
1

Cyber-Physical System Ensembles: 

Unlocking opportunities when machines collaborate

Pieter J. Mosterman

Chief Research Scientist, Director

MathWorks

Justyna Zander

Adjunct Professor

School of Computer Science, McGill University

MathWorks Research Fellow

Worcester Polytechnic Institute



Information

Physics

Electronics

Network

Physics

Information

Electronics

Network

Configure online

Confidently design systems as part of a reliable system 

ensemble

Exploit exogeneous functionality for efficient, economical, and 

resilient operation

Configure online



3

Linearization, implementation model generation, etc.

Generation of models with necessary detail based on property 

selection

Proper models in design ►

Confidently design systems as part of a reliable system 

ensemble

Exploit exogeneous functionality for efficient, economical, and 

resilient operation

Configure online

Virtual system integration

Need Technology

Impact

Challenge



4

Linearization, implementation model generation, etc.

Generation of models with necessary detail based on property 

selection

Model Building 

Automation System
Counterexample 

guided abstraction 

refinement

Proper models in design ►

Confidently design systems as part of a reliable system 

ensemble

Exploit exogeneous functionality for efficient, economical, and 

resilient operation

Virtual system integration

Configure online



5

Link for cosimulation, 

simulation API, code 

generation

Solver configurations for 

continuous time, discrete 

time, discrete event

Connecting, combining, and 

integrating models represented in 

different formalisms

Efficient simulation models to be 

used across dynamic and execution 

semantics

System-level design and analysis by using models ►

Confidently design systems as part of a reliable system 

ensemble

Exploit exogeneous functionality for efficient, economical, and 

resilient operation

Virtual system integration

Need Technology

Impact

Challenge

Configure online



6

Link for cosimulation, 

simulation API, code 

generation

Solver configurations for 

continuous time, discrete 

time, discrete event

Connecting, combining, and 

integrating models represented in 

different formalisms

Efficient simulation models to be 

used across dynamic and execution 

semantics

Hybrid dynamic 

systems

Multiparadigm modeling

System-level design and analysis by using models ►

Confidently design systems as part of a reliable system 

ensemble

Exploit exogeneous functionality for efficient, economical, and 

resilient operation

Virtual system integration

Configure online



7

Data streaming, target connectivity support, standardized 

communication protocols (TCP, UDP), real-time simulation

Open tool platforms with trusted interfaces for communication 

across synchronized and coordinated models, software, and 

hardware devices

Connectivity among models, software, and hardware

Confidently design systems as part of a reliable system 

ensemble

Exploit exogeneous functionality for efficient, economical, and 

resilient operation

Virtual system integration

Need Technology

Impact

Challenge

Configure online



8

Data streaming, target connectivity support, standardized 

communication protocols (TCP, UDP), real-time simulation

Open tool platforms with trusted interfaces for communication 

across synchronized and coordinated models, software, and 

hardware devices

Connectivity among models, software, and hardware

Confidently design systems as part of a reliable system 

ensemble

Exploit exogeneous functionality for efficient, economical, and 

resilient operation

Virtual system integration

Real-time simulation

Configure online



9

Handling of ensemble 

(in)consistency with 

sufficient runtime 

fidelity

Traceability (direct and 

across 

transformations)

Runtime variants, 

middleware service 

description 

specification (.srv)

Runtime curve fitting 

and design 

optimization

Introspection of the 

system state, 

configuration, and 

available services

Online model 

calibration

Reasoning and planning adaptation of an ensemble of systems ►

Confidently design systems as part of a reliable system 

ensemble

Exploit exogeneous functionality for efficient, economical, and 

resilient operation

Runtime system adaptation

Need

Impact

Technology

tem

Challenge

Configure online



10

Handling of ensemble 

(in)consistency with 

sufficient runtime 

fidelity

Traceability (direct and 

across 

transformations)

Runtime variants, 

middleware service 

description 

specification (.srv)

Runtime curve fitting 

and design 

optimization

Introspection of the 

system state, 

configuration, and 

available services

Online model 

calibration

Reasoning and planning adaptation of an ensemble of systems ►

Confidently design systems as part of a reliable system 

ensemble

Exploit exogeneous functionality for efficient, economical, and 

resilient operation

Runtime system adaptation

Models @ runtime Automated model 

calibration

Configure online



11

Regression modeling, model selection (artificial neural network, 

support vector machine, rational model)

