} MathWorks

Opportunity in Embracing Imperfection:
Is simulation the real thing?

Pieter J. Mosterman

Senior Research Scientist Adjunct Professor
Design Automation Department School of Computer Science
4\ MathWorks B McGill

© 2011 The MathWorks, Inc.

&\ MathWorks:

In your opinion, what lasting legacy has YACC brought
to language development?

YACC made it possible for many people who were not
language experts to make little languages (also called
domain-specific languages) to improve their
productivity. Also, the design style of YACC - base the
program on solid theory, implement the theory well, and
leave lots of escape hatches for the things you want to
do that don't fit the theory - was something many Unix
utilities embodied. It was part of the atmosphere in
those days, and this design style has persisted in most
of my work since then.

Interview with Stephen C. Johnson in “The A-Z of programming languages: YACC,”

Computerworld, 09.07.2008
http://news.idg.no/cw/art.cfm?id=094E3B6E-17A4-0F78-311509693E8E95C1

} MathWorks

Opportunity in Embracing Imperfection:
Is simulation the real thing?

Pieter J. Mosterman

Senior Research Scientist Adjunct Professor
Design Automation Department School of Computer Science
4\ MathWorks B McGill

© 2011 The MathWorks, Inc.

@\ MathWorks

The importance of computation

REPORT TO THE PRESIDENT
JuNE 2005

COMPUTATIONAL SCIENGE:

ENSURING AMERICA’S
COMPETITIVENESS

Together with theory and experimentation,
computational science now constitutes the “third
pillar” of scientific inquiry,

PRESIDENT’'S

INFORMATION TECHNOLOGY

ADVISORY COMMITTEE

@\ MathWorks
The importance of computation

H. Res. 487

In the House of Representatives, U, S,
July JE N
Wherras the Uniled Blala af Ameriea 13 & greal and pros

e s il meindcling aw] amalaion oonlrdwis

Resolved, That the House of Representatives—

3) encourages the expansion of modeling and simulation as a tool
and subject within higher education;

4) recognizes modeling and simulation as a National Critical
Technology;

WA U UTRRE TR
1} expanding U undersianding of nuclear chain e

ariiona during b Mashaiian Progest through some of

ibhe carliml stmalslions rejlvaling lhe easiion prones
which uliimately conirilmted o the e of Waorld War 11

2 merving as a fourdlational mernil of Use Siock

pilr Sirwardabop Program, which bleed ther }*reaicbend

of the United Siabes o scridly ik L ot 1

than Les yeams

Agenda

= Qutline

= Model-Based Design
= Problem statement
= A solution approach
= Outlook

4\ MathWorks:

&\ MathWorks'

The science in engineering a system

experimentation theory

Discard detail but keep pertinent behavior

‘ &\ MathWorks:

The science In engineering a system

experimentation theory

Where is the heat?

But often no analytical solution

4\ MathWorks:

The science in engineering a system

experimentation theory computation

A computational solution

&\ MathWorks

The science In engineering a system

experimentation theory computation

A computational solution

Not much heat at the nozzles ... let's change the material ...

10

4\ MathWorks:

The science in engineering a system

experimentation computation

putational solution

Not much he e the material ...

11

&\ MathWorks'

Computational methods to add more detall

Same computational approximation
Information beyond what is in a first principles model

12

&\ MathWorks:

Computational methods to add more detall

Same computational approximation

13

Model quality

approximation

analytic

/

computation

decreasing
error

iInformation

&\ MathWorks

14

Model quality

approximation

analytic

error level

A

computation

decreasing
error

iInformation

&\ MathWorks

15

4\ MathWorks:

Computational methods are not that mature

16

&\ MathWorks'

Computational methods are not that mature

Coumbia st on Lounch Camplus 398 pricr fo STE107,

“ ... engineers used Crater during STS-107 to analyze a piece of
debris that was at maximum 640 times larger in volume than the
pieces of debris used to calibrate and validate the Crater model.”

H. W. Gehman, Jr. et al.,“Report of Columbia Accident Investigation Board, Volume 1,” National Aeronautics and Space
Administration, August, 2003

17

Technology maturation: a comparison

Conservative Cautious improvement ... till failure

Széchenyi Chain Bridge

Brooklyn Bridge

“Computational Science Demands a New Paradigm,” Douglass E. Post and Lawrence G. Votta, Physics Today, 2005

4\ MathWorks

18

4\ MathWorks:

Technology maturation: a comparison

Conservative Cautious improvement ... till failure Firm methodology
I | |

henyi-chain-bridge-3067, i o lib.wighingtonYedu/specialcoll/exhibits/tnt

Széchenyi Chain Bridge

Brooklyn Bridge Akashi-Kaikyo Bridge

“Computational Science Demands a New Paradigm,” Douglass E. Post and Lawrence G. Votta, Physics Today, 2005 19

&\ MathWorks:

Premise

= Approximation is not the culprit
— Model-Based Design is successfully exploiting computation
— But still very ad hoc; lots of testing required

« Embrace the imperfection!
— Create better models without reducing the approximation
— Use computational methods to:
= Enhance model information

