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ELECTRICAL ENGINEERING

HYBRID DYNAMIC SYSTEMS: A HYBRID BOND GRAPH MODELING

PARADIGM AND ITS APPLICATION IN DIAGNOSIS

PIETER J. MOSTERMAN

Dissertation under the direction of Professor G. Biswas & Professor J. Sztipanovits

Physical system behavior follows the general principles of conservation of energy and
continuity of power, but may exhibit nonlinearities that result from small, parasitic,
effects, or occur on a time scale much smaller than the time scale of interest. At a
macroscopic level, the detailed continuous behavior may appear to be discontinuous,
thus the system is efficiently described by a mixed continuous/discrete, hybrid, model.
In continuous modes the energy distribution describes the system state. Discrete con-
figuration changes in the model may cause discontinuities in the energy distribution
governed by the principle of conservation of state, and may trigger further configu-
ration changes till a new real mode is achieved where no further changes occur. The
intermediate, mythical, modes between two real modes have no physical representa-
tion. The principle of invariance of state applies to derive the energy distribution in
a mode as a function of the energy distribution in the preceding real mode. When a
loop of consecutive instantaneous mode changes occurs time stops progressing. This
conflicts with known physical system behavior, therefore, the principle of divergence
of time forms an important model verification mechanism. The principle of tempo-

ral evolution of state requires the energy state to be continuous in left-closed time



intervals to ensure proper causal attribution.

From another viewpoint, abrupt faults in process components can be modeled
as discontinuities that take system behavior away from its nominal, steady state,
operation. To quickly isolate the true faults, well constrained hybrid models avoid the
inherent intractability problems in diagnostic analyses by integrating and facilitating
the (1) generation of behavioral constraints from physical laws, (2) expression of
system dynamics as energy transfer between constituent elements, and (3) modeling
of steady state behavior as a special case of dynamic behavior. The analysis of
transients is paramount to accurate and precise fault isolation. However, this is a
difficult problem which can be further complicated by operator intervention, and
intermittent and cascading faults, therefore, quick capture and analysis of transients
is the key to successful diagnosis.

This thesis develops a formal hybrid modeling theory based on physical principles,
a model verification method, and a physically correct behavior generation algorithm.
Next, it describes a methodology for monitoring, prediction, and diagnosis of dynamic
systems from transient behavior, based on the developed hybrid bond graph modeling
paradigm. Simulation results from diagnosing a high-order, nonlinear, model of a
liquid sodium cooling system in a nuclear reactor demonstrates the success of the

approach.
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CHAPTER 1

INTRODUCTION

The increase in complexity with the introduction of advanced technology into
large-scale engineering systems necessitates the use of computer based tools to assist
in the design, manufacturing, control, monitoring, and diagnosis of these systems.
The success of all these tools is critically dependent on the ability to develop accurate
models for simulating, predicting, and verifying system behavior. State of the art
engineering design methods rely almost completely on computer based modeling and
simulation to avoid the high cost of designing and testing mock-ups and physical

1" As a typical example of such systems, consider the liquid sodium

prototypes [99].
cooling system in Fig. 1 which constitutes the secondary cooling system in a nuclear
reactor [81]. The secondary sodium pump, used to maintain a sufficient flow of
coolant, is driven by a synchronous ac motor. The flow rate depends on the motor
revolutions per minute, which is determined by the frequency of the ac signal. To
achieve sufficient torque for this flow rate, a continuously operating PID controller
controls the power supplied by pulse width modulation. Actuated valves throughout
the loop guard against catastrophic failures. When critical situations occur, the main
loop can be closed by a normally opened valve and, if pressure in the piping exceeds

a predetermined threshold value, the alarm loop (which consists of the air-cooler)

can be activated by opening a normally closed valve. The behavior of the system is

! Assembly of the first Boeing 777 showed an unprecedented first-time fit and alignment when a
37680 kg, 63.8 m long wing and fuselage section were found to be out of alignment by only 0.69 mm!
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Figure 1: Continuous and discrete process control.

inherently continuous, but the time scale for the opening and closing of the valves
is small enough compared to other behavior changes so that they can be modeled
to switch instantaneously between on and off states, as a result of which the system
seems to operate in distinct modes of operation. Each mode corresponds to distinct
on and off states of individual valves and switches.

In each mode, system behavior evolves continuously and at points in time, when
valves open and close, discrete mode switches occur. Normally, the valve in the main
loop is open and the valve in the alarm loop is closed (Fig. 1). In this mode the amount
of liquid stored in the evaporator vessel, and the flow velocities (momentum) in the
pipes change in a continuous manner over time. These two sets of variables constitute
the state vector of the system. When the valve in the main loop is closed (discrete
change), interaction between the discrete changes and continuous dynamic behavior
causes a pressure build-up in the piping because the flow momentum is abruptly
forced to 0. In this mode, the system can be described with one state variable, i.e.,

stored liquid since the flow momentum is 0. When the built-up pressure exceeds a



critical value, to avoid catastrophe, the alarm loop is activated and the model moves
into yet another configuration where once again stored liquid and flow momentum
constitute the state vector. The challenge in modeling these multi-mode systems is
to come up with systematic and consistent specifications that govern the interaction
between continuous behaviors associated with the individual operational modes, and
discrete model parts that specify transfer of the state vector during switching.

Examples of other systems that are best described by multi-mode configurations
are auto engine controllers which run quite different control programs as a function
of the engine rpm [5]. Similarly, the Airbus A-320 fly-by-wire system has a number
of modes: take off, cruise, approach, and go-around [119]. Models of these systems
typically support encapsulation and are derived from the concepts of abstraction,
partitioning, and hierarchical modeling [9, 46, 133].

In general, multi-mode system models often arise from a local piecewise lineariza-
tion of complex nonlinear component descriptions to reduce overall complexity, but
system behavior then appears to make discontinuous changes when mode switching
occurs. Selection of the appropriate linear component that constitutes the active
mode of operation is normally achieved by a meta-level control model that operates
on top of the data flow model of a real-time system [73, 132]. Comprehensive models
of dynamic physical systems, therefore, require a dedicated signal flow model that
selects active model parts.

With the emerging complexity of embedded control systems [133], i.e., physical
systems that are controlled by digital computers (Fig. 2), interest in methods to model
interaction between the signal and power domain is becoming increasingly important.

Process control operations, are now implemented as sophisticated Programming Logic
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Figure 2: Embedded computer control systems operate in the signals and power
domain.

Arrays and/or complex software modules run on embedded computer systems. These
digital control mechanisms are discrete in nature and coexist with low-level continuous
proportional, integral, and derivative (PID) control [42, 103]. Therefore, complete
process control modeling schemes are required to capture both discrete control and
continuous process characteristics. Because of their mixed continuous/discrete nature,

these systems are referred to as hybrid systems.

Hybrid Modeling

Hybrid modeling techniques can form the basis for a comprehensive study of sys-
tem performance of embedded control systems, that include the effects of imple-
mentation choices such as interfaces, sampling rates, and computation order in soft-
ware [133]. This can be achieved by developing a formal description of hybrid systems
that combines continuous system characteristics with discrete event models. Continu-
ous system models are well described by differential equations and analytic and numer-
ical simulation methods may be employed in solving these equations [11]. Similarly,

a number of approaches with well defined execution semantics, such as Petri nets and



finite state automata, have been applied to discrete system modeling [109, 110]. Sys-
tems with mixed continuous/discrete components need model semantics that combine
these two approaches, and simulation schemes that can seamlessly combine continu-
ous behavior generation with discrete mode switches. Lygeros, Godbole and Sastry
[66] have shown that independent determination and proofs about the continuous
behavior and the discrete phenomena in a hybrid model do not constitute proofs of
correctness of their combined effects.

To develop hybrid models that generate correct system behavior, interaction be-
tween the continuous and discrete modeling formalisms has to be rigorous, unambigu-
ous, and consistent. Consider the electrical circuit in Fig. 3 which resembles behavior
of the liquid sodium system in Fig. 1. The inductor models the helical coil in the
intermediate heat exchanger and the diode resembles operation of the pressure con-
trolled alarm switch. When the manual switch is closed, the inductor is connected to
the source and builds up a flux, pg, by drawing a current (Fig. 4). The diode is not
active in this mode of operation. When the switch is opened, the current drawn by
the inductor drops to 0, causing its flux, pg, to discharge instantaneously. Because
of the derivative nature of the constituent relation V; = L%, the result is an infi-
nite negative (the flux changes from a positive value to 0) voltage across the diode.
Because its threshold value, V4., is exceeded, the diode comes on instantaneously
and the mode of operation where the switch was open and the diode inactive is never
realized in real time. If it were, the stored energy of the inductor would be released
instantaneously in a mode where the model has no real representation, producing an
incorrect energy balance in the overall system. Consequently, there would be no flow

of current after the diode becomes active. This shows that the flux of the inductor
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Figure 4: A series of mode switches may occur.

when the diode comes on should be computed based on the flux before switching
started, pg.

Consider a scenario where the diode requires a threshold current I;;, > 0 to remain
on. If the inductor has built up a positive flux, the diode comes on when the switch
opens. However, if the flux in the inductor is too low to maintain the threshold
current, given a certain inductance, the diode goes off instantaneously, but when it is
off, the voltage drop exceeds the threshold voltage again. The model goes into a loop
of instantaneous changes (see dashed arrow in Fig. 4) during which real time does
not progress or diverge, and this conflicts with the notion that in the physical world
time does not halt. This example illustrates a number of characteristics specific to

hybrid system models:

— When changes in the model configuration, mode of operation, occur, the system
state vector has to be transferred correctly. This is complicated by discontinuous

changes in state variables and even the state vector itself may change.



— When a mode change occurs, a number of consecutive instantaneous changes

may follow. This complicates behavior generation because:

1. The final mode in which instantaneous mode changes cease has to be de-

rived correctly.

2. The state vector in the final mode has to be computed across a number of

intermediate modes.

3. When a sequence of mode changes starts, it should not end up in a loop

of instantaneous change, as this would prevent real time from progressing.

— Discontinuous changes in state variables may require computation of limit values
in time. If limit values at switching time, ¢,, require future knowledge of system

behavior, limy;,, the model is acausal, and, consequently, ill defined.

One of the primary contributions of this thesis is the development of a theory for
hybrid modeling of dynamic physical systems. The modeling scheme has three com-
ponents: (1) a differential equation model of continuous system behavior, associated
with the operational modes of the system, (2) a discrete-event model, based on fi-
nite state automata for handling mode transitions, and (3) an algorithm for correctly
transferring the system state vector from one operational mode to another through
a sequence of transitions. A systematic set of principles are developed to correctly
specify semantics and constraints to ensure that the models generate correct behav-
ior. The increased sophistication and complexity of current engineering systems has
also increased by several levels of difficulty the task of monitoring system behavior,

and keeping systems operational. A second contribution of this thesis investigates



the use of these modeling methodologies in developing better monitoring, prediction,

and diagnosis methodologies for hybrid systems.

Model Based Diagnosis

Economic constraints on commercial systems such as automobiles and chemical
plants, mandate ever stricter demands on maximum down time. To meet these con-
straints, diagnosis methodologies can be developed to predict and identify which
components are about to fail, and quickly detect failures before they reach catas-
trophic proportions [23]. Initial work in Fault Detection and Isolation (FDI) relied
on hardware redundancy. Multiple hardware components, such as actuators, sensors
and process components, at different points in a system provided redundancy in func-
tion to avoid failure. For example, critical measurement points were equipped with
multiple sensors for detecting discrepancies, and schemes such as the majority vote
method were applied for reliable detection of signal and parameter deviations, which
were then directly mapped into specific fault scenarios. As systems became complex,
the hardware requirements for FDI became excessive, both in terms of cost and space.
Furthermore, processing of a large number of sensor signals for fault isolation greatly
increased processor and memory requirements. Therefore, functional redundancy has
become the preferred approach to FDI [23].

Functional redundancy schemes measure system variable values at different points
in the system, and use relations imposed by the system configuration and functionality
to study discrepancies among the measured values [113, 115]. When faults occur in
the system, observed deviations in measurement values are analyzed using the system

model to generate a set of possible faults. A fault implicates one or more components



of the system and explains all the observed measurements: deviating and normal.
These faults are then used to predict future behaviors of the observed variables based
on the system model.

Generally, faults can be characterized as [23]:

— Incipient faults; these faults occur slowly over time and are the result of, e.g.,
wear and tear.

— Intermittent faults; these faults are only present for a very short time but can
be disastrous.

— Abrupt faults; these faults are dramatic and persistent, they cause deviations
from steady state operations and move the system into new steady state condi-

tions or, after some transient behavior, return to the original steady state.

Abrupt and incipient faults exhibit different behavior that may, and in general will,
require different diagnosis strategies. Moreover, a fault manifestation may not persist
(the system may be halted before steady state is reached, new faults may occur, or
faults may be intermittent), therefore, it is essential to track and analyze system be-
havior at frequent intervals.? The goal is to capture the transient behaviors that occur
in response to a fault, because they are often the best clue for identifying and iso-
lating faulty components in dynamic systems before compensating mechanisms start
altering the transient characteristics. Modeling, tracking, interpreting, and analyzing
dynamic systems and transient behavior is a difficult task. To eliminate the model-
ing difficulties but to keep the dynamic, discriminative, information, several methods

have been proposed that perform diagnosis based on deviations from a static model

It is a frustrating experience to take your car in because it is malfunctioning, only to find that
the problem does not seem to occur in the presence of a mechanic.



[69, 102]. However, these methods result in underconstrained process models. This
especially causes problems for larger systems where the number and size of fault can-
didate sets explode and the diagnosis problem becomes intractable. To prevent this
exponential blow-up, highly constrained models can be used based on physical laws
of continuity of power and conservation of energy, and these models are inherently
continuous.

The primary focus of this research is on abrupt faults. When a faulty situation
is detected, the fault isolation and prediction methodologies rely on a model of the
system to reason about its dynamic behavior. Behavior in each mode is continuous
but abrupt faults introduce discontinuities at the point where faults occur. Moreover,
when faults occur, the system may undergo structural changes, e.g., when a valve is
closed during normal operation in the cooling system in Fig. 1, the system is split in
two independent systems. The model needs to have the capability to incorporate such
discrete structural changes which may affect the causal relations among parameters
and variables in a system. In the specific case of the cooling system, when a valve
closes abruptly it forces flow of liquid to zero that was previously free in its behavior.
This causal change predicts excessive build-up of pressure (voltage in the equivalent
diode-inductor circuit in Fig. 3) and demonstrates the need for an alarm loop to

prevent damage.

Contributions and Organization of the Thesis

This thesis develops a systematic modeling and analysis framework for hybrid
dynamical systems. It develops formal specifications of a hybrid modeling paradigm

for dynamic physical systems and provides systematic principles that govern behavior
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generation. The second part of the thesis uses the systematic modeling framework to
develop a methodology for monitoring, prediction, and diagnosis of abrupt faults in
complex, dynamic systems.

Chapter IT of the thesis reviews traditional mathematical models of physical sys-
tems and bond graphs, a systematic approach for modeling the continuous charac-
teristics of physical systems. Chapter III presents a detailed study of the nature and
effects of discontinuities in physical system models. Chapter IV develops a system-
atic set of principles to handle discontinuous changes in system behavior, and the
bond graph formalism is augmented to incorporate discrete modeling concepts whose
semantics are in keeping with the principles discussed. To ensure the interaction be-
tween the continuous and discrete parts of the resulting hybrid bond graph modeling
paradigm is consistent, rigorous, and unambiguous, a multiple energy phase space
analysis to verify physical correctness of models is developed in Chapter V. The for-
mal mathematical specification for a general hybrid model is developed in Chapter VI
and Chapter VII shows how the hybrid bond graph model described in Chapters IV
and V can be exploited to systematically derive the required mathematical specifica-
tions of the model components.

In the second half of the thesis, the modeling methodology developed in the first
part is used to model and analyze the transient behavior of a system in response to
abrupt faults. Chapter VIII develops a comprehensive architecture for process moni-
toring and diagnosis starting from a hybrid system model and transforming it into a
temporal causal graph for prediction and diagnostic analyses. Chapter IX develops
and explains the algorithms for measurement selection, possible fault generation, and

prediction of future behaviors under fault conditions. The methodology developed in
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Chapters VIII and IX is applied to the liquid sodium secondary cooling system in a
nuclear reactor described in this chapter, in Chapter X. A summary and discussion
of the accomplishments of this thesis and directions for future research are presented

in Chapter XI.
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CHAPTER II

MODELING DYNAMIC PHYSICAL SYSTEMS

Good modeling schemes for physical systems must include features that capture
the set of salient characteristics that help define physical system behavior. A key
characteristic is that physical system behavior is continuous in time, and the most
general mathematical model for expressing such behaviors relies on differential equa-
tions, possibly extended with algebraic constraints. This section reviews physical
systems theory, and their mathematical representations, and then presents the bond

graph modeling language as a systematic approach to modeling physical systems.

Physical Systems Theory

Systems theory focuses on describing dynamic behavior of objects and mechanisms
of interest which are collectively called a system [65, 130]." In some cases, a system
is a collection of phenomena that can be observed. The set of phenomena, their
influences and observations made on the system determine its boundary. Everything
that does not belong to the system is called its environment and interactions between
them define the system context (Fig. 5). Behavior of physical systems is governed
by the laws of physics. This thesis focuses on a particular class of physical systems,

those that are man-made or engineered. They are referred to as engineering systems.

!By defining a system like this, it does not preclude other definitions of a system.
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context environment

Figure 5: Definition of a system.

Typically, system behavior is derived by applying physical laws to a system de-
scription. As the physical or engineering system under scrutiny becomes more com-
plex, additional systematic considerations have to be taken into account for describ-
ing and analyzing system behavior. These systematic considerations are often looked
upon as a theory for translating real situations into more abstract forms for analysis,

called models.

A model of a concrete system is a description of that system, based on the

application of existing theories [130].

The quality of a model is often based on how well its behaviors of interest match
the real phenomena under study. Though a model may be verified to be correct in
theory, i.e., it violates no physical laws, validation of the model with respect to the
phenomena of interest is essential before its usefulness can be determined.? Models
that conform to an underlying modeling theory are called theoretical models, otherwise

they are descriptive models. Descriptive models give a formal description of how

2A model of a bicycle can be verified to be consistent with the laws of physics. It still has to be
validated whether it describes the behaviors of interest of the system under consideration correctly
(which might be a car).
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the phenomena of interest in a system behave, and they can only be validated in
comparison to the real phenomena. On the other hand, models based on underlying
theory allow for additional checking, verification, in terms of conformance to physical
laws. For example, a descriptive model of an electrical wire can be: The wire causes a
voltage drop which increases linearly with the length of the wire. A corresponding more
general theoretical representation is Ohm’s law which defines the concept of resistance
and introduces a theory for voltage-current dependency based on this concept.

Sir Isaac Newton was the first to record formal theories in the domain of mechan-
ics. Soon formal theories in other domains, such as fluid mechanics, electricity, and
magnetism were developed. Further, observations that any physical domain can inter-
act with another by means of energy exchange influenced the beginnings of physical
systems theories in thermodynamics, which concentrates on thermal processes which
are ubiquitous in physical systems. The emergence of network analysis as powerful
tool made it beneficial to describe the different domains that constituted physical
systems in terms of an electrical equivalent, i.e., an interconnected topology of en-
ergy sources, dissipators (resistors), energy storage elements, such as capacitors and
inductors, and transformer and gyrator elements that convert energy from one form
to another. More recently, control and information theories have been established.
Systems theory unifies and generalizes formal theories from various domains into a
common mathematical framework, usually in the form of a set of differential equa-

tions.
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From Reality to Mathematical Models

To efficiently analyze, design, control, and understand physical systems, it is de-
sired to represent their behaviors in a language that captures the salient aspects of
the behavior, allows formal analysis, and at the same time allows abstraction so that
the computational burden of the analysis is not overwhelming. Mathematical for-
mulations provide a high level of abstraction where physical characteristics become
implicit but the systematic and uniform notation allows for formal analysis in a do-

main independent way.

Abstraction

Physical reality typically embodies numerous phenomena, a lot of which may be
secondary to the gross behavior of interest for the problem being addressed. To
prevent unnecessary complexity in tasks such as design, analysis, and control it is
desirable to only capture those aspects of the system that are of immediate interest
to the behaviors in question. This process of reducing complexity by eliminating
peripheral phenomena is called abstraction [43], a technique that plays an important
role in the construction of system models. Often it is not obvious which phenomena
and interactions actually govern the behaviors of interest, therefore, the application
of abstraction techniques in generating system models involves trial and error and
iterative processing. After an initial model is established, it has to be validated in
terms of how well it represents the behaviors that it is required to capture. When
discrepancies occur, the model has to be refined (e.g., by increasing its order) or
adapted (e.g., by modifying parameters) to more accurately reflect the actual system.

This iterative process is repeated until system behaviors of interest are replicated
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satisfactorily.

Complex system models are often constructed by considering the system to be a
composition of a set of entities. Each entity is modeled separately, based on the con-
cept of reticulation which assumes that certain properties of a system can be isolated
and lumped into processes with well defined parameter values, and the system can
be defined as a network of interacting processes [14, 104]. To achieve compositional
modeling three properties have to be satisfied: (1) decomposition, (2) classification,
and (3) representation. Successful application of these concepts to modeling relies
on typing and port based interfacing. Typing enforces correctness of object usage
and it allows encapsulation of local information of an object. A port based inter-
face connects entities that can be either constitutive relations or networks of entities
themselves [27]. Therefore, the lumped parameter assumption in modeling allows the
definition of a system as a composition of entities with each entity having its own
constitutive relations that can be expressed in a mathematical form. The network or
compositional structure defines the system configuration. System configuration can
be abstracted away by composition of the mathematical relations of each entity into

a system of equations.

A Systematic Approach to Abstraction
A general theory of modeling defines methodologies that support a succession of
abstractions for a physical system domain and its component structure. The most
abstract representational form is a mathematical set of equations (Fig. 6). There are
two basic approaches for deriving the mathematical form [65]: (1) state space repre-

sentations, and (2) transfer functions. The mathematical representations generated
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by these approaches are equivalent, and the methods are complementary.

The state space approach first translates the ideal physical model into a physical
analog® that defines the level of abstraction. Alternately, a generic representation of
physical mechanisms can be used which moves closer to the mathematical represen-
tation by discarding domain specific information [54]. Next, the equations for each
of the components of the generic model can be compiled at which point symmetric
constituent equations are obtained and causality is lost. Then, connections between
equations can be established by substituting variables represented by using a block
diagram. So, the block diagram helps combine local component equations into a
global mathematical scheme. In the final step, the block diagram can be translated
into a system of equations which is a pure mathematical description of global system
behavior that does not allow to trace back through the abstraction stages.

To obtain a mathematical model in terms of a transfer function representation,
the overall system is decomposed into functional components such that individual
components are made up of highly interacting system parts, and there is little inter-
action between components. In the cooling system example shown in Fig. 6, these
parts are chosen to be the intermediate heat exchanger and the evaporator/motor
sub-system. Next, the order of these parts and their parameters in the frequency
domain are estimated. The connected parts can then be combined into one transfer
function in the frequency domain, H(s), which can be transformed into a mathe-
matical model as a difference or differential equation. Alternatively, partial fraction

expansion can be applied to the overall transfer function to obtain a summation of

3The mechanics of the Philips CD player, for example, were simulated by translating their model
into the electrical analog and using SPICE for simulation.
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Figure 6: The stages of the modeling process with increasing abstraction.
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lower order constituent responses. These lower order transfer functions can then be
transformed to the time domain to establish a mathematical model as a summation

of impulse responses.

Bond Graph Modeling

In the late fifties, Paynter was able to synthesize the similarities between physical
system characteristics in the electrical, mechanical, and hydraulic domains, specifi-
cally in terms of power and energy transfer. He exploited these similarities to de-
velop a generic modeling language called bond graphs [104]. A number of other re-
searchers have added components to the language, particularly Breedveld [14], who
developed sound principles for bond graph analysis based on the laws of thermody-

namics [7, 20, 35].

Energy Based Modeling

Bond graphs, based on modeling of the energy content and transfer in physical
systems, adopt the lumped parameter approach to modeling and describe a physical
system at any given time as energy distributions over connected physical elements.
This energy distribution reflects the history of the system, and defines its state. Future
behavior is determined by its current state description, and subsequent input to the
system. Changes in state of a physical system are attributed to energy exchange
among its components, which can be expressed in terms of the time derivative or flow
of energy, i.e., power. Irrespective of domain (e.g., mechanical, fluid, pneumatic, and

electrical) power is the product of two conjugate variables: the intensive variable or
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Table 1: Energy Variables in Different Physical Domains

Domain Effort Flow Momentum Displacement
e(t) f(@) p=[e-dt g=[7f-dt
Mechanical
Linear force, F' velocity, v momentum, p distance, x
Rotation torque, T angular velocity, w | angular momentum, A angle, ¢
Electrical voltage, V' current, ¢ flux, A charge, ¢
Hydraulic pressure, P volume flow, V' flow momentum, L volume, V'
Thermal temperature, T' | entropy flowrate, .S - entropy, S

effort, e, and the eatensive variable or flow, f (Table 1).* Therefore, effort and flow
are called power or signal variables. Intensive variables are specified at points in a
system (e.g., pressure, temperature), and may vary from point to point. Extensive
variables on the other hand, are defined over an extent (e.g., volume, charge), and are

> Tor example, if one considers two blocks of the same

typically additive in nature.
material at the same temperature, and brings them together to form one system, the

volume of the overall system is the sum of the individual volumes. On the other hand,

the temperature of the combined system remains the same.

The Model Context

The first law of thermodynamics states that

internal enerqgy is conserved in processes taking place in an isolated system

[30].

For a system to adhere to the first law it has to be isolated. However, a completely

isolated system is of little practical use, and the conservation of energy principle is

*More precise, the flow variable is the time derivative of the extensive variable, ¢, as formulated
by the free energy equation dF =) edq.

>Though variables of an additive nature are extensive, not all extensive variables are necessarily
additive in nature. This is particularly true in the case of fields.
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applied to a system by explicitly specifying its energy interaction with the environ-
ment. This represents the system context and is modeled by sources and sinks of
effort and flow, S, and Sy, respectively. The change of energy in a system can be
attributed to losses by dissipation through resistive elements. This energy loss needs
to be modeled explicitly as a source of entropy in the case where it constitutes free
energy. In an isothermal environment, this flow of energy to the thermal domain
is not modeled explicitly. Although conservation of energy is the most fundamental
law of physics, it is the hardest to enforce [35, 105], since only the significant inter-
actions are captured by the system model and this may not capture all the energy
interactions that occur. An additional assumption in macrophysics is the restriction
of power continuity, which follows from the assumption of conservation of energy. It
is observed that energy cannot be annihilated at one point in a system and produced
at the same rate at another point. It has to traverse the intermediate space [14, 104].
Therefore, any physical system not only conserves energy, but by nature is continuous

in its signal or power variables, effort and flow.

Primitive Elements in Bond Graph Models
Energy can be represented as stored effort and stored flow. The energy corre-
sponding to stored effort is called generalized momentum, p, and the energy corre-
sponding to stored flow is generalized displacement, gq. Consequently, p and ¢ are
called energy variables, and constituent elements that store generalized momentum
and displacement in the bond graph framework are called inductors, I, and capacitors,

C, respectively (Table 2). These ideal energy storage element relations are shown by
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the tetrahedron of state [107] in Fig. 7, and represent the reversible processes in na-
ture. Because of their integrating nature, the actual energy stored in these elements
is a function of the initial value of the energy they contain. Each initial value, there-
fore, introduces a degree of freedom in the system and an additional dimension to the
state vector. Note that this does not necessarily add to the order of a system. For
example, two capacitors in series with a resistor is still a first order system. If the
integral form cannot be used, the stored energy value is completely determined by
the other components in the system model, and the element does not introduce an

additional degree of freedom.® Typically, this occurs when

— a source or sink is modeled to enforce a specific amount of stored energy on a

storage element (source-storage dependency), or

— storage elements are directly connected to each other without intervening dis-

sipators (storage-storage dependency).

These two situations can be directly attributed to choices made when designing the
system model. In the first case, component mechanisms that are assumed to have
insignificant effects with respect to the modeling task or scope are neglected and
dependency of storage elements only introduces additional loading effects. In the
second case, the dependent storage element most likely represent the same effect.
The lumped parameter assumption can be extended to replace the dependent storage
elements by their combined equivalent.

