
Systematic Management of Simulation State for Multi-Branch Simulations in
Simulink

Zhi Han, Pieter J. Mosterman, Justyna Zander, and Fu Zhang

MathWorks, Inc
3 Apple Hill Dr, Natick MA

Zhi.Han|Pieter.Mosterman|Justyna.Zander|Fu.Zhang@mathworks.com

ABSTRACT
Systematic simulation is a technique related and motivated

by the formal analysis of hybrid dynamic systems. It com-
bines the exhaustive and conservative nature of traditional
model checking with numerical simulation for providing effi-
cient algorithms to manage simulations. Multi-branch simula-
tion is the concept advancing simulation efficiency by reduc-
ing the number of state transitions. This paper introduces an
approach to implement multi-branch simulation into a popu-
lar industrial modeling and simulation tool, Simulink R©. The
notion of simulation state which is distinctly different from
the dynamic system state, is introduced for Simulink models.
From this, a novel semantics based on transition systems is
then developed. In a prototype implementation, these seman-
tics are encoded in the current architecture of the Simulink
engine and enable demonstrating the benefit of such type of a
simulation by three case studies.

1. INTRODUCTION
Systematic simulation is a method that incorporates tech-

niques of formal verification and numerical analysis [9]. In-
stead of viewing sets of simulation results as traces of state
snapshots, it employs a transition system semantics. Thus,
the simulation traces are considered as different paths in a
possibly infinite state that ultimately results in nondetermin-
istic transition systems. By organizing simulations as a non-
deterministic transition system, the efficiency of the simula-
tor can be improved, that is, common segments of simulation
traces can be recognized and infinite loops can be detected.
Consider the transition system as shown in Fig. 1(a), a trace-
based simulator must simulate at least two different traces
a→ c→ d and b→ c→ e to try to achieve full simulation
coverage. A systematic simulator, on the other hand, recog-
nizes that the transition c is common between two traces and
avoids the repeated simulation. Consider the transition system
as shown in Fig. 1(b), a trace-based simulator simulates the
loop multiple times, while a systematic simulator recognizes
that a→ c→ d → e leads the system to an already reached
state, and the only out-going transition from that state has
been simulated already, therefore no additional simulation is
necessary. A further analysis of numerical proximity for state

vectors based on set-based methods can improve the robust-
ness of the simulation. In this case, the sets of states are ac-
counted for in the transition systems [12, 13].

a b

c

d e

(a) Two simulation traces
share a common segment

a

c

d

e

(b) Loops in sim-
ulation

Figure 1. Simulation of transition systems

The efficiency achieved in the simulations comes at the
expense of having to manage the state of the transition sys-
tem. For continuous and hybrid systems the state space is in-
finite, causing the state explosion problem [5]. One way to
tackle this problem is to compute abstractions. For example,
states that are close to one another against some metric can be
grouped into abstract states, and the abstract transition system
is computed instead of the concrete transition system. The ab-
straction provides a conservative over-approximation of the
system behavior [2]. The method of systematic simulation is
studied in hybrid systems research and serves as a practical
alternative to computational more complex formal verifica-
tion ([6, 8, 12, 13]). However, the resulting methods are still
only satisfactory for specific hybrid system models and so the
practical applicability is limited.

Another problem of verification methods is that they usu-
ally disregard the numerical simulation algorithms imple-
mented in the simulators by simply defining the transition
relations based on the continuous trajectories, that is, solu-
tions of the continuous ODE solutions. In practice, however,
these ODEs are solved by numerical methods that exhibit
more complex numerical behaviors especially in case of be-
haviors of a hybrid nature (e.g., [21]). By using systematic
simulation the discrete behavior of the simulation engine is
part of the analysis, and, therefore, the eventual results. Con-
sequently, practitioners gain increasing confidence that the re-

sults hold for a computational model as it is used throughout
the various stages in Model-Based Design (MBD) [17]. This
tendency is observed when applied to models that rely on a
tool such as Simulink R© [15], k, which is a popular industrial
tool for design of embedded control systems. In particular,
because validation and verification methods are available in
the MBD process and can effectively be used. The idea of an-
alyzing the behavior of a simulator together with the model it
simulates has been pursued in [18, 19, 21].