Environment models to enable surrogate interactions

Testing with functionality on deployed systems

Confidently design systems as part of a reliable system 

ensemble

Exploit exogeneous functionality for efficient, economical, and 

resilient operation

Runtime system adaptation

TechnologyChallengeNeed

Impact

Configure online



12

Regression modeling, model selection (artificial neural network, 

support vector machine, rational model)

Environment models to enable surrogate interactions

Testing with functionality on deployed systems

Confidently design systems as part of a reliable system 

ensemble

Exploit exogeneous functionality for efficient, economical, and 

resilient operation

Runtime system adaptation

Testing with surrogate 

models

Configure online



13

Information

Physics

Electronics

Network

Physics

Information

Electronics

Network

Collaborate

Systematically design 

systems that are part of a 

system ensemble to optimally 

realize desired ensemble 

behavior

Effectively exploit distributed 

information resources for 

exclusive system features

Create novel system features 

post deployment

Assure the collaboration 

quality on shared resources. 

Identify and automatically 

mitigate root causes of failure 

in a distributed environment.

Collaborate



14

Systematically design 

systems that are part of a 

system ensemble to optimally 

realize desired ensemble 

behavior

Effectively exploit distributed 

information resources for 

exclusive system features

Create novel system features 

post deployment

Assure the collaboration 

quality on shared resources. 

Identify and automatically 

mitigate root causes of failure 

in a distributed environment.

Emerging behavior design

Planning and synthesis 

of distributed control 

functionality on 

concurrent resources

Concurrency and 

platform modeling, 

functionality 

decomposition, service 

composition

Event-driven control, 

discrete event 

modeling and analysis, 

uncertainty modeling

Concurrency 

semantics, property 

proving with 

performance models

Analysis methods 

across loosely coupled 

architectures

Accessible formal 

methods that apply to 

collaborative problems

Reasoning and planning adaptation of an ensemble of systems

Need

Impact

Technology

tem

Challenge

Collaborate



15

Planning and synthesis 

of distributed control 

functionality on 

concurrent resources

Concurrency and 

platform modeling, 

functionality 

decomposition, service 

composition

Event-driven control, 

discrete event 

modeling and analysis, 

uncertainty modeling

Concurrency 

semantics, property 

proving with 

performance models

Analysis methods 

across loosely coupled 

architectures

Accessible formal 

methods that apply to 

collaborative problems

Service orchestrationService oriented sensor 

programming

Systematically design 

systems that are part of a 

system ensemble to optimally 

realize desired ensemble 

behavior

Effectively exploit distributed 

information resources for 

exclusive system features

Create novel system features 

post deployment

Assure the collaboration 

quality on shared resources. 

Identify and automatically 

mitigate root causes of failure 

in a distributed environment.

Reasoning and planning adaptation of an ensemble of systemsEmerging behavior design

Collaborate



16

Systematically design 

systems that are part of a 

system ensemble to optimally 

realize desired ensemble 

behavior

Effectively exploit distributed 

information resources for 

exclusive system features

Create novel system features 

post deployment

Assure the collaboration 

quality on shared resources. 

Identify and automatically 

mitigate root causes of failure 

in a distributed environment.

Data sharing

Communication modeling, double buffering analysis, timing 

properties of software, clock recovery

Synchronization of data from incongruent

sources

Multirate architectures ►

TechnologyChallengeNeed

Impact

Collaborate



17

Communication modeling, double buffering analysis, timing 

properties of software, clock recovery

Synchronization of data from incongruent

sources

Systematically design 

systems that are part of a 

system ensemble to optimally 

realize desired ensemble 

behavior

Effectively exploit distributed 

information resources for 

exclusive system features

Create novel system features 

post deployment

Assure the collaboration 

quality on shared resources. 

Identify and automatically 

mitigate root causes of failure 

in a distributed environment.

Data sharing Multirate architectures ►

Technology challenges in 

CPS

Collaborate



18

Systematically design 

systems that are part of a 

system ensemble to optimally 

realize desired ensemble 

behavior

Effectively exploit distributed 

information resources for 

exclusive system features

Create novel system features 

post deployment

Assure the collaboration 

quality on shared resources. 

Identify and automatically 

mitigate root causes of failure 

in a distributed environment.