Irreversible processes are represented by the dissipative element, R. The S., Sy,

C, I, and R elements exchange energy via ports. To connect more than two basic

In bond graph terminology, this storage element is then said to operate in derivative causality.
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Table 2: Generic elements in Different Domains

Domain Resistance Capacitance Inductance
cW=R-J() |e)=g[f)dt | () =7 [e(t)dl
Mechanical dashpot spring mass
Electrical resistor capacitor inductor
Hydraulic pipe, valve tank narrow pipe
Thermal thermal resistance | thermal capacity -
e

= [ dt
Figure 7: The tetrahedron of state.

elements together, a junction structure is required. Junctions typically allow an
arbitrary number of components to be connected together. They preserve continuity
of power by adhering to the generalized forms of Kirchoft’s current and voltage laws,
which define the two forms of junctions, 0- and 1-junctions, respectively. The 0- and
1- junctions are illustrated in Fig. 8. Junction relations are instantaneous, i.e., they do
not introduce temporal effects. Two special types of junctions, or signal transformers;
the transformer, T'F', and the gyrator, GY', complete the nine basic elements in the
bond graph language. The transformer establishes a ratio between input and output
efforts and flows as shown in Fig. 9. It can be used as an impedance transformer
within a physical domain, and as a class transformer between domains [122]. The
gyrator operates similarly, by establishing a relation between input effort and output

flow, or between input flow and output effort.
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Figure 8: Continuity of power across junctions is ensured by their constituent equa-
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Figure 9: Relations of the transformer for both of the possible causality assignments.

Systematic Modeling
Overall, there exists a systematic procedure for building bond graph models of

physical systems [107]. This procedure is illustrated by two examples.

Bi-Tank System

To derive the bond graph model for a simple bi-tank system illustrated in Fig. 10,
common pressure points are identified first. In this system, the two important pres-
sures are the ones at the bottom of the tanks, e; and e;. A 0-junction defines each of
these variables and connects to the storage elements that represent the tank capaci-
ties, Cy and (5. The two 0-junctions exchange fluid via a common flow connection,
the 1-junction, and the dissipative element R is connected to this junction to repre-

sent the pressure drop across the connecting pipe. The flow variable fs, represents
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Figure 11: An electrical circuit.

the corresponding volume flow. The Bernoulli outflow resistances are modeled by
two dissipators as well, where their outflow depends on the pressure at the bottom of
the tanks with respect to a reference value (typically a sump-pressure). The inflow
into the left tank is independent of its pressure at the bottom, and, therefore, it is

represented as an ideal flow source.

An Electrical Circuit

A second example derives the bond graph for the electrical circuit in Fig. 11. First,
0-junctions are associated with all, common voltage, nodes. In the particular circuit
there is one node (apart from ground) with three branches. The current source, [jcqp,
and inductor, L, can be directly connected to the 0-junction. The remaining branch

consists of a series or common flow connection, 1-junction, between Ry and Vj,.
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Causality

A causal structure can be imposed on a bond graph model, using local constraint
relations among the components associated with a junction.” A systematic algorithm
for causality assignment is the Sequential Causality Assignment Procedure (SCAP)
[107]. This algorithm categorizes local constraints as (1) enforced causality, by sources
Se and Sy, (2) preferred causality, for energy storage elements, C' and I, and (3) indif-
ferent causality for resistances K. The constraints are applied in the order above, with
an effort source always imposing an effort causality on a junction and a flow source
always imposing a flow causality on a junction. Opposite assignment of causality
to a source indicates a physical incorrectness of the model, e.g., a shorted voltage
source. The preferred causality for energy storage elements is for them to operate
as integrators as opposed to differentiators. The integral relation establishes natural
dependence among the effort or flow variables associated with a bond.® For example,
the implication of the integral form for a C' element is that it prefers to deliver effort
on a junction, i.e.,

e:%/fdt (1)

An I element prefers to enforce flow on a junction, i.e.,

f:%/edt (2)

Resistive elements have no preference of causality, they conform with how they are

driven.

"In pathological cases, global constraints have to be used as well. This typically happens in cases
when closed power loops occur.

8These relations cannot be recovered from the differential relation for lack of knowledge of the
integration constant [25].
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Figure 12: Algorithmic assignment of causality.

Consider the electrical circuit and its bond graph in Fig. 11. Fig. 12 depicts the
causality assignment procedure. The first step selects the voltage source, S. and
assigns it effort causality which means it enforces effort on the adjacent 1-junction,
depicted by the perpendicular stroke at the end of its connecting power bond (1) in
Fig. 12. Because the effort constraint on a 1-junction requires the sum of all efforts
to equal zero, the effort values of the two remaining bonds are still undetermined.
Therefore, the assigned causality does not propagate any further. In the second step,
the flow source Sy is selected and enforces flow on its adjacent O0-junction depicted by
the perpendicular stroke at the beginning of bond (2). Again, causality on all other
bonds of the junction is still undetermined. In the third step, L is selected and its
preferred causality enforces flow on the 0-junction through bond (3). By default the
remaining bond (4) has to impose effort causality on the 0-junction, and, therefore, a
flow on the 1-junction. This determines the flow value at all other bonds connected
to the 1-junction (common flow), so resistance Ry, through bond (5) has to impose
effort on the 1-junction. Therefore, Ry is in effort causality. In terms of the electrical
circuit, this assignment reveals that the current through R; is determined by [;.,x and
L. As long as the corresponding voltage drop across Ry differs from V;,, the inductor

charges.
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Qualitative Reasoning with Bond Graphs

Bond graphs provide a ripe structure for pure qualitative reasoning about physi-
cal system behavior. First of all, the differential equations directly derived from the
model can be used as qualitative constraints in a QSIM-like constraint-centred simu-
lation and analysis [10, 67, 134]. In this regard, bond graphs provide the advantages
of a methodology well grounded in physical laws. This contrasts with the approach
used in QSIM [57] that focuses more on pure mathematical constraints and QPT [40]
that models component and process descriptions individually. The inability to build
in conservation of energy and continuity of power relations explicitly into the model,
and the lack of well defined primitives can often lead to the development of rather ad
hoc models. In a sense, QPT draws many parallels with bond graphs, but its lack of
a small set of constituent processes that define the theory universally makes it hard
to verify physical correctness. Imposing power continuity and energy conservation
explicitly eliminate large numbers of spurious behaviors and imprecise parameter es-
timation [116]. Second, bond graphs establish global causality assignment based on
local constraints derived from constituent relations of its primitive components (see
previous section), enabling the use of global constraints to refine system behavior.
Third, much like human experts, the bond graph framework allows several qualita-
tive aspects of system behavior be derived from physical structure and topology as
opposed to mathematical equations. For a linear system these translate to concepts
of controllability, observability, state variables, order, and number of distinct eigenval-
ues (degrees of freedom). These qualitative characteristics have proven to be of great
value to system engineers and their derivation in a bond graph modeling framework

is algorithmic [37, 114]. An effective technique to apply these qualitative notions in
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complex systems is condensation [127]. Condensation allows one to inspect qualita-
tive behavior of sub-systems of zero, first and second order, so that their possible
behaviors can be labeled as static, exponential, or oscillating, respectively. This en-
ables qualitative analysis at a level intermediate between the individual interactions
in the system and the complete global structure.

Causal analysis is of paramount importance to the successful use of models in
conceptual design, tutoring, and diagnosis. In previous work, Iwasaki and Simon [52]
have used a basic set of constituent elements as the basic building block for defining
causal relations. Furthermore, their work illustrates that causality is determined
jointly by individual mechanisms and interactions with adjoining mechanisms which
is governed by propagation of effects through connecting junction structures. The
SCAP algorithm for deriving causal relations in bond graphs is based on exactly
the same set of principles, where the model topology and the energy interactions
among components defines causal assignments [16]. This distinguishes the bond graph
causality assignment scheme from the Iwasaki and Simon method, which attempts to
derive the causal constraints from acausal constraint equations, often resulting in ad

hoc assignments.

Applications
Bond graph modeling has been successfully applied in the areas of analysis [49,
61, 118], general design tasks [37, 106] and design of mechatronic systems [28, 112],
diagnosis [10, 22], and teaching [32, 58]. An extensive bibliography [38] includes appli-
cations to mechanical systems, thermal and thermodynamic systems, biological and

physiological systems, chemical systems, fluidic systems, electrical systems, economic
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and social systems, magnetic systems, acoustic systems, agricultural systems, solar

systems and nuclear systems [38].

Summary
It is important to note that the choice of modeling method is very dependent on the
type of system being modeled and the task for which the model is being constructed.

9 are not well suited for energy exchange based

For example, informational systems
modeling [73], because of their discrete nature. Petri nets, finite state automata [56],
object modeling, Timed CSP [26], and discrete event systems are more suitable. In
other cases, implicit modeling techniques [72] may be advantageous. Continuous
systems are best modeled by differential equations, supplemented by algebraic con-
straints, if necessary. Presently tools that incorporate multiple modeling techniques
are being developed to present the user with a generalized environment and allow for
interaction between the methodologies [120, 133].

Bond graphs represent a component in terms of its basic physical concepts such
as energy dissipation or energy storage. On the one end, it supports model struc-
ture analysis based on component aspects of a dynamic physical system (rather than
specific parameter values). On the other end of the spectrum, it provides a compre-
hensive and systematic approach to generating the describing differential equations.
Moreover, because of its compositional characteristics, it supports partitioning and hi-

erarchical modeling of increasingly complex systems as well as modifying a particular

sub-system to a more detailed model [34, 54].

“Informational systems are those that handle data in its general form. So, no a priori modeling
constraints on data exist.
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CHAPTER III

A THEORY OF DISCONTINUITIES IN PHYSICAL SYSTEM MODELS

This chapter introduces the types of modeling abstractions and the discontinu-
ous behavior they cause in system models. The resultant mixed behavior patterns,
continuous with intervening discrete jumps, are systematically modeled by combining

bond graphs and finite state automata in the modeling scheme.

The Nature of Discontinuities

Physical systems by nature are continuous, and discontinuities are artifacts of
simplifications and assumptions introduced into the system model. In general, dis-

continuities in behavior generation can be attributed to two abstraction phenomena:

— time scale abstraction, and

— phenomena or parameter abstraction.

The time scale for the actual nonlinear behavior of the system may be much faster
than the time scale at which system behavior needs to be analyzed. If system behav-
ior were explicitly modeled at this small time scale, appropriately positioned small
energy storage and dissipative effects have to be included in the system model. The
ensuing time constants may obscure or complicate the generation of the more gross
(or abstract) phenomena that are of interest, therefore, time scale abstraction tech-
niques may need to be introduced to focus on the more useful behaviors. Furthermore,
small time constants cause steep gradients and fast oscillations in system behavior,

which results in numerical stiffness problems when conventional simulation methods
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are used, or lead to the use of less accurate implicit integration methods to avoid
stiffness problems [11, 15]. For example, consider a ball bouncing on a floor. When
the ball on its downward trajectory hits the floor, elastic compression of the floor, or
the ball, or both, enables storage of the ball’s kinetic energy as internal compression
energy which eventually builds up a negative force that imparts a negative velocity to
the ball causing it to fly back upward. The velocity of the ball changes continuously,
but starting from the point of impact for a short time interval, the velocity change has
a very steep slope. This is shown in Fig. 13 for a system where the ball is considered
to be an ideal rigid body and the floor is modeled to have a relatively large stiffness
value. The effects of compression are indicated by the ball and floor displacement
becoming negative for a very short period of time. When modeled in less detail, the
velocity of the ball is instantaneously negated because the compression behavior is
ignored. If the interaction between the ball and floor is modeled as a perfect elastic
collision, the overall behavior implies that the ball continues to bounce but with de-
creasing amplitude because of air resistance. The simpler but correct behavior was
achieved by abstracting away the stiffness effects causing an instantaneous change in
velocity. Therefore, the abstract model combines continuous behavior with abrupt
or discontinuous behavior changes. Since the elasticity of the ball or floor is not ab-
stracted away but condensed into an instantaneous effect, this is an example of time
scale abstraction.

A second cause for discontinuities in models can be attributed to component
parameter abstractions. The effects of particular component characteristics, often
parasitic terms, are simplified or ignored. However, this may reduce the degrees of

behavioral freedom in the system by making energy storage elements (i.e., capacitors

33



10T~
1 oo\
bal(‘]b \
0.4 \\\

J0 M -

\

( N
I I\ n

\ / n
I\ AN AN AN
[ \ | | /

\_ 100 200/ 300 400 500 600, 700 80Q 900 1000
l\. [0 R 5P P R

<—>

ball

\ /1 \

/

" i )
00 \ 7 0.00)
100 200\ /300 400 500/ 600 700/ 800 906 1000 Xgionr| 100 200[ 500 400 540 | ‘600 700 00 " pog 1000
t—> | B |
02 | \| |/
-0.05 || \ |

|| \ v

0.1 \

\\ N
~J

oo bhHoNs oo
>N RO

015

Figure 13: A perfect elastic collision between a rigid body and a very stiff floor.

and inductors in the bond graph framework) dependent. As a result, discontinuities
can again become part of system behavior. For example, if the ball and floor elas-
ticity in the bouncing ball example are abstracted away, the system shows a perfect
non-elastic collision and the ball comes to an immediate stop at the point of impact.
Because of the rigid body assumption, the kinetic energy of the ball dissipates instan-
taneously the moment its velocity is forced to be 0. In reality, small elastic coefficients
with deformation effects allow the ball to maintain a velocity that is not directly cou-
pled to the floor, and the behavior exhibits a steep gradient but remains continuous.
This implies that the elasticity and deformation effects introduce additional degrees
of freedom in the system model that result in continuous system behavior. On the
other hand, if these effects are very small, and they have a negligible impact on the
macroscopic behavior, they can be abstracted away in the system model. In that
case, at the point of impact, the ball with non-zero velocity is directly coupled to the
floor which has 0 velocity, and a discontinuity occurs. Note that this eliminates the

ball momentum as a state variable.
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Effects of the Lumped Parameter Assumption

To study the lumped parameter assumption in detail, consider the free expansion
experiment conducted by Gay-Lussac and Joule, shown in Fig. 14 [35]. A chamber is
made up of two connected bulbs with an idealized open-closed valve between them.
Initially, only the left bulb contains a gas and the valve is closed. When the valve
connecting the two volumes is opened, the gas in the left bulb expands freely and
starts diffusing into the right bulb. FEven if the connecting orifice is non-resistive,
this diffusion introduces non-homogeneous turbulence effects that are active for a
period of time. This is not an issue from a thermodynamics perspective, where the
goal is to establish energy balance after the distribution has become homogeneous
(e.g., determining the temperature of the water in the compartment surrounding the
two volumes). Therefore, the lumped parameter assumption holds. Based on the
underlying modeling assumption, the transitional effects are negligible to the time
scale of interest. However, the lumped parameter assumption does not hold during
discontinuous changes. In case of the free expansion experiment, if the valve were
closed quickly enough after opening to operate as a sequence of two instantaneous
changes, the gas could not have diffused yet. So, the homogeneous distribution of
gas over the two volumes is never actually established. In fact, an immediate closing
of the opening renders the intermediate opening mode mythical. Therefore, it leads
to no redistribution of energy which conforms with the observation that in real time

there never was a connection.
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Figure 14: Free expansion of a gas by diffusion after an instantaneous change.

The Effects of Discontinuities

Discontinuities in physical system models have a number of effects that do not

occur in the analysis of continuous system behavior:

— Energy storage elements may become dependent, thus changing the dimension
of the state vector which may result in an apparent violation of conservation of

energy.

— A discontinuous change may trigger a chain of discontinuous changes.

Conservation of Energy
The lumped parameter assumption requires dependent storage elements to be
treated as one, but that may result in a discontinuous change of stored energy when
a configuration change occurs, and may cause a Dirac pulse! generated at the in-
stant the change occurs. The pulse represents an amount of energy that dissipates

discontinuously as heat, discontinuous dissipation, much like the loss of energy due

IThis is a pulse of finite area but infinitesimal width that occurs at a point in time.
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to resistive dissipation which is modeled as a source of entropy. If the environment is
assumed to be isothermal, this source is not modeled explicitly, otherwise it can be
represented as a Dirac pulse. Note that this instantaneous loss of energy would actu-
ally occur over a short time interval if small dissipative elements capturing the energy
redistribution effects in the connection between the storage elements were returned

in the model.

Conservation of State
After a new mode of operation is inferred, its state vector has to be derived based
on the state of the system in the previous mode. This is referred to as the initial
value problem and if the system state is represented by energy stored by independent
elements, which have an integrating relation, there are no discontinuous changes.
Therefore, discontinuous state changes only occur if storage elements become de-
pendent and their value is determined by other system elements. In this case, two

situations characterize the initial value problem:

— Mode changes cause two or more storage elements to become dependent, and
this causes the size of the state vector to change. As discussed, individual energy
variable values change, but their total remains the same and conservation of

state determines the new state values.

— Mode transitions cause dependency between sources and energy storage ele-
ments. In this case, the switching causes a source (i.e., the environment) to
instantaneously transfer energy into or out of the system. The new values of

energy stored by the elements involved is set to the source enforced values.
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As a result, the system transfers from one mode to another, but the initial energy
distribution in the new mode may be different from the distribution in the last real

mode.

Invariance of State

The diode-inductor example in Chapter I illustrates that a discontinuous change
may generate additional discontinuous changes that occur instantaneously. In gen-
eral, discontinuous changes occur when signal values cross a threshold value during
continuous evolution of system behavior [77, 78, 79]. The effect of this is that energy
connections are activated or deactivated. This may cause adjoining signals to change
discontinuously and cross switching thresholds themselves. The result is the activa-
tion or deactivation of one or more energy connections one after another, leading to
a sequence of discontinuous changes. The modeling assumption is that discontinuous
changes are instantaneous, therefore, real time does not progress during a sequence
of discontinuities. Real time continues to evolve only after a model configuration is
reached where no more switches occur. Sequences of instantaneous changes make
it difficult to infer the new mode of continuous operation. In addition, the task of
correctly advancing the system state across a series of model configuration changes,
producing the correct mapping of the system from the last continuous mode onto the
new one, where behavior again evolves in real time is nontrivial.

This is solved by observing that any system configuration that occurs during a
sequence of switches has no real existence, and these system configurations are transi-
tional, or mythical. A consequence of this is that the system cannot exchange energy

with its environment during this period, in other words, it is isolated. Therefore,
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there is no redistribution of stored energy within the system during this sequence.
The principle that energy is not redistributed during discontinuous, instantaneous
changes, but only after a new mode is reached is termed the principle of invariance

of state.

Illustration

This section illustrates the previous concepts and notions by two examples.

Conservation of State and Energy

Consider an electrical circuit with two capacitors in parallel connected by an ideal
switch (Fig. 15). When the switch is open, the two energy storage elements can charge
and discharge independently, but they become dependent when the connecting switch
is closed requiring the two elements to achieve a common potential. The total charge
on the two capacitors before the switch was closed has to be preserved so that the
physical principle of conservation of state (charge), is not violated. Assuming that the

initial charge on C is ¢, and there is no initial charge on €, the common potential

after the switch is closed is V't = ﬁ The amount of energy before closing the

switch is % After closing the switch the charge on ('} is ¢ = 01?02 ¢1 and the charge
+2 +2

on (y is ¢Ff = 01%02 q1, therefore, the amount of energy in the system, ;171 ;272, is

m. This implies that closing the switch causes a loss of energy equal to
q; . q; . C ‘ (3)
201 2(Cy+Cy)  201(Cy + Cs)

Imposition of the conservation of charge principle appears to result in an instanta-

neous loss of energy in the system, i.e., the conservation of energy principle is violated.
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Figure 15: Two capacitors that become dependent by an ideal connection.

This loss occurs because of an arc across the switch when it closes, and could be ex-
plicitly modeled by a dissipative effect. However, since it is small and of a parasitic
nature, it is abstracted away. In any event, in case the environment is not isothermal

the loss has to be explicitly modeled

Mythical Modes and Invariance of State

To illustrate a sequence of discontinuous changes, consider the effect of a diode

that operates in one of two possible modes in Fig. 16:

— As an effort source; it enforces 0 volts, independent of the current.
— As a flow source; it imposes a negative leakage current, independent of the

voltage.

Initially, the voltage drop across the diode is 0 and it operates in its effort source
mode (Fig. 17). When the switch is closed, this effort source enforces 0V on both
of the capacitors which requires C to discharge instantaneously. This results in a
current flow that approaches negative infinity and based on the switching specifica-
tion of the diode (Ip < [icqar) the model configuration changes immediately to one
where the diode operates as a current source. Since no more discontinuous changes

occur, the capacitors become dependent and redistribution of charge occurs as in the
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Figure 17: A series of discontinuous changes may contain mythical modes.
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two capacitor system described above. Imposing the modeling assumption that dis-
continuous changes occur instantaneously, the model configuration where the diode
operates as an effort source and the switch is closed is departed instantaneously and
never achieved in reality. The infinite current is never actually established, it is only
used to infer the new mode of continuous operation. If it were considered a real mode
of operation, C; would discharge instantaneously during the intermediate mode of op-
eration. Therefore, when the diode switches to its current source mode of operation

no energy would be left to maintain the leakage current.
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Limitations

The occurrence of a number of discontinuous changes may make energy storage
elements alternate between mutual dependence and independence during a sequence
of changes. From a physical perspective this situation has to be analyzed carefully.
To illustrate a situation where this may lead to a conflicting system model, consider
the electrical circuit in Fig. 18, where the relay turns off when the voltage drop across
(' equals the voltage drop across 5. If the relay was on initially, the moment the
switch is closed this condition holds and the relay opens. Because of the instanta-
neous nature of discontinuities, the model configuration where there is a connection
between both the capacitors is departed immediately. As discussed in terms of the
free expansion experiment, even though dissipative effects of the connection are not
explicitly modeled, energy redistribution still takes time. In real time, the basic model
configuration does not change, i.e., the capacitors are disconnected all the time. How-
ever, the relay is open and its switching condition implies that the charge on both
of the capacitors has been redistributed to reflect their equal voltage drop, which
it has not. This indicates that analysis of continuous behavior with instantaneous
junction switching does not generate consistent behavior in this scenario, and either
resistive or inductive effects of the connection have to be included, or the modeling
methodology has to be modified.

To summarize, switching conditions based on energy stored by elements that are
alternating dependent and independent within one sequence of discontinuous change
are inconsistent with lumped parameter assumptions, and, therefore, prohibited. In
this case, either model refinement or another modeling approach has to be chosen.

Notice that gradients based on these energy variables can be used as demonstrated
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Figure 18: Instantaneous dependency changes between energy storage elements cause
problems.

by the capacitor-diode example. Though there may not be an actual flow of current,
a gradient exists the moment the switch closes, and this causes the diode to change

to its mode of operation where it enforces a leakage current.

A Discrete Formalism

An idealized discrete switching element can impose a discontinuous binary, on/off,
relation on energy transfer paths in the system to model configuration changes. Fig. 19
shows two connected tanks that get disconnected when a latch closes. If the latch
closes, the flow through the connection becomes 0. Therefore, there is no energy
transfer across it and the net result is that the two tanks become independent sub-
systems, and this illustrates a seamless implementation of the mode-switching process.
The physical on/off state for a switch is affected by continuous variables which cause
the switching when variable values cross prespecified thresholds (e.g., p1 > p2 in
the above example) and control logic that governs the on/off relations is defined
by combinational or sequential automata. The need for sequential control logic is
demonstrated in Fig. 20. Initially the latch in the connecting pipe is in its upright
position. When a threshold pressure difference is exceeded, the latch opens to the left

or to the right. Once it has opened in one direction, it cannot open in the opposite
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Figure 19: Mode switching of a bi-tank system by a latch.
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Figure 20: A physical system may contain discontinuities that have memory.

direction anymore, therefore, future on/off states are a function of the past state of
the latch.

An important observation applies to the state vector of a system, which contains a
necessary and sufficient number of variables to completely describe the system state.
In continuous physical systems the set of variables that describe the energy distribu-
tion in the system capture its entire history, and, therefore, serve as the state vector
for the system. However, when models contain discontinuities that are controlled by
sequential logic, the energy state vector cannot completely specify system history. Fu-
ture behavior becomes dependent on the internal states of the sequential automata,

and a hybrid state vector is required to capture the necessary logic states as well. As
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an illustration, consider the latched bi-tank system. If the internal state of the latch in
Fig. 20 is not known, future behavior cannot be determined uniquely based on energy
variable values alone. The same energy distribution can result in two different states
for the latch, depending on its history, and system behavior can evolve along two
different trajectories. To disambiguate this situation, the system state vector needs
an additional logic component, which specifies the model configuration at different

points in time.

Temporal Evolution in Behavior Transitions

The semantics of behavior generation for hybrid models need to combine real
modes with instantaneous discrete behavior changes where real time does not advance.
Note that a real mode of system behavior can encompass an interval where continuous
evolution is specified, or a point in real time where a new energy state value may be
specified by an algebraic relation. All discrete changes have to occur at well defined
points in time. Consider the example of the perfect elastic collision of the bouncing
ball shown in Fig. 21. Model configurations where the ball is moving freely (up or
down) represent continuous modes of operation where system behavior evolves over
time. The system model is abstracted so that the collision process is perfect and
elastic, and holds only at a point in time at which the ball momentum is reversed.
At this point in real time, no continuous evolution can be specified, if the ball and
floor were in contact for any period longer than a point in time, the ball’s momentum
would transfer to the floor, and it would come to rest. On the other hand, if this
real mode did not exist, i.e., the ball and floor never touched, the ball could not

exchange momentum with the floor, which implies its velocity would never reverse.
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Figure 21: Real modes can have a point or interval presence in time and have to
ensure time continuity.

The configuration where the ball is in contact with the floor is abstracted to a point,
which is then followed by an interval of time where the ball travels upwards exhibiting
continuous behavior.

In summary, this method for representing the bouncing ball behavior as a discon-
tinuous change from a real mode (moving downward) to a second real mode (point of
contact with the floor modeling the collision) and then a discontinuous change to a
third real mode (moving upward) is much cleaner than a discontinuous model which
represents the reversal in ball velocity as an initial value problem (e.g., [19, 57]). In
the latter situation, the point in time at which the collision occurs is considered to
be the start point of the second time interval with the ball moving freely upward,
and the model specifies the initial velocity of the ball at the start point. This model
implies the ball is always moving freely, up or down, reversing its velocity at a par-
ticular position with no explicit physical phenomenon, such as a collision, to account
for the change. The net result is a model that violates the principle of invariance of

state, because stored momentum changes abruptly without explicit interaction with
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the environment.

Summary
This chapter categorically analyzes discontinuities in physical system behavior.
These discontinuities can be the result from either time-scale abstractions or param-
eter abstractions, and result in mode switching behavior of the system. The principle
of conservation of state governs transfer of system state between two modes of oper-

ation.

Principle 1 (Conservation of State) Between two modes of operation, the total

state in the system (i.e., charge, momentum, etc.) is conserved.

Transfer of state between modes of operation may result in discontinuous dissipation.
In case of an isothermal system this dissipation is not shown, otherwise it has to
be modeled explicitly as a Dirac source of entropy, to ensure that the principle of

conservation of energy is not violated.

Principle 2 (Conservation of Energy) [fthe environment is not assumed isother-
mal discontinuous dissipation as a result of changes in the operational mode has to

be represented by a Dirac source of entropy

Another effect of discontinuities is that the system model may move through a series

of mythical mode changes before a new real mode is achieved.

Definition 1 (Mythical Mode) A mythical mode is a model configuration that has
no representation in real time. Therefore, its state vector is not part of its operational

domain.
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Because the state vector is beyond the operational domain of the model configuration,
a mythical mode immediately generates a new configuration. Mythical modes do
not have a physical meaning nor representation, and, therefore, these sequences of
instantaneous change are modeling artifacts and could be removed in a model pre-
processing step. Since a particular model configuration may be mythical or real,
depending on the corresponding energy state, it is cost-effective to formulate model
semantics that handle mythical modes correctly. These semantics are based on the
principle of invariance of state, which states that mythical modes do not affect the

mapping of the energy state between real modes.

Principle 3 (Invariance of State) The energy state vector of a system is not af-

fected by mythical modes.

It is important to note that mythical modes do not affect the system state. This is
a more precise statement than attempting to define mythical modes as states where
no continuous behavior is defined. This is clearly illustrated in the bouncing ball
example, where the point of impact represents a mode where only algebraic constraints
on priori and posteriori values hold, and no continuous evolution in the form of
differential equations can be defined. Though this mode is not continuous, it is still

real.
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CHAPTER IV

HYBRID BOND GRAPHS

Bond graphs use a small set of domain independent physical mechanisms to pro-
vide a powerful modeling formalism for complex physical systems [53, 104, 107].
These mechanisms and a junction structure inherently enforce energy conservation
and power continuity constraints on system models to provide an elegant basis for
analyzing the continuous behavior of physical systems. However, as shown in Chap-
ters I and III, efficient modeling requires support for discrete, model configuration,
changes. This chapter introduces a primitive switching element and control struc-
ture into the traditional bond graph formalism to allow for discrete changes in model

configuration, and, therefore, discontinuous changes in system behavior.