In this paper, a general class of Simulink models is consid-
ered, and, therefore, the Simulink code base constitutes the
core for the implementation. The notion of simulation state is
introduced and a method to algorithmically identify the sim-
ulation state from a Simulink block diagram model is pre-
sented. Based on the simulation state, a transition system se-
mantics is developed for Simulink models. Of particular im-
portance is that the transition system takes into consideration
the detection of so-called zero-crossing events in Simulink.
The transition system is defined based on the current imple-
mentation of the solver and execution engine of Simulink. An
architecture overview of a system that implements system-
atic simulation is then proposed. The system to perform sys-
tematic simulations has been implemented in several different
ways and based on the collected experience an architectural
design has been derived.

Other than areas of formal verification, engineers have
studied systematic ways of testing embedded systems
(e.g., [4, 11, 20, 22, 23]). These methods study the problem
of systematic methodology to design test cases for embedded
systems. The main difference of the approach provided in this
paper is that here the focus is on the execution parts rather
than the design parts, such as the test behavior design, test
oracle design, or test input generation. As such, the work in
this paper contributes a complement to the existing literature
on testing of software for embedded systems. In particular, it
is advancing the efficiency of the test execution, bringing the
test control of test suites execution to the next level (cf., [?
11, 22]). The execution can now be quicker with the same ex-
ecution coverage and it can be even further automated without
the design modification necessity.

This paper is organized as follows. Section 2. introduces
the background information. Section 3. then provides a tech-
nical overview of the simulation state and introduces the
transition system semantics of Simulink models. Section 4.
presents an objected-oriented design to implement systematic
simulation such that it integrates with the existing Simulink
simulation engine architecture. Section 5. then presents three
case studies after which Section 6. concludes the paper.

2. BACKGROUND
Simulink is an environment for modeling systems with

continuous-time and discrete-time dynamics. A Simulink

model is a block diagram consisting of blocks that model dy-
namic systems. The dynamic systems modeled by Simulink
blocks include:

1. Algebraic equations, e.g., y = g(u)

2. Continuous-time ordinary differential equations
(ODEs), e.g., ẋ = f (x,u)

3. Discrete-time difference equations, e.g., xtk+1 =
f (xtk ,utk) where {tk, k = 1, · · ·} is a set of mono-
tonically increasing time points called sample hit
times.

The dynamics of a Simulink block involves input, state,
and output variables. The dynamic equations are imple-
mented as methods of the Simulink blocks including:

Output method: y := fO(t,x,u)
Update method: xd := fU (t,x,u)

Derivative method: dxc := fD(t,x,u)
Zero-crossing method: z := fZ(t,x,u)

Methods that implement Simulink blocks furthermore en-
able the declaration of ‘work’ variables. When a work vari-
able is declared, it is also specified whether the work vari-
able is reusable. Those work variables that are nonreusable
are called discrete state variables in this paper. Examples in-
clude the state of a state transition diagram that is represented
by a Stateflow R© [16] Chart block, the internal state of Hys-
teresis block, and the enable/disable state of Enabled Subsys-
tems [15]. The continuous state variables are the variables of
which derivatives are defined in the Derivative method.

For blocks with discrete state variables, an implicit func-
tion separation requirement is often necessary for Simulink
execution engine to operate properly as illustrated below.

• The block has an Output method and an Update
method.
• The Update method can write to the state variables but

not the output variables.
• The Output method can write to the output variables

but not the state variables.

A general dependency template of Simulink execution rela-
tions between variables and methods has been presented in
previous work [7].

Simulink allows a block instance to specify a sample time
for its outputs. The sample time defines a set of periodic sam-
ple hit times {t0, t0 + h, t0 + 2h, · · ·} for the execution of the
Update and Output methods. When the simulation time
t is equal to one of the sample hit times of the block, its
Output and Update methods are executed in the current
time step. In this case the block is said to have a sample hit at
time t.

An implicit assumption made by the Simulink engine is
that blocks satisfy a variable definition requirement:

• At sample hit times of a block output, the corresponding
output variable and state variable must be defined in the
block Output method.