= Enhance domain information
= Analyze and design complex execution engines

— Requires precise definition of the execution semantics
= Differential equations, difference equations, discrete event, etc.
= Approximations

- Treat computation as equal to experiment and theory

20

|
Agenda

= Qutline

>, = Model-Based Design
= Problem statement
= A solution approach
= Outlook

4\ MathWorks:

21

Design of an engineered system

&\ MathWorks'

22

Increasingly more detall

4\ MathWorks

23

System behavior

oy
7 7 & —\

&\ MathWorks'

Target stack

24

Simulation studies

s [/
7 7 e \

Host stack

&\ MathWorks'

Target stack

25

Model-Based Design

s [/
7 7 e \

Host stack

&\ MathWorks'

Target stack

26

Model-Based Design

Host stack

4\ MathWorks

Target stack

27

4\ MathWorks

Executable specifications

Host stack <;> Target stack

= — 28

4\ MathWorks

Model elaboration

Elaborate

Host stack <;> Target stack

= — 29

Automatic code generation

Elaborate

Synthesize

4\ MathWorks

Target stack

30

&\ MathWorks'

Model-Based Design

Raises level of abstraction

Enables continuous testing

Elaborate
Explore
Verify
e Synthesize
Explore [F° “ E
Verify - L
Test -
T Explore
Verify =t
Test — -
Host stack (—>| Target stack

= | 31

4\ MathWorks:

Mapping an application

Application to be implemented

Application specific

w
N

" Technology divergence

Single application

\Z

>
General purpose

32

@\ MathWorks

Mapping an application

A

-

©

% Application specific
% V

Q

(@)

=

N

>

General purpose

33

4\ MathWorks:

Mapping an application

Compile technology into application

Application specific

Single application

General purpose

34

@\ MathWorks

Mapping an application

A
C \
O N
@ -
% . Application specific
S T
Q
(@))
=
N

>

General purpose

35

4\ MathWorks:

Mapping an application

Reuse shared transformation technology

A

-

©

E . . L.l
% Application specific
o

S

Q

(@)

=

N

>

General purpose

36

4\ MathWorks:

Mapping an application

Modular timing engine to enable reuse

A

-

©

E . . L.l
% Application specific
o

S

Q

(@)

=

N

>

General purpose

37

Agenda

= Qutline

= Model-Based Design
= Problem statement
= A solution approach
= Outlook

4\ MathWorks:

38

@\ MathWorks

Computer Automated Multiparadigm Modeling
for technology reuse

« A syntax, a semantic domain, and a mapping

Fu

For graphical syntax, often
Q s a meta model is used
ORI

39

’ 4\ MathWorks:

Define semantics as a syntactic
transformation—semantic anchoring

= Target semantic domain must be subsumed

Transformation
model

o- [\]

I
Ok

40

4\ MathWorks

Modeling a model transformation

s, mr2new
Anyl || \
\ —= Clock
Slock A\ \
Model 0
/N Model O \
\. \ \
® R2010a \
MATLAB O \
Lamguage of Technical Compuis Clack
" : ’ —] lined \
ves Froduct + '
1 - + lined
linel
fdd]
Constant a \ W
lines ‘ i lirge® -
Constantd Productt Fope

ling2

Canstant?

41

Modeling a model transformation

Visual Modeling and Transformation System 3.0 Team Members:
Budapest University of nd TihamérL Lszlé Lengyel, Gergely Mezel,
Copyright 2005, All rights reserved Lisz16 Angyal, Mérk Asztalos, Istvin Madarl,

MtpAmtsatbmehy vmts@aut.bme.tw Tamés Mészaros, Tamds Vajk, Laszlé Siroki

N

MATLAB® =™

The Lamguage of Tedhnical Computtng

Verson 7,10.0.499 (R20108)
E-bet (ninte)

February 5, 2010

Licenss Number: unkndwn

C 3 linel

Clock

1

—
Anyl | |

Black

Model @

Constant

lirngt

== Glock

Maode! O

|

Caonstantd

lineS

M

Scope

4\ MathWorks

42

Modeling a model transformation

Visual Modeling and Transformation System 3.0
Budapest University of nd

Team Members:

Copyright 2008, All right!
htp/vmtsautbmehy vmts@aut.bme.hu

TihamérL Liszlé Lengyel, Gergely Mezel,
Liszlé Angyal, Mérk Asztalos, Istvin Madari,
Tamés Mészaros, Tamis Vajk, Laszlé Siroki

N\

Vierson 7.10.0.4%9 (R20108)
)

MATLAB® =™

The Language of Tecmical Computing

== Glock

Maode! O

Constanti

lines

MD

Scope

4\ MathWorks

43

Model-Based Design

4\ MathWorks

Target stack

44

4\ MathWorks

Model-Based Design

Host stack <;> Target stack

= ' - 45

Multi-domain models comprise many
formalisms ...

« Can we develop a unifying semantic domain?

4\ MathWorks:

46

Multi-domain models comprise many
formalisms ...

« Can we develop a unifying semantic domain?

