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In your opinion, what lasting legacy has YACC brought 
to language development?

YACC made it possible for many people who were not 
language experts to make little languages (also called 
domain-specific languages) to improve their 
productivity. Also, the design style of YACC - base the 
program on solid theory, implement the theory well, and 
leave lots of escape hatches for the things you want to 
do that don't fit the theory - was something many Unix 
utilities embodied. It was part of the atmosphere in 
those days, and this design style has persisted in most 
of my work since then.

Interview with Stephen C. Johnson in “The A-Z of programming languages: YACC,” 
Computerworld, 09.07.2008
http://news.idg.no/cw/art.cfm?id=094E3B6E-17A4-0F78-311509693E8E95C1
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The importance of computation

Together with theory and experimentation, 
computational science now constitutes the “third 
pillar” of scientific inquiry, 
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The importance of computation

Resolved, That the House of Representatives—
3) encourages the expansion of modeling and simulation as a tool 

and subject within higher education;
4) recognizes modeling and simulation as a National Critical 

Technology;
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Agenda

 Outline 
 Model-Based Design
 Problem statement
 A solution approach
 Outlook
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The science in engineering a system

Discard detail but keep pertinent behavior

experimentation theory
http://images.jsc.nasa.gov/
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The science in engineering a system

Where is the heat?

But often no analytical solution

experimentation theory
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experimentation theory computation

The science in engineering a system

A computational solution
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experimentation theory computation

The science in engineering a system

A computational solution

Not much heat at the nozzles … let’s change the material …
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experimentation theory computation

The science in engineering a system

A computational solution

Not much heat at the nozzles … let’s change the material …
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Computational methods to add more detail

Same computational approximation
Information beyond what is in a first principles model
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Same computational approximation

Computational methods to add more detail
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Computational methods are not that mature
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Computational methods are not that mature

“ … engineers used Crater during STS-107 to analyze a piece of 
debris that was at maximum 640 times larger in volume than the 
pieces of debris used to calibrate and validate the Crater model.”
H. W. Gehman, Jr. et al.,“Report of Columbia Accident Investigation Board, Volume I,” National Aeronautics and Space 
Administration, August, 2003

Dr. Scott Lieberman—AP Photo/Tyler Morning Telegraph



18

http://ta.twi.tudelft.nl/nw/users/vuik/information/fig06.gif

Technology maturation: a comparison

Brooklyn Bridge

Tacoma Narrows BridgeSzéchenyi Chain Bridge

“Computational Science Demands a New Paradigm,” Douglass E. Post and Lawrence G. Votta, Physics Today, 2005

Conservative Cautious improvement

1849 1883 1940

… till failure

http://blog.teacollection.com/the-lion-on-szechenyi-chain-bridge-3067/

http://helpfors.narod.ru/USA/New_York/new_york_2.html
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Technology maturation: a comparison

Brooklyn Bridge Akashi-Kaikyō Bridge

Tacoma Narrows BridgeSzéchenyi Chain Bridge

“Computational Science Demands a New Paradigm,” Douglass E. Post and Lawrence G. Votta, Physics Today, 2005

Conservative Cautious improvement Firm methodology

1849 1883 1940 1998

… till failure

http://www.lib.washington.edu/specialcoll/exhibits/tnb/http://blog.teacollection.com/the-lion-on-szechenyi-chain-bridge-3067/

http://helpfors.narod.ru/USA/New_York/new_york_2.html http://www.weirdlyodd.com/10-tallest-bridges-in-the-world/



20

Premise

 Approximation is not the culprit
– Model-Based Design is successfully exploiting computation 
– But still very ad hoc; lots of testing required

 Embrace the imperfection!
– Create better models without reducing the approximation
– Use computational methods to:

 Enhance model information
 Enhance domain information 
 Analyze and design complex execution engines

– Requires precise definition of the execution semantics
 Differential equations, difference equations, discrete event, etc.
 Approximations

