
Jacobian Pattern Synthesis and Application for Dynamic System Ensembles Using
Boolean Linear Fraction Transformation

Fu Zhang, Zhi Han, and Pieter J. Mosterman
MathWorks, 3 Apple Hill Dr, Natick, MA 01760, USA

fu.zhang|zhi.han|pieter.mosterman@mathworks.com

Keywords: Model-based design, Jacobian pattern, Depen-
dency graph, Boolean LFT

Abstract
Simulation and analysis of complex, large-scale dynamic sys-
tems can be challenging. Complex system structures are dif-
ficult for systems engineers to explore and comprehend, and
simulating large-scale systems often requires long computa-
tion time because of the size of the system equations. This pa-
per introduces the Jacobian pattern for continuous dynamic
systems. A Boolean linear fractional transformation (BLFT)
computation is developed to compute the Jacobian pattern for
a block diagram model by extending the existing Jacobian
accumulation algorithm in the modeling and simulation en-
vironment Simulink. Applications illustrate faster simulation
as well as the ability to better analyze and comprehend how
variables on a dynamic system model affect one another.

1. INTRODUCTION
Modern control emerged in the 1960s based on a state-

space formulation of dynamic systems. This formulation cap-
tures the output of a dynamic system as a function of input,
as well as internal state. Moreover, the evolution of the inter-
nal state is explicitly captured as a derivative with respect to
time. This time derivative is a function of input and state as
well. In a linear form this leads to the well-known system of
equations

ẋ = Ax+Bu
y = Cx+Du (1)

where the output, input, and state are vectors y ∈ Rm,
u ∈ Rk, x ∈ Rn, respectively, with ẋ denoting the time deriva-
tive of the state. As this mathematical formulation of con-
trol systems became increasingly well understood, ever more
powerful analysis, design, and synthesis of controllers were
facilitated.

Models of the dynamic behavior of physical systems often
require in nonlinear functions. This leads to the more general
representation as a system of ordinary differential equations
(ODEs):

ẋ = f (t,x,u) (2a)
y = g(t,x,u) (2b)

To apply mathematical techniques developed for the lin-
ear representation in Eq. (1), the nonlinear form must be lin-
earized, which can be based on the Jacobian. Suppose that
both f and g are differentiable with respect to x and u; the
Jacobian matrix of Eq. (2) is defined as:

J =

[
A B
C D

]
≡

[
∂ f
∂x

∂ f
∂u

∂g
∂x

∂g
∂u

]
(3)

This Jacobian provides the linearized elements necessary
to arrive at the linear form of Eq. (2) [1]. Similarly, the Jaco-
bian of a dynamic system is important in system analysis. It
can, for example, enable stiffness analysis [2, 3] and sensitiv-
ity analysis [4].

While relatively straightforward for a given system of non-
linear equations in state-space form, control systems nowa-
days consist of many such systems that have their input and
output connected to comprise extensive models, almost in-
variably including hierarchical structures. Tools for Model-
Based Design (e.g., [5, 23]) such as Simulink R© [6] help en-
gineers solve problems in the design of complex control, sig-
nal processing, and communications systems. Engineers con-
struct models of complex dynamic systems as interconnec-
tions of fundamental blocks, such as gain, integrator, trans-
formation, and so on. An important role is assumed by sub-
system blocks, which themselves contain blocks to define the
subsystem behavior, thus providing a hierarchical decompo-
sition language element [18].

The convenience with which such block diagrams can be
created has led to the design of models with more than a mil-
lion blocks. As a result, an engineer may request analyses
between model variables that involve a large number of con-
nected systems of equations. If the analysis is numerical in
nature and relies on a linear formulation, this requires an over-
all Jacobian of the connected blocks between selected model
variables.

Complementary to numerical analyses, the complexity of
block diagram models renders a structural dependency anal-
ysis of great importance as well. First, it provides engineers
with insight into which variables are affected in their behavior
by other variables. This structural dependency information is
useful to accelerate model execution by exploring the struc-
ture of the dynamic equations, as discussed in Section 5.

