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and purpose available 

functionality to serve singular 

needs

Service utilization

Semantic middleware

Infrastructure
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Reliable model and code generation

Language and ontology infrastructure to support translation and 

transformation

Information sharing in a heterogeneous system ensemble

Conveniently, efficiently, and 

consistently collaborate 

between stakeholders 

throughout the system life 

cycle

Reliably configure flexible 

system configurations for 

features with varying quality 

of service

Contract out system 

resources and balance use of 

external resources for 

resiliency and runtime cost 

optimization

Dynamically assemble 

systems post-deployment 

and purpose available 

functionality to serve singular 

needs

Service utilization

Infrastructure
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Reliable model and code generation

Language and ontology infrastructure to support translation and 

transformation

Information sharing in a heterogeneous system ensemble

Conveniently, efficiently, and 

consistently collaborate 

between stakeholders 

throughout the system life 

cycle

Reliably configure flexible 

system configurations for 

features with varying quality 

of service

Contract out system 

resources and balance use of 

external resources for 

resiliency and runtime cost 

optimization

Dynamically assemble 

systems post-deployment 

and purpose available 

functionality to serve singular 

needs

Service utilization

Semantic web 

ontology language

Semantic anchoring

Infrastructure
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Pieter J. Mosterman and Justyna Zander, “Cyber-physical 

systems challenges: a needs analysis for collaborating 

embedded software systems,” in Software & Systems 
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https://dl.acm.org/citation.cfm?id=2890224 https://www.youtube.com/watch?v=oofHMaEWwP8

The Smart Emergency Response System 

Using MATLAB and Simulink

https://dl.acm.org/citation.cfm?id=2890224
https://www.youtube.com/watch?v=oofHMaEWwP8