Introduction

Typically, a system can be looked upon as a composition of n sub-systems, each of
which can operate in k possible modes of operation. Overall, the system can operate
in n* behavioral modes. However, only a small number of these modes are actually
achieved during normal operation of the system. In case of well known systems that
operate in a limited number of modes, a global control structure can be pre-defined
for determining system modes and the model associated with each of them [9, 18].
However, for lesser known systems, or for systems that will be operated in unknown
ways, pre-enumeration becomes infeasible and brute force techniques cannot be ap-

plied because of combinatorial explosion, therefore, compositional modeling methods
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are often applied to provide a solution [36, 95, 96]. These approaches generate models
dynamically by composing model fragments.

Bond graphs provide a good framework for compositional modeling approaches [10]
where the model for a mode of operation is generated by establishing or disconnecting
energy connections between sets of bond graph elements at junctions. Such junctions
are controlled locally using signal values tapped from the bond graph model. A
controlled junction can be in one of two states, on and off which correspond, respec-
tively, to the presence or absence of energy connections associated with this junction.
Consequently, a system is modeled by first establishing a bond graph model of all
possible components and their energy connections or interaction. Next, junctions are
identified that turn on and off based on a local control mechanism. Once all control
mechanisms are defined, valid models for each of the modes a system goes into can be
generated dynamically from this overall energy model while components of the bond

graph can be mapped back to components and mechanisms of the physical system.

Discontinuities in Bond Graphs

To extend bond graph modeling to hybrid physical systems without losing the
inherent principles that govern physical system behavior and captured in bond graph

models, several issues need to be taken into account.

— Interaction between the discontinuous part and the continuous part has to be
consistent and the formalism specifying the discontinuous behavior has to be

verifiably correct.
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— In a discontinuous environment, continuity of power cannot be guaranteed,
however, conservation of energy during a sequence of discontinuous changes can
and must be enforced. This means that the basic building block for ideal dis-
continuous configuration changes, modeled as switches, do not dissipate energy.
When dissipative effects have to be modeled, resistive components have to be

included in the system model.

— When discontinuous changes occur, causality may change. The formalism has
to provide for a consistent, algorithmic, causality assignment scheme that holds

in general.

— If a number of instantaneous discontinuous changes occur, the formalism has
to ensure that this sequence ends in a valid mode of system operation with
a correct state vector. The last mode in this sequence has a real manifesta-
tion, therefore, exchange of energy with the environment may occur causing

discontinuous dissipation.

To model configuration changes in bond graphs, recently Broenink and Wijbrans
have introduced switching bonds [18] and Stromberg, Top, and S6derman have applied
an ideal switch [116, 117, 126]. Switching bonds are based on structural analysis of
real-time systems, which can be modeled in terms of two components: a data flow and
a control flow component [29, 46, 131, 132]. Lent conjectures that all systems can be
described in this manner [128]. For switching bonds, the data flow part is represented
by the bond graph formalism and the control flow part is represented by a control box

that contains switching logic in the form of a global finite state automaton. Interaction

! Consider power supplied by a source that generates a true step.
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Figure 22: Switching bonds handle boundary conditions incorrectly.

occurs through switching bonds, i.e., an energy connection (or bond) is either present
or not present. The interaction is depicted by a black box that is connected to a
switching energy bond in the bond graph. Though the concept of separate data and
control models has a lot of merit, interaction between the two through switching bonds
causes problems. First of all, it may cause hanging junctions. More seriously, changing
boundary conditions due to switching are incorrectly handled. For example, in Fig. 22
if the switch opens, the corresponding bond in the bond graph disappears. Though
this disconnects the parallel part, the bond graph still shows a series connection
(1-junction) that in reality is not present.

To eliminate these problems, Stromberg, Top, and Soderman introduced the
switch, a new bond graph element, that enforced 0 effort or 0 flow on a junction
to turn it on or off (Fig. 23). Notice that this is a degenerate form of the regular
source elements, and its primitive effort/flow characteristic is commonly used in power
electronics [55]. Because of the 0 effort or 0 flow, power (effortx flow) supplied by the
switch is always 0, which conforms with the requirement that switching consumes no

energy. However, the switch has some disadvantages:
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— Since switches are not energy elements, it is unnatural to represent them as

bond graph elements.

— Switches are transitional elements that are only used to infer new modes of
operation, consequently they represent control aspects rather than physical con-

cepls.

— The use of switches obscures hierarchical structures. Typically when a system
switches modes, a set of switches go from on to off or vice versa. Relations
among switches are hard to identify and the use of bond graph elements clutters

the model.

— The functionality of a switch is completely determined by the type of junction
it is connected to. The same switch connected to a dual junction is off when

on and vice versa.

Based on the aspects of switching bonds and the switch as bond graph element,
Mosterman and Biswas have proposed the controlled junction [76]. The controlled
junction recognizes the presence of data and control flow structures and the need for

a separate formalism, along with bond graphs, to represent the control structure of a
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physical system. The interaction between the control structure and the bond graph
occurs by switching controlled junctions (rather than bonds), where the specification
of controlled junctions adheres to the ideal specifications of the switch. Using finite
state automata [1, 56] for the control part provides for a powerful hybrid formalism
that is based on proven modeling methods. Interaction between the formalisms is

consistent and rigorous which renders it verifiably correct.

The Modeling Language

Formally the hybrid bond graph approach combines continuous-time and discrete-
time formalisms, which are modeled by traditional bond graphs [53, 104] and finite
state automata [1], respectively. These two formalisms interact through controlled
junctions which capture discontinuous variable changes. In the bond graph, controlled
junctions have associated subscripts, e.g., 11, 02, to differentiate them from traditional
junctions and also to provide a reference to their corresponding finite state automaton.
The hybrid bond graph model of the latched bi-tank system (Fig. 19) is shown in
Fig. 24. A controlled junction behaves like an idealized switch. A 0-junction that
is off enforces 0 effort whereas a 1-junction that is off enforces 0 flow. When the
junctions are on, they operate as regular junctions.? A change of state of a controlled
junction may affect adjoining junctions and thus the causal relations in the graph.
These new causal relations can be algorithmically derived using SCAP or its modified
form MSCAP [129] in the new configuration.

In case of configuration changes, it becomes critical to establish correct loading on

all adjoining bonds. Fach power bond connected to a deactivated controlled junction

2A similar timed junction has been applied for illustrative purposes in [123].
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Figure 24: The controlled junction establishes mode-switching behavior.

Figure 25: Operation of the controlled junction.

is loaded by a source element of 0 value to correctly handle boundary conditions of
the disconnected model fragments (Fig. 25). In most bond graph models of physical
systems, 0- and 1-junctions appear in alternating sequence, therefore, when a junction
is deactivated, its adjoining power bonds can be removed from the bond graph to
establish the new model configuration. Also, the effort causality as enforced by a
deactivated 0-junction typically does not completely determine causality on all bonds
of a neighboring 1-junction. Neither does flow causality of a deactivated 1-junction
propagate directly across adjoining 0-junctions.

The subscripts of each controlled junction (e.g., 0y in Fig. 26) identifies its as-
sociated finite state automaton that determines whether it is in the on or off state.
In other words, the finite state automaton defines a junction’s control specification

(CSPEC). The input of each CSPEC consists of

— power variables from the bond graph, and
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— external control signals.

This input is depicted in the hybrid bond graph as arrows into the controlled junction.
Mathematical operations may be applied to the power signals before they are input
to the CSPEC. These operations can be modeled by a block diagram (as is used in
the bond graph modeling tool CAMAS [16]) to manipulate signal values on active
bonds. The output of the CSPEC sets the associated controlled junction to on or
off. Internally the CSPEC can have any number of states, its control logic can be

combinational or sequential. Conditions for a valid CSPEC are:

— FEach internal state must map onto an on or off state of the controlled junction.

— Transition conditions on the edges have to evaluate to boolean values in each

mode of operation.

The CSPEC conditions have to result in at least one real mode of operation for

all reachable energy distributions.

The CSPEC conditions consist of values immediately before (priori) and after

(posteriori) switching.

The final condition is an important characteristic of the CSPECs. The priori values
are unchanged, invariant, during a sequence of instantaneous changes. Such a se-
quence is driven by the posteriori values, as these may differ for each newly inferred
mode of operation. Therefore, priori values determine which modes of operation are
required to have a physical manifestation (typically the result from time scale abstrac-

tion), whereas posteriori values determine sequences of modes that can be traversed to

56



Se OFF Se ON Se
mg mg

mg
| —1—=R L lke—1—~R | =—1—R
m ) R1 @) |:> m T R1 m R1
A

Fba”C .[ Voall  Fq<0 i JVbauSO S G

0, OFF 1 1

Sf Sf Sf

0 0 0

Figure 26: Hybrid bond graph model of an ideal non-elastic collision.

reach these modes (typically the result from parameter abstraction). Discontinuous
changes in signal values are characterized by different priori and posteriori values.
The set of local control mechanisms associated with controlled junctions constitute
the control model of the system. The control model performs no energy transfer,
therefore, it is distinct from the bond graph model that deals with the dynamic
behavior of the physical system variables. Control models describe the transitional,
i.e., mode-switching behavior of the system. A mode of a system is determined by
the combination of the on/off states of all the controlled junctions in its hybrid bond
graph model. Note that the system modes and transitions are dynamically generated,

and do not have to be pre-enumerated.

A Perfect Non-Elastic Collision

The use of controlled junctions for a perfect non-elastic collision between a ball
and floor is illustrated in Fig. 26. The ball inertia is modeled as m, the air resistance
as Ry, and gravity as an effort source, mg. In the off state, there is no connection

between the ball and the floor and the bonds connecting the ball to the resulting effort
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source with 0 value can be disregarded. The flow source with 0 value is disconnected
as well. The CSPEC part of the model shows that at the point the ball touches the
floor ([ vpan < 0), the controlled junction turns on and the flow source with 0 value
becomes connected to the mass. This implies that the ball velocity = 0, but the
connection between the ball and floor source also causes a change of causality, forcing
the inertial element to operate in derivative causality. The ball stays connected to
the floor as long as the force it exerts is > (0. When this force becomes negative, the
junction turns off again, and the ball inertia becomes independent. Its momentum
is reversed, and the ball flies up. This example illustrates a seamless integration of
multi-mode behaviors in one model based on a local switching mechanism. Other

examples of hybrid bond graph models are discussed in [77, 78, 79, 85].

Mode Switching

As shown in Chapters I and III, a discontinuous change may propagate through
a system causing other discontinuous changes to happen instantaneously. Model ab-
straction makes it hard to explain such a complex chain of events in incremental
causal terms. Nishida and Doshita [98] address these problems by moving the system
through a sequence of mythical instants. These mythical instants are arrived at and
departed instantaneously, therefore, they are considered transitional. Sequences of
mythical changes make the task of algorithmically inferring the eventual real mode
that is attained and its correct state vector, a real challenge. Since the transitional
modes are mythical and never achieved in reality, they do not affect the energy balance
of the system. Therefore, the signal values in each mode in a sequence of instanta-

neous changes are calculated from the original energy distribution, i.e., the energy
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distribution in the last real mode before the sequence of mythical changes occurs.
This issue is of paramount importance in correctly inferring new modes of operation
and the initial state vector in these modes.

The principle of invariance of state (Chapter III), i.e., repeatedly using the energy
distribution of the previous real mode during mythical mode switches, governs the
computation of the initial values of the state variables in the new real mode. This
process is illustrated in Fig. 27. The real modes are depicted by a white background
and the mythical modes are shown on a dark background. In the final stage, after
a real mode «,, is reached, the energy distribution of the previous real mode, as
represented by their energy state variables p and ¢, is mapped onto the new mode.
Physically, and in real time, the system has moved from mode «j into mode a,,
instantaneously at time ¢;. The Mythical Mode Algorithm (MMA) is formally pre-
sented as Algorithm 1. In this algorithm, (£, F') represent the set of effort and flow
variables, and (P, Q)) represent the set of energy variables (generalized momentum and
generalized displacement) in the system at switching time ¢5. The set (P,,,Q,,) and
corresponding (F,, , I, ) are priori switching values, whereas (P, Q%) and (E*, F'T)

are posteriort switching values.

Algorithm 1 Mythical Mode Algorithm

Calculate the energy values (Qq,, Pu,) and signal values (Eq,, Fq,) for bond graph model ay, at
time €.
Use CSPEC to infer a possible new mode given (F,,, Fy,) and (ET, F%) = (Eq,, Fa,)-
while one or more controlled junctions switch state do
Derive the new bond graph, a4
Propagate causality.
Calculate the energy values (Pt Q%) and signal values (E+, F'T) for the new mode, a4, based
on the initial values (Qq,, Pa,)-
Use CSPEC again to infer a possible new mode based on (Ey,, Fa,) and (E1, FT).
end while
Establish the mode, ay,, as the new real system configuration at the point of discontinuity.
Update (Qq,, Pa,) to the energy distribution for ay, (Qa,,, Pa.,)-
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Transfer of Energy State

To derive the new state vector in a new mode, it is observed that in a hybrid bond
graph discontinuous state changes only occur if storage elements become dependent

(Chapter III). One of two cases may occur [79]:
1. one or more storage element may become dependent on a source, or

2. two or more storage elements may become dependent on each other and -
sources become active, and the state vector between the two configurations is

different.

In the first case, the posterior energy stored in the dependent elements, pi, is deter-

mined by the value of the source, u,
pi =rsiCiu, (4)

where rg; is a gain factor associated with the route from the source to the dependent

element, ¢, and C; is the dependent element. In the second case, Dirac pulses, 4, are
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induced by explicitly modeled sources or dependent storage elements that enforce a
discontinuous change of the independent, integrated, state variable, pi. The area of
such a pulse combined with the gain factor from its origin to the independent storage
element specifies a change of pf. The cumulative change is given by the general

formula:

pe=pot D, asimiot+ Y. as;rio. (5)

storage,: Sources,;

The area as ; is the explicitly modeled interaction with the environment, and the area

as,; can be calculated as

which is the loss of generalized charge or momentum in the dependent storage el-

2

ements. The new signals generated by dependent states, -, are forced to values

+
determined by the new signal from the independent storage element, %, and the gain
factor. This is described by
C.
+ .
= T0i = 7
pz 0, Copo ( )

which, along with Eq. (5) and Eq. (6), can be applied to determine the new value of
the independent state variable, pd .

In the special case that no explicitly modeled é-sources become active, conserva-
tion of state holds because the amount of generalized charge and momentum added
to the independent storage element equals the loss by each of the dependent storage
elements combined. Therefore, the total amount of charge and momentum in both
modes remains the same. For n dependent storage elements, element 0 is assigned to

be in integral causality and the new value of its stored energy, p, is determined by
n—1
pe = po+ (0 = pi)rio (8)

=1
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This can be expressed in terms of the value of the independent storage element, p¥,

by substituting Eq. (7)

n—1 Cz
p(J)r =po+ Z(To,i_pg_ - pi)rm (9)
=1 CO
or [85],
n n—-1 Cz n—1
pg (1= rioroi—=) =po— Y_ Tiopi (10)
=1 CO =1

where r; ¢ 1s the gain factor associated with the route from storage element ¢ to element
0, and C; is the parameter value of storage element :. Note that this may result in

loss of energy to the environment [87].

Implementation

The behavior generation algorithm has three key modules:

1. ESPEC, the energy model of the system, specified by a bond graph,

2. CSPEC, the information model of the system specified by finite state automata,

and

3. MMA, the mythical mode algorithm that controls interaction between ESPEC

and CSPEC.

The MMA was implemented under Microsoft Windows using Visual Basic 3.0 Pro-
fessional Edition [24]. The continuous model is incorporated as a system of explicit
difference equations which are derived from the bond graph model manually. Note
that the derivation process for system equations is already fully automated in systems

like CAMAS [16]. Integration is implemented as a forward Euler approximation and
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Figure 28: A diode-inductor circuit which causes a mythical mode.

careful selection of the time step produced good results in spite of this simplifying

approximation. Fach CSPEC is implemented as an [F-THEN-ELSE statement.

The Diode-Inductor Circuit

An example implementation of the diode-inductor circuit (Fig. 28) discussed pre-
viously in Chapter I is illustrated. First, 0-junctions are associated with all common
voltage nodes. In the particular circuit there is one node (apart from ground) with
three branches. The inductor, L, can be directly connected to the 0-junction. The
remaining branch that consists of a series or common flow connection, 1-junction,
connects Ry and Vj,. Because of the switch, this is a controlled junction, 1;, that
turns on and off based on an external control signal as specified by CSPEC 1. Finally,
the diode branch can turn on and off as well, based on signal values in the circuit
specified by CSPEC 2. When on, the diode enforces a constant voltage, Vj;.4e, and

this is represented by a voltage source.

63



This circuit was also described by Lorenz [63], but the MMA methodology is more
formal and systematic. The CSPEC definitions for the model are local, therefore, no
global control structure needs to be known beforehand. Given an initial state, all
system modes that are reachable from this state will be generated dynamically by

simulation. The four possible modes of the system are:

apo — switch open A diode not conducting
ap1 — switch open A diode conducting
a10 — switch closed A diode not conducting

a1 — switch closed A diode conducting

CSPEC and MMA are applied to effect mode switching in the system. Initially the
switch is open, the inductor has no stored energy, the diode is not conducting, and
the system is in mode ago (Fig. 29). At time step 10 the switch is closed, the system
moves into the mode ayq, and all effort and flow values are recalculated for the new
configuration. No further mode transitions occur, and the inductor charges as shown.
At time step 100, the switch is reopened and the MMA recomputes all efforts and
flows for the new mode agg. The inductor becomes dependent on a 0 value flow source
which forces its flux to 0 (Eq. (4)). Because it had built up a flux (i.e., energy po),
disconnecting it induces a large negative voltage (—oc in the limit). This causes the
diode to come on instantaneously, so mode agy becomes mythical, and the system
switches to mode «gy, where the effort and flow values are recomputed based on
the initial flux of the inductor. Again the new values do not cause another mode
change so KESPEC is active and Fig. 29 shows that the inductor discharges through
the diode. Note that the signal values computed for the mythical mode are only

used for switching (with no loss of energy), therefore, the infinite negative voltage
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Figure 29: Simulation result of the diode-inductor circuit with parameter values V;,, =

10V, By, = 3309, L = 5m.

is never reached. If it were, the stored energy of the inductor would be released
instantaneously, producing an incorrect energy balance in the overall system.

With time, the flow (current) through the inductor decreases to zero. At time
stamp 315 the current value is < 0. Therefore, the current through the diode is
> 0 (opposite sign) and this causes a final transition: The system again switches to
mode agg, and since there is no stored energy in the system, this becomes the final
state. The spike observed in simulation is an artifact caused by the time step used for
simulation. In this simulation, between the two time steps the current went from a
small positive to a small negative value before the transition took place. Thus when
the system transitioned to the aggp mode the small current in the inductor went to 0

instantaneously, which resulted in the spike shown.
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Divergence of Time

Consider a scenario where the diode requires a threshold current [;;, > 0 to main-
tain its on state. If the inductor has built up a positive flux, the diode comes on
when the switch opens. However, if the flux in the inductor is too low to main-
tain the threshold current, the diode goes off instantaneously, but in its off state the
voltage drop exceeds the threshold voltage again. The model goes into a loop of
instantaneous changes (see Fig. 4) and real time halts.

In general, if switching specifications are such that at any point in a discontinuous
sequence of switches the system comes back to an already generated discontinuous
configuration, a loop of discontinuous changes ensues. This implies that system be-
havior stops progressing or diverging in real time, which is obviously in conflict with
physical reality, and divergence of time constitutes an important condition for verify-

ing a system model for physical consistency.

Principle 4 (Divergence of Time) Model configuration changes have to terminate

in a real mode of operation.

Chapter V presents a verification methodology based on divergence of time by apply-
ing a multiple energy phase space analysis in detail. Discussion on the divergence of

time principle also appears in other work [47, 79].

Summary
Hybrid bond graphs incorporate a combination of continuous energy modeling and
multiple discontinuous behavior modes to define a comprehensive modeling method-

ology for physical systems. The systematic and uniform mode-switching method adds
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to the formal compositional modeling properties already associated with traditional
bond graphs. The consistent, rigorous and complete modeling language developed

combines:

— the bond graph scheme to model the energy-related aspects of system behavior,

and

— finite-state automata to model signal-flows that cause configuration changes in

the bond graph model to produce discontinuous behavior.

Interaction between the two components of the model are restricted to signals that
act on so-called controlled junctions. These signals are an integral part of the bond
graph language.

The strict definition of the interaction between the energy-flow and signal-flow
components of the modeling methodology is of paramount importance in generating
valid physical models. The approach presented supports modeling discontinuities
caused by (1) abrupt switching, such as in idealized valves and diodes, (2) mode
switching caused by parameter value changes, such as the change from laminar to
turbulent flow in a pipe when the Reynolds number goes above a threshold value,
and (3) configuration switching caused by changes in sub-system models.

The advantages of the described method are:

1. focusing on the energy model instead of the external control models (as is done

in QSIM and CC) allows for dynamic model composition,

2. the inherent integrity checks enforce physically correct models during continuous

operation, and
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3. the physically consistent interaction between the energy and logic model com-

ponents allows for verification of mode switching behavior.

Dynamic model composition is extremely important for complex systems that include
a large number of discontinuous components. As discussed earlier, such systems can
exhibit an exponential number of modes, therefore, pre-enumerating modes is not a
feasible approach to building system models. Moreover, a large number of these modes
are not physically achievable, but that cannot always be determined before hand.
The inherent integrity checks ensure the physical correctness of a model and aid the
modeler in building a correct model. Furthermore, the conservation and continuity
constraints help reduce the number of spurious behaviors that are generated. Overall,
the four principles outlined in Chapters I1I and IV along with the hybrid bond graph
methodology provides a powerful scheme for modeling complex physical systems at
various levels of abstraction, while ensuring the physical correctness of the models

generated.
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CHAPTER V

ENERGY PHASE SPACE ANALYSIS FOR MODEL VERIFICATION

This chapter first shows how priori switching values are used to model algebraic
constraints. Next, it develops a multiple energy phase space analysis technique for
analyzing CSPECs, detecting physical inconsistencies, and then using priori switching
values to correct them. This approach is based on invariance of state (Chapter III)

which provides for a switching invariant that can be exploited in analysis of switching

behavior [79].

Combined Perfect Elastic and Non-Elastic Collision

As an example, first consider a perfect elastic collision (Fig. 30). When the ball hits
the floor with a velocity v, it creates an impulse which results in a reaction impulse by
the floor. In case of a perfect elastic collision, this causes the ball to instantaneously
reverse its velocity and start traveling upwards. In the corresponding hybrid bond
graph model, this is modeled as a modulated flow source that becomes active when
the controlled junction 1 (0;) comes on. The CSPEC indicates that this happens
when the position of the ball reaches the floor. Collision behavior is best described
algebraically, i.e., vT = —v, as opposed to continuous dynamic operations defined by
a set of differential equations. Therefore, the configuration only holds at a point in
time, instead of an interval. This is achieved by using the momentum of the ball prior

to switching as the condition to turn the flow source off (pya > 0). Upon impact, it

is first inferred whether this is the new real model configuration and if so, switching
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Figure 30: A perfect elastic collision.

ends and the priori switching values are updated. In this case, the new priori values
immediately invoke a configuration switch, resulting in a model where behavior is
governed by a set of differential equations. The convention throughout this thesis is
that these priori values are expressed as energy variables (generalized momentum p,
and generalized charge ¢) and the posteriori values are described by power variables
(flow f, and effort, €), here v and F. The configuration switch infers that the ball
moves upward as a result of reaction force created by the algebraic constraints, and the
controlled junction turns off and the ball is represented as a separate model fragment
again. Notice that the amount of energy returned by the floor, i.e., the coefficient of
restitution [13], is a modeling decision since the floor is not part of the system but of
its context.

Now, consider a combination of a perfect elastic and a perfect non-elastic collision
model. This results in a ball bouncing with decreasing amplitude because of air
resistance, and after a certain amount of time, when the ball hits the floor with

momentum less than a pre-set threshold, the perfect non-elastic collision’ mode is

I'This models the physical notion that the restitution coefficient depends on the impact veloci-

ties [13].
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Figure 31: A combined perfect elastic and non-elastic collision.

activated, and the ball comes to rest on the floor (Fig. 31).

To analyze the physical consistency of this model, all switching conditions in the
CSPECs have to be expressed in terms of stored energy prior to switching, which is
represented as a two dimensional space with axes pyq; for the momentum of the ball,
and wp,y for the position of the ball. All CSPEC transitions are already specified in
terms of priori switching values, except for the force Fj,;; which, from the bond graph,
is computed as Fy,y = —F, + F,, + Fr1, where g represents gravity. [}, is the force
of the ball on the floor and when its value is negative, the ball disconnects from the
floor. To derive the conditions under which the controlled junction 1 turns off in a
sequence of switches, Fp,;; has to be expressed in terms of the priori values for .
and pp,. The storage element dependency that arises when the flow source becomes

active, causes [, to have a derivative relation, i.e.,

_dr

Fo=— 12
0 (12)

From the CSPEC for controlled junction 1, the condition for switching is Fpy < 0.
When this junction is in its off state, pray = muvpey. When it switches on, the velocity

and momentum of the ball become 0 instantaneously. Based on the constituent
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relation in Eq. (12), this causes a Dirac pulse on F,,, which approaches +00 depending
on whether the stored momentum was negative or positive. If the momentum was 0,

F,, equals 0. Let the function sign be defined as

-1 ifz<0
sign(z) =4 0 ifr=0 (13)
1 ifz>0
The condition for switching becomes Fyy = —F, — sign(p)d + Fri < 0. Because

of the magnitude of the Dirac pulse, the effect of the gravitational force and the air
resistance can be neglected at switching if p # 0. With the minus sign compensated,
the condition for the controlled junction 1 to transition immediately from the on to
off state is sign(p)d > 0. This inequality holds for all values of p > 0. If p = 0 then
F,, = 0 and Fr = 0, so the switching condition becomes —F, < 0. Because of the
negative value of F, (the gravitational force acts downward), this condition is never
satisfied and no further switching occurs. Consequently, the area for which p > 0
(modes 01 and 11) is grayed out in the phase space in Fig. 32.

The two switches instantaneously affect variables that are used in transition con-
ditions of their CSPECs so they have to be analyzed for consistency of their combined
effect. To this end, phase spaces are established for each of the four modes of the
combined elastic and non-elastic collision and labeled 00, 01, 10, and 11, where the
left digit indicates whether the controlled junction 2 is on (1) or off (0), and the right
digit indicates the same for controlled junction 1. The energy phase spaces for each
of these modes of operation are shown in Fig. 32. The areas that are instantaneously
departed are grayed out and the conjunction of the four energy phase spaces (Fig. 33)

shows that there is an energy distribution which does not correspond to a real mode
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Figure 32: Energy phase spaces for each of the modes of operation of a combined
perfect elastic and non-elastic collision.

of operation. Since the dimensions of the energy phase space are invariant across
switches, this energy distribution cannot reach a real mode of operation during a
sequence of switches, thus violating the divergence of time condition.

In this part of the phase space, when the ball hits the floor, it has positive momen-
tum. For the bouncing ball, this mode is unreachable, and, therefore, the model is
consistent. The system always moves towards a negative momentum and it instanta-
neously reverses when the displacement becomes zero (Fig. 33). So, analytically, the
displacement never becomes negative. However, due to numerical disturbances, or
initial conditions, the model may arrive in the physically inconsistent area of opera-
tion, especially in case the floor is another moving body. Therefore, in such situations
or when simulating the system, the CSPEC conditions are not sufficiently constrained
to avoid meaningless physical behaviors.

From the physical system it is clear that additional constraints can be imposed
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Figure 33: Conjunction of the multiple energy phase spaces for each mode of operation
of a combined perfect elastic and non-elastic collision.
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Figure 34: Multiple energy phase space analysis of the modified model shows there
is a real mode of operation for each energy distribution.

based on the momentum of the ball. Since the switching conditions of CSPEC 1
are not mutually exclusive, the conditions py,;y < 0 and pp; > 0 can be added
to the off/on and on/off transitions, respectively. This results in the energy phase
spaces shown in Fig. 34, and the conjunction of the energy phase spaces now has a
real mode of operation for each energy distribution. Because of the combinatorial
switching logic, this real mode of operation is reachable in one switching step. A
simulation of the physically consistent system is shown in Fig. 35. The air resistance
(Ry), causes the amplitude of the ball to decrease until the momentum of the ball

falls below the threshold value py;, and the ball comes to rest on the floor.
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Figure 35: A bouncing ball which comes to rest when its impact velocity is below a
specific threshold value.

Managing Complexity

The multiple energy phase space analysis technique requires combined analysis
of all of the individual phase spaces for each permutation of the switches, and this
is exponential in the number of switches. To prevent this combinatorial explosion,
the physical characteristics of energy storage elements can be utilized to partition the
system. If k sub-systems can be identified with [ interacting local switches, the energy
phase space complexity becomes k2!, which is much smaller than 2!, Typically, good
system decompositions should result in a small? number of switches per sub-system,
therefore, the analysis becomes more manageable. If decomposition is unable to bring
down the computational complexity to reasonable levels, the model stiffness can be

reduced by introducing additional storage elements (i.e., reintroducing some parasitic

2Otherwise, the system is very stiff and dynamic effects can be collapsed into fewer storage
elements, e.g., this is the case for automatic transmissions in automobiles [68].
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effects).