In other applications the dependencies are exploited in the

generation of imperative code. For example, modeled func-
tionality may be partitioned in a subset of classes that mini-
mize the potential for dependency cycles [20, 22]. Such cy-
cles may be resolved by heterogeneous function composition
based on the dependency analysis as well [21].

Moreover, dependency analysis may serve as the founda-
tion of sophisticated reasoning methods, such as those em-
ployed in model-based diagnosis [19]. Compared to a numer-
ical Jacobian, if a structural dependency is required, a corre-
sponding Boolean-valued pattern Jacobian (also referred to as
Jacobian pattern) may suffice, where in first order the pattern
may establish whether there is or there is not a dependency.
More sophisticated qualitative patterns may identify positive
or negative temporal dependencies [19].

This work addresses the challenge of deriving the depen-
dencies between input/output relationships of arbitrary points
in a complex block diagram model. This is based on synthe-
sizing a pattern Jacobian in a closed-form; that is, the open
loop pattern Jacobian of all pertinent blocks combined with
their input/output connections is reduced to the overall dy-
namic system’s pattern Jacobian.

Synthesizing the pattern Jacobian of a block diagram based
model involves three critical challenges. (i) The closed-form
of the overall model’s system equation and the relation among
variables are embedded in the block diagram. (ii) Model
can be very complicated, and contain many level of hier-
archy. They may even contain other models (for example,
by model reference blocks). (iii) Models may contain user-
written blocks that provide inaccurate Jacobian or pattern Ja-
cobian information.

This paper presents a block-by-block method to synthe-
size the pattern Jacobian of a Simulink model, and the ap-
plications of the pattern in simulating and analyzing the mod-
els. The remaining sections of the paper are arranged as fol-
lows. In Section 2., background of the pattern Jacobian and
Simulink semantics are discussed. In Section 3., the block-
by-block method to compute the Jacobian is reviewed and the
well-known Linear Fraction Transformation (LFT) method is
introduced. Section 4. proposes the Boolean LFT that com-
putes the pattern Jacobian. In Section 5., applications of the
pattern Jacobian are discussed. Section 6. summarizes the
contribution of the paper.

2. BACKGROUND
Generally, the Jacobian matrices of a dynamic system are

time-varying and state-dependent. However, some of the nu-
merical entries of Jacobian matrices are always 0, for exam-
ple, because of the structure of the system. These entries are
categorized as hard 0s. This allows one to form a time in-
variant pattern of the Jacobian matrix that captures the struc-
tural dependencies between the system variables (input, out-
put, state, and the time derivative of the state).

For a system equation given as in Eq. (2) and Jacobian de-
fined as in Eq. (3), a Boolean-valued pattern Jacobian matrix,
also referred to as a Jacobian pattern matrix, is defined as:

Jp =

[
Ap Bp
Cp Dp

]
,where Jp(i, j) =

{
0, if J(i, j)(t) = 0
1,otherwise

∀ t.

(4)
Matrix Jp can be computed from J in Eq. (3) by converting
all non-hard 0 entries in the matrix J to 1 and maintaining
all hard 0 entries as 0. The resulting 0 entries describe the
sparsity of J. Often many of the overall entries in Jp are 0 and
Jp is a sparse matrix.

For example, consider the following equation: ẋ1 = (x1)
2 +2x2 +u1

ẋ2 = x2 +u2
ẋ3 = x3{
y1 = 2x1 +(x2)

2 +(u2)
2

y2 = x3

(5)

The Jacobian matrix can be computed as

J =
[

A B
C D

]
=

 2x1 2 0

0 1 0
0 0 1

 1
0
0

0
1
0

(
2 2x2 0
0 0 1

) (
0 2u2
0 0

)
 ,

(6)
and the Jacobian pattern matrix is

Jp =

[
Ap Bp
Cp Dp

]
=

 1 1 0

0 1 0
0 0 1

 1
0
0

0
1
0

(
1 1 0
0 0 1

) (
0 1
0 0

)

(7)
Using Ap as an example, the blocks of the Jacobian pat-

tern matrix can be studied. Let ap(i, j) be an entry of Ap, then
ap(i, j) ≡ 0→ ∂ fi

∂x j
= ∂ẋi

∂x j
≡ 0. This relationship means that ẋi

cannot be influenced by x j, indicating there is no dependency
between ẋi and x j. Whereas the Ap matrix captures the de-
pendency between ẋi and x, Bp does so for the dependency
between ẋi and u, Cp for the dependency between y and x,
and Dp for the dependency between y and u.