Data sharing

Version based model import/export, metamodel generation, model 

concepts sharing and comparing

Information represented as high-level models with well-defined 

metamodels and ontologies

Extracting and deriving specific value from general information

TechnologyChallengeNeed

Impact

atio

Collaborate



19

Version based model import/export, metamodel generation, model 

concepts sharing and comparing

Information represented as high-level models with well-defined 

metamodels and ontologies

Megamodeling and 

metamodeling

Systematically design 

systems that are part of a 

system ensemble to optimally 

realize desired ensemble 

behavior

Effectively exploit distributed 

information resources for 

exclusive system features

Create novel system features 

post deployment

Assure the collaboration 

quality on shared resources. 

Identify and automatically 

mitigate root causes of failure 

in a distributed environment.

Data sharing Extracting and deriving specific value from general information

Collaborate



20

Systematically design 

systems that are part of a 

system ensemble to optimally 

realize desired ensemble 

behavior

Effectively exploit distributed 

information resources for 

exclusive system features

Create novel system features 

post deployment

Assure the collaboration 

quality on shared resources. 

Identify and automatically 

mitigate root causes of failure 

in a distributed environment.

Performance 

characterization via 

performance models 

and measures

Critical path analysis, 

code performance 

report and advisor

Property based model 

slicing, behavioral 

analysis, functionality 

mining

Adaptive filtering, 

distortion modeling, 

groundtruthing

(baselining)

Generation of models 

for a task by property 

identification and 

model behavior 

selection

Online calibration 

based on objective and 

performance criteria

Multi-use functionality post-deploymentFunctionality sharing ►

Collaborate



21

Performance 

characterization via 

performance models 

and measures

Critical path analysis, 

code performance 

report and advisor

Property based model 

slicing, behavioral 

analysis, functionality 

mining

Adaptive filtering, 

distortion modeling, 

groundtruthing

(baselining)

Generation of models 

for a task by property 

identification and 

model behavior 

selection

Online calibration 

based on objective and 

performance criteria

Multi-use functionality post-deployment ►

Systematically design 

systems that are part of a 

system ensemble to optimally 

realize desired ensemble 

behavior

Effectively exploit distributed 

information resources for 

exclusive system features

Create novel system features 

post deployment

Assure the collaboration 

quality on shared resources. 

Identify and automatically 

mitigate root causes of failure 

in a distributed environment.

Functionality sharing

Data distribution 

service (DDS)

Online calibrationRequirements mining

Collaborate



22

Systematically design 

systems that are part of a 

system ensemble to optimally 

realize desired ensemble 

behavior

Effectively exploit distributed 

information resources for 

exclusive system features

Create novel system features 

post deployment

Assure the collaboration 

quality on shared resources. 

Identify and automatically 

mitigate root causes of failure 

in a distributed environment.

Property and assumption based model slicing, trace to source and 

destination, assumptions in functionality to behavior mapping

Assumption formalization and dependency effect analysis

Feature interactionFunctionality sharing

Collaborate



23

Property and assumption based model slicing, trace to source and 

destination, assumptions in functionality to behavior mapping

Assumption formalization and dependency effect analysis

Feature interaction

Systematically design 

systems that are part of a 

system ensemble to optimally 

realize desired ensemble 

behavior

Effectively exploit distributed 

information resources for 

exclusive system features

Create novel system features 

post deployment

Assure the collaboration 

quality on shared resources. 

Identify and automatically 

mitigate root causes of failure 

in a distributed environment.

Functionality sharing

Multi-rate double 

buffering

Collaborate



24

Systematically design 

systems that are part of a 

system ensemble to optimally 

realize desired ensemble 

behavior

Effectively exploit distributed 

information resources for 

exclusive system features

Create novel system features 

post deployment

Assure the collaboration 

quality on shared resources. 

Identify and automatically 

mitigate root causes of failure 

in a distributed environment.

Coverage based automatic test generation, variants-based 

testing, closed-loop testing

Model-based test generation from requirements while preserving 

the context of dynamic configuration

Systematic test suite generation and automated test evaluationCollaborative functionality testing ►

Collaborate



25

Coverage based automatic test generation, variants-based 

testing, closed-loop testing

Model-based test generation from requirements while preserving 

the context of dynamic configuration

Systematic test suite generation and automated test evaluation ►

Systematically design 

systems that are part of a 

system ensemble to optimally 

realize desired ensemble 

behavior

Effectively exploit distributed 

information resources for 

exclusive system features

Create novel system features 

post deployment

Assure the collaboration 

quality on shared resources. 