 Treat computation as equal to experiment and theory
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Agenda

 Outline 
 Model-Based Design
 Problem statement
 A solution approach
 Outlook
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Design of an engineered system
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Increasingly more detail
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Target stack

System behavior
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Target stackHost stack

Simulation studies
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Host stack Target stack

Model-Based Design
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Host stack Target stack

Model-Based Design



28

Host stack Target stack

Executable specifications
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Host stack Target stack

Model elaboration

Elaborate
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Host stack Target stack

Automatic code generation

Elaborate

Synthesize
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Host stack Target stack

Explore
Verify
Test

Elaborate

Synthesize

Explore
Verify
Test

Explore
Verify
Test

Raises level of abstraction

Enables continuous testing

Model-Based Design
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Mapping an application

General purpose

Application specific
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Technology divergence
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Application specific

Mapping an application

General purpose
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Application specific

Mapping an application

General purpose
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Application specific

Mapping an application

General purpose
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Modular timing engine to enable reuse
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Agenda

 Outline 
 Model-Based Design
 Problem statement
 A solution approach
 Outlook
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Computer Automated Multiparadigm Modeling 
for technology reuse

F0

SY SE

FM

SY SE For graphical syntax, often 
a meta model is used

 A syntax, a semantic domain, and a mapping
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Define semantics as a syntactic 
transformation—semantic anchoring

FI
SE

SY

F0

SY SE

FM

SY SE

T
L  R 

I
L  R 

I
L  R 

I…⇒

FT

SY SE Transformation 
model

 Target semantic domain must be subsumed
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Modeling a model transformation
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Modeling a model transformation
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Modeling a model transformation
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Model-Based Design

Host stack Target stack
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Model-Based Design

Host stack Target stack
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 Can we develop a unifying semantic domain?

Multi-domain models comprise many 
formalisms …

F0

SY SE
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 Can we develop a unifying semantic domain?

Multi-domain models comprise many 
formalisms …

F0
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Modeling a physical system

v
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From first principles … Hooke’s Law:

Newton’s Second:
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Modeling a physical system

v
x

Let’s develop a numerical
solver to compute a solution …

From first principles … Hooke’s Law:

Newton’s Second:
C

xxF 0−
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A bit of calculus:

dt
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Numerical integration
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Euler: step h in time along
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Numerical integration
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Numerical integration
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Numerical integration

kt

kx

),( txfx =

kkkke htxtxtx )()()(ˆ 1 +=+

Euler: step h in time along

1+kt

1+kx
1+kε

k
kk

kkt htxtxtxtx
2

)()()()(ˆ 1
1

 +
+= +

+

Trapezoidal: average the end points



55

Numerical integration
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Numerical integration
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Numerical integration
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Sophisticated solver … ?

 Let’s compute a solution to the ideal oscillator

 We can make the error small … but only locally!
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Sophisticated solver … ?

 Let’s compute a solution to the ideal oscillator

 We can make the error small … but only locally!
 It accumulates for ‘long time’ behavior
 So, … how come the JSF flies?! 

v

x

v
x
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Engineering an embedded system

physical theoretical

dt
tdvmtF )()( =

validate

In collaboration with Hans Vangheluwe, McGill University

computational

verify

void main () {
int i;

}
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Engineering an embedded system

physical theoretical
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Engineering an embedded system

physical theoretical

dt
tdvmtF )()( =

validate

In collaboration with Hans Vangheluwe, McGill University

computational

validate

verify

void main () {
int i;

}

refine
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Host stack Target stack

Create executable models in all phases
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Host stack Target stack

Make the computational approximation the 
primary design deliverable—the real thing!
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So that gets the job done … but …

 More than 50% of the modeling effort is in verification, 
validation, and testing!

 Semantics of models is buried in the execution engine
 Engine code base is extensive and complex

– Interaction of approximations
– Interaction and interfacing of different formalisms

 How can we mature the field?
 Model the semantics of the execution engine! 
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Agenda

 Outline 
 Model-Based Design
 Problem statement
 A solution approach
 Outlook
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under study

So, what is a model anyway?

