
10/13/2010

1

1

On Computational Semantics as a Precise

Foundation of an Industrial Toolchain for

Analysis and Design of Multi-domain Systems

Pieter J. Mosterman

Senior Research Scientist

Design Automation Department

Adjunct Professor

School of Computer Science

2

On Computational Semantics as a Precise

Foundation of an Industrial Toolchain for

Analysis and Design of Multi-domain Systems

Pieter J. Mosterman

Senior Research Scientist

Design Automation Department

Adjunct Professor

School of Computer Science

10/13/2010

2

3

On Computational Semantics as a Precise

Foundation of an Industrial Toolchain for

Analysis and Design of Multi-domain Systems

Pieter J. Mosterman

Senior Research Scientist

Design Automation Department

Adjunct Professor

School of Computer Science

4

On Computational Semantics as a Precise

Foundation of an Industrial Toolchain for

Analysis and Design of Multi-domain Systems

Pieter J. Mosterman

Senior Research Scientist

Design Automation Department

Adjunct Professor

School of Computer Science

10/13/2010

3

5

Accumulating cost of latent errors

Re
qu
ire
me
nts

De
sig
n

Co
de Te

st

Test

Code

Design

Requirements

0

5

10

15

20

25

30

35

40

45

50

Relative Cost

to Fix

Phase Found

Relative Cost to Fix Defects per Phase Found

Test Code Design Requirements

NASA, Return on Investment for Independent Verification & Validation, 2004

6

Accumulating cost of latent errors

Re
qu
ire
me
nts

De
sig
n

Co
de Te

st

Test

Code

Design

Requirements

0

5

10

15

20

25

30

35

40

45

50

Relative Cost

to Fix

Phase Found

Relative Cost to Fix Defects per Phase Found

Test Code Design Requirements

NASA, Return on Investment for Independent Verification & Validation, 2004

Engineers did not get the

problem (completely)

Engineers got the problem

but solution does not work

The solution works but the

implementation has faults

10/13/2010

4

7

Introduced

Detected0%

10%

20%

30%

40%

50%

60%

70%

Spec
Design

Implement
Test

60%

21%

12%

7%

8%

15%

22%

55%

Where errors are introduced and where

errors are detected

Paul Yanik, “Migration from Simulation to Verification with ModelSim,” EDA Tech Forum, Newton, MA, March 11, 2004