In this paper, it is assumed that the function separation re-
quirement and variable definition requirement are satisfied
by all blocks under consideration. In practice these require-
ments are sometimes not satisfied in some implementations
of blocks. For example, there are a number of blocks that
combine the Output and Update function into a single
Step function. The violation of the function separation re-
quirement requires special treatment in the implementations
of the method, which is implemented in Simulink to preserve
data integrity. However, this special treatment in the Simulink
engine is out of the scope of this paper.

The simulation of a dynamic system model in Simulink
consists of multiple phases, such as, model compilation, link-
ing, and the main simulation loop phase [15]. In the compila-
tion phase, Simulink models are compiled into an operational
form. In the linking phase, the resources necessary for sim-
ulation are allocated. The simulation loop phase depicted in
Fig. 2. is the step where the dynamic equations of the model
are solved by computing state and output signal values at each
consecutive time step. At each time step, Simulink first in-
vokes the Output method to compute the output signals of
the blocks for which a hit at the current simulation time oc-
curs. Then Simulink invokes the ODE solver to compute the
next time step and the state values at the next time step. For
zero-crossing functions, Simulink then checks if the signs of
the zero-crossing functions have changed for the new state
values. If so, Simulink invokes the zero-crossing detector to
possible reduce the time step to locate the time instances
of the zero-crossing events. Once an appropriate time step
has been found and the corresponding state vector values are
computed, Simulink advances to the next time step. This loop
is repeated till the simulation is completed.

The ODE solver and zero-crossing detector of Simulink in-
voke the Output and Derivative methods of the model
to compute signal values and the state derivative vector, re-
spectively. In variable step solvers, the Output method and
Derivative method may be invoked multiple times in one
step. Some results from these method calls may be discarded
based on estimations of the approximation error. To distin-
guish the Output calls from the simulation loop and the
calls originating from the solver and the zero-crossing de-
tector, the former is referred to as the major step and the
latter is called the minor step [15]. For purely discrete-time
models, there are no Derivative functions in the model,
thus, the minor step is skipped in the simulation loop. The
Zero-Crossing functions, if any, will be computed in the
major step instead.

Figure 2. Simulation loop of Simulink R©

3. SIMULATION STATE
Before deriving the state of simulation, first the simulation

loop of the Simulink engine is modeled. Figure 3 shows a
finite-state machine model of the simulation loop where each
loop iteration is represented by a single state with self tran-
sition. The states of the finite-state machines are called lo-
cations as they represent the current location of the execution
process in the simulation loop. The location of the single-step
model is chosen to represent the top of the simulation loop
labeled as a in Fig. 2.. The execution of the complete loop is
modeled by a transition labeled ‘Step’, which represents all
the computations performed in the simulation loop.

Figure 3. Finite-state model of a single-step simulation loop

The single-step model may be too coarse and it may be
necessary to distinguish the various different computations
performed in the simulation loop. Figure 4 shows a multi-
state model of the simulation loop. The model consists of four
locations corresponding to different points in the simulation
loop. The locations are marked in Fig. 2. at the corresponding
locations in the simulation loop. Note that location a corre-
sponds to the same location in the simulation loop as location
a in Fig. 3.

The variables used by the model include variables declared
by the blocks. Following the convention of program analysis
(e.g., [1]), a variable is called live at a location if it holds a
previously computed value that is to be used in later compu-
tations. The set of live variables at a location in the simulation
loop consists of values that are computed in the loop and will

Figure 4. Finite state model of a multi-step simulation loop

be used at later steps. For a Simulink model, define a loca-
tion variable l where l ∈ {a,b,c,d} for multi-step semantics
or l = a for single-step semantics. Let xl ∈ Xl denote the set
of live variables of a Simulink model at the program location
l. Define the simulation state as χ = (l,xl).

For sequential programs, the set of live variables can be
determined by translating the program to an intermediate rep-
resentation to perform dataflow analysis on the intermediate
representation [1]. For Simulink models, the dataflow analy-
sis is not applicable. Instead, the set of live variables is de-
termined from the information that the Simulink engine com-
puted from the model structure and block execution informa-
tion [15].

A block output variable is persistent if either of the follow-
ing two conditions are met:

• The source and destination block of the variable have
different sample times.

• The Output method of the source of the variable is
conditionally executed, that is, the block is a child of
a conditionally executed subsystem.