Identify and automatically 

mitigate root causes of failure 

in a distributed environment.

Collaborative functionality testing

Testing of dynamic 

variability

Collaborate



26

Systematically design 

systems that are part of a 

system ensemble to optimally 

realize desired ensemble 

behavior

Effectively exploit distributed 

information resources for 

exclusive system features

Create novel system features 

post deployment

Assure the collaboration 

quality on shared resources. 

Identify and automatically 

mitigate root causes of failure 

in a distributed environment.

Collaborative functionality testing

System state restoration, stateless 

services, test fixture generation

Time partition testing, functionality 

extraction

Setting of initial conditions and 

injecting fault data

Temporal and spatial partitioning to 

isolate functionality for a specific 

system architecture under 

investigation

Reproducible test results under minimum uncertainty

Collaborate



27

System state restoration, stateless 

services, test fixture generation

Time partition testing, functionality 

extraction

Setting of initial conditions and 

injecting fault data

Temporal and spatial partitioning to 

isolate functionality for a specific 

system architecture under 

investigation

Reproducible test results under minimum uncertainty

Systematically design 

systems that are part of a 

system ensemble to optimally 

realize desired ensemble 

behavior

Effectively exploit distributed 

information resources for 

exclusive system features

Create novel system features 

post deployment

Assure the collaboration 

quality on shared resources. 

Identify and automatically 

mitigate root causes of failure 

in a distributed environment.

Collaborative functionality testing

Service oriented 

architecture testing

Collaborate



28

Conveniently, efficiently, and 

consistently collaborate 

between stakeholders 

throughout the system life 

cycle

Reliably configure flexible 

system configurations for 

features with varying quality 

of service

Contract out system 

resources and balance use of 

external resources for 

resiliency and runtime cost 

optimization

Dynamically assemble 

systems post-deployment 

and purpose available 

functionality to serve singular 

needs

Information

Physics

Electronics

Network

Physics

Information

Electronics

NetworkIn
fr

a
s
tr

u
c
tu

re

Infrastructure



29

Relations (across abstractions, 

formalisms, transformations) 

service API, change notification API

Protected models (obfuscated, 

encrypted), trusted compiler

Traceability across semantic and 

technology adaptation, and 

intellectual property protection

Information extraction from 

obfuscated intellectual property

Tool coupling among disparate organizations ►

Conveniently, efficiently, and 

consistently collaborate 

between stakeholders 

throughout the system life 

cycle

Reliably configure flexible 

system configurations for 

features with varying quality 

of service

Contract out system 

resources and balance use of 

external resources for 

resiliency and runtime cost 

optimization

Dynamically assemble 

systems post-deployment 

and purpose available 

functionality to serve singular 

needs

Design artifact sharing

Infrastructure



30

Relations (across abstractions, 

formalisms, transformations) 

service API, change notification API

Protected models (obfuscated, 

encrypted), trusted compiler

Traceability across semantic and 

technology adaptation, and 

intellectual property protection

Information extraction from 

obfuscated intellectual property

Tool coupling among disparate organizations ►Design artifact sharing

Conveniently, efficiently, and 

consistently collaborate 

between stakeholders 

throughout the system life 

cycle

Reliably configure flexible 

system configurations for 

features with varying quality 

of service

Contract out system 

resources and balance use of 

external resources for 

resiliency and runtime cost 

optimization

Dynamically assemble 

systems post-deployment 

and purpose available 

functionality to serve singular 

needs

Open services for 

lifecycle collaboration

Infrastructure



31

Model generation, pattern (control) 

extraction, XML interexchange

Modeling numerical mathematics 

(integration, root finding) as 

dynamic system

Configurable view projections that 

are tool specific

Consistent semantics across tools 

by modeling the execution engines

Support manifold views and tools in design

Conveniently, efficiently, and 

consistently collaborate 

between stakeholders 

throughout the system life 

cycle

Reliably configure flexible 

system configurations for 

features with varying quality 

of service

Contract out system 

resources and balance use of 

external resources for 

resiliency and runtime cost 

optimization

Dynamically assemble 

systems post-deployment 

and purpose available 

functionality to serve singular 

needs

Design artifact sharing

Infrastructure



32

Model generation, pattern (control) 