Jean Bézivin

“Everything is a model”

Jean-Marie Favre

“Nothing is a model”

Pieter J. Mosterman

“Nothing is not a model”

system
model

system under study

model

system

In collaboration with Hans Vangheluwe, McGill University
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Computer Automated Multiparadigm
Modeling

(CAMPaM)

So, what is a model anyway?

Jean Bézivin

“Everything is a model”

Jean-Marie Favre

“Nothing is a model”

Pieter J. Mosterman

“Nothing is not a model”

Hans Vangheluwe

“Model everything”

system
model

system under study

model

system

In collaboration with Hans Vangheluwe, McGill University
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With the most appropriate formalism

At the most appropriate level of 
abstraction

So, what is a model anyway?

Jean Bézivin

“Everything is a model”

Jean-Marie Favre

“Nothing is a model”

Pieter J. Mosterman

“Nothing is not a model”

Hans Vangheluwe

“Model everything”

system
model

system under study

model

system

In collaboration with Hans Vangheluwe, McGill University
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Host stack Host stack Target stack

analyze
behavior

Modeling the execution engine
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Host stack

Modeling the execution engine



72

Host stack

Create abstractions in the simulation stack …

specification

implementation
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Host stack

Create abstractions in the simulation stack …

declarative model

imperative model

implementation
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Host stack

analyze

Analyze as little as possible

declarative model
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Host stack

analyzedesign

reuse

Further facilitate design, reuse, …

declarative model
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A declarative formalism with fix-point 
semantics

1/z21

Constant Gain Delay Scope

1 5
5

– Repeated application of a monotonically increasing partial 
function converges to a fixed point
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A declarative formalism with fix-point 
semantics

1/z21

Constant Gain Delay Scope
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5

– Repeated application of a monotonically increasing partial 
function converges to a fixed point
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A declarative formalism with fix-point 
semantics

1/z21

Constant Gain Delay Scope
5

0:2 0:00:3 0:4 0:1

– Repeated application of a monotonically increasing partial 
function converges to a fixed point

– One implementation is a data dependency schedule

1/z21

Constant Gain Delay Scope

1 6 512
5
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A declarative formalism with fix-point 
semantics

1 6 512
1/z21

Constant Gain Delay Scope
5

0:2 0:00:3 0:4 0:1

– Repeated application of a monotonically increasing partial 
function converges to a fixed point

– One implementation is a data dependency schedule

1/z21

Constant Gain Delay Scope

1 6 512
5
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Dynamic systems evolve over time

 Sequences of fix-point evaluations
 Define input and output signals as (potentially infinite) 

streams of values
– Stream(Type) = Type : Stream(Type)

 Delay as a function application
– Delay x0 u = x0 : u

– A variable has a ‘clock’ that encodes its sample time

1/z{2, 4, 7, …}
5

{5, 2, 4, …}
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Multiple rates; a potential problem …

 Streams are only practical if we can limit the stream 
entries being accessed

 Not this:

even
+

x4
x3
x2

x4

{x0+x0, x1+x2, x2+x4 , … }
{x0, x1, x2, x3, x4, … }

{x0, x1, x2, x3, x4, …
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Clock calculus to detect

 Require compatible clocks: the synchronous 
assumption

 Match against base clock

even
+

{x0, x1, x2, x3, x4, …
{x0, x1, x2, x3, x4, … }

{ T,   T,   T,   T,   T,   … }

{T, F, T, F, T, … }

{x0,   , x2,   , x4, … }
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Clock calculus to detect

 Require compatible clocks: the synchronous 
assumption

 Match against base clock

even
+

{x0, x1, x2, x3, x4, …
{x0, x1, x2, x3, x4, … }

{ T,   T,   T,   T,   T,   … }

{T, F, T, F, T, … } {T, T, T, T, T, … }
0 pad

{x0,   , x2,   , x4, … } {x0, 0, x2, 0, x4, … }
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{2, 7, 3, …}