Persistent block outputs are live at all locations in the simu-
lation loop since their value may be defined at one time point
and used in the computations of another, different, sample
time.

A block output variable is global if it is not persistent and
the following condition is met:

• The variable is used in either the Update method, the
Derivative method, or the Zero-crossing method of a dif-
ferent block.

Global output variables are live at location b, c, and d.
At location d, the ODE solver has computed the continu-

ous state values of the next time step assuming there is no
zero-crossing event, which is used in the zero-crossing detec-
tion algorithms. The computation is performed using the dis-
continuity locking or lie-in-minor-time-step mechanism [24].
Therefore, the simulation state at d must include these inter-
nal variables used by the solver, denoted by x′c, which stores
the continuous state values for the next step as if there were
no zero-crossing events.

Table 1 lists the simulation state (l,xl) of a Simulink model
at different locations for the multi-step semantics. For single-
step semantics, the simulation state is the one corresponding
to location a.

Location Live variables at the location xl

a continuous state, discrete state and persis-
tent outputs

b continuous state, discrete state, persistent
and global outputs

c continuous state, discrete state and non-
reusable outputs

d continuous state, discrete state, non-
reusable outputs and continuous state val-
ues of next step (x′c)

Table 1. Simulation state for each location

Given a Simulink model with initial values xa
0 for the live

variables at a. The semantics of a Simulink model is de-
scribed as the corresponding transition system created for
single-step or multi-step simulation loops. For a set of vari-
ables x, use Vx to denote the set of possible values for x. The
transition systems corresponding to a Simulink model are de-
fined in terms of the simulation states in the following ways:

• The single-step transition system is TS = (SS,→S,χS0)
consisting of a set of simulation states SS = (a,Vxa) and
a set of transitions (a,xa

1)→S (a,xa
2) iff xa

2 are the values
of the live variables after performing the computations
of a simulation step. The initial state is χS0 = (a,x0).

• The multi-step transition system is TM = (SM,→M,χM0)
consisting of a set of simulation states SM = (a,Vxa)∪
(b,Vxb) ∪ (c,Vxc) ∪ (d,Vxd) and a set of transitions
(l1,x

l1
1)→M (l2,x

l2
2) where l1 → l2 is a transition of the

finite state machine shown in Fig. 4 and xl2
2 are the values

of the live variables after performing the corresponding
computations in l1→ l2. The initial state is χM0 =(a,x0).

The transition system semantics is similar to the stream-
based formulation of previous work [19] with a difference in
that the minor steps of the ODE solver is not considered in
this paper.

4. SYSTEMATIC MULTI-BRANCH SIMU-
LATION

In this section, an object-oriented (OO) approach of imple-
menting systematic multi-branch simulation (SMBS) in the
Simulink environment is presented. OO approach is preferred
to other ways of describing the algorithm because the algo-
rithm for SMBS is simplified to emphasize the focus on how
to design the architecture so that the new functionality fits into
the existing software architecture of the Simulink simulation
engine.

Figure 5 illustrates an architecture design of implement-
ing SMBS for Simulink models. The main object the SMBS
is implemented in is the SimulationManager class,
which is responsible for creating and storing the resulted
transition system and managing simulation states. The be-
havioral analysis determines whether the simulation must
continue and computes the input to the system if neces-
sary. Additional analysis such as on-the-fly test case gener-
ation can be employed by the behavioral analysis to gen-
erate inputs to the model, as simulations of Simulink mod-
els are performed for systems with either no input or a
given set of input signals. The SimulationManager
object owns an instance of the SimulationStepper
object, which has a Simulator object attached to it. The
SimulationStepper object is implemented to manage
the locations of the Simulator, while the Simulator
object is a thin wrapper over the existing simulation algo-
rithm of Simulink. The SimulationStepper is respon-
sible for starting and stopping the simulation. It also manages
a list of simulation states when the simulation is running. The
Simulator object has an associated Simulink model and
the allocated resources to simulate the model.