extraction, XML interexchange

Modeling numerical mathematics 

(integration, root finding) as 

dynamic system

Configurable view projections that 

are tool specific

Consistent semantics across tools 

by modeling the execution engines

Support manifold views and tools in design

Conveniently, efficiently, and 

consistently collaborate 

between stakeholders 

throughout the system life 

cycle

Reliably configure flexible 

system configurations for 

features with varying quality 

of service

Contract out system 

resources and balance use of 

external resources for 

resiliency and runtime cost 

optimization

Dynamically assemble 

systems post-deployment 

and purpose available 

functionality to serve singular 

needs

Graph transformationsSingle underlying model

Design artifact sharing

Infrastructure



33

Communication protocol (building block) modeling, performance 

modeling across target hardware

Real-time services of graded quality with a low footprint and a 

configurable protocol stack that includes time and location 

information

Physically aware configurable protocol stack that is IP compatible►Wireless communication

Conveniently, efficiently, and 

consistently collaborate 

between stakeholders 

throughout the system life 

cycle

Reliably configure flexible 

system configurations for 

features with varying quality 

of service

Contract out system 

resources and balance use of 

external resources for 

resiliency and runtime cost 

optimization

Dynamically assemble 

systems post-deployment 

and purpose available 

functionality to serve singular 

needs

Infrastructure



34

Communication protocol (building block) modeling, performance 

modeling across target hardware

Real-time services of graded quality with a low footprint and a 

configurable protocol stack that includes time and location 

information

Physically aware configurable protocol stack that is IP compatible►Wireless communication

Conveniently, efficiently, and 

consistently collaborate 

between stakeholders 

throughout the system life 

cycle

Reliably configure flexible 

system configurations for 

features with varying quality 

of service

Contract out system 

resources and balance use of 

external resources for 

resiliency and runtime cost 

optimization

Dynamically assemble 

systems post-deployment 

and purpose available 

functionality to serve singular 

needs

IEEE 802.15.4e low cost 

communication

Infrastructure



35

Wireless communication

Conveniently, efficiently, and 

consistently collaborate 

between stakeholders 

throughout the system life 

cycle

Reliably configure flexible 

system configurations for 

features with varying quality 

of service

Contract out system 

resources and balance use of 

external resources for 

resiliency and runtime cost 

optimization

Dynamically assemble 

systems post-deployment 

and purpose available 

functionality to serve singular 

needs

Physical layer (RF) modeling, 

antenna modeling

Scheduler configuration, dynamic 

scheduling with guarantees,  mixed 

synchronous and asynchronous 

behavior

Physical layer based timing and 

synchronization architectures

Scheduling of periodic and 

aperiodic events with reliable 

execution times

Precise timing and synchronization in a distributed environment

Infrastructure



36

Physical layer (RF) modeling, 

antenna modeling

Scheduler configuration, dynamic 

scheduling with guarantees,  mixed 

synchronous and asynchronous 

behavior

Physical layer based timing and 

synchronization architectures

Scheduling of periodic and 

aperiodic events with reliable 

execution times

Precise timing and synchronization in a distributed environmentWireless communication

Conveniently, efficiently, and 

consistently collaborate 

between stakeholders 

throughout the system life 

cycle

Reliably configure flexible 

system configurations for 

features with varying quality 

of service

Contract out system 

resources and balance use of 

external resources for 

resiliency and runtime cost 

optimization

Dynamically assemble 

systems post-deployment 

and purpose available 

functionality to serve singular 

needs

IEEE 1588 precise timing Distributed real-time 

systems task scheduling

Processor and 

network scheduling

Infrastructure



37

Virtual machine (LLVM, JVM, Docker) with real-time capabilities, 

serialized intermediate representation of functionality

Standardized and configurable real-time execution stack

Flexible and transferable embedded functionality dispatch ►

Conveniently, efficiently, and 

consistently collaborate 

between stakeholders 

throughout the system life 

cycle

Reliably configure flexible 

system configurations for 

features with varying quality 

of service

Contract out system 

resources and balance use of 

external resources for 

resiliency and runtime cost 

optimization

Dynamically assemble 

systems post-deployment 

and purpose available 

functionality to serve singular 

needs

Hardware resource sharing

Infrastructure



38

Virtual machine (LLVM, JVM, Docker) with real-time capabilities, 

serialized intermediate representation of functionality

Standardized and configurable real-time execution stack

Flexible and transferable embedded functionality dispatch ►

Conveniently, efficiently, and 

consistently collaborate 

between stakeholders 

throughout the system life 

cycle

Reliably configure flexible 

system configurations for 

features with varying quality 

of service

Contract out system 

resources and balance use of 

external resources for 

resiliency and runtime cost 

optimization

Dynamically assemble 

systems post-deployment 

and purpose available 

functionality to serve singular 

needs

Hardware resource sharing

Real-time virtualizationOpen Services Gateway 

Initiative (OSGi)