4\ MathWorks:

47

Modeling a physical system

From first principles ...

Hooke's Law: E-_X"%
C
Newton’s Second: F =ma
A bit of calculus: a(t) = dv(t)
dx(t
v(t) = L
An ideal oscillator: v(t) = dx(t)
. dv(t) _ X(t) — X,
dt C

4\ MathWorks:

48

4\ MathWorks:

Modeling a physical system

From first principles ... Hooke’s Law: F—_ X~ X%

C

Newton’s Second: F =ma

—-2.< o
Q ~~ 7 A bit of calculus: a(t) = V()

> | dx(t
B -8

v | <
i dx(t)
V4 An ideal oscillator: v(t) =
Let's develop a numerical m dV(t) _ X(t)—Xq

solver to compute a solution ... dt C

49

Numerical integration

Euler: step h in time along x = f (x,t)
Xe (1) = X(t,) + X(t,)h,

4

&\ MathWorks

50

&\ MathWorks

Numerical integration

Euler: step h in time along x = f (x,t) T Xy
Xe (1) = X(t,) + X(t,)h, I

51

Numerical integration

Euler: step h in time along x = f (x,t)
Xe (1) = X(t,) + X(t,)h,

Trapezoidal: average the end points

o X(t,) I X(t)
R (tea) = X(0) 4= k

@\ MathWorks

52

Numerical integration

Euler: step h in time along x = f (x,t)
Xe (1) = X(t,) + X(t,)h,

Trapezoidal: average the end points

o X(t,) I X(t)
R (tea) = X(0) 4= k

@\ MathWorks

53

Numerical integration

Euler: step h in time along x = f (x,t)
Xe (1) = X(t,) + X(t,)h,

Trapezoidal: average the end points

X (t,,) = X(t) +

X(tea) + X(t)

2

N,

4\ MathWorks:

54

’ 4\ MathWorks:

Numerical integration

Euler: step h in time along x = f (x,t)
Xe (ta) = X(t) + X(t)h, €

Trapezoidal: average the end points X,

R () = x(t,) + e TXED

“ tk tk+1

Taylor series expansion for error analysis

(t) = x6)+ 202 h + X0z o)

55

’ &\ MathWorks:

Numerical integration

Euler: step h in time along x = f (x,t)
Xe (ta) = X(t) + X(t)h, €

Trapezoidal: average the end points X,

i () = x(t,) + XX

Taylor series expansion for error analysis

X(t,) X(t,) .2 3
X(t,1) = X(t) +—= T h, + ol he|+O(h)

ge (tk+1)
When x(t) changes little, h, can be large!

56

’ &\ MathWorks:

Numerical integration

Euler: step h in time along x = f (x,t)
Xe (ta) = X(t) + X(t)h, €

Trapezoidal: average the end points X,

i () = x(t,) + XX

Taylor series expansion for error analysis

X(t,) X(t,) .2 3
X(t,1) = X(t) +—= T h, + ol he |+ O(hy)

ge (tk+1) gt (tk+1)

Change step size based on estimate: X, (t,.,) — X, (t ;) =

X(t) h?
21

57

@\ MathWorks

Sophisticated solver ... ?

= Let’s compute a solution to the ideal oscillator
L XY Graph M= E3

A7 Plot

VA4
1 4
Y. WO
X 1

\// e

A Axig

Y AxIs

= We can make the error small ... but only locally!

4\ MathWorks:

Sophisticated solver ... ?

= Let’s compute a solution to the ideal oscillator
L XY Graph M= E3

A7 Plot

V/\
1

Z 0

\ /X ’ |
" X 0 1'

A Axig

\
/

= We can make the error small ... but only locally!
It accumulates for ‘long time’ behavior
So, ... how come the JSF flies?!

@\ MathWorks

Engineering an embedded system

theoretical computational
id main O {
—> F(t):mw —> VO:ntm?:n
dt 1
l validate l [verify l

[1 I |

| < ! | <

In collaboration with Hans Vangheluwe, McGill University 60

| @\ MathWorks
Engineering an embedded system

physical theoretical computational
id main O {
— Fo=n®O | | Vi
dt 1
l validate l [verify l

[1 I |

| < ! | <

| N

7

validate

In collaboration with Hans Vangheluwe, McGill University 61

Engineering an embedded system

physical theoretical

@\ MathWorks

computational

F(t)=m

av()
dt

o int i1;

}

void main O {

¢ l

N

\reflne

N

N

7 []

validate ¢

In collaboration with Hans Vangheluwe, McGill University

62

4\ MathWorks:

Create executable models in all phases

] \
Host stack <;> Target stack

= | 63

&\ MathWorks'

Make the computational approximation the
primary design deliverable—the real thing!

Host stack <:> Target stack

i o 64

&\ MathWorks:

So that gets the job done ... but ...

= More than 50% of the modeling effort is in verification,
validation, and testing!

« Semantics of models is buried in the execution engine

« Engine code base is extensive and complex
— Interaction of approximations
— Interaction and interfacing of different formalisms

- How can we mature the field?
= Model the semantics of the execution engine!