To determine the set of locally interacting switches, the input and output signals of
each switch are established. All switches (i.e., controlled junctions) whose associated
signals are used as CSPEC input to other switches are considered dependent and part
of the same sub-system, thus creating their own local mode. Signal value changes at
a switch may eventually affect signal values over the entire bond graph, but energy
storage elements, because of their integrating effects, prevent instantaneous changes
across them. Therefore, there is a time lag before input signal changes can cause
output signal changes for these elements and their downstream elements. Therefore,
switching effects only propagate along power bonds till an independent energy storage
element is reached.

The delay characteristic of energy storage elements is only valid for elements that
are independent in all switch configurations. When elements become dependent, i.e.,
their behaviors are defined by derivative causality, signals propagate across them
instantaneously. Dependency between storage elements in the bond graph is checked
by identifying causal boundaries. In the bond graph, each 0-junction with an incident
Se, R or (' can be considered a sink of flow causality, and each 1-junction with an
incident Sy, Ror [ is a sink of effort causality (Fig. 36). These constructs prevent flow
and effort causality from propagating. This property can be exploited to partition
the bond graph into instantaneous effort and flow areas with their corresponding
and [ elements. If each effort and flow area contains only one of each type of storage
element, this element is always independent. Therefore, it can be used as a border of
instantaneous propagation, i.e., no instantaneous propagation is transmitted through

such elements.
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Figure 36: Sinks of effort and flow causality partition the instantaneously affected
parts of a bond graph.

T T T
~—0—1 I=—1<~—0—>1 1~—0—=1—=0—

Figure 37: Multiple I elements in one flow area may become dependent.

Fig. 37 shows several examples of the application of the partitioning method. In
the left-hand graph, even though the controlled junction is on and the two [ elements
are currently independent, they can become dependent, and, therefore, defined to
be part of one flow area for creating sub-systems. Similarly, in the middle graph,
the I elements are independent when the controlled junction is off, however, the
partitioning analysis again determines that they may become dependent when the
junction comes on, therefore, they are assigned to the same flow area. In the hybrid
bond graph model on the right in Fig. 37, the I elements are separated by a sink of
flow causality, and, therefore, they are always independent.

Once flow areas and partitions are established, the dimensions of the energy phase
space for each of the local modes are derived from the input signals to the CSPECs.

All variables of energy storage elements that affect a particular signal which is used as
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Figure 38: The two steps to establish interacting switches, local modes, and the
dimensions of their energy phase space.

a CSPEC transition condition are to be included as a dimension. In addition, input
signals (i.e., variables enforced by sources) are included as phase space dimensions.
Finding locally connected switches and the dimensions of the energy phase space

is a two step process (Fig. 38):

— For each switch, find all other switches that have input signals affected by its

output.

— For each set of interacting switches, compile the energy variables that affect

their input signals.

The Internal Combustion Engine

To illustrate how instantaneous changes propagate through parts of a system, a
model of a spark-ignition internal combustion engine is considered. Special attention

is directed toward the valve- and ignition-timing sub-system.
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Figure 39: The four strokes of a spark-ignition internal combustion engine.

The Working of a Four-Stroke Engine

The four stroke internal combustion engine operates in four distinct modes (Fig. 39)
[100]. During its intake stroke, the intake valve is opened and as the piston moves
down, the air/fuel mixture is drawn into the cylinder. After the piston reaches bottom
dead center (BDC, i.e., its lowest point), the intake valve closes and the mixture is
compressed as the piston moves up. Ideally at top dead center (TDC), ignition occurs
by inducing a high voltage on the spark plug. During ignition, the chemical energy
contained by the mixture is released in the form of heat. This causes a dramatic rise
of temperature and pressure which is transformed into work during the power stroke,
during which the piston moves down. At BDC the exhaust valve opens and during
the exhaust stroke the exhaust fumes that remain after ignition are expunged from
the cylinder. At the end of this stroke, the piston is at TDC and ready to start a new
intake stroke. Note that in reality valve- and ignition-timing deviates from the ideal

situation to optimize engine performance under real conditions.
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Figure 40: A spark-ignition internal combustion engine.

The Valve-Timing Sub-System

The valve- and ignition-timing mechanism is controlled by a cam-axis. For the
four-stroke engine each valve opens once every two revolutions of the crank-axis,
and the cam-axis rotates at half the speed of the crank-axis (Fig. 40). Timing is
established by a number of cams, a mechanism to open and close valves, on the cam-
axis. At desired times, a cam opens a valve by displacing the valve tappet. This
tappet connects to the valve’s rocker arm by a pushing rod. A valve spring ensures
that the valve closes as the cam displacement returns to its original position (its base).

The cam-follower mechanism shown separately, is modeled as a combined perfect
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Figure 41: Cam mechanism which opens a valve during one revolution.

elastic and non-elastic collision between the tappet of the pushing rod and the rotating
cam. As the cam rotates, the rod is lifted by an amount that is proportional to the
rotational angle of the cam (Fig. 41) [45]. If this rotation exerts sufficient force,
the inertia of the valve mechanism may cause the tappet to lift off the cam only to
bounce back at a later time. If the momentum of the valve mechanism is higher than
a threshold value, this collision is considered perfect elastic, otherwise it is perfect
non-elastic.

The hybrid bond graph model of this system (Fig. 42) is very similar to the
combined perfect elastic and non-elastic model of the bouncing ball. However, in
this situation, the value of the displacement, xy,, that causes contact between the
cam and the rod-tappet is variable and the momentum at collision becomes p.,; =

M(Veam — Vrod). Furthermore, the value of the modulated flow source differs, as derived

by
U;I(—lm - U;I—od = —G(Ucam - Urod)- (14)
Given ¢ = 1 and v}, = v, (the assumption is that this velocity is not affected by

the collision), this yields

v = 2eam — Urod- (15)

rod
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Figure 42: Hybrid bond graph model of cam-follower system.
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Figure 43: Energy phase space analysis of the cam-follower system.

The energy phase space analysis of the hybrid model in Fig. 42 is shown in Fig. 43
to be physically consistent, and simulation of one cam revolution is shown in Fig. 44.
Notice that one of the phase space dimensions represents a source variable. Because
sequences of switches occur instantaneously, external variables cannot change during
such a sequence. Therefore, external variables are invariant across a sequence of
switches as well, and consequently they can be used in the energy phase space analysis.

The dimension of the displacement variable x,.q4 is omitted for clarity reasons.

System Partitioning
A bond graph model of the internal combustion engine is shown in Fig. 45. On the

top-right, the intake and exhaust valve mechanisms are shown. The elastic collision
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Figure 44: Simulation of the cam-follower system.

effect is modeled as a modulated flow source and the non-elastic collision enforces the
velocity of the cam-azis. So, the opening and closing of the valves is controlled by the
cam-axis, which also controls the ignition by driving a rotor and a breaker. The rotor
mechanism selects the cylinder that requires ignition and the breaker induces the high
voltage required by the spark plug. A gear train rotates the cam axis at half the speed
of the crank-axis. The cylinder, on the left, is a control volume that exerts a force
on the piston which is translated into a torque on the crank-axis by the slider-crank
mechanism. The flywheel, which has a high mass, smoothens torque fluctuations. The
connected flow source sets the motor to operate at a desired velocity. The cylinder
loses heat to the environment by conduction through the cylinder wall. Also, heat
is lost by convection [121, 122, 124, 125] when the exhaust fumes are blown out of
the cylinder during the exhaust stroke. This energy convection is depicted as a flow
source modulated by the flow of matter out of the cylinder (Q.,). Correspondingly,
there is convection of heat on the intake stroke, which also carries chemical energy.
Both of these effects are modeled as flow sources modulated by the flow of matter
into the cylinder (Q;, and U,). The intake and exhaust of the cylinder are controlled
by the intake and exhaust valve mechanisms and the ignition is controlled by the

breaker-rotor system.
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Figure 45: Energy part of a hybrid bond graph model of a four stroke spark-ignition

internal combustion engine.
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To find interacting discontinuities, the controlled junctions of the intake valve
mechanism can be considered. First, notice that there are no sinks of flow causality
in the crank-cam system, other than the crank velocity flow source and the modulated
flow source that models the perfect elastic collision. Therefore, all inertias are either
mutually independent, or they are dependent of the crank velocity flow source. So,
when controlled junction 4 switches on, it propagates a flow (crank velocity) upward,
and consequently an effort (force, torque) downward. This effort instantaneously
propagates through the cam-axis and gear train to the crank-axis where it feeds into
the system environment (where it may simply be dissipated by brakes). Because the
motor is kept at constant rpm, this source is a sink of effort causality and instanta-
neous changes of other variables do not occur. In the opposite direction, switching of
controlled junction 4 makes the valve inertia dependent, and, therefore, its velocity
(vin) changes instantaneously, which is used as input to controlled junction 1 by an
instantaneous signal connection. The effects of this junction are fed into the cylinder
control volume which is of an integrating nature so instantaneous propagation halts.
Also, the abrupt change in v;, caused by switching controlled junction 4 affects con-
trolled junction 5. So, these three junctions (1, 4, and 5) are interacting and their
combination of on/off states form a local mode. The energy phase space analysis now
has to include all permutations of this local mode (2° = 8). Analogously, the number
of switch permutations for the exhaust valve is 8, which leaves just one more local
mode in terms of controlled junction 3, which regulates ignition. The total number
of switch permutations that have to be considered are, therefore, 17, which is far less
than the number of permutations of the global mode of this model (27 = 128).

System partitions are determined by the degree of stiffness introduced in the
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Figure 46: Instantaneous flow areas for the intake valve mechanism when rod flexi-
bility is modeled.

model. If a system is modeled to be very stiff, instantaneous changes propagate
through the entire model. Suppose the motor is not kept at constant rpm by an
external source. Now, any of the inertias that are part of the valve- and ignition-
timing sub-system become dependent of the flywheel inertia. These dependent storage
elements then reduce to one substitute, I, with stored momentum p,. This causes the
velocity of the entire timing sub-system to change instantaneously and all controlled
junctions affect each other.

Alternatively, if the valve rod is modeled to be flexible, the valve inertia does
not become dependent (on a source or other inertia elements) and it always enforces
valve velocity. In this situation, the one [ in the valve model fragment only becomes
dependent on the elastic collision flow source, and, therefore, all controlled junctions
that take the velocity as their input have to be analyzed jointly. This again results
in the local mode consisting of controlled junctions 1, 4, and 5.

As demonstrated by the example, physical systems provide for natural bound-

aries of instantaneous changes. This phenomenon is exploited by the multiple energy
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phase space analysis method by partitioning the system into areas of instantaneous
propagation, resulting in local modes. This reduces the complexity of the analysis
from 27 in case of n controlled junctions to k2! in case of k local modes each with [

controlled junctions.
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CHAPTER VI

HYBRID DYNAMIC SYSTEMS

This chapter develops the mathematical formalisms for hybrid dynamic system
models. Model semantics, like before, are based on the principles that govern physical
system behavior. The components for an implementation model for hybrid dynamic

systems are presented and applied to the liquid sodium cooling system described in

Chapter I.

Introduction

A hybrid system combines discrete switching patterns with continuous behavior,
and, therefore, operates on a domain with discrete, @ € X, and continuous, ¢ € R,
dimensions (Fig. 47). Behavior in this space is specified by piecewise continuous
intervals, x,(t), a function of both o and ¢. A hybrid dynamic system models dynamic
physical system behavior. This behavior has to evolve over time, have and established
direction of flow, and necessarily covers the complete interval on the time-line for
which it is specified, therefore, the piecewise continuous intervals in temporal behavior
evolution are adjacent to each other with no gaps (Fig. 47). Behavior in the piecewise
continuous intervals is represented by well behaved, continuous functions f, called
fields, which may be linear or nonlinear, and often are defined by a set of nonlinear
ordinary differential equations [44]. An instance of temporal behavior in a field is
called a flow, F. Switching from one flow to another occurs at well-defined points

in time when system variable values reach or exceed prespecified threshold values.
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Figure 47: A hybrid system (left) and a hybrid dynamic system (right).

This defines an interval-point paradigm where flows are piecewise continuous and
any discontinuous changes that occur have to be simple [108], i.e., limit values exist
at points of discrete switching. An example of such a discontinuity is shown in
Fig. 48, where there are two flows F,, and F,, that are C? (i.e., they are two times
differentiable) on their respective domains, V,, and V,,. A point of discontinuity,
Pa,, on V,, occurs at 5. Behavior at this point may be determined by an algebraic
relation instead of a field.

In summary, a hybrid dynamic system consist of three distinct subdomains (Fig. 48):

— A continuous domain, T', with time, ¢, as a special continuous variable.

— A piecewise continuous domain, V, that specifies variable flow, x(#), uniquely
on the time-line.

— A discrete domain, I, that captures the operative piecewise continuous domain,

Va.

Definitions
Let I be a discrete indexing set and F,, a € I, be a continuous, C'?, flow on a

possibly open subset V,, of R", called a chart (Fig 49)." The sub-domain of V,, where

! Definitions used in traditional hybrid system modeling [44] are followed but modified in parts
to fit the physical system modeling paradigm.
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Figure 48: A hybrid dynamic system is piecewise continuous and operates on three
sub-domains.

a continuous flow in time occurs is called a patch, U, C V,. The flows constitute the
piecewise continuous part of the hybrid system. An explicitly defined isolated point
that does not embody continuous behavior is called a pinnacle, P,. The discrete
switching function 77 is defined as a threshold function on V,. If 47 < 0 then the
system transitions from chart V,, to Vj, defined by the mapping ¢° : V, — V.
The piecewise continuous level curves v7 = 0 are denoted as S?, and define patch
boundaries. If a flow F, includes the level curve, SP, it contains the boundary point,

B, (Fig 49). In summary, a hybrid dynamic system is defined by the 4-tuple?
H=<Vo,Fo,v2.95 > . (16)

Points within the system are specified by x,(t), a location in chart a at time t.

Trajectories in the system start at an initial point z,, (¢) and if 452 > 0, Vas, the point

2Guckenheimer and Johnson refer to the respective parts as < Vi, Fo, b2, T2 > [44].
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Figure 49: A planar hybrid system.

flows in V;,, as specified by JF,,, until the minimal time ¢, at which 75?(24,(t)) = 0 for
some ay. Taking x, (1) = limygy, Fo, (1) the transformation g2 takes the trajectory
from 2., (17) € Vi, to 24,(ts) € Vo,. The point z,,(ts) = (¢5% (24, (1)) is regarded
as a new initial point and in case the new point is a pinnacle, it immediately invokes
752 which transfers the trajectory to g5 (za,(s)) € Va,. Continuity of time requires
that the basic trajectory of a hybrid system evolves in a manner that intervals and
points have to alternate, and, therefore, this is a point on a flow F,,. Let z,,(t1) =

limygys, Fo,(t), then z,, (tF) = g2%(24,(%s)) and is regarded the initial point in V,,, and

behavior evolution in time continues along V,,.

Approaches to Hybrid Modeling
Henzinger, Alur, and Nicollin, propose an approach which is based on the observa-
tion that continuous systems are best modeled by global sets of differential equations
[2, 97]. A switching mechanism selects the set of differential equations whose as-

sumptions are satisfied by the state of the system. This switching mechanism is
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implemented as a temporal state machine. Because of the continuous-time character
of physical systems, this temporal state machine relies on dense time, i.e., transitions
occur at real-valued points in time instead of discrete (integer) time points [4]. This
framework has been employed to prove reachability and divergence of time charac-
teristics in the limited case where the physical systems being modeled only undergo
constant rate of change in their variable values [48].7

A well known characteristic of hybrid systems is the possibility of a number of
discrete changes occurring before a new patch is arrived at, where again a flow defined
by a field governs system behavior [2, 44, 77, 98]. This situation occurs if y5*+!

transports a trajectory to V,

wp10 and the initial point is transported by gi*+t to a

value that results in Yart? <0, le, 95 (24,) € Us,,,, and another domain V;, ,, is
instantaneously arrived at. These immediate transitions continue till a domain V,,,
is arrived at where the initial point is within U,, . To deal with these sequences
of transitions, Alur et al. [2, 3], Guckenheimer and Johnson [44], and Deshpande

and Varaiya [31], propose model semantics based on temporal sequences of abutting

intervals [44]

VO‘O Vo‘l Vam
o = I ggé l’il— = X9 ggf ggm—l $;I;L L G P |
— — ... = . (17)
[to t] [t to] [tm tiny1]

Since these intervals overlap in time, a trajectory may be in several locations at a
point in time, t,. Therefore, these points in time are complemented with an index that

specifies their order of transition. During a series of discrete switches, (t,1), (¢5,7 +

3These systems are far more restrictive than linear systems in the classical systems sense, and
only in approximation present in physical reality. Moreover, it requires precise control to achieve,
as 1s elegantly shown by a water clock believed to be built by Ktesibios in Alexandria in the third
century B.C.
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1)...(ts,n) the trajectory moves between these ordered points in time, repeatedly
applying ¢°, and depending on the ordering, different initial points of a new flow may
be derived. Iwasaki et al. [51] introduce the concept of hypertime to represent the
instantaneous switching time stamp as an infinitely short interval of time. During
switching, hypertime elapses, but that corresponds only to infinitesimal actual time
changes. The sequence of switches can be analyzed in hypertime to yield similar
results.

As described in Chapters III-V, this thesis defines a hybrid dynamic system with
model semantics that are more specific than the approaches described above. Instead
of allowing several flow values at a point in time on a trajectory, it requires that a
flow has a unique representation and lets this unique value be independent of the
path during a sequence of instantaneous switches. This requires the implementation
of an interval-point paradigm to establish complete coverage of the time-line within
the domain of operation of the system. This thesis shows that this more restrictive
semantics allow for easier, systematic, model building that results in models whose
behaviors do not violate physical system principles. Furthermore, there is no C?
requirement for behavior at pinnacles, only the point needs to be well-defined in
time. This is of great use when time-scale abstractions result in algebraic constraints
and system behavior is condensed into a posterior value at a point in time. Finally,
the model semantics can be used to deterministically model physical systems and

allows for a systematic model verification method [30].
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Figure 50: A trajectory is redirected when the transported point is out of the domain
of the new patch.

Physical System Model Semantics

To ensure correct transitions between modes in physical system models, the prin-
ciple of invariance of state applies. During a sequence of transitions, specified by 72,
a new point x,, derived by ¢5? causes an immediate transition because it is not in
U,,, it is not considered to have an actual representation on the time-line, and does
not affect the mapping of z, as shown in Fig. 50. Therefore, when ~32 specifies a
transition to V,,, then new x,, is derived by applying ¢;* to the original point z.,.
Like before, x,, is mythical, i.e., it has no real existence in time for this behavior
trajectory. In general, 47 is a function that depends on values z,, prior to the jump,
and values %} after the jump. The semantics are specified by the recursive relation

between 77 and ¢” which takes the form

el = g% (2a,)
Yo+ (20,28 ) <0

illustrated in Fig. 51. Note the ay subscript in g .
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Figure 51: System state is derived from the original state vector.

The interval-point paradigm implies that two types of jumps are possible:

1. V,, o»eV, : A discontinuity at t; moves x,, from an interval, flow F,, \ B,,,

or flow F,

Apt1”

to a point, pinnacle Py, ., In this case, x4, (t;) = limg, Fo, (1) is

transported to ¥ , computed by Eq. (18) as g55+! (24, ). The recursive switching

terminates when 5™ (z,,,2%) > 0 and the function value z,,,(t,) is taken as

B

ot = g (2a,).

2. V,, ooV, : A discontinuity at ¢, moves z,, from a point, pinnacle P,, or

boundary point B,,, to a flow, F, In this case, x,, = ¥, ({s) is transported

E41°

to #f computed by Eq. (18) as 2} = g3+ (z,,). The recursive switching
terminates when 45" (zq,, %) > 0 and the function value z,, = limyy,, Fo,,(t)

B

] + _— 0m
is taken as xf = g5 (7, ).

A e—o transition results in the activation of a flow, and the system evolves continu-
ously before a new sequence of switches is initiated.*

A trajectory is now described by initially moving along a flow, 7, , ¥ = g2l(z,,) =

4In collision chains, the system may move through a series of pinnacles that represent Newton’s
collision law, before a new flow is arrived at. Though this behavior can be well captured by the
formulated semantics, it violates the interval-point paradigm and may result in poorly defined models
since no specific time is know for each of the separate collisions.
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To,. At time 1y, ’yjf(xal,le) = 0 with a,, = limys. Fa,(t). Therefore, a dis-
crete o—~e change occurs, and the trajectory is transported from x,,(t;) to the point
957 (24, (t;)) which results in a posterior value z¥ = ¢22(z,,(t;)). If 2t & U,, the
trajectory is redirected by 752 (x4, 2t ) <0 (Fig. 50), which immediately transports

the trajectory to the point g5°(zo,(t;)). Again, the trajectory may be redirected

_|_

based on a7
1

= 95%(2a, (1)) to Vi,. This recursive process continues until an z.,,
is arrived at that is within a patch U,,,, 73" (za,, 2t ) > 0. After the successful
transition is made, the a priori value is updated to x,,,(ts) = g5 (24,(15)). If the

new point is a pinnacle, 72+ (z,, .z} ) <0, which leads to e—o switching, and the

trajectory is transported from z,, (ts) to gom+!(z,,,(5)). Based on the new value

_|_

l’am

another sequence of recursive switches may ensue until 2} is within the domain

of a patch U, . When switching ends, a new flow, F,_ in V, , is reached and the

_|_

S

point x,, (tF) = g5" (va,,(ts)) is taken as the initial point and this process continues

as system behavior evolves.

Notes
The point z, initiates switching and controls point-interval evolution in time,
whereas =¥ drives the recursive switching and determines intermediate charts, Vj,
that are traversed before x, is updated. Furthermore, switching conditions of the

form 45+t < 0 are a special case of y5#!* < 0 where B,, is the endpoint of F,,.
Conjecture VI.1 Consider a transition sequence V,, — V,, —> V, .
Lemma VI.1 Domain V,,, contains a flow if (x = x,,(ts))

Fom 2 Gar(z) =2 (19)
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Proof:  1f 457 (x,g5m(x)) > 0 then V,,  is real. If V  is a pinnacle, then
yar(gam(x), gom(x)) < 0 which cannot be satisfied for a real mode if z = g5 (z). W

If g5m(x) # « then V,,, contains a flow if

Fom Yo (x,g5m () > 0 A5 (gom (), 957 () > 0 (20)

where the first condition ensures the mode is real, and the second that it is not a

pinnacle. It consists of a pinnacle if

Pom :v5m (2,957 (1) > 0 A5 (gar (), 957 () < 0. (21)

If V,,, contains a flow, it may not contain the boundary where its flow exits, (¢ =

Tan(ts)))
f’

Am

\ Bap t Fam Nyar(z,gam (2)) <0 (22)

which implies that V,, is either a pinnacle or a flow that contains its initial point,

Forn \ Ba,, = Po, V (Fa,, N B, (23)

A Hybrid Dynamic System Implementation Model

To model hybrid dynamic systems, the mathematical model has to be implemented
by a model that supports the idiosyncrasies of dynamic physical systems. This sec-
tion develops this implementation model for embedded control systems, which com-
bine discrete mode-switching behavior with modes of continuous operation [88]. For
example, Fig. 52 shows a cooling sub-system in a nuclear reactor. During normal
operation, the main motor maintains a constant flow of liquid sodium, controlled by

continuous PID controllers. Valves throughout the loop can be operated to move the
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Figure 52: Continuous and discrete process control.

system into different modes of operation. The process and PID controllers are con-
tinuous and the opening and closing of valves appear as discontinuous configuration
changes. In general, configuration changes in the system can be attributed to three
phenomena: (1) when physical system signals, o,, cross threshold values; this can be
mainly attributed to abstractions incorporated in the physical system and continuous
controller model, (2) explicit signals, o., that activate the closed loop controller to
make changes, and (3) external, open loop control. The events generated by these
phenomena are called, o,, 0., and o,, respectively. Fig. 53 shows the general hybrid
architecture of a controlled physical process. The process and its continuous controller
embody the continuous characteristics of the system. Note that the input signal u is
required to be continuous. Discontinuous changes in the input (e.g., step input) and
changes in the low-level continuous controller are modeled by the open loop controller

deactivating one input signal and at the same time activating the newly desired input.
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The Continuous Model
Physical system behavior governed by the principles of conservation of energy
and continuity of power, is typically described by a state space representation with

ordinary differential equations (ODEs),

#(t) = f(z(l),u(l), 1), (24)

where © € X is the vector of the state variables of the system and u € U the vector

of external input. Thus, the continuous system model is made up of:
— X € R”, represents the state vector of the continuous model.
— U € R?, represents the input vector of the continuous model.

— &(t) = fala(t),u(t),t),1 € R,1 € [0, maz],t € R defines the continuous behavior
of the system in operational mode « for which there is one and only one field,

fa-
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The Discrete Model

Discrete events in embedded control systems stem from [59]:

— discontinuous input produced by idealized discrete actuators,

— discontinuous control which switches operational modes based on predefined

control algorithms,

— modeling artifacts, where nonlinear behaviors of a system may be abstracted or

approximated as piecewise linear behavior, and

— discontinuous output which is the result of measurements made on discrete

SENSOors.

These events are of two types: (1) time events and (2) state events [17]. Time
events result from digital control, where discrete actuation occurs at a point in time
determined by a control algorithm. State events are generated by the process when
certain signal values cross specified thresholds and mode transitions are invoked.
Since the only spontaneous change in embedded control systems is data [60], these
time events are, in principle, state events as well [133]. The discrete changes can
be modeled by a state machine, where each state in a set I corresponds to a mode
of system operation. The discrete model may consist of a number of independent
state machines, in which case an operational mode is determined by the combination
of individual states of the independent state machines. Transitions are invoked by
events in a set ¥ and move the discrete model to a new state based on the transition
function, ¢. This paradigm can be implemented by Petri nets or finite state automata.

The discrete model description is represented as:
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— [ ={ag,...,ar}, is a set of states describing operational modes of the system.
— ¥ ={0g,...,01}, is the set of events that can cause state transitions.

— ¢ : I x X — I, represents a discrete state transition function that defines the
new mode reached after an event occurs. Events are generated by the physical
process or the closed loop controller, or they can be external, open loop, control

signals, ¥ = 3, X X, X X,.

Interaction
Interaction between the continuous and discrete part comes in two forms: (1)
discrete events generated by the continuous model, and (2) a change of operational
mode by the discrete model.

The interaction can be specified by:

— S € R”, the signals used for event generation.

— ¢g: X x I — X7T, transfers the continuous state vector to the new operational
mode, o € I, which may result in it changing discontinuously. X represents

state vector values at the initial point in time when a mode change has occurred.

— h: X xUxI— S, determines signal values S and S* computed from X and

X, respectively.

— 7 : S xSt = X, where ¥, = X, x ¥, generates discrete events from the a

priori and a posteriori signal values.

The function v generates discrete events when signals, s € 5, cross pre-defined thresh-

old values. The output function, i, computes the values of these signals from the
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continuous state vector in an operational mode. The generated events applied to the
model may indicate that the system changes its mode of continuous operation. Asso-
ciated with every continuous mode, «, is a field, f,, specifying continuous behavior
evolution. If a mode has no continuous behavior it is completely specified by the
algebraic relations in g.

In summary, the complete hybrid system model is defined by the 9-tuple [59]:

H:< [7Z7¢7X7U7f7g7h77>7 (25)

with the continuous, discrete, and interface components (Fig. 54). In terms of the
mathematical model in Eq. (16), I defines the modes of operation, a. The piecewise
continuous domain, V,, is determined by X and U, and continuous behavior F, on
each domain is specified by f. The function ¢ equals g, and 7”7 is determined by
h,~,3, and ¢. The additional complexity is required because physical configuration
switches are typically based on signal values, derived by h from the energy state.
Furthermore, the implementation of the discrete model component as a finite state

automaton requires and event set, X, and transition function, ¢.

Partial Liquid Sodium Cooling System
Fig. 52 shows a schematic representation of part of the liquid sodium cooling
system in a nuclear reactor [81]. The main motor drives a pump which establishes
a flow-rate Fj,, and a continuous controller ensures sufficient torque is available to
maintain the desired flow rate. Pump losses are represented by the dissipation param-
eter, R,y m,. The fluid is pumped through a coil in an intermediate heat-exchanger

which has an inertia value, I;;x, responsible for building up flow momentum. An
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Figure 54: Block diagram of a general hybrid system.

evaporator is used to transport heat from the heat-exchanger to a steam water loop
where it drives a turbine to produce electricity. Associated with the evaporator vessel
is capacitance C'gy. A discrete controller acts on the two valves, A and B. In normal
operation, A is closed and B is open. In an alarm situation, valve B may be closed
by supervisory control and the closed loop controller is required to activate the alarm
path with resistance Ryj4n by opening valve A until it is safe to stop the flow of fluid
completely.