Overall, Jp shows the relation between the left-hand side
variables (ẋi,y) and the right-hand side variables (x,u). In
other words, Jp describes the causality between variables
(x,u) and variables (ẋi,y). For example, if ap(i, j) = 1, then
x j is needed to compute ẋi.

From the Jacobian pattern matrix, a dependency graph
can be constructed as a directed graph G = (V,E) in which
ẋi,x,y,u form nodes V , and the directed edges from x and u to
ẋi and u are represented by the corresponding pattern matri-

ces Ap, Bp, Cp, and Dp. The dependency graph G of Eq. (2)
and its adjacency matrix 1 is shown in Figure 1.

ẋ x y u
ẋ 0 Ap 0 Bp
x 0 0 0 0
y 0 Cp 0 Dp
u 0 0 0 0

Figure 1. The dependency graph and adjacency matrix of
Eq. (2)

Simulink enables computing J and Jp from a physical sys-
tem model that is implemented in software based on a dy-
namic system in the state-space formulation. Typically, a fun-
damental Simulink block implements a system of differential
equations as Eq. (2). That is, a block implements (i) an out-
put method that corresponds to Eq. (2a) to compute block
output y(t) from x(t) and u(t), and (ii) a derivative method
that corresponds to Eq. (2b) to compute ẋ(t) from x(t) and
u(t). Moreover, a block may implement a Jacobian method
to compute the Jacobian of Eq. (3) and Jacobian pattern of
Eq. (4) [6, 7].

For complex models, the block diagram is usually hierar-
chical. That is, a subsystem block that represents part of the
model is built first and several such subsystem blocks are con-
nected to form the block diagram of the overall model. Each
of the subsystem blocks may comprise fundamental blocks as
well as further subsystem blocks.

The fundamental and subsystem blocks are connected by
directed lines from a block output to a block input. The lines
represent the block input and output variables.

Executing or simulating a block diagram computes a time
trajectory of the variables that are interesting to the user. A
numerical solver is used to integrate the state and push time
forward. Simulation involves executing the output and deriva-
tive method of a block and integrating the derivatives to solve
the system states. One typical operational semantics of simu-
lating a block diagram is to define the system output method
as aggregation (with a given sorted order) of every block’s
output, and the system derivative method as an aggregation of
every block’s derivative method and form a simulation loop
with the numerical solver. A detailed discussion of such se-
mantics can be found in [7]. Such execution semantics may be
called a block-by-block method because the overall model’s
method is “synthesized” from each of the blocks’ methods.

1Normally, the adjacency matrix is defined as [mi, j] = 1 if there is an edge
from vertex i to vertex j in E. The definition in this paper switches the index
i and j, so Jacobian pattern matrices are adjacency matrices.

3. LFT AND BLOCK-BY-BLOCK METHOD
TO COMPUTE THE JACOBIAN

This section describes an LFT-based block-by-block al-
gorithm to compute the Jacobian of the dynamic system as
Eq. (2) modeled with Simulink. Details of this algorithm are
also presented in other work [1, 8].

3.1. Linear Fractional Transformations
There are two types of linear fractional transformation, the

lower LFT and the upper LFT [16]. This paper uses the lower
LFT (the procedure is analogous when using an upper LFT).

Definition 1 (lower Linear Fractional Transformation) [9]
For a block matrix

J =

[
A B
C D

]
∈ R(m1+m2)×(n1+n2)

and a matrix E ∈Rn2×m2 the (lower) LFT of J with respect to
E is defined as

Fl(J,E)≡ A+BE(I−DE)−1C (8)

where I ∈ Rm2×m2 is an identity matrix.