8

Where errors can be detected

Introduced

Detected0%

10%

20%

30%

40%

50%

60%

70%

Spec
Design

Implement
Test

60%

21%

12%

7%

55%

22%

15%

8%

The MathWorks, Early Verification presentation

� Early verification with Model-Based Design

10/13/2010

5

9

Agenda

� Model-Based Design

� Computer Automated Multiparadigm Modeling

� Modeling time as discrete events

� A unifying semantic domain

� A heterogeneous system example

� Conclusions

10

Gaps in the traditional design workflow

Explore

Verify

Test

Explore

Verify

Test

Explore

Verify

Test

Technology stack

10/13/2010

6

11

Gaps in the traditional design workflow

Technology stack

Explore

Verify

Test

Explore

Verify

Test

Explore

Verify

Test

Simulation stack

12

Gaps in the traditional design workflow

Technology stack

Explore

Verify

Test

Explore

Verify

Test

Explore

Verify

Test

Simulation stack

10/13/2010

7

13

Model-Based Design

Technology stack

Explore

Verify

Test

Explore

Verify

Test

Explore

Verify

Test

Simulation stack

Explore

Verify

Test

Explore

Verify

Test

Compute

14

Model-Based Design

Technology stack

Explore

Verify

Test

Explore

Verify

Test

Explore

Verify

Test

Simulation stack

Explore

Verify

Test

Explore

Verify

Test

Compute
Raises level of abstraction

Enables continuous testing

10/13/2010

8

15

Model-Based Design

Technology stack

Explore

Verify

Test

Explore

Verify

Test

Explore

Verify

Test

Simulation stack

Explore

Verify

Test

Compute
Raises level of abstraction

Enables continuous testing

Explore

Verify

Test

16

Model-Based Design

Technology stack

Explore

Verify

Test

Explore

Verify

Test

Explore

Verify

Test

Simulation stack

Explore

Verify

Test

Compute
Raises level of abstraction

Enables continuous testing

Elaborate

Explore

Verify

Test

Construct

10/13/2010

9

17

Model-Based Design

Technology stack

Explore

Verify

Test

Explore

Verify

Test

Explore

Verify

Test

Simulation stack

Explore

Verify

Test

Compute
Raises level of abstraction

Enables continuous testing

Elaborate

Explore

Verify

Test

Construct

18

Model-Based Design

Technology stack

Explore

Verify

Test

Explore

Verify

Test

Explore

Verify

Test

Simulation stack

Explore

Verify

Test

Compute
Raises level of abstraction

Enables continuous testing

Elaborate

Explore

Verify

Test

Construct

CompileSynthesize

10/13/2010

10

19

Model-Based Design

Technology stack

Compile

Simulation stack

Construct

Compute

20

Model-Based Design

Connect

Compile

Construct

Compute

10/13/2010

11

21

uint8 sfix16

ISS mem

interf. periph.

ISS mem

interf.
mem.

periph.

HdS API

Comm. OS

HAL

HAL API

HdS API

Comm. OS

HAL

HAL API

REQ 8.5
At no ... TEST 6.5

implementation

communication network

Designing an embedded system

REQ 1.3.2
In case ... TEST 4.2

algorithm

REQ 1.2
For each ... TEST 6.3

timed

uint8 sfix16

communication network

abstract uP mem abstract uP

REQ 2.1.2
If up and ... TEST 3.7

tasked

In collaboration with Katalin Popovici, TIMA

22

uint8 sfix16

ISS mem

interf. periph.

ISS mem

interf.
mem.

periph.

HdS API

Comm. OS

HAL

HAL API

HdS API

Comm. OS

HAL

HAL API

REQ 8.5
At no ... TEST 6.5

implementation

communication network

Early and progressive system testing 7 ?

10/13/2010

12

23

uint8 sfix16

ISS mem

interf. periph.

ISS mem

interf.
mem.

periph.

HdS API

Comm. OS

HAL

HAL API

HdS API

Comm. OS

HAL

HAL API

REQ 8.5
At no ... TEST 6.5

implementation

communication network

Early and progressive system testing 7 ?

24

uint8 sfix16

ISS mem

interf. periph.

ISS mem

interf.
mem.

periph.

HdS API

Comm. OS

HAL

HAL API

HdS API

Comm. OS

HAL

HAL API

REQ 8.5
At no ... TEST 6.5

implementation

communication network

Early and progressive system testing 7 ?

10/13/2010

13

25

uint8 sfix16

ISS mem

interf. periph.

ISS mem

interf.
mem.

periph.

HdS API

Comm. OS

HAL

HAL API

HdS API

Comm. OS

HAL

HAL API

REQ 8.5
At no ... TEST 6.5

implementation

communication network

Early and progressive system testing 7 ?

26

uint8 sfix16

ISS mem

interf. periph.

ISS mem

interf.
mem.

periph.

HdS API

Comm. OS

HAL

HAL API

HdS API

Comm. OS

HAL

HAL API

REQ 8.5
At no ... TEST 6.5

implementation

communication network

Early and progressive system testing 7 ?

10/13/2010

14

27

uint8 sfix16

ISS mem

interf. periph.

ISS mem

interf.
mem.

periph.

HdS API

Comm. OS

HAL

HAL API

HdS API

Comm. OS

HAL

HAL API

REQ 8.5
At no ... TEST 6.5

implementation

communication network

Early and progressive system testing 7 ?

28

Early and progressive system testing 7 ?

uint8 sfix16

ISS mem

interf. periph.

ISS mem

interf.
mem.

periph.

HdS API

Comm. OS

HAL

HAL API

HdS API

Comm. OS

HAL

HAL API

REQ 8.5
At no ... TEST 6.5

implementation

communication network

10/13/2010

15

29

Modeling domains Disciplines

Simulink

Simulink

SimEvents

Stateflow

Simscape

SimElectronics

SimMechanics

SimHydraulics

SimDriveline

MATLAB

Integrated multi-domain modeling!

Continuous-time

Discrete-time

Discrete-event

State-machine

Noncausal

Text-based

Physical environment

Digital hardware

Analog/RF hardware

Embedded software

Mechanical hardware

Electrical hardware

30

Modeling domains Disciplines

Simulink

Simulink

SimEvents

Stateflow

Simscape

SimElectronics

SimMechanics

SimHydraulics

SimDriveline

MATLAB

Integrated multi-domain modeling!