Behavioral

Analysis

Simulation

Manager

Simulation

Stepper

owns

Simulator

Simulink Model

associated to

Resources

associated to

includes

Algorithms of

Simulink

relates to

Behavioral

Analysis

Simulation

Manager

Simulation

Stepper

owns

Simulator

Simulink

Model

associated to

Resources

associated to

includes

Algorithms of

Simulink

relates to

Figure 5. Instance graph of objects implementing the sys-
tematic simulation method

A straightforward implementation of the transition system
would store all the reachable simulation states for all compu-
tation steps. For large-scale Simulink models, the space re-
quired for storing these data can be prohibitively large. In ad-
dition, storing a simulation state requires copying all the live
variables from the model runtime environment to a perma-
nent memory location, which can potentially slow down the
simulation when the model is large. To improve memory and
computation time efficiency, simple paths are compressed: if
a set of transitions χ1→ χ2→ ··· → χm forms a path and has
no branches, the transition system only contains a transition
χ1 → χm together with a log of a set of signals of interests
during the simulation. The set of logged signals are specified
by the Simulink user.

Figure 6 shows an implementation of the main loop of
the SimulationManager that builds the transition sys-
tem and traverses the transition system in breadth-first order.

The algorithm breaks out of the loop when the analysis has
reached a time limit or the analysis has exhausted all reach-
able states.

initialize_graph;
initialize_state;
while ˜isempty(queue)
[init_state, in] = dequeue;

% Invoke SimStepper to simulate the model
final_state = simulate(init_state, in);
update_transition_system;

decide_whether_to_stop;
if (not_stop)
% invoke behavioral analysis
in = analyze_result (final_state);
if (final_state_is_new)
% inputs may be multiple
% for non-deterministic simulation
enqueue (final_state, in);

end
end

end

Figure 6. Main loop of the simulation manager

In order to build the transition system, it is necessary to
compare one simulation state with another. A variable in
Simulink can be used to store either numeric values stored in
either floating-point or fixed-point data types, or non-numeric
values, such as an enumerated data for the state of a State-
flow chart. The live variables of a model consist of a set of
non-numeric-valued variables xe and a set of numeric-valued
variables xn, i.e., x = (xe,xn). For each numeric-valued vari-
able v∈ xn of the simulation state, define a non-negative value
δv as a tolerance of the corresponding state variable v.

Define a proximate relation between simulation state χ1 =
(l1,x1) and χ2 = (l2,x2) as χ1 ≈ χ2 iff all of the following
conditions are met:

• l1 = l2
• v1 = v2 for all non-numeric state variables v ∈ xe

• |v1− v2| ≤ δv for all numeric variable of the simulation
state v ∈ xn

• if l = d, sign(gi(x1c)) = sign(gi(x2c)) and
sign(gi(x′1c)) = sign(gi(x′2c)) for all zero-crossing
functions

The last condition is defined to ensure that the zero-crossing
detection algorithm of Simulink behaves the same for the
two simulation states [24]. The choice of δv can be a tricky
problem. If δv = 0, any two different simulation states are
not proximate of each other, thus simulation needs to be per-
formed for both, which then leads to many simulations. If
δv = ∞, all simulation states with the same location are proxi-
mate of one another, which is likely to cause the algorithm to
ignore states that might lead to different behaviors.

The SimulationStepper simulates the model for a
given initial simulation state χi, once simulation state χy is
returned from the SimulationStepper, it is compared

to the existing simulation states, if the numerical part is close
and the non-numerical part is identical to an existing sim-
ulation state χx, it is merged with χx by adding transitions
χi → χx. Otherwise, the simulation state χy is added to the
transition system and the transition χi→ χy is added.

The SMBS method works with both the single-step model
(Fig. 3) and the multi-step model (Fig. 4). An implementation
of SimulationStepper based on the single-step model is
available in the shipping Simulink software [15].

5. CASE STUDIES
This section demonstrates the feasibility of SMBS using a

prototype implementation of SMBS in Simulink. The results
in this paper are produced using an implementation of the
SimulationStepper for single-step semantics.

5.1. Galton Board
A Galton board is a device used to conduct statistical exper-

iment on Binomial distributions [3]. It consists of an upright
board with evenly spaced nails (or pegs) driven into its upper
half, where the nails are arranged in staggered order, and a
lower half divided into a number of evenly-spaced rectangu-
lar slots. In the middle of the upper edge, there is a funnel
into which balls can be inserted, where the diameter of the
balls must be smaller than the distance between the nails. The
funnel is located precisely above the central nail of the sec-
ond row so that each ball, if perfectly centered, would fall
vertically and directly onto this nail.