Figure 2. Linear fractional transformation

In other work [16], the LFT has been used to simplify a
closed-loop system described by a block diagram. Figure 2
shows how the LFT can be used to simplify a block diagram
that contains two blocks representing the following equa-
tions:

b1 :
{

y1 = Au1 +Bu2
y2 =Cu1 +Du2

and
b2 : y2 = Eu2

where A, B, C, D, and E are matrices while y and u are out-
put and input vectors, respectively. On the right in Fig. 2 is
a closed-loop block diagram formed with the two blocks,
with connections between them. Using LFT, the ensemble
of blocks can be simplified to a gain block with K = A +
BE(I−DE)−1C. Both of these two block diagrams represent
the same relation between output y1 and input u1.

3.2. A Block-by-Block Method
The block-by-block algorithm to compute the Jacobian

consists of three steps and is depicted in Figure 3.

Figure 3. Connection matrices of a Simulink model

Step 1: Construct the open-loop Jacobian and the connec-
tion matrices In this step, each block is linearized first by
computing its Jacobian. In Simulink, this is done by invok-
ing each block’s Jacobian method. Jacobian matrices of each
block Ai,Bi,Ci,Di(i = 1,2, ...n) are then concatenated into a
set of block diagonal matrices. These matrices, which contain
every block’s Jacobian, are called the open-loop Jacobian

JO =

[
AO BO
CO DO

]
(9)

where

AO =

 A1
. . .

An

 BO =

 B1
. . .

Bn

CO =

 C1
. . .

Cn

 DO =

 D1
. . .

Dn

Simulink also computes a set of connections matrices that
represent the linear relationships corresponding to the block
input/output connections and model-level input/output con-
nections. Model-level input/output connections are the blocks
that represent the input and output of the Simulink block di-
agram as a model component itself. The set of all possible
connections can be categorized as connections:

• from block output y to block input u (E),
• from model-level input U to block input u (F),
• from block output y to model-level output Y (G), and
• from model-level input U to model level output Y (H).

Notice that the connection matrices E, F , G, and H are all
Boolean-valued matrices. Construction of these matrices is
shown in Fig. 3(a).

Step 2: Form the internal linear representation After
each block is linearized, inside the model is a set of linear
blocks that are connected together. The system equations of
this linear model can be written as:

ẋ = AOx+BOub
yb =COx+DOub

(10)

where ub is a vector of all block input variables, yb is a vec-
tor of all block output variables, and x is a vector of all the
states in the model. Eq. (10) shows the linear relations be-
tween block input ub and block output yb.

Also, the interconnection relations among all block in-
put/output and model input/output variables can be written

ub = Eyb +FU
Y = Gyb +HU (11)

where U and Y are vectors of model input and output vari-
ables, respectively. Here Eq. (10) and Eq. (11) form a diagram
with a closed-loop structure, which is depicted in Fig. 3(b).

Step 3: Compute the closed-loop Jacobian JC using the
LFT In this step, the closed-loop diagram formed in step 2
is transformed applying the LFT to the block diagram that
represents the linear form of the model, with the state vec-
tor x and model input U and model output Y , as depicted in
Figure 3(c).

The result of the transform is a model Jacobian that is also
called the closed-loop Jacobian of the model, JC, where

JC =

[
AC BC
CC DC

]
=

[
∂Ẋ
∂X

∂Ẋ
∂U

∂Y
∂X

∂Y
∂U

]
(12)

The model Jacobian JC describes the sensitivity among the
model level variables (Ẋ ,X ,Y,U). By using the LFT algo-
rithm, the submatrices of the closed-loop model Jacobian ma-
trix JC are computed as

AC = AO +BOE(I−DOE)−1CO
BC = BO(F +E(I−DOE)−1DOF)
CC = G(I−DOE)−1CO
DC = H +G(I−DOE)−1DOF

(13)

Note that the internal model variables (i.e., the blocks’ in-
put and output variables ub and yb, respectively) are elimi-
nated by the LFT algorithm.

4. BOOLEAN LFT AND JACOBIAN PAT-
TERN

Unlike the numerical Jacobians, the Jacobian pattern ma-
trices are Boolean matrices. This section shows that a simi-
lar algorithm, called Boolean LFT, can be used with Boolean
matrices to compute the model Jacobian pattern based on the
block Jacobian pattern.