The continuous variables defining a state vector in this system are the flow mo-
mentum, xy, in the coil of the intermediate heat exchanger, I;7x, and the stored

fluid, x,, in the evaporator, C'gy
= [14 xQ]T. (26)

The input to the system is the input flow, F;



The discrete model is determined by the two valves in the system which results

in four operational modes, agy = {Acioseds Beiosed > o1 = {Actoseds Bopen }y Q10 =

{Aopen7 Bclosed}7 and Q11 = {Aopen7 Bopen}7 50
I = {ago, ao1, 10, 11} (28)

In normal operation, valve A is closed and valve B is open which specifies the initial
mode, agy. Valve A is controlled by a closed loop discrete controller, and valve B by
an open loop discrete controller. When the open loop control closes B by generating
OB—oss. the fluid flow becomes 0 instantaneously and a large pressure is induced.
To prevent this pressure from becoming too high and causing damage to the piping,
the closed loop control makes a release path available by generating o4_,,, when
PB > Peritical, Which opens valve A. Over time, the pressure falls below pe iticqr, and

the controller closes the valve A, 04_,,77. This results in the complete event set

Y = {0400, 0as0p7,0B 01} (29)
The closed loop controller generates events Y., which are specified by ~

PB > Peritical = T A—son
PB S Peritical = TA—soff

and the corresponding mode changes are executed by ¢

Tasson — 010 1 oo

Qb : OB—off — Qoo if Qo1 (31)

TA—soff —2 Q00 if aqg

The instantaneous change in flow to 0 when valve B closes represents a reduction in
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the size of the continuous state vector, and is captured by ¢ in 27 = ¢ - z,

[0 1] if [8731]
g: [1 1] if Qo1 (32)
[1 1] if 10

The function h translates the state variables [z, z3]7 into signal values

s=[ps fal* (33)

that are used by 7. Note that when both valves are closed, the pressure pg is deter-

mined by a derivative relation, pp = Fi, Rpump — [IHXd%, which is approximated by

a Dirac pulse, 4, for discontinuous changes in x7. Let the function sign be defined as

-1 ifz<0
sign(z) =1 0 ifa=0 (34)
1 ife>0
Then, a discontinuous change results in pg = Fi, Rpump — [IHX% = I Bpump —
sign(z{ — x1)d, which yields
pp = sign(af —21)8, fa =0 if ag
l’+ .
h: bPB = Cgvva =0 if agy (35)
l’+ l’+ .
PB = RalarmﬁafA - IH-11X if Q190

and the specification of the hybrid system is complete.

Model Verification

A key aspect of hybrid system modeling is to define the interaction between the
continuous and discrete components in an integrated manner, without violating over-

all physical system principles. Chapter IV shows how consistency of interaction is
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maintained if divergence of time is satisfied. Chapter V employs energy phase space
analysis to verify divergence of time based on the principle of invariance of state as
developed in Chapter III. This section presents the mathematical equivalent of the
energy phase space analysis methodology for a generalized state vector of linear sys-
tems. Furthermore, it introduces the principle of temporal evolution of state as an

additional verification tool to ensure well defined models.

Generalized Invariance of State
Chapter IV shows that a special continuous state vector, pg, of a physical system
model represents the stored energy in physical buffer elements, e.g., springs, capac-

itors, and inertias, and is invariant across consecutive changes in operational mode

[87].
Conjecture VI.2 The special state vector, pg, is invariant across mode changes.

Lemma VI.2 (Generalized Invariance of State) Any vector that represents the

state of a linear physical system is invariant across mode changes.

Proof: Let xg represent a possible state vector in operational mode ag. Then, for
a linear system, there is an algebraic translation Ty unique to a given operational mode
that defines the relation between xq and the special state vector pg defined above,
i.e., o = To(po). Since po is invariant across mode changes, so is Ty (o). If @, is
a vector capturing the system state after the mode changes end, then x, = T,(p,)
and, since py is invariant across transitions, x, can be expressed as, x, = T,,(g(po)).

So, 2, = Tn(g(Ty " (0))) also is invariant because the function ¢ and the mappings
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Figure 55: Invariance of state in a dynamic physical system.

T, and T; ! are defined by the specific operational mode and is not a function of how
this mode was achieved, i.e., they are path invariant. [ |

The continuous state vector of the diode-inductor circuit in Fig. 55 (which is also
discussed in Chapters I and IV) can be chosen as either the inductor current, Iy, or
the inductor voltage, Vz. The algebraic translation between the states depends on

the operational mode

VL = 0 lf [8731]

T:3 Vo=1I,RL+Vp if oo (36)

V=1 Ry + Vi if ago
The principle of invariance of state in Chapter III states that if the inductor current
is chosen to represent system state it is invariant, i.e., I can be expressed in terms
of I, the current before switching, as [}f = I1o independent of the intermediate
configurations [79].?

If the state vector is defined in terms of V7, and its value before switching begins is
V10, then, using invariance of state of the special state variable, I}, [}f =g(ILo) =1Irp
and T,,, : VL+ = [E’RL +Vp, VL+ = I 0B+ Vp. If I is expressed in terms of Vi, o by

using TOZ_I%) o = _R%VL,O + R%Vm the new continuous system state can be expressed

®Note that g(z) = = is a special case of mapping the state vector.
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in its value before switching by T,,, (T51),

10

R, R,
Vi ==V, —V.. +V 37
I i Lo+ 0 + Vp (37)

This illustrates that, in general, the new value of any continuous state vector is
independent of the intermediate transient operational modes that are instantaneous.
It is completely determined by the original and new modes of continuous operation

only.

Temporal Evolution of State

Changes in the number of degrees of freedom of a system can occur because of
dependencies caused by configuration changes. The result is dependencies among
state variables and exogenous variables, producing discontinuous changes in values
that can only occur at well-defined points in time. Continuity of power requires
well-defined functions on the left and right intervals about the point of discontinuity
(Fig. 51), therefore, configuration changes cause piecewise continuous behaviors with
a countable number of simple discontinuities which have a limit value [108]. As
demonstrated earlier in this chapter, this defines an interval-point paradigm for active
modes of operation. It is shown that the state vector at the point of discontinuity is

the limit value of the state in the new operational mode.

Conjecture VI.3 A hybrid system is piecewise continuous.

Lemma VI.3 (Temporal Evolution of State) Continuous state variable values

have to be continuous in left-closed intervals.

Proof: For simple discontinuities, limit values exist, and, therefore, at a time of
switching, t5, xr(¢5) = limyge, 2 (1), and z,(¢F) = limgye, 2, (¢) (Fig. 51). In case of a
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jump, z(t;) # x,(t]). Because the state vector exists for all points on the real time-
line, there is a state vector x,,(¢s) determined at t,. If the state vector at ¢, @,,(ts) #
2,(tF) then the system continues to evolve in a left open interval, < t;,—>, after
configuration changes have occurred, starting with limy:. 2,(¢). However, causality
requires that the initial state in the new configuration be a function solely of x,,(¢)
and the new configuration, and, therefore, the state vector has to evolve in left-closed
intervals, [ts, —>. [ |
The required left closed intervals of state variable values in time determine that
discontinuous changes in the state vector can only occur when the system transfers
from an interval to a point. Note that this does not prohibit configuration changes
from occurring when the system transfers from a point to an interval, as long as
the number of degrees of freedom of the system does not decrease. The signals as
derived by h may contain Dirac pulses which occur at the points in between intervals

of continuous operation.

Divergence of Time

Chapter IV presents the principle of divergence of time [47, 87] as an important
verification mechanism for hybrid modeling of embedded control systems. Chapter V
shows that this is best addressed by invoking the principle of invariance of state. Sig-
nal values may change discontinuously between operational modes, but their values in
the newly arrived mode are always determined by the state vector of the last contin-
uous operational mode. Since this state vector is not affected by future configuration
changes, it is invariant and can be applied to establish a necessary condition for di-

vergence of time. However, the event generation conditions are typically specified in
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terms of signals and based on the newly found state vector, and, therefore, a mapping
has to be applied to express the event conditions in terms of the original state vector
based on the inverse relation of ¢ and h.

In general, system verification proceeds by applying v to ¢ to determine which
conditions cause transitions between operational modes. Then f is used to express
these relations in terms of the continuous state variables and ¢ is applied to translate

the conditions in terms of the switching invariant original state.

Verification of the Cooling System
To verify consistency, the closed loop switching specifications in 7 for which further
mode changes occur are found. Using ¢ to establish conditions for further switching,

~ combined with h shows that this occurs when

Fianump - szgn(xi" - 1’1)5 > Peritical if Qo
(38)

+
] . 1
Ralarm Treax S Peritical if a0

To verify consistency, these conditions have to be expressed in terms of the switching

invariant, i.e., the state variables before switching [z, xo]7, [2] zf]T = g[z: 22]7,

yields

Fianump - Slgn(_xl)(s > Deritical if Qoo
(39)

- .
Ralarm L S Peritical if a0
Itgx

Therefore, closed loop switching events are generated when Fj, Ryymp — stgn(—x1)d >

Peritical and x7 < I{iifmpm”c“l' Considering that ¢ approaches infinity, there is an

area 0 < o1 < —IllHmemal where the system switches between modes agg and
arm

R,

a1o indefinitely. For this flow momentum, the system is not consistent as it is not
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determined which of the operational mode is reached.® Note that, if z; = 0 then
Fi Ryump > Periticat causes inconsistency, which is true if Fj, > %.

The interaction between the discrete and continuous domain shows that a control
algorithm based on pressures is insufficient. To establish consistent control, the flow
momentum that causes the build-up of pressure needs to be considered as well. If this
momentum has fallen below a safe threshold value, f;),, build-up of pressure does not
exceed the critical value and the alarm valve can safely be closed. To specify these
constraints, 1 < Irgx fi, 1s added to the precondition for o4_,5f and x4 > Irpx fun
t0 0 4son. Now, a unique operational mode is specified for the complete hybrid system

if Iy, < Bgreeel Note that the added condition is of an energy nature, since it is based
pump

on the flow momentum of the system.

Summary

In general, hybrid dynamic systems can be classified into three categories:

— Weak hybrid dynamic systems do not allow discontinuous changes of the energy

state, nor do they allow sequences of mode changes, i.e., g°(z) = z and h, = hg.

— Mild hybrid dynamic systems deal with discontinuities in the energy state vari-

ables, but do not allow sequences of changes, i.e., g°(z) # = and h, = hg = ().

— Strong hybrid dynamic systems generate time and state events that may result

in sequences of mode changes as well.

5This is also true if the system were modeled to be non-deterministic. A loop of operational
modes is different from a unique mode that is not deterministically arrived at.
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The described modeling formalism and semantics cover the spectrum of hybrid dy-
namic systems. It differs from other approaches by recognizing that there are two
types of modes: real modes that affect the state vector and energy variables directly,
and mythical modes that do not. If this distinction is not made, and only real modes
are allowed, it is the task of the modeler to ensure only real modes are achieved. In
the proposed model semantics, any number of mythical modes exist at a point in
time, but there is one and only one real mode for each point in time. This distinction
allows for a systematic modeling approach and verification methodologies to ensure

that the hybrid models generate correct behaviors.
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CHAPTER VII

FORMAL SPECIFICATIONS FROM HYBRID BOND GRAPHS

This chapter brings together the material discussed in Chapters I1I-VI, and uses
the classic example of a thin rod colliding with a floor [64] to show how formal
specifications developed in Chapter VI can be systematically derived from the hybrid
bond graph model presented in Chapter IV [83, 84]. Model verification issues are also

explored in greater detail in this chapter.

Specifying the Falling Rod

Consider an idealized rigid thin rod falling toward a perfectly rigid floor at an angle
0 shown in Fig. 56. The hybrid bond graph model of the resultant collision is shown in
Fig. 57. The model fragments in the bond graph, based on rigid body mechanics, were
proposed by Bos [12]. Assuming the movement of the rod is only in the z-y plane,
where z is the axis along the floor and y the vertical axis, the rod has three degrees
of freedom. Its velocity can be broken down into three components: linear velocities
in the z and y directions, v, and v,, and an angular velocity, w. The corresponding
storage elements for these components are the inertia or mass elements, m,, m,,
and J, respectively. The geometric relations between these velocities are illustrated
in Fig. 56 and represented in the bond graph model by a modulated transformer.
Gravity is modeled by a source of constant force, ma,, working on the y component
of the center of mass.

The forces and velocities at point A connect to the model at the 0o junctions,
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Figure 56: A collision between a thin rod and a floor.
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Figure 57: Hybrid bond graph model of a rigid body collision between a thin rod and

a floor.

114



one for the x direction and one for y. When the body is moving freely, forces on this
junction are 0, it is off. When the body is in contact with the floor, 0¢ is on and if
no other elements are connected, it enforces a 0 velocity at point A. The floor surface
has associated Coulomb friction, F';, whose magnitude depends on the normal force,
F,,, exerted by the surface and a friction coeflicient, p, as F; = pF,,. On collision, if
its force along the surface is large enough, i.e., |Fa | > pF,, the rod starts to slide
along the floor and rotate around the point of contact. This sliding motion is invoked
by a discrete event o4 that is generated when |Fy | > uF, (Fig. 58), which causes
the discrete event model, ¢, to transfer to a discrete mode where the continuous field,
f, models a rod sliding on a floor under Coulomb friction. If the velocity of the
rod-tip, A, along the floor falls below a threshold value, |v, 4| < vy, the discrete
event og.r 1s generated and ¢ moves the system into an operational mode where
the rod is stuck at the point of contact and rotates around it. This represents an
example of closed loop physical events. In the hybrid bond graph, the friction force
in the x direction is represented by a piecewise continuous modulated source, M S..
Depending on whether the rod sticks on the floor or slides, friction exerts a force
0, F¢,—Ff on A (see Fig. 59). The sign of the friction force depends on the direction
in which the rod slides, because friction always opposes motion.

The CSPEC part of the hybrid model is specified as finite state automata, one
for each controlled junction. The hierarchical finite state machine that controls Og
can be in one of several on states. FEach one activates a region of the piecewise
continuous friction function discussed above. The Coulomb friction (Fig. 59) can
be represented in a concise form in the hybrid bond graph using the multi-bond

notation [14], illustrated in Fig. 60. In its off state, the junction enforces 0 flow.

115



Ostuck —&-w

2

Oslide
Vax 4/ FyWy

N @

Figure 59: Coulomb friction causes physical events.

This allows all source elements to be continuous functions over their active areas and
makes mode switches that are internal to sources explicit in the hybrid bond graph
framework, and, therefore, part of the mode-switching algorithm. This guarantees
consistency in behavior generation, since all discrete phenomena are handled by one
mechanism and all other influences are continuous.

Fig. 61 illustrates the different modes of operation for the rod system. Initially,

the rod is falling freely under gravity and this corresponds to mode agg of the system.

MSe: 0—~ 15(1)\
0
MSe _T:fflgﬂsgocé E> MSe: Fféls(ﬁocé

MSe: -Ff —1,

S(3)

Figure 60: A multi-bond controlled junction to model Coulomb friction.
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In the hybrid bond graph, the controlled junctions O¢ and 1g are off and replacing the
junctions with their 0 value sources results in the bond graph (mode agg) shown in
Fig. 62. To ensure correct loading, not all 0 value sources can be removed (grayed out)
from the bond graph. The position of the rod-tip closest to the floor, y 4, is determined
by the sum of the position of the center-point, yar = [ v,, and the distance of the rod-
tip from the center point, —lsinf). When y4 = [v, — [sinf becomes 0, this implies
the rod has collided with the floor and 0¢ comes on. The model transitions into
mode «gy. This causes dependency between the linear and angular velocities, and
the energy redistribution is computed which determines the forces that the rod exerts
in the horizontal direction, F4,, and vertical direction, F4 ,. If the rod-length and
angle of collision are such that |F4 .| > pF,, ls comes on (i.e., the model transitions
into mode a1) and the rod begins to slide. Otherwise, it sticks and rotates around
the point of contact, i.e., mode ag;. In case the rod starts to slide, its initial kinetic
energy before contact is redistributed over the angular and vertical momentum to
ensure the vertical velocity of the rod-tip, v4 ,, is 0. This corresponds to mode ;.
In this mode, the horizontal velocity of the rod-tip, v4 4, is determined by the angular
velocity, w, and the friction force Fy, which is initially 0 given v4, = 0. However,
because of the discontinuous change of w upon collision, v4 , changes discontinuously
as well, and, therefore, the system changes from the operational mode where Fy =0
to mode ag; where Iy = pF), given vs, < 0. Note that in modes aq; and «y; the
initial vertical momentum is distributed only over its posterior angular momentum
and vertical momentum to ensure y4 does not change at the point of contact. If the
energy state vector in the sliding mode, aq;, was computed from the intermediate

stuck mode, ag, it would have a horizontal velocity associated with its center of
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Figure 61: Possible modes of operation of a thin rigid rod falling onto a rigid floor.
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Figure 62: Dynamically generated model configurations for the colliding rod.

mass which would keep the rod-tip from moving in the x direction as well. This

behavior would be incorrect. All this demonstrates the importance of the proper

computation of the state vector across a series of discontinuous changes. As shown

by this example, the hybrid bond graph approach provides a seamless integration of

configuration changes based on local switches. Other examples of hybrid bond graph

models are discussed in [77, 78, 79].
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The Continuous Model
The continuous model can be directly derived as explicit ODEs in each operational
mode from the hybrid bond graph in Fig. 62. The linear and angular velocities are

chosen as state variables,

X ={w,vz,vy} (40)

and the input vectors include friction and gravitation forces,
U = {Fyma}. (a1)

As an example, consider operational mode a9;. The bond graph shows the .J iner-
tia to be in integral causality, and, therefore, its angular velocity, w, is completely
determined by the torque, T,

(42)

. T
w=—
J
The transformer determines the torque value as the sum of horizontal and vertical
forces 7 = —lsinfFy + lcosf( F, — ma,) where the friction force, Fy, is determined by

the normal force on the rod F; = ufF, = p(F, — ma,). Combining these equations

and substituting muv, for F,, yields
7 = (lcosl — plsind)(mv, — may). (43)

If the Coriolis component is neglected, v, = lcosfw and w can be solved as

—ml(cosd — psind)

©= J 4+ ml?cosf(cost — /,LsinH)ag (44)
and
w = J+T;?;i(ocs(;s(i;s%22ne) g
Joor 2 0y = —p(lcosbio + ay) (45)
vy = —lcosfw

119



Similarly, the fields for the other operational modes can be derived as explicit ODEs

and these are given in Appendix A.

The Discrete Model

The discrete model, as specified in the CSPEC part of the hybrid bond graph in
Fig. 57 consists of two independent state machines, one of which is hierarchical. The
corresponding state transition tables are given in Appendix A. The global state of
the discrete model is a combination of the states of the C and S automata, indicated
by two digits, one representing the state of C and one representing the state of S,
e.g., agr — S(0) A C(1) and ay; — S(2) A C(1), where 0 indicates the corresponding
junction is off and any other number indicates the corresponding active state. The
discrete event set consists of the events that capture Coulomb friction and the events

that specify whether there is contact, oeoniaer and o g ce.

Interaction

Signal values from the continuous model are used to generate discrete events based
on the function, . The events that determine whether there is contact or not are
based on the vertical position of the rod-tip, y4, whether the rod-tip has positive
or negative momentum, p4,, and the normal force exerted by the floor, F,. To
determine the state of the Coulomb friction function, the force exerted by the rod-tip
in the horizontal direction, F4 ., the normal force, F},, and the horizontal velocity of
the rod-tip, v4 ., are used. A threshold velocity, vy, has to be maintained for the rod
to keep sliding. To reiterate the convention in this thesis, energy variables constitute

the a priori switching values. The energy variables for this falling rod example are
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pay and y4. All other signals are a posteriori values, indicated by a + superscript in
the event generation function,

Ya < 0Apay <0 = Ocontact

F <0 = Ofree

|F2—,x|_luF7;I— >0 = Oslide

Vi ok — o <00 = oaue (46)
Ujl_,x =0 = Ouero
Uj{@, <0 = Oney
vj{w >0 = Opos
The signal values
S =A{ya, 042,04, Fn, Fast (47)

are derived from the a priori or a posteriori state variables using the function h.
Except for F}, and F4,, these signals are independent of the model configuration.

This determines

ya = [v,dt — lsind
Vay = Uy — lwsind

pay = m(v, + lwcosh)

h - 0 if Qo (48)
F, =

m(v, — a,) otherwise

0 if [8731]

FAx:

)

mv, otherwise

Note that the derivative nature of the forces results in Dirac pulses during mode

changes if there are discontinuous changes in the posterior signal values, s™.!' If a

!This does not necessarily require the posterior values of the energy state £ to change discon-
tinuously as well.
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discontinuous change occurs, a Dirac pulse, §(s*—s), is generated which has area s*—

s. This signal dominates continuous variables in switching conditions and comparison
between the Dirac pulses is based on their respective areas. For example, upon
collision, Fy , = mé(vi —v,) and F, = m((S(v;' —v,) — a,). Because of the magnitude
of the Dirac pulse, the a, term in F), can be neglected under discontinuous change of
vy, and the comparison of [§(v} — v, )| > pd(v;f —v,) can be reduced to a comparison
of |vf—uv,| > /,L(v;' —v,) to determine whether the og;4. event is generated to activate
the sliding mode.

When a new operational mode is activated by the discrete model, the function
g specifies the mapping of the original state vector to the state vector specified in
the new configuration. Discontinuous changes to the state vector are derived using
Eq. (5). To illustrate, the derivation of g® follows. Operational mode ag; shows
dependency between the three storage elements, J, m,, and m,, with stored energy
he, ps, and p,, respectively. This implies that the center of mass has nonzero angular
velocity but the rod-tip A does not move in the horizontal or vertical direction since
it is in contact with the floor and stuck. Choosing J as the independent storage

element, makes m, and m, dependent, therefore,

aéymm = pT-I;L;E - pl’? p;lj— = rJym.r %hi (49)

- + _ my 1+
A5my = P, = Pys Py = Tdmy 700,

and
My

My
Z - (TJ,mm—h;I; - pw)rmm,J —I' (rj,my J

J h(:lj— _py)rmyvj' (50)
storage

No 4-sources become active on switching, so Y sources = 0. The complete expression
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for the independent energy, ht now yields

m
+ _ T+
hiy = h, + rTer,JrJ,mmThw = Tmg,JPe T

m
Tmy7jrj7my7yh$ — Ty TPy (51)

This can be transformed into the state variables by the translations h, = Jw, p, =
muv,, and p, = mwv, and substitution of the gains of the respective routes, found by

tracing power amplification along a route following causal strokes (Fig. 62),

Tmag = —lsinb, rj,. = lsind
(52)
Tmy,g = leosd, vy, = —lcosh
which yields
wd — ml(cosBv, — sinbv,
= (J e ) (53)
and
ot — wJ—ml(c;iamvzl,2—sinozvm)
[/ vl = lwtsina (54)
vf = —lwtcosa

A situation that involves d-sources occurs when the rod achieves mode ayy, the
sliding mode of operation (Fig. 56). In this mode there is dependency between the
two storage elements, J and m,, with stored energy h, and p,, respectively. This
implies that the center of mass velocity is such that the rod-tip A has no vertical
motion since it is in contact with the floor. Choosing .J as the independent storage

element, this results in one dependent storage element, m,,

m
Amy = p;;y — Py p;— = T'Jmy Tyh$7 (55)
and,
m
o = (w5 thE = ), (56)

J

storage
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There is one d-source, Fy, whose value is determined by the Dirac pulse on storage

element m,, by Iy = pia,,,. Substitution of Eq. (55) gives

m
S = g, —2hE = py)re,. (57)

sources J

The complete expression for the independent energy, 2 now yields

m m
Yy Yy
hY = hy + Ty aTam, Na hY = Ty aPy + HTEy IT Na hY — pre, upy (58)
and
+ _ wJ—ml{cosa—psina)vy
W= J+ml2cosa(cosa—psina)
o3 .
gt vF = —p(lwtcosa +v,) + v, (59)
v;' = —lwtcosa

In a similar manner, the state vector mapping can be derived for the other operational
modes, described in Appendix A.
These mapping functions specify the change of system state, (w, v,,v,), as a func-

tion of only the new mode, i.e., ¢°.

To find out whether a discontinuity occurs
when the state is mapped between specific modes a and 3, ¢° can be derived from
d°(z) = ¢°(g°(x)), which, in case ¢ is invertible, yields ¢°(z) = ¢°(¢°'(x)). To
verify discontinuity in state variables from o to 3, a faster approach is to calculate
g°(g*(z)). If the mapping ¢“(z) is invariant under ¢°, no discontinuous change can
occur from «a to 3.

These calculations can be avoided all together by inspecting the bond graph for
changes in derivative causality between modes. Additional elements in derivative
causality between modes indicate discontinuous changes in the state vector. For

example, in Fig. 62 both the inertial elements m, and m, are in derivative causality for

mode agy, only m, is in derivative causality for modes o and ag;. When transferring
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the state from mode g to, say, as; no discontinuous change occurs. However, when
transferring the state from mode gy to agg, m, goes into derivative causality and

may enforce a discontinuous change in state. To verify, g2 (g (x)) is derived:

+ w01 J—ml(cos@—usin@)v;m
w' = -
J+ml2cosb(cosd—psinb)
vF = —u(lwteosd + v,) + v, (60)
v;' = —lwTcosh

Substituting vy® = —lw*'cosh (see Eq. (54)) in w™, yields

wtJ + ml*cos(cosh — psint)wor

Wt = J 4+ ml?cos0(cosh — psind) (61)
or wt = w1, Substituting this result in v} and v} yields
wt = oot
v = —p(lw*cost + vgoL) + v (62)
v;' = —[w™cosh
again substituting v®" = —lw**'cosf shows that the complete state vector in ayy,
xt = 2% and, therefore, no discontinuous change occurs. When performing the

* remains a function of

same computations on a mode switch from «y; to agr, «
x which implies that a discontinuity does occur. Intuitively, these results can be
explained by noting that gy represents a mode of operation where the rod is stuck
and rotating around a stationary point. In ay; and ay, the rod is sliding, and,
therefore, it has an additional degree of freedom. When the system moves from
to either ay; or as, the degrees of freedom in the state vector increase by one, and
this allows continuous state transfer. However, when the rod gets into the stuck
mode from the sliding mode, its center of mass velocity in the = direction becomes

dependent on the angular velocity, and this may require a discontinuous change in

state.
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Verification of the Hybrid Falling Rod Model

The correctness of the hybrid falling rod model can be established by demonstrat-
ing that the principles of temporal evolution of state (discussed in Chapter VI) and

divergence of time (discussed in Chapter IV) are satisfied.

Temporal Evolution of State

Causality of physical system models is embodied by the principle of temporal evo-
lution of state. To illustrate the importance of this principle, observe that switching
conditions based on relations that include time-derivatives of signals are common in
physical system models. When discontinuous changes occur, the derivative relations
produce Dirac pulses, and this can often lead to ill defined behavior. For example,
|Fa 2| > pF, relies on v, and v,, and a discontinuous change in these variables when a
mode change occurs produces a Dirac pulse, §(¢5). The Dirac pulse is active at a well
defined point in time, ¢;, and may be generated by either o—e (17 to ¢,) transitions,
81(ts), or @0 (15 to 1) transitions, d2(¢s) (see Fig. 63). The actual Dirac pulse at ¢ is
then the cumulative §.(ts) = d1(ts)+62(ts) and is determined by the o—o step. There-
fore, switching conditions that are based only on §;(¢;) may be incorrectly executed
if d2(¢5) interferes with the Dirac pulse computation.

Upon collision with the floor at t,, the horizontal and vertical velocities of the
center of mass of the rod change discontinuously. So, v,(¢;) = limygs, v,(t) differs from
v;(ts) which results in a collision impulse P, . and v,(¢;) = limg, v,(t) differs from
vy (ts) which results in a normal impulse P, as shown in Fig 64. Since no other forces
are active P4, = P, ., and if the force balance is such that |P4 .| > pP, the model

specifies that the rod goes into mode ay, and starts to slide. Consider a stiction
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Figure 64: Impulses upon collision when a sliding mode with stiction is reached.

impulse that becomes active when the rod starts to slide (mode ay; ) and this causes
a discontinuous change in the horizontal velocity of the rod, so v,(tF) = limy,, v.(t)
differs from v,(ts), which causes d5(t5). This stiction impulse, P;, operates in a
direction opposite to the collision impulse and the resultant impulse, P4 ,, may not
satisfy the criterium for sliding, i.e., | P4 | > pPy.