Continuous-time

Discrete-time

Discrete-event

State-machine

Noncausal

Text-based

Physical environment

Digital hardware

Analog/RF hardware

Embedded software

Mechanical hardware

Electrical hardware

10/13/2010

16

31

Integration of computational semantics

across many domains

� Once a model has been designed, consistency is
more important than ‘semantic correctness’

� This requires a precise definition of the
computational semantics

� Multiple formalisms in heterogeneous systems
amplify the importance of computational semantics

– Block diagrams with discrete functionality
(switches, reinitialization, inequalities, etc.)

– State transition diagrams

� Can we define a common semantic domain?

highly

sensitive

32

Agenda

� Model-Based Design

� Computer Automated Multiparadigm Modeling

� Modeling time as discrete events

� A unifying semantic domain

� A heterogeneous system example

� Conclusions

10/13/2010

17

33

What is a model anyway?

Jean Bézivin

“Everything is a model”

Jean-Marie Favre

“Nothing is a model”

Pieter J. Mosterman

“Nothing is not a model”

system
model

system under study

model

system

system

model

model

system
under study

34

What is a model anyway?

Jean Bézivin

“Everything is a model”

Jean-Marie Favre

“Nothing is a model”

Pieter J. Mosterman

“Nothing is not a model”

Hans Vangheluwe

“Model everything”

system
model

system under study

model

system

In collaboration with Hans Vangheluwe, McGill University

Computer Automated
Multiparadigm Modeling

(CAMPaM)

10/13/2010

18

35

Computer Automated Multiparadigm

Modeling (CAMPaM)

� Initiated in 2000

– Two special sessions at IEEE CACSD Symposium

– Annual McGill Bellairs workshop since 2004

� Three elements of CAMPaM

– Multi-(domain-specific)-formalism models

– Metamodeling

– Multiple levels of abstraction

� Model everything!

– Reasoning vs. efficiency (denotation vs. operation)

– Model model transformation (e.g., graph grammar)

36

A domain-specific formalism: syntax

versus semantics

� Fasten seat belt syntax

� Fasten semantics A

� A or open semantics?

10/13/2010

19

37

� A syntax, a semantic domain, and a mapping

The elements of a formalism

F0

SY SE

FM

SY SE For graphical syntax, often

a meta model is used

38

� Target semantic domain must be subsumed

Define semantics as a syntactic

transformation—semantic anchoring

FI
SE

SY

F0

SY SE

FM

SY SE

T
L R

I

L R

I

L R

IA⇒

FT

SY SE Transformation

model

10/13/2010

20

39

Modeling a model transformation

40

Modeling a model transformation

10/13/2010

21

41

Modeling a model transformation

42

� Declarative and reusable transformations

– But, many different formalisms involved A

Now back to Model-Based Design

Simulation stack Technology stack

Elaborate

Synthesize

10/13/2010

22

43

� Declarative and reusable transformations

– But, many different formalisms involved A

Now back to Model-Based Design

Simulation stack Technology stack

Elaborate

Synthesize

44

� Can we develop a unifying semantic domain?

Multi-domain models comprise many

formalisms 7

F0

SY SE

10/13/2010

23

45

� Can we develop a unifying semantic domain?

Multi-domain models comprise many

formalisms 7

F0

SY SE

FU

SY

SE

46

Agenda

� Model-Based Design

� Computer Automated Multiparadigm Modeling

� Modeling time as discrete events

� A unifying semantic domain

� A heterogeneous system example

� Conclusions

10/13/2010

24

47

v

x

Modeling a physical system

v

x

Let’s develop a numerical

solver to compute a solution A

From first principles A Hooke’s Law:

Newton’s Second:
C

xx
F 0−

−=

maF =

A bit of calculus:

dt

tdx
tv

dt

tdv
ta

)(
)(

)(
)(

=

=

C

xtx

dt

tdv
m

dt

tdx
tv

0)()(

)(
)(

−
−=

=An ideal oscillator:

48

Numerical integration

kt

kx

),(txfx =&

kkkke htxtxtx)()()(ˆ 1
&+=+

Euler: step h in time along

1+kt

1+kx
kx&

10/13/2010

25

49

Numerical integration

kt

kx

),(txfx =&

kkkke htxtxtx)()()(ˆ 1
&+=+

Euler: step h in time along

1+kt

1+kx

1
ˆ +kx

1+kε

50

Numerical integration

kt

kx

),(txfx =&

kkkke htxtxtx)()()(ˆ 1
&+=+

Euler: step h in time along

1+kt

1+kx
1+kε

k
kk

kkt h
txtx

txtx
2

)()(
)()(ˆ 1

1

&& +
+= +

+

Trapezoidal: average the end points

10/13/2010

26

51

Numerical integration

kt

kx

),(txfx =&

kkkke htxtxtx)()()(ˆ 1
&+=+

Euler: step h in time along

1+kt

1+kx
1+kε

k
kk

kkt h
txtx

txtx
2

)()(
)()(ˆ 1

1

&& +
+= +

+

Trapezoidal: average the end points

52

Numerical integration

kt

kx

),(txfx =&

kkkke htxtxtx)()()(ˆ 1
&+=+

Euler: step h in time along

1+kt

1+kx
1+kε

k
kk

kkt h
txtx

txtx
2

)()(
)()(ˆ 1

1

&& +
+= +

+

Trapezoidal: average the end points

10/13/2010

27

53

Numerical integration

kt

kx

),(txfx =&

kkkke htxtxtx)()()(ˆ 1
&+=+

Euler: step h in time along

1+kt

1+kx
1+kε

k
kk

kkt h
txtx

txtx
2

)()(
)()(ˆ 1

1

&& +
+= +

+

Trapezoidal: average the end points

Taylor series expansion for error analysis

)(
!2

)(

!1

)(
)()(32

1 kk
k

k
k

kk hOh
tx

h
tx

txtx +++=+

&&&

54

Numerical integration

kt

kx

),(txfx =&

kkkke htxtxtx)()()(ˆ 1
&+=+

Euler: step h in time along

1+kt

1+kx
1+kε

k
kk

kkt h
txtx

txtx
2

)()(
)()(ˆ 1

1

&& +
+= +

+

Trapezoidal: average the end points

Taylor series expansion for error analysis

)(
!2

)(

!1

)(
)()(32

1 kk
k

k
k

kk hOh
tx

h
tx

txtx +++=+

&&&

)(1+ke tε

When x(t) changes little, hk can be large!

10/13/2010

28

55

Numerical integration

kt

kx

),(txfx =&

kkkke htxtxtx)()()(ˆ 1
&+=+

Euler: step h in time along

1+kt

1+kx
1+kε

k
kk

kkt h
txtx

txtx
2

)()(
)()(ˆ 1

1

&& +
+= +

+

Trapezoidal: average the end points

Taylor series expansion for error analysis

)(
!2

)(

!1

)(
)()(32

1 kk
k

k
k

kk hOh
tx

h
tx

txtx +++=+

&&&

)(1+kt tε

Change step size based on estimate:
2

11
!2

)(
)(ˆ)(ˆ k

k
ktke h

tx
txtx

&&
≈− ++

)(1+ke tε

56

Sophisticated solver 7 ?

� Let’s compute a solution to the ideal oscillator

� We can make the error small A but only locally!

v

x

v

x

10/13/2010

29

57

Sophisticated solver 7 ?

� Let’s compute a solution to the ideal oscillator

� We can make the error small A but only locally!

� It accumulates for ‘long time’ behavior

� So, $ how come the JSF flies?!

v

x

v

x

58

Engineering an embedded system

physical theoretical

dt

tdv
mtF

)(
)(=

validate

In collaboration with Hans Vangheluwe, McGill University

computational

verify

void main () {
int i;

}

10/13/2010

30

59

Engineering an embedded system

physical theoretical

dt

tdv
mtF

)(
)(=

validate

In collaboration with Hans Vangheluwe, McGill University

computational

validate

verify

void main () {
int i;

}

60

Engineering an embedded system

physical theoretical

dt

tdv
mtF

)(
)(=

validate

In collaboration with Hans Vangheluwe, McGill University

computational

validate

verify

void main () {
int i;

}

refine

10/13/2010

31

61

Engineering an embedded system

physical theoretical

dt

tdv
mtF

)(
)(=

validate

In collaboration with Hans Vangheluwe, McGill University

computational

validate

verify

void main () {
int i;