4.1. Boolean LFT Algorithm
The following definitions are necessary in the proceedings.
Definition 1 (Boolean Arithmetic): If a and b are binary

digits (0 or 1), then

a∧b =

{
1, if a = b = 1
0,otherwise

a∨b =

{
0, if a = b = 0
1,otherwise

(14)

Definition 2 (Boolean matrix): Matrix M is a Boolean ma-
trix if M = [mi, j], mi, j ∈ {0,1}.

Definition 3 (Boolean matrix addition operator ⊕):

M⊕N = [mi, j ∨ni, j] (15)

Definition 4 (Boolean matrix multiplication operator ⊗):
Let two Boolean matrices M = [mi, j] be p×q, and N = [ni, j]
be q× l, the Boolean matrix multiplication is defined by

M⊗N = [
∨n

k=1
mi,k∧nk, j] (16)

Definition 5 (Power of Boolean matrix): The power n ex-
ponentiation of square Boolean matrix M is

Mn = M⊗M⊗·· ·⊗M︸ ︷︷ ︸
n

(17)

It is straightforward to prove that a Boolean matrix, M, has
these properties:

M⊕M = M (18)

Other work contains Boolean matrix details [10, 11].
Definition 6 (Transitive closure of Boolean Matrix): The

edges of a directed graph G = (V,E), n = |V |, specify paths
of length 1 between pairs of vertices. This graph can be rep-
resented by the Boolean n× n adjacency matrix M = [mi, j],
1 ≤ i, j ≤ n, where mi, j = 1 if there is an edge from vertex j
to vertex i in E, otherwise mi, j = 0.

A Boolean matrix M∗ is called the transitive closure of M,
if M∗ whose i, j entry m∗i, j = 1, if there is a path of length ≥ 0
from vertices j to i in G, and m∗i, j = 0 otherwise. Algorithms
to find the transitive closure Boolean Matrix can be found in
other work [11, 12].

Definition 7 (Pattern operator): A pattern operator P re-
turns the pattern of a matrix M ∈ Rp×q.

P(M) = Mp =

{
0, if mi, j ≡ 0
1,otherwise (19)

Mp is the pattern of M.
If zeros caused by coincidence numerical cancellation (soft

0s) are prohibited, then the pattern operator P has the follow-
ing properties:

P(A+B) = Ap⊕BP
P(A×B) = AP⊗BP
P(An) = (Ap)

n
(20)

Also, it can be shown that ([13], Corollary 5.4):

P(A−1) = (P(A))∗ = (Ap)
∗ (21)

which means the pattern of the inverse of A is the transitive
closure of Ap.

Now if the P operator is applied to Eq. (13), the LFT
algorithm results in the model closed-loop Jacobian. Let
ACp = P(AC), AOp = P(AO), BOp = P(BO), COp = P(CO),and
DOp = P(DO), then P(AC) = P(AO +BOE(I−DOE)−1CO))
or

P(AC) = P(AO)⊕ [P(BO)⊗E⊗P((I−DOE)−1)⊗P(CO)]

Notice that P((I−DOE)−1) = ((P(I−DoE))∗ = (I⊕DOp⊗
E)∗. Then

ACp = AOp⊕ [BOp⊗E⊗ (I⊕DOp⊗E)∗⊗COp]
BCp = BOp⊗ [F⊕ (E⊗ (I⊕DOp⊗E)∗⊗COp)]
CCp = G⊗ (I⊕DOp⊗E)∗⊗COp
DCp = H⊕ [G⊗ (I⊕DOp⊗E)∗⊗COp]

(22)

Eq. (22) is called the Boolean LFT algorithm, which is a
block-by-block method to compute the model Jacobian pat-
tern. The Boolean LFT is similar to the LFT expression in
Eq. (13), which, by overloading the multiply and addition op-
erator, enables code reuse when programming the code for
computing both Jacobian J and Jacobian pattern Jp in an
object-oriented language such as C++.

Finally, the LFT definition is extended to the Boolean do-
main.

Definition BLFT (Lower Boolean Linear Fractional
Transformation): Let B= {0,1}, for a Boolean block matrix

J =

[
A B
C D

]
∈ B(m1+m2)×(n1+n2)

and a matrix E ∈ Bn2×m2 , the (lower) Boolean LFT of J with
respect to E is defined as

Flb(J,E)≡ A⊕ [B⊗E⊗ (I⊕D⊗E)∗⊗C] (23)

where I ∈ Bm2×m2 is a Boolean identity matrix.