Correct physical models are enforced by determining the actual 6. based on
o—»o. However, the cumulative signal, d.(¢s) relies on d3(¢;) which is unknown at
o—e switching. Therefore, a causal model requires no interference of §; with . which
is achieved when 6, = 0. This requires the signal that is involved to be continuous
on the left-closed interval, [t;,—> in time, which is called the principle of temporal

evolution of state. In case of the example, the stiction impulse cannot become active
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when the rod-tip has crossed some horizontal distance, but it has to be activated at
the moment, ¢, the rod is inferred to start sliding, agy .. Now its effect is taken into
account along with P, . and P4, is derived properly.

To ensure dy(t5) = 0, the system specification can be analyzed in terms of h
and g. The function h specifies the relations between signals and state variables
and may compute switching signal values, sq = hq(i4), using a derivative relation.
To enforce continuity in left-closed time-intervals of s4, both Ay and #; have to be
continuous between modes. Assume a transition sequence «j — «,,. The function
hg 1s continuous if it does not change between «a; and «,,. Across discrete changes,
xg is determined by gar and 24 is continuous if x4 = gy (x4).> This results in the

k

condition for continuity of signals s; between aj, — «,
R = b3 Az = g (24) (63)

If this conditions does not hold, either one of the following conditions has to hold for

d(ts) to occur on o—e and to satisfy temporal evolution of state:

— Fa, \ Ba,, the trajectory exits a patch on an open interval.
— Fa,, N B, , the trajectory enters a patch on a closed interval.

— P..,., the trajectory enters a pinnacle.?

To verify temporal evolution of state for the colliding rod, first all mode changes
for which hy* # h§™ are found. From Fa, and F, in Eq. (48) this yields o) =
apo A oy = {apr, 011, a1}, and it has to be verified that agy — a,, and o, — ago

are o—e transitions.

21t follows that &4 = 0.
3Note that this implies that a sequence of pinnacles (as for example in a collision chain), which
violates the interval-point paradigm, still satisfies temporal evolution of state.
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Lemma VII.1 ag — o, s a o—e {ransition.

Proof: For o; — ago — oy, a; = {aor, ar1, @z}, o = {aor, @11, a1}

ago 1 (g5 () = &) = Fuy,
= QoP—e Oy
O contact * (7253 S 0) = fo&oo \Baoo

[ |
Lemma VII.2 o,, — agy s a o—e {ransition.
Proof: For «,,, — ago
Qoo (gggf () =2) = Fapy
= Qp0—e (o
Tprec : (750 < 0) = Fop, N B0
[ |

Next, inspection of the bond graph determines that derivative causality arises when
switching to mode ag; from either ayy or ayy, which implies that x4 # g5 (x4), Oy =

{aq1, a2} with x4 = v,, and it has to be verified that a,, — ag; are o—~e transitions.
Lemma VIL.3 o,, — ag s a o—e {ransition.

Proof: From Eq. (46) v generates og;qe for o, — agr — a; if |F;'{l,| — b >0,

for a; = {ago, 011,001}, = {11, 21} From Eq. (48) FiaU = mo} and Ft =

mi);' — may; for a mode change from ag; — 5, 044 1s generated if
imé(v; —v,)| — pmd(v; —v,) + pmay, > 0.
For ot = 2 = g2 this yields yma, > 0 with a, the only negative constant, and,

therefore, no immediate mode transition occurs. So,

aor 1 (750, (e, (2), gas, (%)) > 0 = Fu,,
= QpP—e Qg

O stuck - (F)/oojfnl) S 0= fam N Bot
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In this case ag; — a,, need not be proved because x4 = gar (xq4) and Ay = hy™.

Divergence of Time
For the colliding rod, divergence of time is violated if the horizontal rod-tip velocity
falls below vy, but its angle and length are such that |F4 .| > uF,, when the system
moves into mode «g; where the rod is stuck. This would generate o4, but when
sliding, |v4 | < vi, and Osper is generated. To eliminate this inconsistency, a modeling
decision can be made to generate gy only if the forces in agy are such that o4, 1s
not generated. This requires the addition of a pre-condition |FX°;| < pFor to ospyer,

where F{% and pF°t are calculated from A(g*°*(x)).
In general, transition conditions are likely to be more complex with greater inter-

action among modes. In such situations, an exhaustive energy phase space analysis

like in Chapter V can be applied [79, 82, 85].

Simulation of Hybrid System Models

Numerical simulation schemes like Euler and Runge-Kutta can be used for gener-
ating continuous system behavior. The flow graph in Fig. 65 illustrates that discrete
events generated by 7 trigger an event detection module to determine the switching
time, t5, within a margin of tolerance, e. The continuous field, f,,, computes z,, (1),
then real time is suspended, and the meta-level control model, ¢, is activated. In
some cases it may generate a sequence of discrete state transitions. The resulting
model configuration is then established, and x,,(¢;) is transferred to this model con-
figuration as x,,,(fs). In case of a pinnacle, further events are generated when the

state vector is updated and the a priori switching values change. This may cause a
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Figure 65: Flow diagram of hybrid system simulation.

new series of configuration changes that are executed by the discrete model using the
different /i functions in each mode. In the new continuous mode, «,,, f,, defines the
simulation from time ¢s with initial vector x,,,(ts) (= 4, (tF)). This implements sim-
ulation of f, at t; as a point in time and allows an energy redistribution at a point

specified by algebraic equations. Note that in certain cases hybrid system simulation

requires further sophistication [94], which is subject of future research.

Simulation of the Colliding Rod

To derive a numeric model of the continuous function, f,, a 0-order, forward

Euler approximation [130] is obtained by using & = ZH75 or ap4q = fAL 4 2.
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Derivatives that are part of expressions in f are replaced analogously. For example,

. . I(cost —cosf
Uy = lcosOw becomes vy, 11 = (cos k+1ka+t1 os kwk)At—l—v%k, or, Uy k1 = lcosOypiwpyr1—

lcosOpwy, + vy, = lcosbpyiwipyr. The expressions for ;41 and ypr 41 are uniform
across configurations. These equations combined with the rest of the numeric model
constitute continuous behavior. Appendix A lists these models in full detail.

The only other function of the analytic specification that has to be represented

by a numeric equivalent is h

Ya = YMm 1 — [sinli4q

+ o+ - +
Vie = Vg kg1 — Lstnbppiwoly,
Pay = m(vyx + lcosOrwy)

h: 0 if Qoo (64)
Ft =

e
+ —
Yy k1" Yu,k

m( N —ay) otherwise

n 0 if [8731]
FA,J; = +
Ve k1 Yok
At

m otherwise

The derivative terms in h are simulated as Dirac pulses. So, as long as no discontinu-
ous change occurs (e.g., v;:k+1 = vy k+1) the magnitudes of the forces are numerically
estimated as shown. However, in case of a discontinuous change (e.g., v;:k+1 # Uy kt1)
the derivative term represents a Dirac pulse that has infinite magnitude, and, there-
fore, dominates the other terms. Due to numerical approximation, the pulse magni-
tude may be small compared to other terms (e.g., a,) which interfere with the correct
analytical solution. Therefore, in case of discontinuous change, the time derivative
terms are treated as Dirac pulses and comparison is based on their areas.

The remainder of the analytical specifications has no temporal aspects and can

be directly used for simulation. Note the difference between p4 ,, and vy, which are
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Figure 66: A number of trajectories in phase space of the colliding rod, vy, =

0.0015,60 = 0.862,1 = —0.1,yo = 0.23.

based on a priori and a posteriori values, respectively. Simulation results of three
trajectories in phase space for different values of the friction coefficient, u, are shown
in Fig. 66. Initially, the system isin (0,0,0), and flow F,,, determines that the vertical
velocity of the rod increases its magnitude with time. When the rod-tip, point A,
touches the floor the rod may start to slide, governed by flow F,,, (¢ = 0.002 and
p = 0.004), or it may get stuck and behavior is governed by flow F,,, (¢ = 0.005).
The discontinuous jumps between flows are illustrated in Fig. 66. Also, for simulations
with ¢ = 0.002 and g = 0.004, the sliding mode, a1, emerges immediately after agp.
This is determined by performing a force balance in the mode, gy, when the rod is
stuck. However, the state vector is not modified as a result from this mode and it has
no representation in phase space until the rod gets stuck after an interval of sliding.

When sliding, the center of mass accelerates in the horizontal direction, and the
negative velocity at the rod-tip decreases. When 1t falls below a threshold value, the
rod gets stuck and the system jumps to F,,,. If the transition conditions were not
properly specified, the force balance computations in the newly arrived stuck mode
may imply that the rod should start sliding again. However, if it starts sliding, it

does not have sufficient momentum to maintain a velocity larger than the threshold

value. This would result in a loop of instantaneous mode changes which violates the
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Figure 67: A boundary in phase space of the colliding rod, vy, = 0.0015,60 = 0.862,[ =
—10,yo = 23.

principle of divergence of time.

If the rod length is increased, the rod may hit the floor and start to slide, but
the moment the sliding motion starts, the balance of forces causes it to disconnect.
Therefore, the rod is in the sliding mode of operation at a point in time only after
which it moves into the mode of operation where it is free again, even though the
collision is modeled as prefectly non-elastic, i.e., there is no restitution of momentum
in any of the operational modes (¢ = 0). The corresponding phase spaces are shown

in Fig. 67 and demonstrate how B,,, changes the state vector between both of the

21

flows in agp. Note that a field governs behavior in «yy, so the corresponding point in

phase space is a boundary point rather than a pinnacle.

Summary
This chapter presented a complex, nonlinear, physical system and went through
the process of systematically deriving its analytic and numeric models. The applica-
tion of formal methodologies for model verification based on the principles of temporal
evolution of state and divergence of time was illustrated. The rigor of the verification
mechanism makes it suitable for algorithmic implementation but cumbersome to per-

form manually. At a more intuitive level, temporal evolution of state can be ensured
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by modeling configuration changes where events that cause derivative causality are
generated based on < conditions instead of <. This ensures Dirac pulses are gener-
ated from well defined limit values. Divergence of time can be achieved by ensuring
that CSPEC on/off and off/ on transition conditions are mutually exclusive. This is
easiest if they are based on a priori values since these do not change during mode

changes.
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CHAPTER VIII

MODEL BASED DIAGNOSIS

The complexity and sophistication of the new generation of aircraft, automobiles,
satellites, chemical plants, and manufacturing lines, along with growing demands for
their reliability and safety while keeping cost low, is being met by more automated
control and monitoring systems, and the use of functional redundancy techniques for

fault detection and isolation (FDI).

Introduction

Typically system models capture relations between measured variables and system
or component parameters. Simulation and reasoning methodologies generate system
behavior from these models, and when combined with techniques for identifying and
analyzing observed deviations can be used to isolate a large number of possible faulty
situations [8, 9, 39, 62, 101]. Some faults, such as a pipe blockage that completely
isolates two parts of a system, change system structure and require a change in the
system model itself. This renders these faults hard to diagnose unless failure mode
models are explicitly incorporated into the analysis scheme [70]. This thesis studies
FDI techniques that apply to complex dynamic systems that do not undergo such
structural model changes. The focus of this research is on extracting discriminating
information from transients in dynamic behavior caused by discontinuous parameter
changes (faults). The aim is to quickly identify the root-causes for discrepancies in

system behavior [75, 86].
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Overview
FDI utilizes system models to predict operating values for a chosen set of system
variables in a given mode of operation (Fig. 68) [41, 50]. This set of variables, called

observations, is continuously monitored during normal operation.

Definition 2 (Observation) An observation is a variable in the system model that

1s measured.

Comparison of predicted operating values against observations help identify devia-
tions from normal operation. Simple models may include a margin of error on sen-
sors. When error thresholds are exceeded, the diagnosis system responds by setting
corresponding alarms. In general, the diagnosis system maps observations, y, that
deviate from predicted normal behavior, §, onto a system model (Fig. 68). Analysis
of descrepancies, r in the context of the model helps to generate one or more hy-
pothesized root-causes, f, that explain the observed deviations. Hypothesized faults
suggest modifications to the system models which are then employed to predict fu-
ture system behavior. Continued monitoring and comparison with these predictions
helps refine the initial fault set, f. Faults whose predictions remain consistent with
the observations determine the root-causes for the observed problems. The goal is
to continue the monitoring, comparison, and refinement process till the exact set of
faults occurring in the system are isolated. The overall process of monitoring, gener-
ating hypothetical faults, prediction, and fault isolation using system models as the

primary basis is referred to as model based diagnosis.
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Figure 68: Diagnosis of dynamic systems.

The ultimate goal of model based diagnosis is to accurately! isolate problems
and restore the system to normal operation by: (1) replacing faulty components,
and (2) making control changes to bring system behavior back to desired operat-
ing ranges or quickly move the system into a safe mode of operation. This defines
a paradigm that covers methodologies for fault detection, isolation, and recovery
(FDIR) which requires the integration of methods for prediction, monitoring, and
measurement selection. Prediction is a difficult problem even for experienced plant
operators, therefore, it is all the more important to develop useful techniques to pre-
dict future behavior from given fault situations. From a computational viewpoint,
the better the prediction, the easier it becomes for FDI algorithms to quickly prune
the search space through continued monitoring and comparison with predictions. The
monitoring stage is critical to successful FDI. Monitoring parameters like sampling
rates govern the measurement interpretation process, and, therefore, fault hypothesis
generation and refinement. The implementation of the monitoring algorithms deter-
mines whether faults may not be distinguishable from others, and this determines

the overall diagnostic accuracy. Finally, a critical issue in FDI is sensor placement

1On accuracy and precision: Accuracy is the assessment of whether the actual value is contained
by the estimate. Precision is the deviation of the estimate from the actual value.

138



and measurement selection. This is all tied into diagnosability analysis, i.e., selection
of measurements that help isolate and differentiate among possible faults that may

occur in the system [21, 71].

Nominal Values

The diagnosis scheme compares actual measurements with predicted nominal val-
ues of process variables that characterize normal operation. This comparison process
is termed fault detection. In processes that operate in steady state, nominal values
can often be retrieved from design specifications or documentation created by pro-
cess engineers. To account for the effects of noise and measurement inaccuracies,
a margin of error is added to the nominal values to increase robustness and avoid
false alarms [111]. However, this decreases sensitivity, which is acceptable provided
the delayed detection does not result in dramatic errors. For systems that typically
operate in steady state modes, design documents often specify the upper and lower
limits on nominal values of all system parameters and measured variables.

For systems whose normal operation modes include transients and dynamic be-
haviors, nominal values of process variables are harder to obtain. A fairly accurate
process model is required to run in parallel with the process. Given the same initial
state and the same input as the process the simulation mechanism should predict the
process output in normal operation. In reality, approximations in the models and
drift in the system may result in the estimated state vector slowly deviating from the
actual system values. To prevent this, an observer mechanism shown in Fig. 69 can
be used to estimate and make corrections to the estimated state vector. A critical

issue when applying this scheme to obtain nominal values is the model adaptation
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Figure 69: A general observer scheme.

observer

rate, especially in case of incipient faults. If this rate is too fast, the model quickly
adapts to changes in the system variables due to faults and generates nominal values
that do not indicate a deviation.

Instead of just providing nominal values, the state estimation scheme can be
used for diagnosis by reconstructing the entire set of states of the process if the
process parameters have been estimated precisely. The reconstructed results are then
compared and the set of most consistent states is chosen as the best estimate. This
set can then be used to generate residuals based on the actual observations to detect
whether a fault occurred.

To identify faults, the set of system equations are modified so that the three basic
types of faults listed below can be explicitly identified as parameters and terms of the

equations:

— Instrument faults; which refers to sensor faults.

— Actuator faults.
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— Component faults; which refers to the different parts or sub-systems in the

process where the fault can occur.

By explicitly incorporating these faults into the parameters of system equations as
part of the observer system, diagnosis algorithms can be designed to detect and isolate

faults. A unifying representation, in discrete form, is given by

Xpt1 = Ax; + Bug + Edy + Kf,
(65)
vi = Cx; + Fd;, + Gfj,
where dj represents a disturbance term due to noise, and f;, represents the effects

introduced by the fault term. Entries of K can be used to model actuator and

component faults and entries of G can be used to model sensor faults [41].

A Comprehensive Diagnosis Scheme
State estimation requires parameter estimation to determine precise models of
the process under scrutiny. Like state estimation schemes, diagnosis schemes can be
based on parameter estimation techniques. The advantage of these schemes is the
close relation between estimated values and physical coefficients. Given that nomi-
nal values can be derived from state estimation schemes or from design documents,
comprehensive diagnosis can proceed by performing one or several of the following

techniques (Fig. 70):

— Quantitative parameter estimation is derived from numerical models of the pro-
cess. Typically filtering methods may be applied to estimate system parameters
based on a vector of residuals. These parameters represent aggregate behavior

of process components, and, therefore, a fault may cause a number of parameter
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deviations. This process is computationally intensive, and may be subject to
the convergence problems that occur in numerical estimation. To improve per-
formance, other techniques can be used to narrow down the parameter search

space.

— Performance of diagnosis algorithms can be enhanced by incorporating sophis-
ticated sensitivity analysis schemes. The degree to which different faults affect
measurements can be exploited by the parameter estimation procedure to rank

possible causes by the sensitivity of the observables to the hypothesized causes.

— Failure mode mappings can further enhance the fault identification and isolation
process. They represent a discrete event systems approach that requires knowl-
edge about how process components may fail, and what effects these failures

have on system parameters.

— Dependency analysis techniques rely on a topological functional model of the
process and capture a weighted dependency between parameters and measured
variables. These weights could be a function of various parameters, such as
proximity to the observed fault. Sometimes the weights may capture process
delay times, and in such cases the dependency graph represents a dynamic model
of system behavior. Observed deviations can be traced back to parameter values

which can be ordered in terms of when their effects become active.

Note that the techniques described above are not mutually exclusive. Any of these
methods can be effectively developed into a diagnosis system. However, developing

a diagnosis framework that integrates two or more of these approaches is likely to
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Figure 70: Complementary diagnosis schemes.

produce more efficient and robust systems. It remains a challenge to see how best to

develop such systems.

The Model Based Diagnosis System

This thesis develops an approach for monitoring, prediction, and fault isolation
that focuses on the use of dependency relations between parameters and observed
variables. In previous work, static models were successfully applied to diagnosis tasks
for moderately complex systems based on qualitative constraint equations [8] and the
signed directed graph (SDG) [102]. However, due to the understrained models that
are used, these approaches run into combinatorial problems. Furthermore, in case of
the SDG, since system dynamics are not part of the model that is used for diagnosis,

temporal feedback effects have to be re-introduced on an ad hoc basis [39, 101].

Modeling for Diagnosis

Successful modeling for diagnosis requires a unique set of requirements.

— The models should describe normal and faulty system behavior. The former
provides the reference variable values for the monitoring task, and the latter

forms the core for the prediction algorithm.
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— The model should incorporate sufficient behavioral detail so deviations in ob-

served variables can be mapped onto system components and parameters.

— The model should generate dynamic behavior, especially when faults cause tran-
sients that take the system away from normal steady state operation. Faults
cause changes in system parameters, therefore, the assumption of constant pa-

rameters does not hold and their temporal effects have to be included.

— When faults occur, the system may undergo a structural change. Though struc-
tural changes is beyond the scope of this paper, they constitute an important
category of failures. To make the presented framework extendable to incorpo-

rate this phenomenon, it is important to not preclude it from the onset.

In addition, to constrain the inherently exponential search space for diagnosis, it
is important that the model impose all relevant physical constraints on the search
process. Also, given the limits of purely qualitative and purely quantitative schemes
that have been discussed elsewhere [41, 50, 102], models that generate and use both
qualitative and quantitative information are preferred. This prevents loss of a priori

information that may be useful for generating and further refining candidate sets.

Bond Graphs for Diagnosis
Bond graphs [107] provide a systematic framework for building consistent and well
constrained models of dynamic physical systems across multiple domains with inher-
ent causality constraints that provide effective and efficient mechanisms for diagnosis.
An added advantage of the bond graph derived representation is their direct appli-

cability to qualitative processing, which makes them applicable in situations where
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precise numerical information may not be available. However, analytic system models
derived from bond graphs are also amenable to quantitative simulation and analysis.

In this thesis, a causal dependency graph is derived from a bond graph to provide
the system model. Links among system parameters and variables in a causal de-
pendency graph are extended by temporal properties. Propagating effects of deviant
observations to hypothesized causes (i.e., faults) can now be classified as instanta-
neous versus those that have delayed effects. Delayed effects can be further classified
by the order of the effect, e.g., first order, second order, etc. The causal temporal
models are derived from a bond graph model that adequately captures the dynamic
characteristics of system behavior.

An important issue in diagnosing parameter deviations of physical systems con-
cerns the transfer of the state vector to the failure mode after an abrupt fault occurs.
Though changes in dissipative effects do not affect the state vector expressed in terms
of power variables (e.g., pressure and velocity) of the independent energy storage ele-
ments (e.g., tanks, springs, and masses), abrupt changes in parameter values of energy
storage elements may require an abrupt change of the state vector based on the prin-
ciple of conservation of state (Chapter III). To illustrate, assume that at time ¢;, a
rock falls into an open tank with capacity ' and outflow resistance R for a connected
outlet pipe. The capacity of the tank decreases abruptly, and, therefore, the pres-
sure, p, at the bottom changes instantaneously, however, the amount of liquid in the
tank, ¢, is conserved. The effects of this parameter change on the state variable and
describing field equation is shown in Fig. 71. The new pressure is directly derivable
from the constituent equation p = % but the effect is lost in the time-derivative form

f= C% which only shows a change of slope % = g if C' changes. If the time-varying
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Figure 71: Transfer of the state vector and its field across discontinuous change.

effect of the (' parameter is taken into account, the constituent equation becomes

f= C% + p% which determines the pressure as &£ = £ — %, and an abrupt

L
C

oC

=7, which then causes an immediate

change in C results in an instantaneous jump in
abrupt change in p. Now the effect on the system state has become explicit. In the
g _

integral form of constituent equations, p = & = % [ fdt, used in bond graphs, this

effect is automatically incorporated, since p = é fttf fdt + po(ci).

To extend bond graph modeling for component oriented diagnosis requires es-
tablishing correspondence between individual components and bond graph elements.
In the bond graph framework, primitive elements, such as resistors and capacitors
represent mechanisms which may not always be in one-to-one correspondences with
individual system components [10]. An individual component may have multiple as-
pects represented in the bond graph. For example, a component such as a pipe may
be represented in the bond graph by its build-up of flow momentum (7) and resis-
tance to flow (R). Biswas and Yu [10] describe a methodology for deriving bond

graph models for diagnosis from a physical system description so that the bond graph
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elements directly correspond to system components and mechanisms under diagnos-
tic scrutiny. The modeling methodology has been further instantiated by Mosterman
and Biswas [77, 79, 87]. In this thesis, a deviation of a bond graph parameter from

its normal value is referred to as a fault.

Definition 3 (Fault) A fault is a model parameter that deviates from its value in

normal operation.

Transient Based Diagnosis

To exploit process dynamics effectively for diagnosis requires that faults create
transients in process behavior, which can be detected and their characteristics iden-
tified reliably by the monitoring process. Therefore, the approach is applicable to
abrupt, possibly intermittent faults, but less suited to processing incipient faults. For
example, the diagnosis methodology is well-suited to detecting sudden blockages in
pipes which cause significant dynamic transients in pressure and flow values, whereas
a pipe that accumulates dirt and slowly blocks may not manifest significant dynamic
characteristics. It is more likely that the slowly blocking pipe will cause a gradual

drift in the system steady state behavior.

Time Constants
Time constants play a key role in characterizing the dynamic behavior of phys-
ical systems. As discussed earlier, faults bring about instantaneous change in some
system variables. For other variables, energy storage elements acting as buffers intro-
duce propagation delays, thereby slowing down the rate of change in these variable

values. In general, measurement variables with larger time constants in response to a
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disturbance caused by a fault take longer to show significant changes in their values as
compared to measurement variables that are associated with smaller time constants.
If measurement snapshots are available from the system at rates that are faster than
the smallest time constant, it becomes easier to track and relate system behavior back
to primary fault causes. In this thesis, without much discussion, this is assumed to

be true.

Assumption 1 (Time scale of observation) The sampling rate for observations

is faster than system time constants in both normal and faulty operation.

Relations between hypothesized faults and measurements that do not embody tem-
poral behavior propagate abrupt changes instantaneously. Physical systems are in-
herently continuous but these abrupt changes occur on a time scale that is much
smaller than the time scale of observation, and, therefore, are observed to manifest as
discontinuous changes. Therefore, abrupt changes are a sampling artifact attributed

to the time scale of observation.

Definition 4 (Discontinuity) A change in a signal value that happens on a time
scale much smaller than the time scale of observation is considered to be abrupt and

called a discontinuity.

Observed transient effects in system behavior are often associated with multiple
time constants which combine to define the overall delay. Combined effects of these
behaviors is determined by the convolution rather than the sum of their partial ef-
fects [74]. To illustrate this, consider the two first order systems with time constants
71 and 75 in Fig. 72. The combined effect of these systems is given by 71 * 75 (convo-

lution) whereas the sum of their individual delay times is shown by 7 + 7. Notice
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Figure 72: Delay times of two first order systems (71 and 73), their sum (7, 4+ 72), and
the actual delay time of their combined effects (71 * 72).

that there is just one point in time where the two coincide which makes it difficult to
derive combined delay times from individual values. The use of delay times is even
further complicated given that designed time constants change when faults occur.
Even if one qualitatively analyzes effects, there can be uncertainty in temporal
ordering of the observed deviations in two variables where one variable embodies a
first order effect and the other a second order effect. Typically a measurement is
considered normal if it is within a certain percentage (say 2%—5%) of its nominal
value. Fig. 73 shows two variables, a first order effect, x1, and a second order effect,
x9, and their delay times, t;; and ¢4, respectively in crossing the error-threshold. At
times between 4o and t4, x5 is reported deviant but x; is reported normal. Although
x5 embodies a second order effect with a 0 value 1% order derivative at the point of
failure, it crosses the error threshold before a first order effect. This is contrary to
expectations where a first order effect is expected to dominate (i.e., be much faster
than) a second order effect. Fig. 74 shows that the first order effect does have a faster
effect when two signals have the same first order time constant, but one of them has

a second order time constant too.
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Figure 74: A second order effect with one constant equal to the time constant of a
first order effect.

This brings up an important issue when dealing with normal values and deviation
from normal in a qualitative reasoning framework for diagnosis of continuous-valued
systems. A temporal ordering of first and higher order effects deviating from normal is
in general impossible. Unless the sensor system is wired and calibrated with extreme
care to guarantee a temporal ordering in response times, an observation being reported
normal at a given time may really be an artifact of the implementation, and, therefore,
cannot be used to refute faults. Moreover, it can, and in general will, lead to incorrect
consistency based diagnoses.

In this thesis, deviant observations are individually analyzed to generate sets of
single fault hypotheses. On the other hand, normal observations are not necessarily
used to refute faults. This is because it is hard to differentiate between a truly normal

signal versus one that is changing slowly, and at some point in time in the future
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will deviate from normal. Only in situations where discontinuities can be reliably
detected if they occur, can normal observations be used to refute faults which would
have definitely caused a discontinuity for that observation. In this thesis, the use of

normal observations is an optional parameter.

Feature Detection

Earlier discussion indicated that temporal ordering of measured deviations be-
tween signals is fragile and should be used cautiously in diagnosis. This makes
individual signal features the prime discriminating factor between competing fault
hypotheses. Prudence must be exercised in distilling information from signals, espe-
cially when they are noisy. Magnitude, or zero order, changes are typically measurable
within a given error tolerance based on sensor characteristics. Filtering techniques
help in deriving slopes, or first order derivatives, from measured signals, at least as
a qualitative + or no change value. However, deriving or measuring higher order
derivatives can be quite unreliable. Dedicated transducers (e.g., accelerometers) may
help measure 2" order derivatives, their use, in general, is often impractical. In this
thesis, monitoring and feature detection focuses on magnitudes and slopes of individ-
ual measurements. The previous discussion indicates that in a qualitative framework
magnitude values of relevance for diagnosis are above/below normal. Similarly, a
slope within bounds cannot be considered to be 0, only when it is measured to have
a significant value can it be identified as positive/negative.

The previous conjectures were made based on a minimalist basis. In general, track-
ing a signal will reveal many more characteristics, especially when dedicated feature

detection algorithms are applied. As an example, consider a discontinuity detection
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mechanism that considers a change discontinuous when it detects that magnitude
and slope of an observed signal have opposing signs. This can be interpreted in a
physical system perspective because discontinuous changes in physical systems due
to parameter deviations are typically caused by abrupt changes in energy storage
parameters. In steady state the stored energy in a system does not change, there-
fore, energy storage parameters have no effect on steady state behavior. After an
initial discontinuous change, the system returns to its original point of operation.
This discontinuity detection scheme has been successfully applied to the hydraulics
domain.