}

refine

62

Agenda

� Model-Based Design

� Computer Automated Multiparadigm Modeling

� Modeling time as discrete events

� A unifying semantic domain

� A heterogeneous system example

� Conclusions

10/13/2010

32

63

A declarative formalism with fix-point

semantics

1/z21

Constant Gain Delay Scope

1 5
5

– Repeated application of a monotonically increasing

partial function converges to a fixed point

64

A declarative formalism with fix-point

semantics

1/z21

Constant Gain Delay Scope

1 6 512
5

– Repeated application of a monotonically increasing

partial function converges to a fixed point

10/13/2010

33

65

A declarative formalism with fix-point

semantics

1/z21

Constant Gain Delay Scope

5

0:2 0:00:3 0:4 0:1

– Repeated application of a monotonically increasing

partial function converges to a fixed point

– One implementation is a data dependency schedule

1/z21

Constant Gain Delay Scope

1 6 512
5

66

A declarative formalism with fix-point

semantics

1 6 512
1/z21

Constant Gain Delay Scope

5

0:2 0:00:3 0:4 0:1

– Repeated application of a monotonically increasing

partial function converges to a fixed point

– One implementation is a data dependency schedule

1/z21

Constant Gain Delay Scope

1 6 512
5

10/13/2010

34

67

Multiple rates; a potential problem 7

� Streams are only practical if we can limit the

stream entries being accessed

� Not this:

even
+

x4

x3

x2

x4

{x0+x0, x1+x2, x2+x4 , A }

{x0, x1, x2, x3, x4, A }

{x0, x1, x2, x3, x4, A

68

Clock calculus to detect

� Require compatible clocks: the synchronous

assumption

� Match against base clock

even
+

{x0, x1, x2, x3, x4, A

{x0, x1, x2, x3, x4, A }

{ T, T, T, T, T, A }

{T, F, T, F, T, A } {T, T, T, T, T, A }

0 pad

{x0, , x2, , x4, A } {x0, 0, x2, 0, x4, A }

10/13/2010

35

69

{2, 7, 3, A}

Source

Ts = 2 (s)

T T T T T T T

A multi-rate system example

1/z2

Gain Delay Scope

Ts = 1 (s)

Source

Delay

BaseFind greatest common divisor (Ts)!

70

{2, 7, 3, A}

Source

Ts = 2 (s)

T T T T T T T

A multi-rate system example

1/z2

Gain Delay Scope

Ts = 1 (s)

Source

Delay

Base

Ts

10/13/2010

36

71

{2, 7, 3, A}

Source

Ts = 2 (s)

T T T T T T T

A multi-rate system example

1/z2

Gain Delay Scope

Ts = 1 (s)

Source

Delay

Base

Ts

T F T F T TF

T T T T T T T

72

{2, 7, 3, A}

Source

Ts = 2 (s)

T T T T T T T

A multi-rate system example

1/z2

Gain Delay Scope

Ts = 1 (s)

Source

Delay

Base

T F T F T TF

T T T T T T T

10/13/2010

37

73

{2, 7, 3, A}

Source

Ts = 2 (s)

T T T T T T T

A multi-rate system example

1/z2

Gain Delay Scope

Ts = 1 (s)

Source

Delay

Base

T F T F T TF

T T T T T T T

T F T F T F T
RT

T T T T T T T

74

{2, 7, 3, A}

Source

Ts = 2 (s)
T T T T T T T

A multi-rate system example

1/z2

Gain Delay Scope

Ts = 1 (s)

Source

Delay

Base

T F T F T TF

T T T T T T T

T F T F T F T
RT

T T T T T T T

{2, 7, 3, A}hold

10/13/2010

38

75

Can we use this framework to define a

solver?

� Separate

– Time (explicit)

– Evaluations (ordered)

� Time as a function of

evaluations

76

Can we use this framework to define a

solver?

� Separate

– Time (explicit)

– Evaluations (ordered)

� Time as a function of

evaluations

T T T T T T T

Ts

10/13/2010

39

77

Can we use this framework to define a

variable-step solver?

� Separate

– Time (explicit)

– Evaluations (ordered)

� Time as a function of

evaluations

Ts

2*Ts

ti
m
e

T T T T T T T

78

evaluation

Can we use this framework to define a

variable-step solver?

� Separate

– Time (explicit)

– Evaluations (ordered)

� Time as a function of

evaluations

ti
m
e

Ts

2*Ts

10/13/2010

40

79

evaluation

Can we use this framework to define a

variable-step solver?

� Separate

– Time (explicit)

– Evaluations (ordered)

� Time as a function of

evaluations

t(0)

80

evaluation

Can we use this framework to define a

variable-step solver?

� Separate

– Time (explicit)

– Evaluations (ordered)

� Time as a function of

evaluations

– Step is variable

t(0)

t(1)

t(2)

10/13/2010

41

81

evaluation

Can we use this framework to define a

variable-step solver?

� Separate

– Time (explicit)

– Evaluations (ordered)

� Time as a function of

evaluations

– Step is variable

– Step may be 0 t(0)

t(1)

t(2)t(3)

82

evaluation

Can we use this framework to define a

variable-step solver?

