 The Hybrid Automata for theElevator SystemConsider the senario desribed in the previous setion,where the supervisory ontroller swithes from the ur-rent ative atuator to a redundant one. We onstrutthe hybrid automata that models the behavior of theatuator that goes from its ative to passive mode byswithing the spool valve from supply (�2) to loading(�0). The goal is to replae the ODEs that desribethe system behavior inluding its transients by sODEsand a disrete event generation funtion, , and statemapping, g. Applying parameter and time sale ab-strations results in pieewise ontinuous models withdisrete transitions between the models. The e�et ofthe fast transients are redued to our at a point intime, resulting in disontinuous hanges in the elevator



veloity, ve. The resultant sODEs, and the orrespond-ing disrete transition funtions, �, , and g, (Setion 2)were derived systematially in the previous setion.5.1 Generating the Hybrid AutomataThe omplete hybrid automata is shown in Fig. 10. Themodes are �ij , where the subsript i, represents themode of the spool valve (2 - open, 1 - losed, and 0- loading), and subsript j represents the mode of therelief valve (1 - open, and 0 - losed). The orrespond-ing sODEs are also subsripted aordingly. Initially,the atuator is in mode �20. In the simpli�ed hybrid au-tomata, the detailed ontinuous behavior around x = 0 isabstrated away, and the orresponding disrete events,f�lose; �spool; �load; �relief g are generated by monitor-ing physial variables. Figure 10 shows the relevant gfuntions for updating the state variable value, ve, alongwith the event generation funtions, .It is interesting to observe the role of the relief valve.Normally, losing the spool valve auses an instanta-neous hange in the oil ow rate to 0. Therefore,q+s 6= qs and a rapid drop in the elevator veloity, ve,ours before the valve opens again and goes into theloading mode. The hange in veloity is omputed as,ve+ = �sve. However, the hange in veloity auses apressure transient, p+ = K(ve+ � ve), and if p+ > pth,�relief is generated ausing the relief valve to open,and the system goes into mode �11, with ve+ = �rve.Therefore, ve+ = �sve is not exeuted and v+e not af-feted by mode �10. One the state vetor is updated,qs+ = qs (i.e., the a posteriori and a priori values arethe same), and �load is generated ausing the spool valveto go into loading (mode �01). If �relief did not our,ve+ = �sve remains valid, and after the state vetor isupdated qs+ = qs and the mode transition to �00 o-urs based on the event �load. The stroked transitionsin Fig. 10 represent transitions where the  funtion isapplied after the state vetor has been updated.5.2 Composability of ModelsIn the proess of building the simpler ODEs and the and g funtions from the ODE models, one has to takeinto aount the interations between the di�erent om-ponent subsystems. Therefore, the traditional notion ofomposing the system model from individual omponentmodels [3; 10℄ is restrited to model omponents thatontain detailed ontinuous transients instead of expliitdisontinuous jumps. When new omponents are addedto the system, one has to re-evaluate the detailed on-tinuous interation between the di�erent states (modes)of the overall hybrid automata based on the omplexODEs to derive the disontinuous jumps. If the inter-ations are analyzed systematially at ompile time, aswas done for the atuator system, one an build eÆienthybrid automata that an be used for real time appli-ations. We have applied this methodology to analyzeomputationally omplex sliding mode simulations [17℄,and to onstrut hybrid observers that trak real time

Figure 10: Hybrid automata for the operation ofan atuator.behavior of the elevator system [14℄ with promising re-sults.To larify this further, note that � is a parameter thatdesribes the elevator veloity hange beause of damp-ing parameters in the ylinder, but its value is deter-mined by the time td during whih the oil ow into theylinder is bloked. This blokage ours in a on�gura-tion where the spool valve and relief valve are losed.However, these are separate model omponents, and,therefore, utilizing knowledge about their individual be-havior to simplify the ylinder model results in a modelomponent that is on�guration spei�. Consequently,the ylinder model is only valid in this spei� on�gu-ration and new values for � have to be derived when it isapplied in a di�erent on�guration. For example, if an-other spool valve is asaded with the existing one, thetd may hange, and, therefore, �s in the ylinder modeldi�ers.This shows that omposability of model fragments islimited by the abstration level of the fragments them-selves. If the model fragments do not inlude expliitdisontinuous state vetor value hanges, omposabilityis preserved. This requires inluding small and largeparameter values to ahieve omplex ODEs that inor-porate fast transient behavior when mode swithes o-ur. These fast transients are governed by ontat behav-ior [16℄ that an be abstrated away to ahieve simplermodels. However, the ontat behavior is the result ofinterations between onneted model fragments, and,therefore, the abstration only holds for the spei� on-�guration.6 ConlusionsIn this paper we have developed a systemati method-ology derived from singular perturbations for generatingsimpler ODE models by applying time sale and param-eter abstrations to omplex nonlinear system modelsthat exhibit fast transient behavior. The key to thismethodology is the ability to deouple the fast tran-sients from the slower behaviors, and solve for the fasttransients to obtain a quasi steady state solution. Thissolution introdued to the original set of ODEs generatesa lower order set of ODEs, and this simpli�ed behavior
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