To model the behavior of Galton board, two state variables
are introduced for the ball, the horizontal position and the
vertical position. The magnitude of the speed is assumed to
be constant during the drop. The vertical speed is assumed to
be constant and the horizontal speed can only change in direc-
tion. The behavior of the system can be simplified as follows.
At each grid point (i.e., when the vertical position reaches a
grid point) the ball may change its horizontal direction. The
model can be simplified by avoiding modeling the grid point
explicitly. Every time that the vertical position is at a grid
point, ẋ can change sign. The tolerance of state for proximity
is chosen as δx = δy = 1×10−3.

Figure 7 shows the phase plane plot of the simulation re-
sults with three intermediate levels. The simulation states at
the grid points are stored for the transition system. SMBS
avoids repeating simulations by merging simulation states at
the grid points. As the number of levels increases, the number
of all possible traces are 2n, each trace would involve simulat-
ing the system for n+ 1 seconds. However, the total number
of simulation segments is 1+2∑

n
i=1 i = n2 +n+1. and each

segment requires simulating the system for 1 second.

−4 −2 0 2 4

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 7. SMBS results of a Galton board

5.2. Event Tree Simulation
Where the Galton board is a contrived example, this section

considers application of SMBS in event tree analysis which
is applied in, for example, Failure Mode and Effect Analysis
(FMEA) [10]. The focus is to analyze the behavior of the sys-
tem when subject to a series of faulty events. Consider, for
example, the following series of simulation scenarios.

1. Start-up: A system starts up and runs until it reaches a
steady state.

2. Fault 1: At 100s, the system may be subject to a fault
indicated by a step up in its input signal.

3. Fault 2: At 100s, the system may be subject to a fault
indicated by a step down in its input signal.

4. Keep running: Because the controller reacts to the signal
(presumably 2 seconds after the fault), it may decide to
keep the system running

5. Shut down: the controller may decide to shut down the
system by switching the input signal to 0.

6. Second fault: when fault 2 occurs, it is possible that a
second fault occurs whereas when fault 1 occurs, a sec-
ond fault cannot occur.

Figure 8 shows the event tree of the faulty scenarios for the
analysis.

running

fault1

fault2

running

down

running

down

second fault

Figure 8. An event tree for fault analysis

In this case study the Signal Builder block of Simulink is
employed to introduce the input signals under faulty scenar-
ios. The complete set of input signals for each scenario is
partitioned into signal segments. Figure 9 shows the signals

created in the Signal Builder block. Each signal tab specifies
a segment of the entire input sequence.

SMBS was performed by modifying the existing
MATLAB R© [14] implementation of the Signal Builder
block. The tolerance of state for proximity is δ = 0.

Applying SMBS, the common transition segments of
the input signals are grouped and factored in the
SimulationManager. After each individual segment is
simulated and the graph of the transition system is created,
it is possible to traverse the graph to generate all the simula-
tion traces for the scenarios in the analysis. Figure 10 shows
the results of all the simulation scenarios for the given event
tree. The common segments of simulation traces are simu-
lated only once, thereby improving the efficiency of the sim-
ulations.

Figure 9. A Signal Builder block to generate the segments
of the input signals

Figure 10. Simulated faulty scenarios for all cases

5.3. Simulating a Transmission Controller
Consider an automatic transmission control system imple-

mented as the Simulink autotrans model (Fig. 11), where
the input is the command from the driver.

Traditionally engineers simulate the behavior of step-up,
step-down, and particularly designed test cases as separate
test cases. A time-partition testing method is used [11]: a fi-
nite state machine is used to generate user inputs, where each
mode of the machine generates an input signal for a certain
period of time. The test input generation is implemented in a

Modeling an Automatic Transmission Controller

Vehicle

Transmission

Ne

gear

Nout

Ti

Tout

ThresholdCalculation

run() gear

throttle

down_th

up_th

ShiftLogic

speed

up_th

down_th

gear

CALC_TH

PlotResults

?