Another general characteristic of most physical systems is that dissipation forces
them to return to a steady state after a transient phase. This yields another feature
that can be used for diagnostic analysis — determining whether the eventual steady
state is detected as being above, below, or at the previous steady state value before
the transient caused by the fault occurred. This results in three qualitative features

that are detectable in actual measurements.

— Magnitude — discontinuously low, normal, discontinuously high.

— Slope — negative, positive.

— Steady state — below, at, above original.

For one observation this results in 3 x 2 x 3 = 18 feature permutations which would
maximally allow for the identification of 18 faults. If measurements of the process are
such that normal observations and predictions can be used this improves to 3 x 3 x
3 = 27 detectable faults, whereas if discontinuities cannot be reliably detected this

degrades to 2 x 2 x 3 = 12 detectable faults.
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Summary
Abrupt faults cause dynamic system behavior and the resulting transients take
system behavior from its nominal steady state of operation to a new steady state.
Based on a model of the system dynamics, these transients can be effectively and
efficiently applied to quickly isolate root-causes for deviating behavior. Magnitudes,
slopes, and discontinuous changes at the time of failure for individual observations
can be applied in a qualitative reasoning framework. Furthermore, the new steady

state that the system achieves can be used as a final mechanism for fault isolation.
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CHAPTER IX

IMPLEMENTATION

This thesis describes a diagnosis methodology illustrated in Fig. 75, which com-
bines fault detection, fault hypothesis generation, prediction, and monitoring. This
chapter describes how the bond graph model of the physical system! is used to derive a
temporal causal graph which captures the dynamic characteristics of system behavior.
Next, it presents diagnosis algorithms for each of the diagnosis modules (Fig. 75) that
utilize the temporal causal graph. Observations need to be mapped onto a qualitative
representation to detect discrepancies and generate faults hypotheses. Predictions of
future behavior for each fault are then monitored against new observations to refine

the set of possible faults

The Temporal Causal Graph

The temporal causal graph is derived in two steps [80, 92]:

'In the diagnosis models that are used, bond graph elements operate in so-called integral causality

only [107].

U | detect | 9 | generate f predict
“|discrepancy 7| faults “| behavior

S

A

Y
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Figure 75: The diagnosis process.
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Figure 76: The bi-tank system and its causally augmented bond graph model.

1. The SCAP or its extended versions [129] are applied to generate a causal as-
signment among the power variables associated with the bond graph. These

power variables are vertices in the temporal causal graph.

2. Components are linked one on one to individual edges in the temporal causal

graph, and additional temporal and magnitude constraints are added to them.

The temporal causal graph for the bi-tank system in Fig. 76 (see also Chapter II)
is shown in Fig. 77. The graphical structure represents effort and flow variables as
vertices, and relations between the variables as directed edges. The relations can
be attributed to junctions and system components. Junction relations add labels
—1, 1, and = to a graph edge. The = implies that the junction constrains the two
variable vertices associated with the edge to take on equal values, 1 implies a direct
proportionality and —1 implies an inverse proportionality for the variable associated
with the two incident vertices. When the edge is associated with a component, it
represents the component’s constituent relation. For example, for a resistor with flow

causality, the edge between effort and flow is labeled % and for a capacitor the edge

is labeled édt.
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Figure 77: Temporal causal graph of the bi-tank system.

Junctions, transformers, and resistors introduce magnitude relations that are in-
stantaneous, whereas capacitors and inductors also introduce temporal effects. In
general, these temporal effects are integrating, and their associated rate of change is
determined by the path that links an observed variable to the initial point where a
deviation occurs. Note that the bond graph formalism presents one way to derive tem-
poral causal graphs. Other modeling formalisms that support the physical modeling
paradigm and allow for the generation of a temporal causal graph may be employed
in its place. Also note the natural feedback mechanisms of dynamic physical systems
that result in closed paths in the temporal causal graph. Between passive elements,
these feedback mechanisms always have a negative gain [130] and if they include an
integrating effect, as a result from a state variable in the system, these closed paths

are referred to as state loops.?

Definition 5 (State loop) A closed causal path with one and only one time-integrating

effect is called a state loop.

?In other diagnosis work, where temporal aspects of relations were not modeled, these ubiquitous
negative feedback mechanisms caused difficulties in assigning a consistent graph mapping of devia-
tions. Rather than trying to resolve this problem by breaking the causal paths somewhere, it can
be used advantageously by incorporating the temporal phenomena.
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Figure 78: Steady state bond graph of the bi-tank system and its corresponding causal
graph.

An added advantage of bond graph models is that they allow automatic derivation
of the steady state model of the system. In case of the bi-tank system, both the tank
capacities in steady state can be replaced by flow sources with value 0, since no change
of stored energy takes place. The steady state bond graph and its resulting steady
state causal graph are shown in Fig. 78. Notice that the causality links in the steady
state graph differ from the causality links in the dynamic behavior graph (Fig. 77) and
have less meaning. Since there is no temporal ordering, a steady state graph represents
a set of algebraic equations rather than differential equations. Causality helps solve
these equations, but its actual assignment is not critical. Independent of causality
assignment in steady state graphs, the set of algebraic equations is invariant and equal

effects of parameter deviations are generated for different causality assignments.

Component Parameter Implication

When a discrepancy between measurement and nominal value is detected, a back-
ward propagation algorithm (Algorithm 2) is invoked on the temporal causal graph
to implicate component parameters. Implicated component parameters are labeled —

(below normal) and + (above normal). The algorithm propagates observed deviant
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values backward along the directed edges of the temporal causal graph and consis-
tent — and + deviation labels are assigned sequentially to vertices along the path if
they do not have a previously assigned value. An example is shown in Fig. 79 for a
deviant pressure, e;T, in the right tank of the two tank system (shown in Fig. 76).
When e; is measured to be above its nominal value, backward propagation starts
along f~ CL2—> ef and implicates Cy as C5 (i.e., Cy is below normal) or f; as f7 (i.e.,
f7 is above normal). Backward propagation from fi, the proportional relation on
fs RN f+ implies fi, and the inverse relation on fs =4 f+ implies fy . Propagation is
terminated along a path when a conflicting assignment is reached.

Because backward propagation does not explicitly take temporal effects into ac-
count deviant values are propagated along edges with instantaneous relations first.
This ensures that no faults due to higher order effects conflict with faults identi-
fied with lower order effects. An example is shown in Fig. 80. Following the path
€1 L € & eq & e5 backward, at is generated based on the observation €. Note that
the link es & e4 introduces a first order effect. However, the path ¢; L €3 a4 €4 & es
also includes e}, which implies ¢~, and this path has no temporal delays. From
the time of failure, the a= — ¢ effect which is instantaneous will occur before the

+ s ¢f effect which has a first order delay.®> Therefore, temporal effects need to

a
be considered in implicating parameters and backward propagation is along instan-
taneous edges first. All component parameters along a propagation path are possible

faults. As discussed in Chapter VIII, observed normal measurements do not termi-

nate the backward propagation process. The end result of backward propagation

3Since this behavior pertains to the same signal, lower order effects always dominate during the
transient stage.
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Figure 80: Instantaneous edges propagate first.

is a set of hypothesized single faults that are consistent with the reported deviant

observations.

Algorithm 2 Identify Possible Faults

add observed vertex to list vy,
mark vertex with qualitative value
while v, 1s not empty do
Veurrent < the last vertex in vy
while v.yrren: has unsearched ancestors do
if ancestor relation includes a parameter then
add the relation to the set of faults
end if
if ancestor vertex is unmarked then
ancestor value ¢ new_value(current value, relation)
if relation is instantaneous then
add the ancestor vertex to the beginning of ;¢
else
add the ancestor vertex to the end of v,
end if
end if
end while
end while
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Prediction
The next step is refinement of the hypothesized faults by prediction and monitor-
ing. A complete version of the prediction module incorporates schemes for determin-
ing mode changes caused by abrupt structural faults and parameter value changes in
the system. This may result in performing model switches before future behavior of
the system can be predicted [77]. This thesis does not consider mode switches, and

it is assumed that the system model remains valid after faults occur in the system.

Assumption 2 (No structural changes) In case of faults, the system model does

not undergo configuration changes.

The main task of the prediction module in this case is to predict the dynamic, tran-
sient, behavior of the observed variables and also the eventual steady state behavior
of the system under the fault conditions. Prediction of future behavior is in quali-
tative terms of temporal effects like magnitude (0" order time-derivative), slope (1%

order time-derivative) and higher order effects.

Definition 6 (Signature) The prediction of 0, 1, and higher order time-derivative
effects of a system variable as a qualitative value: below normal (low), normal, and

above normal (high) in response to a fault is called its signature.

Forward Propagation
Prediction of future behavior is attained by forward propagation of the effects of
parameter faults (Algorithm 3) to establish a qualitative value for all measured system
variables. Forward propagation may occur along instantaneous and temporal edges.

Temporal edges imply integration, therefore, the cause variable affects the derivative
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of the effect variable. Initially, all deviation propagations are 0t order, i.e., they are
based on the magnitude of variable values. When an integrating edge is traversed, the
magnitude change becomes a 1% order change, i.e., the first derivative of the affected
quantity changes, shown by an 1 (}) in the propagation example in Fig. 81 for the
temporal causal graph in Fig. 77. Similarly, a first order change propagating across
an integrating edge creates a second order change (i.e., the second derivative of the
affected variable), shown by 11 (]J)) in Fig. 81. Second order changes propagate to

third order changes, and so on.

Algorithm 3 Predict Future Behavior

add initial vertex to list vy
mark vertex 0! order derivative with qualitative value
while v, 1s not empty do
Veurrent < the last vertex in vy
while v.yrren: has unsearched successors do
if successor relation includes a time integral effect then
increase current derivative order
end if
if derivative order < maximum order then
if successor derivative is no_mark then
successor derivative value < new_value(current value, relation)
else if successor derivative has opposite value of current then
successor derivative value <— conflict
end if
add the successor to end of vy
end if

end while

end while
for all vertex derivatives do
if value = no_mark and any higher order derivative # nomark then
replace no_mark with normal
end if
if value = conflict then
replace conflict with no_mark
end if

end for

Forward propagation with increasing derivatives terminates when a signature of

sufficient order is generated. The sufficient order of a signature is determined by a
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Figure 81: Forward propagation of the effect of an implicated component to establish
its signature.

measurement selection algorithm and depends on the observed vertices in the tem-
poral causal graph, and the desired precision for the diagnosis algorithm. A smaller
number of total observations on a system typically imply that higher order signa-
tures of the observed variables are required to achieve a level of precision that one
could obtain with more observations but lower order signatures for each observation.
Limiting the order of signatures has other practical advantages. As discussed earlier,
higher order effects take longer to propagate, and, therefore, their effects are observed
at later points in time from the time point at which failure occurs. This allows other
phenomena and effects from other parts of the system to affect the observed variables
and change their characteristics. For example, a fault may cause an abrupt increase
in a variable value, but negative feedback effects may soon diminish the increasing
value, and tend to bring the value down toward its previous steady state. This prob-
lem is compounded even more when cascading faults occur. They cause conflicts with
lower order effects and hamper fault isolation.

A complete signature contains derivatives specified to its sufficient order. When

the complete signature of an observed variable has a deviant value, monitoring will
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eventually report a non normal value for this variable. When the signature is incom-
plete, the variable has an assigned deviation for higher order derivatives but the lower
order derivatives are not assigned values. This implies that the lower order deriva-
tives of the prediction for the fault under scrutiny are normal (i.e., non-deviating),
and, therefore, are marked normal. Note that other faults could have caused devia-
tions of lower order derivatives, and the conservative use of normal observations to
refute candidates prevents elimination of the fault with predicted normal lower order

derivatives.

Steady State

Signatures corresponding to an implicated component are used to track the tran-
sient system behavior. Eventually, most systems without catastrophic faults tend to
come back to a steady state. The steady state causal graph derived from the bond
graph model of the system then determines the final steady state value that each ob-
served variable will achieve under the faulty conditions. Typically, the system returns
to its previous steady state or converges to a new one. In the qualitative framework,
steady state values are predicted to be below the original, at the original, or above
the original steady state value for the variable. This predicted steady state value for

each observed variable is attached to the signature and used in the monitoring stage.

Monitoring
The signatures of the observed variables generated in the prediction module are
input to the monitoring module which compares actual observations, as they change

dynamically after faults have occurred, to the reported signatures. It is only here that
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a number of previously discussed practical issues are incorporated into the diagnosis
engine. This allows localized mechanisms for measuring realistic dynamic effects that
can be easily adjusted to experiment with several assumptions about the quality and
characteristics of measurements and behavior. This section discusses a number of such
localized measures that are employed to improve the robustness of the monitoring

task.

Sensitivity to the Time Step

The time step employed in the monitoring process is a critical factor in establishing
its success. The choice of the step size is dependent on the different rates of response
that the system exhibits. Too small a time step may result in lack of sensitivity
to changes, and too large a time step may produce incorrect inferences. Consider
the signal (solid curve) shown at the left in Fig. 82. A large monitoring time step
(> 1) gives the appearance that this signal undergoes a discontinuous change (dashed
curve). Decreasing the time step may help in differentiating between discontinuities
(abrupt changes) and continuous effects. On the other hand, if the time step is too
small when applied to a variable with a relatively slowly decreasing slope as shown at
the right of Fig. 86, it appears that the signal does not change for a period of time,
therefore, it is reported to be normal or to have reached steady state. In actuality it
is decreasing, and reporting it as normal may result in premature elimination of true

faults.
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Figure 83: Progressive monitoring.

Progressive Monitoring

Transients that occur at the time of failure usually change over time as other
effects from the system affect the observed variables. The signatures for a candidate
fault can change dynamically. For example, a variable may have a 0?* order derivative
which is normal and a 1** order derivative which is above normal. Over time, the
variable value will go above normal. Including the effect of higher order derivatives in
the monitoring process is referred to as progressive monitoring. It replaces derivatives
that do not match with the observed value with the value of derivatives of higher order
in the signature. An example of this is shown in Fig. 83, where at time stamps marked
1, 2, and 3 a lower order effect is replaced by a higher order effect that has become
manifest. If the higher order derivatives match the observed value, the fault under

consideration is still plausible, otherwise it is rejected.
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Progressive monitoring is activated when there is a discrepancy between a pre-
dicted value and a monitored value (this applies to 0'" and higher order derivatives).
From the point in time when discrepancies occur between an observation and its pre-
diction, the next higher derivative of the measurement is checked to see whether it
could make the prediction consistent with the observation. If this next higher deriva-
tive value is predicted to be normal, the next higher derivative value is considered,
and so on, till there is either a conflict between the prediction and observation, a
confirmation, or an unknown value is found.

To illustrate, Fig. 84 shows the prediction-monitoring output for a sudden increase
in outflow resistance Ry in the bi-tank system in Fig. 76, where —1,0,1 maps onto
low, normal, high and a period indicates the value is unknown. The two observed
variables are the outflow of the left tank, f3, and the pressure in the right tank, e;.
Each box depicts the monitored values at time steps when the set of hypothesized
faults changes, the possible faults, and their signatures. The values on the top of each
box represent the actual observations of the 0 order, 1*! order, and 2% order behavior
expressed in qualitative terms.* The lower section represents the prediction of the
behavior of the observed variables for each of the candidates in terms of their 0" order,
1% order and 2"% order derivatives, respectively. An example of the application of
progressive monitoring is shown between step 9 and step 23 in Fig. 84. The signature
for observation e; assuming fault R, changes from 0,0,1 to 1,1,1. This is based
on the assumption that the 2°? derivative, which is positive, makes an impact on

both the 1% derivative and magnitude of the signal. Updating the prediction in this

“Note that the actual observations only deal with magnitude and slope (1% derivative). The 274
order derivative is never determined.
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Figure 84: Progressive monitoring for fault Rif,.

manner keeps the signature consistent with the observation that e; is above normal.
As a result, R} is still considered a viable fault hypothesis. Note that based on the
qualitative observations, the time of failure, ¢;, is unknown.

Fig. 85 shows the output when the fault C; was introduced into the bi-tank system
and discontinuity detection was used. In this case, since the actual deviation of the
magnitude changes over time, a fourth value is added to the actual observations that
captures whether a discontinuous deviation occurred at the time of failure as soon
as it can be inferred. Now, progressive monitoring does not apply to the 0** order
prediction because this value is used to match discontinuous changes. Fig. 85 shows
that the final diagnosis result was obtained in two time steps [80], and transient
detection was suspended for both f5 and e; at time step 7. The diagnosis engine can
correctly detect and isolate all single fault parameter deviations if pressure in one tank
and outflow of the other were measured and a first order signature is used. In this
case, discontinuity detection is not required but steady state detection is. If steady
state detection is not possible, either three observations and discontinuity detection

are required or a second order signature without discontinuity detection can be used.
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Figure 85: Results of the diagnosis system with C'; faulty and discontinuity detection
is used.

Similar results were obtained on a three-tank system [80].

Fault Interaction

When the single fault assumption is relaxed multiple faults can occur simultane-
ously in the system. Since normal observations are not used to eliminate hypothesized
faults, it is unlikely that real faults will be dropped during the hypothesis generation
and prediction stages. However, when faults interact, and the faults have opposite
predicted deviations on observations, the fault that has the less dominant effect is
likely to be dropped from contention because its effects are masked out by the other
fault. A pragmatic solution to this problem is to use an adequate number of observa-
tions so faults can be more easily discriminated. Moreover, for the observed variables,
if the sufficient order of the signatures is kept low, the focus is more on the immedi-
ate effect of transients as opposed to situations where longer propagation delays are
considered which increases the chances of interaction. Allowing the longer periods of

interaction also allows for the possibility of cascading faults, where an initial fault
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may change variable values sufficiently to cause other components to start failing.

For example, in the bi-tank system in Fig. 76, if Ry fails with a high value, it may
cause Rpy to fail with a below normal parameter value because the pressure e; may
increase to large enough values. The observed pressures for these faults can become
high or low, depending on which effect dominates. For multiple fault situations, Rj;
and R;,, and reported magnitude deviations ef and e; in the observations,” the
diagnosis engine picks R, only if its predicted effect on e; is consistent with the
observation e;. The 2" order prediction for Rj; is €2 ® T, and this is in conflict
with the measurement ez, therefore, Ry is refuted as a possible fault. However, if
the sufficient order for the signatures were set to 1 (i.e., consider up to 1° order
effects only), the signature for Rj; becomes €2 7, which is not inconsistent with the
observations.

This demonstrates that a natural partitioning of a physical system can be created
based on the order of its interactions. A measurement selection algorithm discussed
in the next section, establishes diagnosability criteria for different parameters. For
the bi-tank example, 1** order signatures are sufficient for identifying all single faults
when observing one of the pairs {ea, fs}, {f3, fs}, {f3, €7}, {f3, fs}, {5, fs}. This gives
a high single fault resolution and makes the diagnosis engine robust in a cascading

fault environment.

Temporal Behavior
Two distinct characteristics of signals in response to fault disturbances, transients

and steady state, carry the most distinctive discriminative information for diagnosis.

>This is based on the assumption that Ry, dominates es and Rps dominates er.
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For monitoring it is important to know when, after a time of failure ¢y, the transient
detection phase terminates, and the system moves into the steady state mode, requir-
ing steady state detection to be activated. Palowitch [102] reports that signals may
exhibit a compensatory or an inverse response (Fig. 86). A compensatory response
exhibits a decreasing slope and gradually moves towards steady state. For an inverse
response, after an initial increase or decrease, the signal may reverse direction. An
additional phenomenon resulting from abrupt faults can be categorized as a reverse
response. A reverse response occurs if a discontinuous signal overshoots and, conse-
quently, its qualitatively interpreted magnitude reverses sign (i.e., goes from above
normal to below normal or vice versa). In the qualitative analysis framework, these

behaviors are detected from an initial magnitude deviation by noting that:

— For an inverse response the magnitude and slope deviations have opposing signs
and there was no discontinuous change of magnitude at ¢;. If a discontinuous
magnitude change took place, the transient at ¢; could indicate a decrease of
this magnitude, and this results in a slope of opposite sign. However, this is not
an inverse response since the transient effects are the same as those exhibited

at ¢y and not affected by time at all.

— For a compensatory response the slope has become 0.

— For a reverse response the signal has a discontinuous initial magnitude deviation

with sign that is opposite of the current magnitude deviation.

When any of these situations are detected, transient verification for that particular
signal only is suspended (stage ¢ in Fig. 86), and steady state detection activated

(stage s in Fig. 86). Therefore, after a period of time, some signals may be processed
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Figure 86: Typical signal transients in physical systems that exhibit different quali-
tative behavior over time.

in the transient mode, whereas others are processed in the steady state mode. Steady
state is detected when a first order derivative becomes 0 for a sufficient period of time.
The sufficient period of time is usually based on design information. As part of future

research, more sophisticated steady state detection techniques will be investigated.

Algorithm 4 Monitor Predictions of 0" Order Derivative

Require: predicted and observed 0 order derivative # no_mark
for all observed vertices do
if use discontinuities then
if observed discontinuity is consistent with prediction then
assume fault is consistent
else
add to measure of inconsistency
end if
else
predictions ¢+ progressive monitor(observed 0t order derivative)
end if
if observed 0'" order derivative = prediction then
assume the 0% order effect is consistent
end if
if not sensitive to normal observations and observed 0t order derivative is normal then
assume the 0% order effect is consistent
end if

end for

Summary

To achieve robustness in analysis, the following measures are introduced:

1. A given signal’s behavior is used to analyze faults only after the monitoring
scheme reports it to be deviant. This circumvents the problem of insensitivity

for small time steps.
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Algorithm 5 Monitor Predictions of 1** Order Derivative

Require: predicted and observed 1%¢ order derivative # no_mark
for all observed vertices do

assume 1%¢ order effect is inconsistent

if not sensitive to normal observations and observed 1°¢ order derivative is normal then
assume the 1°% order effect is consistent

else
predictions ¢ progressive_monitor(observed 1* order derivative)

end if

if observed 1°¢ order derivative = prediction then
assume the 1°% order effect is consistent

end if

end for

2. Comparison of a predicted signature with monitored observations is carried out
for a number of time steps, and only if the results are inconsistent for the greater

part of the comparisons is the fault rejected.

. During this transient monitoring stage a progressive monitoring scheme defines

the dynamic characteristics of the initial fault transients.

. A sufficient order of the signatures allows for quick fault isolation before cas-

cading faults occur.

. After a period of time, signal behavior may deviate significantly from behavior
at the time of failure (e.g., it may reverse its slope) and the transient prediction
and verification process is suspended, and steady state analysis and verification

is activated. This is based on three characteristic qualitative signal behaviors.

Measurement Selection

Measurement selection is a critical task in designing an economically viable and

effective diagnosis system. For example, consider the one-tank system in Fig. 87.

While measuring the pressure at the bottom of this tank, a discontinuous change of
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Figure 87: Characteristic response of pressure and outflow to two different faults.

this observable can only be caused by an abrupt change of tank capacity. Any other
change affects the pressure only through integrating effects, which smooth out the
abrupt change. Note that measuring the outflow would not yield this discriminative
information since a discontinuous change in the outflow can be caused either by an
abrupt change of tank capacity or by a change of outflow resistance. However, with
multiple outflow resistances, no distinction can be made between the outflow resis-
tance faults by observing just the tank pressures. On the other hand, with resistive
failures steady state behavior of the outflow does differ. So, the flow measurement
can be used for discrimination, if time permits.® This provides additional informa-
tion associated with the outflow resistance to determine whether it has failed or not.
So, additional discriminative information becomes available and the importance of
measurement selection becomes apparent.

Before diagnosis, given a set of possible observations, a measurement selection
algorithm is utilized off-line to determine sub-sets of observations that cover the
parameter space completely. To this end, the signatures for all parameter deviations

(high and low) are determined. Next, each combination of observations is checked to

51t is obvious that in case of certain failures it is preferred not to wait for the process to reach
steady state but to take corrective measures or shut it down immediately.
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determine if all parameter deviations have a unique set of characteristics. From this

the minimal set of observations for a diagnosable system are determined.

Definition 7 (Diagnosability) Diagnosability represents the sets of possible faults
that can be distinguished from each other based on a given set of observations and

signature order.

Definition 8 (Complete diagnosability) For a completely diagnosable system the

sets of distinguishable faults all have one element only.

To illustrate this algorithm, consider the bi-tank system in Fig. 76. Possible
measurement points are selected to be the left and right outflow, the flow from the left
to the right tank, and the pressure in both tanks. The parameters of the system are
the left and right tank capacities and the flow resistances. First, magnitude changes
in the observed variables are determined for positive deviations of all parameters,

which yields:

_ f3 | _ - 0 0 - 0 11 Rp1 |
s 0 0 0 — 0 Rs
=10 — 0 - 4+ Ry (66)
er 0 0 0 0 — Cy
s 0 0 — 0 — O

Similarly, slopes of all observable signals are determined for all positive parameter

deviations: o . -
f3 + + 0 4+ - Ry
éq + 4+ 0 + - o
1=+ + — + = || R (67)
ér o - + - + Ch
fg o - + - 4+ Cy
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Finally, steady state analysis completes the signature of each observable for all pos-

sible positive parameter deviations:

f5° - 4+ + 0 0 Rp1
es’ + + + 0 0 Rya
=+ = = 0 0| R (68)
es® + — 4+ 0 0 i
Is° + - — 00 C

The effects of negative parameter deviations are computed analogously. In this sys-
tem, these influences are the opposite of positive parameter deviations.” An exhaus-
tive search is now applied to identify which set of minimal measurements produces
unique feature characteristics for all parameter deviations. To this end, 0 value slopes
are not used because of the ambiguity in detecting these. The resulting measurement
sets are {eq, fsh,{/f3, [5}.{f3,e7}.{f3, fs}, and {[s, fs}. Notice that {ey, er}, which
represents both pressures does not result in a completely diagnosable system. In-
specting the matrices, one learns that for these observations parameter deviations
in Ry; and Rpy have the same magnitude and steady state deviations. Though the
slopes differ between normal (bold faced) and a non-normal value, typically this can
not be used to refute either of the two faults. It is interesting that these variables
constitute the system state in a systems theory sense. So, simply observing the state

of a system may not be the most efficient way of doing diagnosis.

"In general, this is not true, notably when structural changes occur.
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CHAPTER X

THE LIQUID SODIUM COOLING SYSTEM

The effectiveness and use of the diagosis methodology based on transients was
demonstrated in Chapter IX [80, 92, 93]. As a next step, to investigate the scalability
of this methodology, its performance was tested on a model of a real system, the
secondary liquid sodium cooling loop in a fast breeder nuclear reactor. The need for
a qualitative approach in this system is motivated by the fact that it is a nonlinear
complex system, modeled as sixth order. This makes it hard to develop accurate
numeric models for generating system behavior in different modes. Moreover, the
precision of the sodium flow sensors used in the system is limited and hardware

redundancy is hard to achieve because of the expense involved in adding flow sensors.

The Secondary Sodium Cooling Loop

In a nuclear reactor, heat from the reactor core is transported to the turbine
by a primary and secondary cooling system. The primary cooling sub-system con-
nects directly to the reactor and transfers heat to the secondary cooling sub-system
which then transfers heat carried by the liquid sodium to the steam in the generator
(Fig. 88). Heat transfer from the primary cooling loop to the liquid sodium in the
secondary loop happens through an intermediate heat exchanger to drain heat. The
heated sodium is then pumped through two stages: the superheater and the evapo-
rator vessel, both of which heat up the water and steam in the steam-water loop that

then drives the turbine.
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Figure 88: Secondary sodium cooling loop.

Modeling Hydraulics

When developing a model for the hydraulics of the system, it is important to note
that bond graphs model total pressure rather than static pressure. Static pressure is
the pressure of a fluid on the pipe wall and depends on the fluid flow velocity and
elevation. Moving fluid contains kinetic energy, and combined with potential energy
due to elevation from a reference level this yields total pressure. If p is the fluid
density and a, the gravitational acceleration, then the potential energy of a fluid
volume, 7, at height, h, is represented by pnaj,h. Given a fluid volume, 5, flowing
at velocity, v, its kinetic energy is %,0771)2. Combined with the hydraulic energy as a
result from pga0, this equates the required energy to move a fluid volume 7 against
its total pressure, npiorar, and after dividing by n, total pressure is then expressed
as [130]

1
Ptotal = Pstatic —I' pagh —I_ 5,07)2 (69)
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This is illustrated by Fig. 89, where in case of piping without resistance, the total
pressure at each of the measurement points, pg, p1, p2, ps is the same. However, the
pressure measured at the pipe wall, depends on the velocity of the fluid flow at the
opening of the manometer, and the height of the measurement point. The fluid
velocity at the point where the manometer measures pressure pg is 0, therefore, this
pressure is solely a function of the pressure in the tank. The manometer that measures
p1 is located at a lower level, and, therefore, it measures the pressure in the tank
combined with the potential energy due to the difference in height, which results in
a measured pressure that is higher. Pressure measurement p; is less than p;, though
at the same level, because it measures pressure of a fluid moving with a flow velocity,
vy, In the wide pipe segment. Pressure ps is even less because of the higher fluid
velocity in the narrow pipe segment, v,,.