65

\/

Agenda

= Qutline

= Model-Based Design
= Problem statement
= A solution approach
= Qutlook

4\ MathWorks:

66

So, what iIs a model anyway?

Jean Bézivin Jean-Marie Favre Pieter J. Mosterman

“Everything is a model” “Nothing is a model” “Nothing is not a model”

el < model
mode <« model system
A system A
A
system system under study model
« system

under study

In collaboration with Hans Vangheluwe, McGill University

4\ MathWorks:

67

So, what iIs a model anyway?

Jean Bézivin

“Everything is a model”

model

/N

system

Jean-Marie Favre

“Nothing is a model”

< model

system

A

system under study

Pieter J. Mosterman Hans Vangheluwe

“Nothing is not a model” “Model everything”

Computer Automated Multiparadigm
Modeling
(CAMPaM)

In collaboration with Hans Vangheluwe, McGill University

4\ MathWorks:

68

So, what iIs a model anyway?

Jean Bézivin

“Everything is a model”

model

/N

system

Jean-Marie Favre

“Nothing is a model”

< model

system

A

system under study

Pieter J. Mosterman Hans Vangheluwe

“Nothing is not a model” “Model everything”

With the most appropriate formalism

At the most appropriate level of
abstraction

In collaboration with Hans Vangheluwe, McGill University

4\ MathWorks:

69

Modeling the execution engine

analyze
behavior

oo me feome T e

e

Target stack

&\ MathWorks

70

|
Modeling the execution engine

Host stack

&\ MathWorks

71

&\ MathWorks

Create abstractions in the simulation stack ...

specification

Implementation

Host stack

72

@\ MathWorks

Create abstractions in the simulation stack ...

D

declarative model
Imperative model

Implementation

Host stack

73

Analyze as little as possible

declarative model

/> analyze

L

Host stack

&\ MathWorks

74

Further facilitate design, reuse, ...

declarative model

design C

‘—

L

Host stack

/> analyze

—>
reuse

&\ MathWorks

75

4\ MathWorks:

A declarative formalism with fix-point
semantics

A LATTICE-THEORETICAL FIXPOINT THEOREM
AND ITS APPLICATIONS

ALFRED TARSKD Pacific J. Math, 5 (1955), 28%- 300

— Repeated application of a monotonically increasing patrtial
function converges to a fixed point

1

1/z —>
5

Constant Gain Delay Scope

76

4\ MathWorks:

A declarative formalism with fix-point

semantics

ALFRED TARSKD

A LATTICE-THEORETICAL FIXPOINT THEOREM
AND ITS APPLICATIONS

Pacific J. Math, 5 {1955}, 245- 300

— Repeated application of a monotonically increasing patrtial
function converges to a fixed point

1

Constant

1

6

Gain

12

1/z
5

Delay

Scope

77

4\ MathWorks:

A declarative formalism with fix-point

semantics

ALFRED TARSKD

A LATTICE-THEORETICAL FIXPOINT THEOREM
AND ITS APPLICATIONS

Pacific J. Math, 5 (1955), 285- 300

— Repeated application of a monotonically increasing patrtial
function converges to a fixed point

1

Constant

1

6

12

1/z
5

S

Gain

Delay

—

Scope

— One implementation is a data dependency schedule

Constant

0:0
1/z
5

P

Delay

Scope

78

4\ MathWorks:

A declarative formalism with fix-point
semantics

A LATTICE-THEORETICAL FIXPOINT THEOREM
AND ITS APPLICATIONS

ALFRED TARSKD Pacific J. Math, 5 (1955), 28%- 300

— Repeated application of a monotonically increasing patrtial
function converges to a fixed point

1 6 12 S

1 1/z5 —>

Constant Gain Delay Scope

— One implementation is a data dependency schedule

ool B

P

Constant Gain Delay Scope

79

4\ MathWorks:

Dynamic systems evolve over time

= Sequences of fix-point evaluations
= Define input and output signals as (potentially infinite)

streams of values
— Stream(Type) = Type : Stream(Type)

= Delay as a function application

— Delay xOu =x0:u
5

2,4,7, ..} {5,2 4,..)

— Avariable has a ‘clock’ that encodes its sample time

80

Multiple rates; a potential problem ...

= Streams are only practical if we can limit the stream
entries being accessed

= Not this:

{x0, x1, X2, X3, x4, ...

-
{x0+x0, x1+x2, x2+x4 , ... }

x4
even
{x0, x1, x2, x3, x4, ... }
X2
X3

X4

&\ MathWorks

81

| &\ MathWorks
Clock calculus to detect

= Require compatible clocks: the synchronous
assumption

= Match against base clock

{x0,L, x2,L,x4, ...}
{TETFET ..}

even >
Uk

{x0, X1, X2, X3, x4, ... >
{x0, x1, x2, x3, x4, ... }

{T, T, T, T, T, ...}

82

Clock calculus to detect

= Require compatible clocks: the synchronous

assumption

= Match against base clock

{x0,L, x2,L, x4, ...

{TETET ...}

}

{x0, 0, x2, 0, x4, ...

even

>

0 pad

{(TTTTT,...