Engine

Ti

Throttle

Ne

BrakeCommand

0

In1

1

ImprellerTorque

EngineRPMEngineRPM

OutputTorque

TransmissionRPM

VehicleSpeed

VehicleSpeed

Throttle

Throttle

Throttle

BrakeTorque

Figure 11. Automatic transmission system model

Stateflow block with logic over time as shown in Fig. 12. The
Stateflow model used in this case study implements a nonde-
terministic state machine.

Figure 12. Stateflow R© model of the user input to the system

Figure 13 shows the phase plane plot of SMBS for the au-
tomatic transmission model. Figure 14 shows the time plots
of the SMBS results for the automatic transmission system.
The simulation states were stored in the transition system for
each nondeterministic transition in the Stateflow model. Con-
sequently, SMBS involves no repetitions while covering all
Stateflow transitions for this example.

6. DISCUSSION
In this paper, an SMBS method has been presented. A def-

inition of simulation state was provided and a transition sys-
tem semantics for general Simulink models has been defined.
The design of an architecture for SMBS in Simulink was de-
veloped based on the code basis. The case studies served as a
validation of the prototypical implementation.

There are a few areas where the presented approach can
be enhanced. For example, one of the potential enhance-
ments of the method is to employ coarse-gained paralleliza-
tion to further accelerate the simulation. As the simulation

500 1000 1500 2000 2500 3000 3500 4000
0

500

1000

1500

Integrator

W
he

el
 s

pe
ed

Initial state

Intermediate
states

Figure 13. Phase plane plot of SMBS results for the auto-
matic transmission system

0 5 10 15 20 25
0

1000

2000

3000

4000

t

In
te

gr
at

or

0 5 10 15 20 25
0

500

1000

1500

W
he

el
 s

pe
ed

t

Figure 14. Time plots of systematic multi-branch simulation
results for the automatic transmission system

of a model is executed by the SimulationStepper,
one can design a system that creates multiple instances of
SimulationStepper objects and thereby perform multi-
ple simulations of the model simultaneously in parallel execu-
tion environments. The applications of the mutli-step model
also needs to be explored further.

The focus of this paper was on the simulator and the simu-
lation state. The design of other parts of the system (e.g., the
test input, test behavior) was not discussed in detail. The de-
sign of the test cases, however, requires substantial effort. The
design methodologies proposed in other work [11, 20, 22, 23]
can be applied to facilitate the entire test engineering process.
In addition, the logic in the SimulationManager can also
be improved by employing advanced model-based analysis
techniques such as on-the-fly model checking [5, 13].
Acknowledgments The authors thank Dr. Murali Yeddana-
pudi and Dr. Rajesh Pavan Sunkari for their help and support
on this work.

REFERENCES
[1] Andrew W. Appel. Modern Compiler Implementation in JAVA. Cambridge Uni-

versity Press, 1998.
[2] Eugene Asarin, Thao Dang, Goran Frehse, Antoine Girard, Colas Le Guernic,

and Oded Maler. Recent progress in continuous and hybrid reachability analysis.

In Proceedings of IEEE Conference on Computer Aided Control System Design
(CACSD), pages 1582–1587, 2006.

[3] Margherita Barile and Eric W. Weisstein. Galton board. From MathWorld—A
Wolfram Web Resource. Last visited on 13/4/2012.

[4] Eckard Bringmann and Andreas Krämer. Systematic testing of the continuous be-
havior of automotive systems. In Proceedings of the 2006 international workshop
on Software engineering for automotive systems, SEAS ’06, pages 13–20, New
York, NY, USA, 2006. ACM.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
Cambridge, MA, 1999.

[6] Thao Dang, Alex Donzé, Oded Maler, and Noa Shalev. Sensitive state-space
exploration. In CDC, pages 4049 – 4054, 2008.

[7] Ben Denckla and Pieter J. Mosterman. An intermediate representation and its
application to the analysis of block diagram execution. In Proceedings of the
2004 Summer Computer Simulation Conference (SCSC’04), pages 167–172, San
Jose, CA, July 2004.