4.2. Boolean LFT and Dependency Paths
The Jacobian pattern describes the dependency (or reach-

ability) between variables. It will be shown that the Boolean
LFT can find all possible paths from one variable to another
by exploring the internal structure (connections) of a model.

Using the expression to find ACp as an example, the expres-
sion ACp = AOp⊕ [BOp⊗E⊗ (I⊕DOp⊗E)∗⊗COp] contains
an obvious structure that shows all the possible paths along
which a derivative variable ẋi can be reached from a state
variable x j. These paths involve: (i) AOp, (ii) BOp and COp,
and (iii) BOp, DOp, CO, and E.

By replacing each block in a model with its dependency
graph and then connecting the dependency graphs, the model
dependency graph is formed, as shown in Fig. 4.

Figure 4. Boolean LFT and its graphical meaning

From the model graph it can be found that there are three
paths by which a derivative variable ẋi can be reached from
(or depends on) a state variable x j.

1. Internal path within a block:

ẋi
AOp←−− x j

This path maps to AOp in the Boolean LFT expression of
ACp. The path length is 1.

2. Short external path:

ẋi
BOp←−− u E←− y

COp←−− x j

For this path, xi and x j could be in the same or different
blocks. This path maps to BOp⊗E⊗CO p in the Boolean
LFT expression of ACp. The path length is 3.

3. Long external path:

ẋi
BOp←−− u E←− y

DOp←−− u E←− y
COp←−− x j

This path maps to BOp⊗E ⊗ (DOp⊗E)∗⊗COp in the
Boolean LFT expression of ACp. The path length is ≥ 5.

As a result the Boolean LFT can find all possible paths
through which ẋi can be reached from x j. This information
about all paths could not be explored from ACp because an
entry ‘1’ in ACp indicates that there is at least one path from x j
to ẋi, but not which path specifically or how many. That said,
if all that is required is a Boolean dependency relation, then
as long as a aCp(i, j) = 1 any remaining paths are irrelevant.

Once JCp is computed it can be used for many simulation
applications.

5. JACOBIAN PATTERN APPLICATIONS
The Jacobian pattern analysis can be applied to achieve a

broad range of objectives, such as more efficient simulation
and structural analysis.

5.1. Efficient Jacobian Computation
If Eq. (2) is to be solved by an implicit ODE solver, then

the ODE solver must compute (I− hJx)
−1, where Jx equals

matrix A of Eq. (3) and h is the integration step size.
When analytic block Jacobians are available, the solver

computes the model Jacobian using LFT as discussed in Sec-
tion 3. When the blocks do not provide analytic Jacobians,
a perturbation method must be used to compute an approx-
imated Jacobian. However, compared to analytical block Ja-
cobians, the Jacobian patterns are much easier to obtain. As
such, the Jacobian patterns are usually available, even when
the analytic block Jacobians are not.

If the pattern of Jx is not known, the entries of the qth col-
umn of Jx can be approximated as:

ji,q =
[

∂ fi

∂xq

]
=

fi(xp,xq +∆xq)− fi(xp,xq)

∆xq
(24)

where i = 1,2, . . . ,n and p = 1,2, . . . ,n, p 6= q. This method is
called the full perturbation method. For this method, to com-
pute Jx, the state vector must be perturbed n times and the
derivative equation must also be evaluated n times.

The Simulink solver implements an efficient Jacobian per-
turbation algorithm by precomputing the model Jacobian pat-
tern. When the Jacobian pattern of Jx is computed, the solver
computes the approximated Jacobian using the following
steps:

First, partition the columns of the pattern matrix into
groups, if the pth column ji,p and qth columns ji,q of the pat-
tern matrix satisfy ji,p ◦ ji,q = 0, where i = 1,2, . . . ,n and ◦ is
the vector dot product of vectors. Second, the states belong to
the same column group can be perturbed together to compute
Jx.