{x0, x1, X2, X3, x4, ...

{x0, x1, x2, x3, x4, ... }
{17, T, T, T, T, ..}

&\ MathWorks

83

&\ MathWorks

A multi-rate system example

Source

2,7,3, ...}

Source _ |
Delay

Find greatest common divisor (Ts)!

—D

Ts=2(s)
%@ » 1/z —>
Gain Delay Scope

Ts =1 (s)

84

A multi-rate system example

Source

2,7,3, ..}

—P

Source __ |
Delay __ |
Base T | [
| TS |
Ts =2 ()
ﬂ|> » 1/z —>
Gain Delay Scope
Ts =1 (s)

&\ MathWorks'

85

A multi-rate system example

l_I_S.

Source _T F
Delay _T 1
Base [
Source
{2,7,3,..} | Ts=2(s)
b ﬂl> > 1/z
T Gain Delay
Ts =1 (s)

Scope

&\ MathWorks'

86

| &\ MathWorks'
A multi-rate system example

Source T F T F T F T
Delay T T T T T T T
Base T T T T T T T
Source
{2,7,3,...} | Ts=2(s)
[an ﬂl> » 1/z —»>
Gain Delay Scope
Ts =1 (s)

87

&\ MathWorks'

A multi-rate system example

Source T F T F T F T

Source

{2,7,3,...} | Ts=2(s)

Delay T T T T T T T
Base T T T T T T T

T ﬂl> » 1/z —»>

Gain Delay Scope
Ts =1 (s)

88

Can we use this framework to define a
variable-step solver?

= Separate
— Time (explicit)
— Evaluations (ordered)

= Time as a function of
evaluations

@\ MathWorks

89

| @\ MathWorks

Can we use this framework to define a
variable-step solver?

= Separate
— Time (explicit)
— Evaluations (ordered)

= Time as a function of
evaluations

Ty

T 17T T 1T T T T

90

&\ MathWorks

Can we use this framework to define a

variable-step solver?

Separate
— Time (explicit)
— Evaluations (ordered)

Time as a function of
evaluations

time

2*Ts
Ts

91

| &\ MathWorks

Can we use this framework to define a
variable-step solver?

= Separate
— Time (explicit)
— Evaluations (ordered)

= Time as a function of
evaluations

time

2*Ts
Ts

evaluation

92

&\ MathWorks

Can we use this framework to define a
variable-step solver?

= Separate
— Time (explicit)
— Evaluations (ordered)

= Time as a function of
evaluations

__

evaluation

93

&\ MathWorks

Can we use this framework to define a

variable-step solver?

Separate

— Time (explicit)

— Evaluations (ordered)
Time as a function of

evaluations
— Step is variable

__

evaluation

94

| &\ MathWorks

Can we use this framework to define a
variable-step solver?

= Separate
— Time (explicit)
— Evaluations (ordered)
= Time as a function of
evaluations
— Step is variable t3)t(2) [|
— Step may be O '

__

@ :
t(0) |3

evaluation

95

Can we use this framework to define a

variable-step solver?

Separate
— Time (explicit)
— Evaluations (ordered)

Time as a function of
evaluations

— Step is variable

— Step may be O

— Step may be negative
= Time may recede

t(3) t(2)
t(4)

t(1)
t(0)

__

evaluation

@\ MathWorks

96

Can we use this framework to define a

variable-step solver?

Separate
— Time (explicit)
— Evaluations (ordered)

Time as a function of
evaluations

— Step is variable

— Step may be O

— Step may be negative
= Time may recede

(5)
t(3) t(2)

t(4)

t(1)
¢(0)

evaluation

&\ MathWorks

97

A stream based functional solver

Euler integration

(e) = " u(i)h(i) if odd(e)
% y.(e—1) otherwise

Trapezoidal integration

y©=3" (u@i-1)+ ;(i))h(i ~1)

4\ MathWorks:

98

A stream based functional solver

y.(e) = {Zielu(i)h(i) —u(i—2)h(i—2)p(i)

Euler integration

Increment previous increment

Ye (e _1)

If odd(e)
otherwise

Trapezoidal integration

increment

preyvious increment

y©)=3". (u(i-D+u(@)h(-1) |(ui-3) +u}'\— 2))n(i —3) o)

d(e) =

2

2\ .

Error computation

(ue—-3)+u(e—2))h(e—3)

2

—u(e—2)h(e—QZ <tol

4\ MathWorks:

99

4\ MathWorks:

|
Rate transition a function of time

Now we can create a variable step solver inside 1/s that maps
onto the synchronous paradigm

Dynamically compute ‘hold’ output

Source .
as an argument of time ...
{2, 7, 3, } Ts =2 (s) y(t):u(t/Ts)
l No predetermined sequence of
hold (& output values

Gain Integrator Scope

:::?____?::fi::: *
e T o> e R

100

4\ MathWorks:

Unifying formalisms with different semantics

= Newton’s Law and Hooke’s Law
— Differential equations as before

= Control behavior
— Sampled data (periodic T,=0.5)

m TFpuII
(20 if k=0 i
F

Fu(k)=410 if k=1 :
0 else TX TFfloor
- x=0 '~
= Contact behavior R C
— Discontinuous changes