Infrastructure



39

Combine analytic and experimental target profiling (processor, 

hardware, FPGA -in-the-loop), interpolation estimates from 

historical data

Platform-based modeling of execution behavior functionality

Performance characterization from abstract functionality ►

Conveniently, efficiently, and 

consistently collaborate 

between stakeholders 

throughout the system life 

cycle

Reliably configure flexible 

system configurations for 

features with varying quality 

of service

Contract out system 

resources and balance use of 

external resources for 

resiliency and runtime cost 

optimization

Dynamically assemble 

systems post-deployment 

and purpose available 

functionality to serve singular 

needs

Hardware resource sharing

Infrastructure



40

Combine analytic and experimental target profiling (processor, 

hardware, FPGA -in-the-loop), interpolation estimates from 

historical data

Platform-based modeling of execution behavior functionality

Performance characterization from abstract functionality ►

Conveniently, efficiently, and 

consistently collaborate 

between stakeholders 

throughout the system life 

cycle

Reliably configure flexible 

system configurations for 

features with varying quality 

of service

Contract out system 

resources and balance use of 

external resources for 

resiliency and runtime cost 

optimization

Dynamically assemble 

systems post-deployment 

and purpose available 

functionality to serve singular 

needs

Hardware resource sharing

Platform-based design

Infrastructure



41

Static analysis methods, automatic test generation, hardware 

architecture behavior implementation

Characterization of computational architectures

Determination of key test cases for different implementations ►

Conveniently, efficiently, and 

consistently collaborate 

between stakeholders 

throughout the system life 

cycle

Reliably configure flexible 

system configurations for 

features with varying quality 

of service

Contract out system 

resources and balance use of 

external resources for 

resiliency and runtime cost 

optimization

Dynamically assemble 

systems post-deployment 

and purpose available 

functionality to serve singular 

needs

Hardware resource sharing

Infrastructure



42

Static analysis methods, automatic test generation, hardware 

architecture behavior implementation

Characterization of computational architectures

Determination of key test cases for different implementations ►

Conveniently, efficiently, and 

consistently collaborate 

between stakeholders 

throughout the system life 

cycle

Reliably configure flexible 

system configurations for 

features with varying quality 

of service

Contract out system 

resources and balance use of 

external resources for 

resiliency and runtime cost 

optimization

Dynamically assemble 

systems post-deployment 

and purpose available 

functionality to serve singular 

needs

Hardware resource sharing

IEEE 754 floating point 

denormals

Infrastructure



43

Conveniently, efficiently, and 

consistently collaborate 

between stakeholders 

throughout the system life 

cycle

Reliably configure flexible 

system configurations for 

features with varying quality 

of service

Contract out system 

resources and balance use of 

external resources for 

resiliency and runtime cost 

optimization

Dynamically assemble 

systems post-deployment 

and purpose available 

functionality to serve singular 

needs

Hardware resource sharing

Harmonic periods (integer), 

synchronous (single clock, discrete 

time), simultaneous, dense 

(variable step, continuous) 

Certification kit for mixed Safety-

Integrity Levels (SiL) of 

components, matching software 

with hardware

Modeling the semantics of time
Dynamically mixing safety integrity 

levels

Safety of heterogeneous system ensembles

Infrastructure



44

Harmonic periods (integer), 

synchronous (single clock, discrete 

time), simultaneous, dense 

(variable step, continuous) 