[8] Alexandre Donzé and Oded Maler. Systematic simulation using sensitivity anal-
ysis. In Alberto Bemporad, Antonio Bicchi, and Giorgio C. Buttazzo, editors,
HSCC, volume 4416 of Lecture Notes in Computer Science, pages 174–189.
Springer, 2007.

[9] Juergen Grossmann, Ina Schieferdecker, and Hans Werner Wiesbrock. Modeling
property based stream templates with TTCN-3. In Proceedings of the IFIP 20th
International Conference on Testing Communicating Systems (TestCom 2008),
pages 70–85, Tokyo, Japan, June 2008.

[10] James Kapinski, Bruce H. Krogh, Oded Maler, and Olaf Stursberg. On systematic
simulation of open continuous systems. In Oded Maler and Amir Pnueli, edi-
tors, HSCC, volume 2623 of Lecture Notes in Computer Science, pages 283–297.
Springer, 2003.

[11] J. D. Lazor. Failure Mode and Effects Analysis (FMEA) and Fault Tree Analysis
(FTA) (Success Tree Analysis (STA)). In William Grant Ireson, Clyde F Coombs,
and Richard Y Moss, editors, Handbook of reliability engineering and manage-
ment, pages 6.1–6.46. McGraw Hill, 1996.

[12] Eckard Lehmann. Time parition testing: a method for testing dynamic function
behavior. In Proceedings of TEST2000, 2000.

[13] Flavio Lerda, James P. Kapinski, Edmund M. Clarke, and Bruce H. Krogh. Ver-
ification of supervisory control software using state proximity and merging. In
Proc. of the 11th International Workshop on Hybrid Systems: Computation and
Control (HSCC), pages 344–357, 2008.

[14] Flavio Lerda, James P. Kapinski, Hitashyam Maka, Edmund M. Clarke, and
Bruce H. Krogh. Model checking in-the-loop. In Proc. of the 27th American
Control Conference (ACC), 2008.

[15] MathWorks. MATLAB User’s Guide. The MathWorks, Inc., Natick, MA, Septem-
ber 2012.

[16] MathWorks. Simulink User’s Guide. The MathWorks, Inc., Natick, MA, Septem-
ber 2012.

[17] MathWorks. Stateflow User’s Guide. The MathWorks, Inc., Natick, MA, Septem-
ber 2012.

[18] Pieter J. Mosterman, Sameer Prabhu, and Tom Erkkinen. An industrial embedded
control system design process. In Proceedings of The Inaugural CDEN Design
Conference (CDEN’04), Montreal, Canada, July 2004. CD-ROM: 02B6.

[19] Pieter J. Mosterman and Justyna Zander. Advancing model-based design by mod-
eling approximations of computational semantics. In Proceedings of the 4th In-
ternational Workshop on Equation-Based Object-Oriented Modeling Languages
and Tools, pages 3–7, Zürich, Switzerland, September 2011. keynote paper.

[20] Pieter J. Mosterman, Justyna Zander, Grégoire Hamon, and Ben Denkla. A com-
putational model of time for stiff hybrid systems applied to control synthesis.
Control Engineering Practice, 20(1):2–13, 2012.

[21] Wei-Tek Tsai, Lian Yu, Feng Zhu, and Ray Paul. Rapid embedded system testing
using verification patterns. IEEE Softw., 22(4):68–75, July 2005.

[22] Justyna Zander, Pieter Mosterman, Grégoire Hamon, and Ben Denckla. On the
structure of time in computational semantics of a variable-step solver for hybrid
behavior analysis. In Proceedings of the 17th IFAC World Congress, pages 9419–
9424, 2011.

[23] Justyna Zander-Nowicka. Model Based Testing of Embedded Systems in the Auto-
motive Domain. PhD dissertation, Technical University Berlin, Computer Science
and Electrical Engineering Department, March 2009.

[24] Justyna Zander-Nowicka, Abel Marrero Pérez, Ina Schieferdecker, and Zhen Du
Dai. Test design patterns for embedded systems. In 10th International Conference
on Quality Engineering in Software Technology, pages 183–200, 2007.

[25] Fu Zhang, Murali Yeddanapudi, and Pieter J. Mosterman. Zero-crossing location
and detection algorithms for hybrid system simulation. In Proceedings of the 17th
IFAC World Congress, pages 7967–7972, 2008.