101

Modeling the contact behavior

« Simultaneous inequalities

|:floor (t) =9

(—(Rv(t) -
0

= Finite state machine

|:floor (t) = O

free

x<0

@j if x(t) <0
C

contact

otherwise

Ffloor (t) — _(RV(t) +

4\ MathWorks:

e
C

102

&\ MathWorks
Computational simulation

1 . T D65
—Section 4 solver
0.E /#1\ B S [. .
8 0.2 0.5 Sy LU NUNNE N, T ot . S
IV IR
0.45) i . i ;!1:515 : $;155:5
0.7 I :;Eu:n |Tmp:u.uldal]
‘D-‘iu 1 3 3 Fl 5 E I}%D -] 1IiII - 1‘i|IZI 120 130
Position vs. time Time vs. evaluations (detail)

Simultaneous inequalities

Eval Time Position Velocity Frsor Error
532 2.5450 0.0037 -1.4381 0

533 25450 -0.0035 -1.4381 8.5888 0
534 25550 -000107 -1.4308 11.4717

535 25550 -0.0179 -1.4377 14.3430 0.0021
536 25500 -0.0035 -1.4348 8.5700

537 25500 -0.0107 -1.4360 11.4555 0.0021

538 25475 (0.0001 -1.4375 0
539 25475 -0.0071 -1.4395 10,0333 0.0020
540 2.5462 0.0019 -1.43580 0
541 25462 -0.0053 -1.4389 09.3125 0.0008
542 2.5456 0.0028 -1.4381 0

543 25456 -0.0044 -1.4385 20508 0.0004

103

Computational simulation

postan

0B

0LE

0.4 /
0.2

—5ection 4 solver
e I .

Position vs. time

Simultaneous inequalities

Eval Time Position Velocity Frsor Error
532 25450 _0.0037 -1.4381 il

533 25450 | -0.0035 | -1.4381 8.5888 0
534 25550 | -0.0107 | -1.4308 | 11.4717

535 25550 | -0.0179 | -1.4377 | 14.3430 | 0.0021
536 25500 | -0.0035 | -1.4348 8.5700

537 25500 | -0.0107 | -1.4360 | 11.4555 | 0.0021
538 25475 O.000T -1.4375]

539 25475 -0.0071 -1.4395 10.0333 0.0020
540 2.5462 0.0019 -1.4380 0

541 25462 -0.0053 -1.4380 9.3125 0.0009
542 25456 0.0028 -1.4381 0

543 25456 -0.0044 -1.4385 80508 0.0004

0.55
]

tim

&\ MathWorks

0.65
LE 1
*: 100 10
Y205 ool 05 Fp—
(Eubary [Trapezs ksl .
oS e T T AT T L SO
ER
o x-'luf‘k':-ms
0.45 o ==+ 2 0,4B3E " ¥: 0.4825 .
. [Euer] [Traparokda)
palt : :
%D] 100 110 120
avaliations

130

Time vs. evaluations (detail)

Finite state machine

Eval Time Position Velocity Fiaor Error £con
532 2.5450 __0.003T -1.4381 1] 0
533 2.5450 | -0.0035 | -1.4381 0 0 0
534 2.5550 | -0.0107 | -1.4521 11.5321 1
535 2.5550 | -0.0179 | -1.4438 | 14.30980 | 0.0082 1
536 2.5500 | -0.0035 -1.4348 8.5820 1
537 2.5500 | -0.0107 | -1.4360 | 11.4614 | 0.0021 1
538 28475 0.0001 -1.4375 7.1446 1
530 28475 -0.0071 -1.4382 [1] 0.0008 0
540 25462 0.0019 -1.43098 6.4386 1
541 25462 -0.0053 -1.4392 0 0.0006 0

104

Computational simulation

postan

1 T T
—Section 4 solver
1 Eil /_.-_\] I
06
04 f

0.2 /

Position vs. time

Simultaneous inequalities

Eval Time Position Velocity Faoor Error
532 25450 | 0.0037 -1.4381 0

533 25450 | -0.0035 -1.4381 8.5888 0
534 25550 00107 -1.4398 114717

535 25550 -0.0179 -1.4377 14.3430 0.0021
536 25500 -0.0035 -1.4348 8.5700

537 25500 -0.0107 -1.4360 11.4555 0.0021
538 25475 0.0001 -1.4375 0

539 25475 -0.0071 -1.4395 10.0333 0.0020
540 2.5462 0.0019 -1.4380 0

541 25462 -0.0053 -1.4380 9.3125 0.0009
542 25456 0.0028 -1.4381 0

543 25456 -0.0044 -1.4385 80508 0.0004

0.55
]

tim

&\ MathWorks

0.65
LE 1
*: 100 10
Y205 ool 05 Fp—
(Eubary [Trapezs ksl .
oS e T T AT T L SO
ER
o x-'luf‘k':-ms
0.45 o ==+ 2 0,4B3E " ¥: 0.4825 .
. [Euer] [Traparokda)
palt : :
%D] 100 110 120
avaliations