Certification kit for mixed Safety-

Integrity Levels (SiL) of 

components, matching software 

with hardware

Modeling the semantics of time
Dynamically mixing safety integrity 

levels

Safety of heterogeneous system ensembles

Conveniently, efficiently, and 

consistently collaborate 

between stakeholders 

throughout the system life 

cycle

Reliably configure flexible 

system configurations for 

features with varying quality 

of service

Contract out system 

resources and balance use of 

external resources for 

resiliency and runtime cost 

optimization

Dynamically assemble 

systems post-deployment 

and purpose available 

functionality to serve singular 

needs

Hardware resource sharing

Safety analysis at an 

architectural level

Infrastructure



45

Service discovery response time (latency, averages, time-out), 

modal service request behavior

Real-time middleware and service oriented architectures with 

physical capabilities

Real-time embedded services operating in a physical environment►

Conveniently, efficiently, and 

consistently collaborate 

between stakeholders 

throughout the system life 

cycle

Reliably configure flexible 

system configurations for 

features with varying quality 

of service

Contract out system 

resources and balance use of 

external resources for 

resiliency and runtime cost 

optimization

Dynamically assemble 

systems post-deployment 

and purpose available 

functionality to serve singular 

needs

Service utilization

Infrastructure



46

Service discovery response time (latency, averages, time-out), 

modal service request behavior

Real-time middleware and service oriented architectures with 

physical capabilities

Real-time embedded services operating in a physical environment►

Conveniently, efficiently, and 

consistently collaborate 

between stakeholders 

throughout the system life 

cycle

Reliably configure flexible 

system configurations for 

features with varying quality 

of service

Contract out system 

resources and balance use of 

external resources for 

resiliency and runtime cost 

optimization

Dynamically assemble 

systems post-deployment 

and purpose available 

functionality to serve singular 

needs

Service utilization

Real-time discovery 

services

Real-time middleware

Infrastructure



47

Type similarity checking and conversion, semantics definition

Service ontologies with taxonomies for similarity and 

transformability matching

Smart services discovery ►

Conveniently, efficiently, and 

consistently collaborate 

between stakeholders 

throughout the system life 

cycle

Reliably configure flexible 

system configurations for 

features with varying quality 

of service

Contract out system 

resources and balance use of 

external resources for 

resiliency and runtime cost 

optimization

Dynamically assemble 

systems post-deployment 

and purpose available 

functionality to serve singular 

needs

Service utilization

Infrastructure



48

Type similarity checking and conversion, semantics definition

Service ontologies with taxonomies for similarity and 

transformability matching

Smart services discovery ►

Conveniently, efficiently, and 

consistently collaborate 

between stakeholders 

throughout the system life 

cycle

Reliably configure flexible 

system configurations for 

features with varying quality 

of service

Contract out system 

resources and balance use of 

external resources for 

resiliency and runtime cost 

optimization

Dynamically assemble 

systems post-deployment 

and purpose available 

functionality to serve singular 

needs

Service utilization

Semantic middleware

Infrastructure



49

Reliable model and code generation

Language and ontology infrastructure to support translation and 

transformation

Information sharing in a heterogeneous system ensemble

Conveniently, efficiently, and 

consistently collaborate 

between stakeholders 

throughout the system life 

cycle

Reliably configure flexible 

system configurations for 

features with varying quality 

of service

Contract out system 

resources and balance use of 

external resources for 

resiliency and runtime cost 

optimization

Dynamically assemble 

systems post-deployment 

and purpose available 

functionality to serve singular 

needs

Service utilization

Infrastructure



50

Reliable model and code generation

Language and ontology infrastructure to support translation and 

transformation

Information sharing in a heterogeneous system ensemble

Conveniently, efficiently, and 

consistently collaborate 

between stakeholders 

throughout the system life 

cycle

Reliably configure flexible 

system configurations for 

features with varying quality 

of service

Contract out system 

resources and balance use of 

external resources for 

resiliency and runtime cost 

optimization

Dynamically assemble 

systems post-deployment 

and purpose available 

functionality to serve singular 

needs

Service utilization

Semantic web 

ontology language

Semantic anchoring

Infrastructure



51

Pieter J. Mosterman and Justyna Zander, “Cyber-physical 

systems challenges: a needs analysis for collaborating 

embedded software systems,” in Software & Systems 

Modeling, Springer Berlin/Heidelberg, ISSN 1619-1366, vol. 

15, nr. 1, pp. 5-16, 2016

https://dl.acm.org/citation.cfm?id=2890224 https://www.youtube.com/watch?v=oofHMaEWwP8

The Smart Emergency Response System 

Using MATLAB and Simulink

https://dl.acm.org/citation.cfm?id=2890224
https://www.youtube.com/watch?v=oofHMaEWwP8