Source

Ts = 2 (s)

T T T T T T T

A multi-rate system example

1/z2
Gain Delay Scope

Ts = 1 (s)

Source
Delay
BaseFind greatest common divisor (Ts)!
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{2, 7, 3, …}

Source

Ts = 2 (s)

T T T T T T T

A multi-rate system example

1/z2
Gain Delay Scope

Ts = 1 (s)

Source
Delay
Base

Ts
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{2, 7, 3, …}

Source

Ts = 2 (s)

T T T T T T T

A multi-rate system example

1/z2
Gain Delay Scope

Ts = 1 (s)

Source
Delay
Base

Ts

T F T F T TF
T T T T T T T
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{2, 7, 3, …}

Source

Ts = 2 (s)

T T T T T T T

A multi-rate system example

1/z2
Gain Delay Scope

Ts = 1 (s)

Source
Delay
Base

T F T F T TF
T T T T T T T
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hold

{2, 7, 3, …}

Source

Ts = 2 (s)
T T T T T T T

A multi-rate system example

1/z2
Gain Delay Scope

Ts = 1 (s)

Source

Delay
Base

T F T F T TF

T T T T T T T

T F T F T F TRT
T T T T T T T
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Can we use this framework to define a 
variable-step solver?

 Separate
– Time (explicit)
– Evaluations (ordered)

 Time as a function of 
evaluations
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Can we use this framework to define a 
variable-step solver?

 Separate
– Time (explicit)
– Evaluations (ordered)

 Time as a function of 
evaluations

T T T T T T T

Ts
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Can we use this framework to define a 
variable-step solver?

 Separate
– Time (explicit)
– Evaluations (ordered)

 Time as a function of 
evaluations

Ts
2*Ts

tim
e

T T T T T T T
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evaluation

Can we use this framework to define a 
variable-step solver?

 Separate
– Time (explicit)
– Evaluations (ordered)

 Time as a function of 
evaluations

tim
e

Ts
2*Ts
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evaluation

Can we use this framework to define a 
variable-step solver?

 Separate
– Time (explicit)
– Evaluations (ordered)

 Time as a function of 
evaluations

t(0)
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evaluation

Can we use this framework to define a 
variable-step solver?

 Separate
– Time (explicit)
– Evaluations (ordered)

 Time as a function of 
evaluations
– Step is variable

t(0)
t(1)

t(2)
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evaluation

Can we use this framework to define a 
variable-step solver?

 Separate
– Time (explicit)
– Evaluations (ordered)

 Time as a function of 
evaluations
– Step is variable
– Step may be 0

t(0)
t(1)

t(2)t(3)
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evaluation

Can we use this framework to define a 
variable-step solver?

 Separate
– Time (explicit)
– Evaluations (ordered)

 Time as a function of 
evaluations
– Step is variable
– Step may be 0
– Step may be negative

 Time may recede
t(0)
t(1)

t(2)t(3)

t(4)
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evaluation

Can we use this framework to define a 
variable-step solver?

 Separate
– Time (explicit)
– Evaluations (ordered)

 Time as a function of 
evaluations
– Step is variable
– Step may be 0
– Step may be negative

 Time may recede
t(0)
t(1)

t(2)t(3)

t(4)

t(5)
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A stream based functional solver







−
= ∑ =

otherwise
eoddif

ey
ihiuey

e

e

i
e

)(
)1(

)()()( 1

( )∑ =

−+−
=

e

it
ihiuiuey

1 2
)1()()1()(

Euler integration

Trapezoidal integration



99

previous increment

A stream based functional solver
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{2, 7, 3, …}

Source

Ts = 2 (s)

Rate transition a function of time

1/s2
Gain Integrator Scope

hold (t)

Now we can create a variable step solver inside 1/s that maps 
onto the synchronous paradigm

Dynamically compute ‘hold’ output 
as an argument of time ...