130

Time vs. evaluations (detail)

Finite state machine

Eval Time Position Velocity Fiaor Error £con
532 25450 0.0037 -1.4381 1] [}
533 25450 -0.0035 -1.4381 0 0 0
534 25550 0.0107 -1.4521 11.5321 1
535 2.5550 -0.0179 -1.4438 14.3080 0.0082 1
536 25500 -0.0035 -1.4348 8.5820 1
537 2.5500 -0.0107 -1.4360 11.4614 0.0021 1
538 28475 0.0001 -1.4375 T.1446 1
530 28475 -0.0071 -1.4382 0 0.0008 0
540 25462 0.0019 -1.43098 6.4386 1
541 25462 -0.0053 -1.4392 0 0.0006 0

105

Buttimeis af

unction of evaluations

« Simultaneous inequalities

-

|:ﬂoor (tevent (e)) =9

abaII (tsmooth (e)) — g +

iIf x(t,,..(e) <0
otherwise

X(ovent (€))
o (Rv(tevent (e)) + C j

0

.

|:floor (tsmooth (e))

ball

- Which t should t, really map onto?

logical

time
progressing simulation time

stream . . -
evaluation points forward in time

..l_

evaluation point backward in time

evaluation points constant in time

>

evaluation

€y

4\ MathWorks:

106

’ 4\ MathWorks:

Different choice of semantics

ﬁ.
0.04

4\ MathWorks:

Comparing with an analytic solution

0.02 \

|ana|ytic solution

-0.02

position

-0.04

ialways evaluated|

-0.06

-0.08

evaluated on accepted !
0.1 time step Skl

-0.12 '
0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46

Justyna Zander, Pieter J. Mosterman, Grégoire Hamon, and Ben Denckla, “On the Structure of Time
in Computational Semantics of a Variable-Step Solver for Hybrid Behavior Analysis," in the
Proceedings of the IFAC World Congress, Milan, Italy, August, 2011

108

Characteristics of the semantic domain

= Declarative
— Purely functional (no side effects)

= Ordered evaluations

« Untimed
— Time as explicit function, t(e)
— Time is not strictly increasing

= Broadly applicable to dynamic systems
— Differential equations, difference equations, discrete events

Pieter J. Mosterman, Justyna Zander, Grégoire Hamon, and Ben Denckla, "Towards Computational
Hybrid System Semantics for Time-Based Block Diagrams,” in 3rd IFAC Conference on
Analysis and Design of Hybrid Systems (ADHS'09), A. Giua, C. Mahulea, M. Silva, and J. Zaytoon
(eds.), pp. 376-385, Zaragoza, Spain, September 16-18, 2009, plenary paper.

&\ MathWorks:

109

\/

Agenda

= Qutline

= Model-Based Design
= Problem statement
= A solution approach
= Qutlook

4\ MathWorks:

110

&\ MathWorks:

Conclusions

= Computation, the good and not so good
Quantitative approximation
- Potential for higher quality models

= Exploit computational methods
— We must formalize the computational execution semantics
— Model at a declarative level

= Define solvers using a functional stream-based
approach
— Precise computational semantics of the execution engine

111

&\ MathWorks:

Opportunities

= First principles in computational form

= New generation of modeling and simulation tools
— More robust in less time (less bugs, more reliable and
consistent approximation)
= Bring disciplines together
— Engineering, Computer Science, Physics, Mathematics

« Exploit the abstraction
— Automatic code generation

— Computational methods for
= Analysis
= Design
= Synthesis

112

4\ MathWorks

Control synthesis using model checking

hinit

hinit

tol

L=]

init
wini yodd
xinit

manitar

yaccept [fed]{ ([fed] on accept

uadd suface mount device

g o o

accept
ugccept

wariable-step solwer

monitor

properies control

113

Control synthesis using model checking

yiodd

yaccapt

suface mount device

time of last miss
[(COMTAINS INITIAL TIME)

L et n

tprew

'y

HOT et

4\ MathWorks

manitor
on dccept

monitor

114

4\ MathWorks:

A counterexample

/Countere}{ample1 \

3.4 L-.control e R S A S
> : : : ¢ — ¢ ¢ +
B R L EEEEEEEEEEE LR EEEEEEEEE S R Ehh sREEEEEEEEEEEREEE -
T T cefedeneneneas sef s
4 _______________ g e, L . B B EEEEE TP .
1) SR - AN S I
] S S — AR S S— SO

E E E E — o
Tt RERERER T S
" | | | | | |

0 3 10 15 20 25 30
Time (sec)
Left Point Right: Pioint control force { shotm)
Hame: |cortrol force i 1
Index: 1 bl W: ¥:
W

Pieter J. Mosterman, Justyna Zander, Grégoire Hamon, and Ben Denckla, "A Computational Model of
Time for Stiff Hybrid Systems Applied to Control Synthesis," in Control Engineering Practice,