This two-step algorithm is called the sparse perturbation
method. If the number of groups m is less than n, then the time
to compute Jx may be decreased. When Jx is a very sparse
matrix the sparse perturbation could be much faster than full

perturbation. It is worth mentioning that there are many ways
to find the column groups of a sparse matrix, the method to
acquire the minimum number of column groups is equivalent
to K-coloring a graph [14].

For example, the Jacobian pattern Jxp of Eq. (5) is 1 1 0
0 1 0
0 0 1

. It can be found that one grouping scheme

is to group column 2 and 3 together, because
[

1 1 0
]
·[

1 1 0
]T

= 0. Jx can be computed using sparse pertur-
bation as

perturb x1

{ [
∂ f1,2,3

∂x1

]
=

f1,2,3(x1+∆x1,x2,x3)
∆x1

perturb x2,x3

[

∂ f1,2,3
∂x2

]
=

f1,2,3(x1,x2+∆x2,x3)
∆x2[

∂ f1,2,3
∂x3

]
=

f1,2,3(x1,x2,x3+∆x3)
∆x3

where x2,x3 are perturbed simultaneously in one function
evaluation. The model derivative method only needs to be
evaluated twice. Another group scheme is to group column
1 and 3 together, which results in the same number of func-
tion evaluations.

After Jx is computed, the implicit solver must solve (I−
hJx)

−1. Usually this step is done using LU factorization. If
the Jacobian pattern is not known, the computational com-
plexity of this operation is O(n3). With the Jacobian pattern
information it is possible to reduce the complexity, but the ex-
act value is a complicated function of the pattern. Other work
presents details about sparse factorization performance along
with numerical results [15, 17].

Figure 5 shows the sparse pattern of a Simulink model of
a hydraulic system. There are 327 states and only 6 column
groups. Where simulation of this model using full perturba-
tion takes 56 seconds, with sparse perturbation it takes only
44 seconds. The experiments are performed on a computer
with an Intel Xeon R© processor at 2.67 GHz and 4 GB mem-
ory running MATLAB R2014a.

5.2. Structural analysis
A Simulink model contains abundant system information

that provides insight into the system dynamics. For exam-
ple, a mechanical engineer working on a train design may
want to know if the velocity of the train is affected by other
state variables. In hierarchical block diagram models, tracing
these dependencies can be difficult as (a) there may be many
blocks involved in the data path; (b) the presence of blocks
that group and ungroup signals may cause confusion in visual
inspection: the signal connection indicates that there are de-
pendencies, but numerical computation has no dependency at
all. The Jacobian pattern solves this problem as it is computed
for the closed-loop model, where the many blocks in the data
path are reduced, and the dependency is computed for every

Figure 5. Solver Jacobian pattern of a hydraulic system with
327 states but only 6 columm groups

state variable. For example, Figure 6 shows the block diagram
of the f14 model in Simulink and its corresponding solver Ja-
cobian pattern [6]. Finding dependencies among variables di-
rectly from the block diagram is not easy because of levels of
hierarchy introduced by subsystems. However, from the first
row of the solver Jacobian pattern matrix a user can easily
find that the derivative of vertical velocity (x1) could be af-
fected by x1 itself as well as the pitch rate (x2), the actuator
output (x3), and the wind gust (x4 and x5). This information
can provide insight when studying the system or verifying of
the model.

Figure 6. f14 and its solver Jacobian pattern

6. SUMMARY
This paper presents the concept of a Jacobian pattern of a

dynamic system and its connections to the dependency graph
or structure of the system, followed by the introduction of a
Boolean LFT and a block-by-block algorithm to compute the
Jacobian patterns of Simulink models. Applications of the Ja-
cobian pattern are then discussed, which include accelerating
simulation, exploring the dependency of the system, and ver-
ifying the correctness of the model.

REFERENCES
[1] Zhi Han, Pieter J. Mosterman, and Fu Zhang.“A graph

algorithm for linearizing Simulink models.” Proceed-
ings of the 2013 Summer Computer Simulation Confer-
ence, 2013.

[2] Curtis, A. R. “Jacobian matrix properties and their im-
pact on choice of software for stiff ODE systems.” IMA
journal of numerical analysis 3.4 (1983): 397-415.