No predetermined sequence of 
output values

)/()( sTtuty =

t
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Unifying formalisms with different semantics

 Newton’s Law and Hooke’s Law
– Differential equations as before

 Control behavior
– Sampled data (periodic Ts=0.5)

 Contact behavior
– Discontinuous changes …

Fpull

R C

m

Fg

x=0
Ffloorx







=
=

=
else

kif
kif

kFpull

0
110
020

)(
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Modeling the contact behavior

 Simultaneous inequalities

 Finite state machine

free contact

0<x

0≥x





 <





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otherwise
txif

C
txtRvtFfloor

0)(

0

)()()(

0)( =tFfloor 





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C
txtRvtFfloor
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103

Computational simulation

Position vs. time Time vs. evaluations (detail)

Simultaneous inequalities
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Computational simulation

Position vs. time Time vs. evaluations (detail)

Simultaneous inequalities Finite state machine
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Computational simulation

Position vs. time Time vs. evaluations (detail)

Simultaneous inequalities Finite state machine
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But time is a function of evaluations

 Simultaneous inequalities

 Which t should tevent really map onto?
ball

smoothfloor
smoothball

event
event

event
eventfloor

m
etF

geta

otherwise
etxif

C
etxetRvetF
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Different choice of semantics

50 100 150 200 250 300
-0.1
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Comparing with an analytic solution

0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

time

po
si

tio
n

evaluated on accepted
time step

analytic solution

always evaluated

Justyna Zander, Pieter J. Mosterman, Grégoire Hamon, and Ben Denckla,  “On the Structure of Time 
in Computational Semantics of a Variable-Step Solver for Hybrid Behavior Analysis," in  the 
Proceedings of the IFAC World Congress, Milan, Italy, August, 2011
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Characteristics of the semantic domain

 Declarative
– Purely functional (no side effects)

 Ordered evaluations
 Untimed

– Time as explicit function, t(e)
– Time is not strictly increasing

 Broadly applicable to dynamic systems
– Differential equations, difference equations, discrete events

Pieter J. Mosterman, Justyna Zander, Grégoire Hamon, and Ben Denckla,  "Towards Computational 
Hybrid System Semantics for Time-Based Block Diagrams," in 3rd IFAC Conference on 
Analysis and Design of Hybrid Systems (ADHS'09), A. Giua, C. Mahulea, M. Silva, and J. Zaytoon 
(eds.), pp. 376-385, Zaragoza, Spain, September 16-18, 2009, plenary paper.
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Agenda

 Outline 
 Model-Based Design
 Problem statement
 A solution approach
 Outlook
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Conclusions

 Computation, the good and not so good
• Quantitative approximation
– Potential for higher quality models

 Exploit computational methods
– We must formalize the computational execution semantics
– Model at a declarative level

 Define solvers using a functional stream-based 
approach
– Precise computational semantics of the execution engine
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Opportunities

 First principles in computational form
 New generation of modeling and simulation tools 

– More robust in less time (less bugs, more reliable and 
consistent approximation)

 Bring disciplines together
– Engineering, Computer Science, Physics, Mathematics

 Exploit the abstraction
– Automatic code generation 
– Computational methods for 

 Analysis
 Design
 Synthesis
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Control synthesis using model checking
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Control synthesis using model checking
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A counterexample

Pieter J. Mosterman, Justyna Zander, Grégoire Hamon, and Ben Denckla,  "A Computational Model of 
Time for Stiff Hybrid Systems Applied to Control Synthesis," in Control Engineering Practice, 
in press
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A counterexample

Pieter J. Mosterman, Justyna Zander, Grégoire Hamon, and Ben Denckla,  "A Computational Model of 
Time for Stiff Hybrid Systems Applied to Control Synthesis," in Control Engineering Practice, 
in press
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Controlled acceleration of mounted 
component
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