In press
P 115

A counterexample

/Countere}{ample1 \

3.4 L-.control fnrn:e ______________________________________
& : : — ¢ + +
36---------------- l REEEE EEE e R R R L EEEEEE] Rk EEEEEEEEEEEEEEEE B
38k = SN O S S Y IS W

en: y = -10;
[S 4 [td ==0}y=2 fee--- A) A
=2
A2 en: y =-3.5; TR R T B S et b
[td == 0.0375 - 0.035)/y=3
44 D e B R
=h ! b —o
en: '_',"—--"-1, ' ' '
46 --------- - R LT L P E R
[td >= 0.04 - 0.035)y=4; : :
4.8 I I
[I H
[td == D'D‘dS?E_D'DBE]"rF:E; control force [=hotmr)
Hame: cortrol force
Index: |1 hd

Pieter J. Mosterman, Justyna Zander, Grégoire Hamon, and Ben Denckla, "A Computational Model of
Time for Stiff Hybrid Systems Applied to Control Synthesis," in Control Engineering Practice,

In press

4\ MathWorks:

116

4\ MathWorks:

Controlled acceleration of mounted
component

. /“”"”

-10 /
-15
2B % 0% °® obzs 0.04 0.05

time

acceleration

117

&\ MathWorks:

Acknowledgments

Justyna Zander
Harvard University
Fraunhofer Institute FOKUS, Berlin

Grégoire Hamon
MathWorks

Ben Denckla
Independent Thinker

Hans Vangheluwe
University of Antwerp
McGill University

Many thanks for their continuing collaboration!

118

4\ MathWorks

4\ MathWorks:

Accelerating the pace of engineering and science

119

	Opportunity in Embracing Imperfection:�Is simulation the real thing?
	Slide Number 2
	Opportunity in Embracing Imperfection:�Is simulation the real thing?
	The importance of computation
	The importance of computation
	Agenda
	The science in engineering a system
	The science in engineering a system
	The science in engineering a system
	The science in engineering a system
	The science in engineering a system
	Computational methods to add more detail
	Computational methods to add more detail
	Model quality
	Model quality
	Computational methods are not that mature
	Computational methods are not that mature
	Technology maturation: a comparison
	Technology maturation: a comparison
	Premise
	Agenda
	Design of an engineered system
	Increasingly more detail
	System behavior
	Simulation studies
	Model-Based Design
	Model-Based Design
	Executable specifications
	Model elaboration�
	Automatic code generation
	Model-Based Design
	Mapping an application
	Mapping an application
	Mapping an application
	Mapping an application
	Mapping an application
	Mapping an application
	Agenda
	Computer Automated Multiparadigm Modeling for technology reuse
	Define semantics as a syntactic transformation—semantic anchoring
	Modeling a model transformation
	Modeling a model transformation
	Modeling a model transformation
	Model-Based Design
	Model-Based Design
	Multi-domain models comprise many formalisms …
	Multi-domain models comprise many formalisms …
	Modeling a physical system
	Modeling a physical system
	Numerical integration
	Numerical integration
	Numerical integration
	Numerical integration
	Numerical integration
	Numerical integration
	Numerical integration
	Numerical integration
	Sophisticated solver … ?
	Sophisticated solver … ?
	Engineering an embedded system
	Engineering an embedded system
	Engineering an embedded system
	Create executable models in all phases
	Make the computational approximation the primary design deliverable—the real thing!�
	So that gets the job done … but …
	Agenda
	So, what is a model anyway?
	So, what is a model anyway?
	So, what is a model anyway?
	Modeling the execution engine
	Modeling the execution engine
	Create abstractions in the simulation stack …�
	Create abstractions in the simulation stack …�
	Analyze as little as possible�
	Further facilitate design, reuse, …�
	A declarative formalism with fix-point semantics
	A declarative formalism with fix-point semantics
	A declarative formalism with fix-point semantics
	A declarative formalism with fix-point semantics
	Dynamic systems evolve over time
	Multiple rates; a potential problem …
	Clock calculus to detect
	Clock calculus to detect
	A multi-rate system example
	A multi-rate system example
	A multi-rate system example
	A multi-rate system example
	A multi-rate system example
	Can we use this framework to define a variable-step solver?
	Can we use this framework to define a variable-step solver?
	Can we use this framework to define a variable-step solver?
	Can we use this framework to define a variable-step solver?
	Can we use this framework to define a variable-step solver?
	Can we use this framework to define a variable-step solver?
	Can we use this framework to define a variable-step solver?
	Can we use this framework to define a variable-step solver?
	Can we use this framework to define a variable-step solver?
	A stream based functional solver
	A stream based functional solver
	Rate transition a function of time
	Unifying formalisms with different semantics
	Modeling the contact behavior
	Computational simulation
	Computational simulation
	Computational simulation
	But time is a function of evaluations
	Different choice of semantics
	Comparing with an analytic solution
	Characteristics of the semantic domain
	Agenda
	Conclusions
	Opportunities
	Control synthesis using model checking
	Control synthesis using model checking
	A counterexample
	A counterexample
	Controlled acceleration of mounted component
	Acknowledgments
	Slide Number 119