[3] Higham, Desmond J., and Lloyd N. Trefethen. “Stiff-
ness of ODEs.” BIT Numerical Mathematics 33.2
(1993): 285-303.

[4] Zhi Han and Pieter J. Mosterman. “Towards sensitivity
analysis of hybrid systems using Simulink. In Hybrid
Systems: Computation and Control (HSCC), pages 95 –
100, 2013.

[5] Gabriela Nicolescu and Pieter J. Mosterman, editors.
Model-Based Design for Embedded Systems. Model-
Based Design for Embedded Systems. CRC Press, Boca
Raton, FL, 2009.

[6] MathWorks. Using Simulink. The MathWorks, Inc.,
Natick, MA, September 2012.

[7] Bouissou, Olivier, and Alexandre Chapoutot. “An op-
erational semantics for Simulink’s simulation engine.”
ACM SIGPLAN Notices 47.5 (2012): 129-138.

[8] MathWorks. Simulink Control Design: Block-by-Block
Analytic Linearization. MathWorks, Inc., Natick, MA,
September, 2012.

[9] Kemin Zhou and John C. Doyle. Essentials of Robust
Control. Prentice Hall, 1998.

[10] Kim, Ki Hang. Boolean matrix theory and applications.
Vol. 70. New York: Dekker, 1982.

[11] Fischer, Michael J., and Albert R. Meyer. “Boolean
matrix multiplication and transitive closure.” Switching
and Automata Theory, 1971., 12th Annual Symposium
on. IEEE, 1971.

[12] Savage, John E. Models of computation. Vol. 136. Read-
ing, MA: Addison-Wesley, 1998.

[13] Gilbert, John R. “Predicting structure in sparse matrix
computations.” SIAM Journal on Matrix Analysis and
Applications 15.1 (1994): 62-79.

[14] Hossain, AKM Shahadat, and Trond Steihaug. “Com-
puting a sparse Jacobian matrix by rows and columns.”
Optimization Methods and Software 10.1 (1998): 33-
48.

[15] Davis, Timothy A., and Iain S. Duff. “An unsymmetric-
pattern multifrontal method for sparse LU factoriza-
tion.” SIAM Journal on Matrix Analysis and Applica-
tions 18.1 (1997): 140-158.

[16] Houlis, P. & Sreeram, V., “An Interconnection between
Combined Classical Block Diagrams and Linear Frac-
tional Transformation Block Diagrams.”, in ’ICARCV’,
IEEE (2006), pp. 1-5 .

[17] Gupta, Anshul. “Improved symbolic and numerical fac-
torization algorithms for unsymmetric sparse matrices.”
SIAM Journal on Matrix Analysis and Applications
24.2 (2002): 529-552.

[18] Péter Fehér, Tamás Mészáros, László Lengyel, and
Pieter J. Mosterman. “A Novel Algorithm for Flattening
Virtual Subsystems in Simulink Models.” ICSSE 2013,
pp. 369-375, Budapest, Hungary, July 4-6, 2013.

[19] Pieter J. Mosterman, Ravi Kapdia, and Gautam Biswas.
“Using bond graphs for diagnosis of dynamic physical
systems.” DX-95, pp. 81-85, October 2-4, 1995.

[20] Marc Pouzet and Pascal Raymond. “Modular Static
Scheduling of Synchronous Data-flow Networks:
An Efficient Symbolic Representation.” EMSOFT’09
pp. 215-224, Grenoble, France, 2009.

[21] Ben Denckla and Pieter J. Mosterman. “An interme-
diate representation and its application to the analysis
of block diagram execution.” Proceedings of the 2004
Summer Computer Simulation Conference (SCSC’04),
pp. 167-172, July 25-29, 2004.

[22] Roberto Lublinerman and Stavros Tripakis. “Modular-
ity vs. Reusability: Code Generation from Synchronous
Block Diagrams.” DATE’08, pp. 1504-1509, March 10-
14, Munich, Germany, 2008.

[23] Pieter J. Mosterman and Justyna Zander. “Advancing
Model-Based Design by Modeling Approximations of
Computational Semantics,” in Proc. of the 4th Inter-
national Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools, pp. 3-7, September 5,
2011