� Separate

– Time (explicit)

– Evaluations (ordered)

� Time as a function of

evaluations

– Step is variable

– Step may be 0

– Step may be negative

� Time may recede

t(0)

t(1)

t(2)t(3)

t(4)

10/13/2010

42

83

evaluation

Can we use this framework to define a

variable-step solver?

� Separate

– Time (explicit)

– Evaluations (ordered)

� Time as a function of

evaluations

– Step is variable

– Step may be 0

– Step may be negative

� Time may recede

t(0)

t(1)

t(2)t(3)

t(4)

t(5)

84

previous incrementincrement

A stream based functional solver

otherwise

eoddif

ey

ipihiuihiu
ey

e

e

i
e

)(

)1(

)()2()2()()(
)(1







−

−−−
= ∑ =

() ()
∑ =

−
−−+−

−
−+−

=
e

it ip
ihiuiuihiuiu

ey
1

)1(
2

)3()2()3(

2

)1()()1(
)(

()
toleheu

eheueu
ed <−−−

−−+−
=)2()2(

2

)3()2()3(
)(

increment previous increment

Euler integration

Trapezoidal integration

Error computation

10/13/2010

43

85

{2, 7, 3, A}

Source

Ts = 2 (s)

Rate transition a function of time

1/s2

Gain Integrator Scope

hold (t)

Now we can create a variable step solver inside 1/s that maps onto

the synchronous paradigm

Dynamically compute ‘hold’ output

as an argument of time ...

No predetermined sequence of

output values

)/()(sTtuty =

t

86

Agenda

� Model-Based Design

� Computer Automated Multiparadigm Modeling

� Modeling time as discrete events

� A unifying semantic domain

� A heterogeneous system example

� Conclusions

10/13/2010

44

87

Unifying formalisms with different

semantics

� Newton’s and Hooke’s Laws

– Differential equations as before

� Control behavior

– Sampled data (periodic Ts=0.5)

� Contact behavior

– Discontinuous changes A

Fpull

R C

m

Fg

x=0

Ffloor
x









=

=

=

else

kif

kif

kFpull

0

110

020

)(

88

Modeling the contact behavior

� Simultaneous inequalities

� Finite state machine

free contact

0<x

0≥x





 <







 +−
=

otherwise

txif
C

tx
tRv

tFfloor

0)(

0

)(
)(

)(

0)(=tFfloor 






 +−=
C

tx
tRvtFfloor

)(
)()(

10/13/2010

45

89

Computational simulation

Position vs. time Time vs. evaluations (detail)

Simultaneous inequalities Finite state machine

90

Characteristics of the semantic domain

� Declarative

– Purely functional (no side effects)

� Ordered evaluations

� Untimed

– Time as explicit function, t(e)

– Time is not strictly increasing

� Broadly applicable to dynamic systems

– Differential equations, difference equations, discrete
events

10/13/2010

46

91

Agenda

� Model-Based Design

� Computer Automated Multiparadigm Modeling

� Modeling time as discrete events

� A unifying semantic domain

� A heterogeneous system example

� Conclusions

92

Conclusions

� Transformation technology in Model-Based

Design

– Vertical; the simulation stack

– Horizontal; the elaboration and synthesis

� Model the transformations

– Denotational vs. operational

� Nonmonotonic tagged synchronous formulation

– Unifying semantic domain for multi-domain models

10/13/2010

47

93

Precise computational semantics as a

foundation for 7

� Integrated multi-domain modeling

� End-to-end system analysis

� Support for design automation

– Multi-view/abstraction models (with approximation)

– Design of new languages (e.g., for concurrency,

heterogeneity)

– Compositionality and composability

� Reference Pieter J. Mosterman, Justyna Zander, Gregoire Hamon, and Ben Denckla,

"Towards Computational Hybrid System Semantics for Time-Based

Block Diagrams," in 3rd IFAC Conference on Analysis and Design of

Hybrid Systems (ADHS'09), A. Giua, C. Mahulea, M. Silva, and J. Zaytoon

(eds.), pp. 376-385, Zaragoza, Spain, September 16-18, 2009, plenary paper.

94

Acknowledgments

Justyna Zander
Harvard University

Fraunhofer Institute FOKUS, Berlin

Gregoire Hamon
MathWorks

Ben Denckla
Independent Thinker

Hans Vangheluwe
University of Antwerp

McGill University

Many thanks for their continuing collaboration!

10/13/2010

48

95