Note the higher fluid flow velocity in the narrow pipe segment. The flow variable
in the hydraulics domain is the volume flow rather than flow velocity. Since the wide
pipe transports the same volume of liquid in the same amount of time as the narrow
pipe, because of its smaller area, the flow has a higher velocity in the narrow pipe.
This represents an inertial effect because the fluid velocity is larger and thus, because

of its mass, builds up relative momentum.

The Bond Graph Model
The model used for diagnosis applies energy and mass balance of the system
in the hydraulics domain combined with the mechanical characteristics of the main
motor and pump. The bond graph that captures system behavior in these domains

is a nonlinear, sixth-order model (Fig. 90). The main motor driver (Fig. 91) is a

178



o
O
Ne]
e

il

I SREREITY

| v

Figure 89: Total pressure versus static pressure.

synchronous, ac motor, and as an assumption, its electrical field is considered to
be present as soon as it is turned on. Therefore, dynamic electrical effects are not
modeled, and the electrical part of the motor system can be represented as a source of
mechanical energy with a given torque/angular velocity characteristic. The inertia of
the rotor and the mass of transmission gear is modeled by my, and the transmission
ratio between motor and pump by n. Pump losses in the fluid connection between
the motor and pump are modeled by a dissipation element, Ry, and the pump inertia
is represented as my. The model of a centrifugal pump (Fig. 92), can be derived using

conservation of power and momentum [130]. This generates:

T8 = pout¢out7 (70)

where 7 is the input torque, # represents angular velocity of the pump rotor, pyy; 1s
pump pressure, and ¢,,; the corresponding mass flow. Conservation of momentum
states that the mechanical momentum, [ 7d¢, equals the hydraulic momentum. The
amount of mass moved by the pump depends on the total area of its veins, a, minus
the effective loss in moved mass due to the curvature of the veins, b. This is given as

J af — boydt. If the pump veins are not curved, b = 0. The hydraulic momentum of
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Figure 90: Bond graph of the secondary sodium cooling system.
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Figure 91: Synchronous ac motor that drives a pump.

the pump is represented by ¢y [ @l — by dt. The resulting equation

/ rdt = by / 00 — b, et

can be written as

T = qbout(ae - bqbout) + Q‘bout / al — bgboutdta

which for relatively low flow acceleration compared to flow velocity, yields the con-

stituent relation 7 = (af — bpout)Pous. Combined with Eq. (70) this yields pyue =

(af — bdoue)f which describes a modulated gyrator with modulus af — b,y

The hydraulics of the sodium loop are modeled by a closed power loop (Fig. 90).

The coil in the intermediate heat exchanger accounts for flow momentum build-up,
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Figure 92: Operation of a centrifugal pump.

represented by a fluid inertia, I77xy. The piping from the main pump through the heat
exchanger to the evaporator vessel is represented by resistance Ry. The two sodium
vessels are modeled by capacitances, Cgy and Cgy and the connecting pipe by its
resistance, R3. An overflow column, Cppe, maintains a desired sodium level in the
main motor, and the piping between the evaporator and this column is represented
by resistance R4. Both these storage facilities are connected to a sump, S., by a pipe
with resistance, Rs.

The corresponding steady state bond graph is shown in Fig. 93. Solving the
algebraic equations in this model results in a third order equation because of the
quadratic modulus of the gyrator. A closed form symbolic solution was derived using
Mathematica. This solution has one real root that represents the steady state solution,

and symbolically provides the nominal values of the operation.

The Temporal Causal Graph
For diagnosis, the dynamic temporal causal graph of the system is derived from
the bond graph (Fig. 94). Because of its nonlinear character, the MG'Y requires more

detailed analysis. The derivation of the causal relations of the modulated gyrator
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Figure 93: Steady state bond graph of the sodium cooling system.

is shown in Fig. 95. First it is observed that the modulation factor ¢ = afs —
bfy is directly proportional to fs and inversely proportional to fo, g(fs,—f9). The
dependency of g on fg and —fy can be explicitly modeled by edges between these
variables and the affected variables. In case of the dynamic behavior, the affected
variables are eg and eg (Fig. 90) and the corresponding edges are added to the causal
graph (Fig. 95). In the secondary sodium cooling loop g > 0, and, therefore, the
added influences on eg result in ambiguity. This is revealed by a detailed study of the
sensitivity of eg to fy. From the bond graph es = (afs — bf9) fo, s0 es = afsfo — bf3.
This relation, plotted in Fig. 96, reveals that the sensitivity of eg to fg can be positive
or negative depending on the values of fg and fy. Given the nominal values of the
steady state operation of the system, which is parameter dependent, the weight of
fo — es can be determined as a positive (1) or negative (-1) influence. However, once
a deviation occurs, fs and fg may differ from their nominal values and a different
operating point may be reached. Since these new values are likely to be caused
by failures, and, therefore, will be unknown at monitoring time, the influence may
reverse. This can only occur if eg is predicted to be high based on the proportional

influence (-1 or 1). So, only a predicted decrease in es is unambiguous, and, therefore,
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Figure 95: Temporal causal graph of a modulated gyrator.

propagated. A predicted increase in eg is propagated as unknown. Note that the
two pump parameters a and b are represented by one positive parameter, ¢, in the
temporal causal graph. This prohibits making a distinction between deviation of
either, but since {a,b} is attributed to the same component, the centrifugal pump,
this set can be treated as one fault. Also note the variable e33 that represents eg+ €35.

This variable is introduced because it is a measured value in the actual system.
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Measurement Selection

The measurement selection algorithm was applied to find a minimal set of observa-
tions required to establish a diagnosable system. In principle, measurement selection
is based on the temporal structure of the graph, and, therefore, no numeric informa-
tion is used. However, when fy or eg is low numeric information can be applied to
determine whether the relation fg — es is 1 or —1 instead of generating unknown as
is done when fg or eg is high. Furthermore, because of the critical nature of failures in
this type of system, it is not desired to wait until the system has reached steady state
after an abrupt failure. Therefore, measurement selection does not utilize differences

in steady state behavior between faults.

Ideal Observations
Possible observations are selected to be the efforts on 0 junctions, {es, €14, €19, €22},
and the flows on 1 junctions, { f2, f7, fi1, fi6, f20, f2a}. From the temporal causal graph
(Fig. 94) it can be seen that n and R; have similar temporal effects, i.e., they are
not separated by temporal, integrating, effects. To distinguish between failure of

these two parameters the difference in angular velocity of the driving motor and the
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Table 3: Minimum sets of measurements for completely diagnosable single faults, in
case of one pump parameter.

Order Measurements
f2|f5|€5|f7|f11|€14|f16|€19|f20|€22|f24|€33|t0ta1|
5 VARY v v V| 5
3 VAR v VIV |5
2 VARARY VRV v VT
2 VARARY v vV IV VT
2 VARARY v v v VT
2 VARARY v v v VT
2 VARARY v v VIV T
2 VARARY vV IV VIV T
2 VARARY v v VIiVI]T
2 VARY v v v VIiVvI]T

rotating pump, fs, is added to the set of possible measurements. Finally, observations
that are presently available in the secondary cooling system, indicated by the boxed
variables in Fig. 88, show the pressure generated by the centrifugal pump, e33, as an
additional observation. Adding this measurement to the set of possible observations
results in a completely diagnosable system for single faults (Table 3). If up till 5
order is predicted sets of 5 observations can be used while for predictions of up till

274 order 7 observations are required. Note that f; is never used.

Actual Measurements
The ideal observations selected to achieve complete diagnosability of single faults
are not necessarily the best measurements to choose in practice. This may be because
some of the chosen sensors are expensive. As an alternative, measurements that are
not part of the ideal set of observations may be available, for example, regulations
may require certain pressures and flows to be monitored. In case of the secondary

cooling system, variables in the system that are typically hard to measure are flow
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Table 4: Fault discrimination based on actual measurement points in case of one
pump parameter.

H Measurements ‘ Order ‘ Indistinguishable Parameters H
{f2s fr, fi1, €14, €19, €22, €33} 2 {n, Ry, Ry}{n, Ry, R3, Rs}
3 {n, Rl}
4 {n, Rl}
5 {n, Rl}
{f27f77f11761476197633} 2 {n7R17R4}{n7R17R37R5}{g7C3}
3 {nt, RT, Ry H{n ", Ry}
4 {n, Rl}
5 {n, Rl}
{f27f77€1476197633} 2 {n7R17R27R37R47R5}{g703}
3 {n7R17R3}{n+7RT7R5_}
4 {anl}{n_le_vRi’?}
5 {n, Rl}

variables because flow sensors for liquid sodium are imprecise and expensive.

Using only the observations that are currently available, { f5, f7, fi1, €14, €19, €22, €33},
depicted by boxed variables in Fig. 83 and Fig. 91, single faults in the system are
equally well diagnosable, except for {n, R} (Table 4) which can also be achieved with
a sub-set. The number of observations in this set and the ideal set of selected mea-
surements are the same, but higher order predictions are required to achieve the same
diagnosis for the currently used set. This implies there are more likely interactions in

multiple, cascading, fault scenarios for the current observations.

Simulation Results

The numerical simulation model for the secondary cooling loop utilizes the forward
Euler integration, x311 = ©At 4+ x. To ensure stability, the numerical time step was
chosen based on the smallest time constant of the model, 7,,;,,, such that At < ==

[130].
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From system specification documents and by consulting domain experts, the pa-
rameter values listed in Table 5 were chosen. Those values are relative to each other
(not the exact parameter values), and they suffice to generate behavior that matches
the actual system behavior in a qualitative sense. The EV,,,, parameter indicates the
maximum level of the liquid sodium in the evaporator vessel. This overflow mech-
anism was modeled but not taken into account in the temporal causal graph that
was used for diagnosis because it would introduce a model configuration change. The
simulation used a numerical time step of At = 0.001, which produced numerically
stable simulation in all situations, normal and failure. This indicates a 7,,;, < 0.003
in the model which relates to a minimal time constant in the actual system that is
in the order of minutes. This time step is also chosen as the monitoring time step
which, given a minimum time constant of one minute in the actual system, equates to
a maximum sample rate of 20 seconds. Choosing a larger monitoring time step may
result in incorrect diagnosis results. Smaller time steps imply added computations,
but the monitoring algorithms are only sensitive to an upperbound on the step size,
and this is likely to be the preferred alternative. Practically, the monitoring step
should be chosen to be less than 7z,

Failure was simulated in the system by changing the model parameters by a fac-
tor 5. Conservation of state (Chapter III) was applied in case any of the capacitance
or inductance elements failed, and keeping its stored momentum or liquid constant
results in an abrupt change of angular velocity/flow or pressure, respectively. Sim-
ulation was stopped when either the transients of all observations were detected or

3913 samples had passed.t

!This number is derived from the time it takes a signal with time constant 10 to reach its steady
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Table 5: Parameter values for the model of the secondary sodium cooling loop.

R, 10 Csy 20 mq 0.1 n 0.25
R, 1 Crv 20 mo 0.5 a 1
R3 | 0.143 Corc | 1.6 Iigpx | 1 b 0.1
R4 | 0.232

R5 1 | Tin | 7 | | sump | 2 | | EV, .0 | 2.2 |

Fault Detection and Isolation Without Noise

The first set of experiments were conducted for the situation in which no noise was
added to the measured signals, observations, generated from the simulation model.
In this case, the quality of the results depended on (1) the parameter differences
in the model and (2) unmodeled configuration changes. The results established a
benchmark for subsequent experiments when noise was added to the observations.
For detection of high and low values for signals, a qualitative margin of error of 2%
was used in conformance with typical experiences in real situations to avoid spurious
deviations due to noise. Of course, in case of no noise the margin of error could
be further reduced, and this would have produced better diagnosis results because
deviations would be detected sooner, and interactions with other phenomena would
not corrupt the detected transients.

Table 6 summarizes the results. Columns 1 and 4 are the introduced faults, column
2 and 5 list the faults reported by the diagnosis system, and columns 3 and 6 indicate
the number of measurement samples required to arrive at the diagnosis result. Three
single faults were not accurately detected or isolated, R3, Rf, and (5. Because of
the overflow mechanism in the evaporator vessel, a decrease in capacity, Cpy,, does

not result in an increase in level and this is not detected. To detect this failure,

state value within 2%.
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Table 6: Fault detection for { fs, f7, fi1, €14, €19, €22, €33} with At = 0.001, order = 3,

Amargin = 2%

H Fault ‘ Diagnosis ‘ Samples H Fault ‘ Diagnosis ‘ Samples H
RT nt, kT 58 Ry n=, Ry 43
Ry Ry 27 Ry Ry 46

- 0 699
RY RY 1255 R _
’ i ’ (R3) (699)
R 3429
R > Ry Ry 43
i (B, RE) ) || :
Ry | n* R Ry R RT BT | 2 Ry | By Ry By | 687
Céy Céy 73 Csi Csi 16
CEV cigv 45 C_ng - -
COFC COFC 9 COFC COFC 3
my my 6 my my 2
m%’ m%’ 2 my my 2
I;—HX I;—HX 16 II_HX II_HX 2

flow of sodium through the overflow mechanism has to be monitored. This type of
configuration changes that are introduced by faults are not handled in this thesis.
The two other faults, B and Rj, were detected but not correctly isolated, again
because the overflow mechanism was not modeled in the temporal causal relations.
If this phenomenon is included by tagging a predicted value unknown instead of high
when it would have predicted an evaporator level that is high, the faults would be
accurately isolated as indicated by the entries in parentheses in Table 6. Not all faults
can be uniquely isolated ({n, R;1}) because of the lack of required measurements, or
certain predicted deviations are too small to be observed, e.g., €35 in Fig. 97.

To gain precision, effects of order higher than 3 can be predicted but this may
cause additional multiple fault interference. Alternatively, candidate generation can
be modified to incorporate temporal effects as well. In its current implementation,

one deviating signal is propagated throughout the graph irrespective of delay times
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Figure 97: Characteristic responses for Cgy.

(integrating edges), whereas the prediction for each of the hypothesized faults is lim-
ited to a maximum order of derivative. So, an observed deviation may generate faults
that cannot be monitored and refined unless other signals deviate noticeably, because
their effect on the one initially deviating observation is of too high an order. To elim-
inate this effect, candidate generation can be limited by a total number of integrating
edges traversed in the temporal causal graph as well. Preliminary experiments show
that this implementation results in diagnosed faults for, e.g., R& — {Rf, Rf} in 2
steps, if only one integrating edge lies between the observed deviation and all gener-
ated faults. Note that, from a practical perspective, it is not required to pin down
one root-cause exactly. A small set of likely candidates often suffices, as long as this

set is accurate, 1.e., it contains the true cause.

Fault Detection and Isolation With Noise
To investigate the effects of noise on the measured signals, 2% uniformly dis-
tributed measurement noise was added to the output values to model discretization
noise due to analog to digital conversion (Fig. 98). Because of the uniform dis-

tribution, all signal deviations were within 2% of the actual value, but derivative
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computations could accumulate errors as high as 4%, and the margin or band for
normal behaviors was set at 5% to extract the qualitative signal values: low, nor-
mal, and high. The noise effects were well within the qualitative margin of error,
and results similar to the ideal case were expected. Table 7 confirms this, and when
compared to Table 6, indicates that the diagnosed faults were less precise but still
accurate in the presence of discretization noise. In some simulation runs, the addition
of noise resulted in more precise diagnosis because deviations that got masked in the
original 2% qualitative margin were accentuated by the noise, and crossed the error
threshold earlier. The only problem observed was with CZp.. For this fault, the es3
signal stayed within the margin of error, and, therefore, was not reported as deviating
(Fig. 99). Therefore, the fault was never detected. Increasing the magnitude of error
in the fault caused sufficient deviation in ess, thus producing the correct diagnosis
even for the noisy signals. An interesting observation that can be made here is that
different signals may have different sensitivities to possible faults. If they are not
taken into account in setting the error thresholds, faults may be missed. Distilling
abrupt changes to characterize transient behavior from noisy signals is also nontrivial.
This is especially true when normal distributed noise is present, in which case there
is always the probability of a measurement to be beyond the margin of error. This
requires the addition of probabilistic measures to the diagnosis algorithms which will
present faults ranked according to the probability of their occurrence. Furthermore,
other methods [6] need to be tried to improve robustness of the monitoring system.

These issues are part of future research.
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Figure 98: Characteristic responses for Cgy with 2% uniformly distributed measure-

ment noise.

Table 7: Typical fault detection for {fs, f7, fi1, €14, €19, €22, €33} with At = 0.001,
order = 3, ¢margin = 2%, noise = 2%.

H Fault ‘ Diagnosis ‘ Samples H Fault ‘ Diagnosis ‘ Samples H
RT nt, R 84 Ry n=, Ry 38
RY RY 38 Ry Ry 68
- 0 547
R R 2530 R _
’ i ’ (B3, RY) (543)
R 2514
RY > Ry Ry 86
! (17, ”) (709) ! ! .
_ _ n~, R, Ry,
RY | nt,Rf Ry, RE BRI RT 2 R R;LRlLRZQ 2
cl, cl, 128 Csy Csy 21
cﬁv Cty 80 Crv - -
C(OFC’ @ 18 C(OFC’ C(OFC’ 6
my my 10 my my 3
my my 3 My My 2
I;—HX I;—HX 20 II_HX II_HX 2
15 15
e33 Ao o A A A St @33
10 10
5 5
0 } ! 0 I
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time—» time—>

Figure 99: Response of €33 to C3p- with and without noise.
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CHAPTER XI

CONCLUSIONS AND DISCUSSION

The primary contributions of this thesis cover two main areas: (1) modeling and

analysis of hybrid physical systems, and (2) monitoring, prediction, and diagnosis of

dynamic continuous systems.

Hybrid Modeling

Physical system behavior is governed by continuity of power, but to simplify mod-
els and reduce the computational complexity in analyses, models are abstracted to
allow for discontinuous changes, which results in model behaviors being piecewise

continuous with discontinuities occurring at points in time.

Summary and Conclusions
The first part of this thesis contributes to advances in hybrid modeling of physical

systems.

1. A theory of discontinuities in physical system models is developed, and abstrac-
tions are classified as time scale and parameter abstractions. Two principles

that govern physical system behavior across discontinuities:

— conservation of state, and

— invariance of state

are formulated to ensure that hybrid models generate correct behaviors.
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2. A systematic hybrid bond graph modeling paradigm is developed. Its primary

components are:
— An ideal switching element is added to the traditional bond graph elements
to model discontinuous changes in system configurations.

— A control structure based on the principles of conservation of state and
invariance of state that is embodied by the Mythical Mode Algorithm is
developed to ensure correct state transfer and to ensure that the principle

of divergence of time is not violated.

3. A formal verification methodology is developed for the divergence of time prin-
ciple based on
— multiple energy phase space analysis, and
— a model partitioning method based on areas of instantaneous propagation
to keep the analysis computationally manageable.
4. A mathematical model for hybrid dynamical systems is derived which
— relies on physical model semantics as embodied by the principles of con-
servation of state and invariance of state, and
— formalizes the use of a priori and a posteriori values when discontinuous
changes occur.

The resultant principles developed in this work are:

— interval-point behavior,

— temporal evolution of state, and
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— generalized invariance of state.

5. An implementation model for hybrid dynamical systems is presented, which

facilitates

— a classification of hybrid dynamical systems as weak, mild, and strong, and

— model verification based on the principles of divergence of time and tem-

poral evolution of state.

6. A mapping from hybrid bond graphs to the implementation model of hybrid
dynamic systems is presented to support the derivation of model components

based on a systematic modeling approach.

Discussion

Stromberg, Top, and Soderman introduced the notion of idealized switching ele-
ments for modeling discontinuous physical system behavior in the bond graph frame-
work [117]. The work developed in this thesis extends this concept and demonstrates
the need for control models to correctly handle global implications in the form of
sequences of configuration changes and transfer of the energy state.

Iwasaki et al. [51] introduced hybrid systems in the artificial intelligence commu-
nity by developing the notion of hypertime to advance time over infinitesimal intervals
during discontinuous changes. This ensures divergence of time, but the semantics may
result in incorrect behaviors when sequences of instantaneous configuration changes
occur. In contrast, Henzinger et al. [47], Deshpande and Varaiya [31], and Guck-

enheimer and Johnson [44] introduce semantics where sequences of instantaneous
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changes occur at one point in time, and all intermediate model configurations have
a representation on the time-line. This thesis shows that this may generate incor-
rect state vectors in new model configurations after discontinuous changes. To solve
this problem, this thesis introduces more specific model semantics based on physical
system constraints, such as conservation of state, divergence of time, and temporal
evolution of state to ensure the hybrid models generate physically correct behavior.

From a control perspective, Lennartson et al. [59] present a formal hybrid imple-
mentation model for embedded control systems. This thesis presents a more elabo-
rate framework for defining model components and presents a general architecture for
model building by using compositional methodologies. The difficult part of deriving
the specifications for each of the model parts is addressed by a systematic mapping
from a hybrid bond graph model onto this architecture.

Future research on hybrid dynamic systems will focus on developing methods to
establish reachability, controllability, and observability in the mathematical modeling
framework. Furthermore, a general purpose hybrid system modeling and simulation
tool needs to be developed based on the hybrid bond graph modeling methodol-
ogy. Special provisions for simulation of hybrid systems need to be developed and
included [94]. Also, automated model verification based on divergence of time and
temporal evolution of state has to be facilitated. Finally, collision chains, such as New-
ton’s cradle present interesting behavior where sequences of pinnacles are traversed,
which violates the interval-point principle. These phenomena need to be study in

further detail.
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Model Based Diagnosis

The basis of this work was that abrupt faults in physical systems cause discontinu-
ities and transients in system behavior that can be exploited for developing efficient
diagnosis strategies. Hybrid models of physical systems are exploited to develop effi-

cient and robust diagnosis algorithms.

Summary and Conclusions
The diagnosis models conform to mild hybrid dynamic systems. Monitoring, pre-
diction, and fault isolation methodologies are developed for diagnosis of dynamic

continuous systems. The salient features of this work can be summarized as:

1. Hybrid bond graphs are shown to provide a suitable framework for qualitative,

model based diagnosis.

— They result in properly constrained models that incorporate conservation
of energy and continuity of power principles during continuous operating
regimes while adhering to the conservation of state and the invariance of

state principles during discontinuous change.

— A steady state model that follows the transient period caused by faults can

be systematically derived as an extension of dynamic transient behavior.

— Continuous system constraints are incorporated into the modeling method-

ology as topological properties, and this facilitates qualitative reasoning.

2. Temporal causal graphs of dynamic behavior that include time-derivative effects
can be derived from bond graph models. Algorithms based on this graph are

developed for
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— generating a set of hypothesized faults that explain initially observed de-

viant behavior, and

— predicting future behavior for each of these faults.

3. A transient based diagnosis methodology and a monitoring algorithm are de-

veloped to:

— Detect and verify behavior signatures that can be attributed to

* discontinuities,
* magnitude deviations,
* slope deviations, and
* steady state behavior.
— Perform progressive monitoring to continue to follow observed measure-
ments with predicted behaviors, sometimes invoking higher order deriva-
tives to ensure a match between measurements and predictions. Hypoth-

esized faults and their signatures are dropped only if the higher order

derivatives cannot resolve conflicts.

— A feedback detection mechanism to suspend feature detection in a timely
manner. This is based on a classification of feedback behavior as:
* compensalory response,
* inverse response, and

* TEVErse responsec.

4. A measurement selection algorithm based on an exhaustive search to determine

the sufficient order of predicted behavior or the required measurement points
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to achieve diagnosability.

Discussion

In the control community, numeric methods like state estimation and parameter
estimation are typically used for fault detection and isolation [23, 41, 50]. These
approaches are computationally intensive and require precise numerical information.
In contrast, the artificial intelligence community has applied qualitative reasoning
methodologies based on static system models [8, 33, 101]. However, transients in
response to abrupt faults are dynamic and diagnosis based on static models only is
underconstrained and results in combinatorial problems. Dynamic models exploit
the typical fault characteristics of transients and allow for conservation of energy and
continuity of power constraints to reduce the parameter search space. Moreover, it
supports quick fault isolation, eliminating the problems due to multiple, cascading,
faults.

Feedback in physical systems affects transients at the time of failure and higher
order effects become manifest over time. A progressive monitoring scheme addresses
these previously unsolved problems. In due time, transients are convoluted to the
extent that qualitative characteristics at the time of failure cannot be reliably deter-
mined anymore. Three qualitative classes of behavior are categorized based on which
transient detection is suspended and steady state detection activated.

Finally, this thesis shows the balance between the order of predictions and the
number of measurement points in the system to obtain equivalent diagnostic precision.

The presented diagnosis engine has been tested in simulation and the next step

involves its application to monitor the lubrication of a one-cylinder engine. This
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will bring out a number of issues, the most important being noisy environments.
The system was tested on uniform distributed noise, but normal distribution has
distinctly different characteristics that require a probabilistic implementation of the
deterministic algorithms to obtain robustness. Also, it needs to be investigated how
the system behaves under modeling approximations.

Another important aspect is multiple independent faults (rather than cascading).
In bond graphs, one component may be represented by several parameters, and,
therefore, component failure is likely to affect a number of parameters which are
independent on a bond graph level. Failure mode modeling appears to be a promising
solution. This also applies to structural changes of the model which need to be
investigated.

The presented approach relies on basic qualitative values high, normal, and low.
However, often more precise information is available (at least as an order of magnitude
estimate). It needs to be investigated how to systematically include this into the
diagnosis engine.

Finally, measurement selection and diagnosability are very important notions in
diagnosis, and require further attention. The presented measurement selection algo-
rithm has proven helpful but has not utilized to its full potential. As a particular
implementation, it is interesting to research how to select measurements on-line out
of a large set of possible measurement points to quickly narrow down the search space

without becoming computationally expensive.
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Appendix A

THE FALLING ROD SPECIFICATION

The Analytic Model

X ={w,vz,vy}

U:{Ffvmag}

S = {yAv VA, VA y, an FA,x}

Y= {Ucontacta O frees Oslides O stuckys O zeros Oneg s Upos}
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Qoo Y v, =0
Uy = ay
& = e,
Qo1 : § v, = [sinfw
vy = —lcosfw
11y v, =0
vy = —lcosfw
O = —ml(cos@—usin@) a
J4+mli2cosf(cosf—pusint) 9
211§ 0, = —pu(leosbw + ay)
vy = —lcosfw
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Table 8: State transition table specifying C.

H ¢C H O contact ‘ O free H

0 1
1 0
CU-I— = W
Qoo 1y vl = v,
+
Uy = Uy
w_|_ _ wJ—ml(cosavy —sinavzg)
- J+mli?
aor :y vl = lwtsina
v;' = —lwtcosa
qg: (78)
w_|_ _ wJ—mlcosavy
J+mi2cos?a
amn iy vl =,
v;' = —lwtcosa
wt = wJ—ml(cosa—psina)vy
T J4+mlPcosa(cosa—psina)
az i vl = —p(lwteosa + v,) + v,
v;' = —lwtcosa

ya = [v,dt — lsind
Vay = Uy — lwsind

pay = m(v, + lwcosh)

h - 0 if Qo (79)
F, =

m(v, — a,) otherwise

0 ifOéoo
FAx:

)

mv, otherwise
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Table 9: State transition table specifying S.

H ¢S H O free ‘ Oslide ‘ O stuck ‘ O zero ‘ Oney ‘ Opos H

204

0 1
1 0 0 2 3
2 0 0 3
3 0 0 2
Y4 S 0A PAy S 0 = Ocontact
F: S 0 = Ufree
|F2—,x|_luF7;I— >0 = Oslide
+ | _
|UA795| Uth S 0 = Ostuck
Ujl_,x =0 = Ouero
vj{w <0 = Opneg
UX,@’ >0 = Opos
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The Numeric Model

(gk-l—l = (gk + kat

YM k1 = YMk + Uy AL
Wek41 = Wk

Q00 © \ Vpkt1 = Uk

Uy o1 = MagAL + vy g

Tht1 * Weel = ;_Tjié;’; a At + wy,
Q01 2 Uy 1 = [sinbp 1wt
Vy g1 = —lcosOppwiqy
W+l = J+m;$i(§:ffo;Z:szin€k)agAt + Wk
Q21 1 g1 = —p(lcosbyyrwprr — lcosOpwy, + ayAt) + v,k
Vy g1 = —lcosOppwiqy

Ya = YMm 1 — [sinli4q

+ o+ - +
Vie = Vg kg1 — Lstnbppiwoly,
Pay = m(vyx + lcosOrwy)

b 0 ifOéoo
Ft =

e
+ —
Yy k1" Yu,k

N —ay) otherwise

m(
0 if [8731]
Fi, =

otherwise
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