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Accumulating cost of latent errors
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Where errors can be detected

= Early verification with Model-Based Design
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Agenda

2 = Model-Based Design
= Computer Automated Multiparadigm Modeling
= Modeling time as discrete events
= A unifying semantic domain
= A heterogeneous system example
= Conclusions
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Model-Based Design
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Model-Based Design

Raises level of abstraction
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Model-Based Design

Compute

Compile
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Designing an embedded system

algorithm timed tasked implementation
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Early and progressive system testing ... ?
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implementation
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communication network
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persistent P, xhat;

residual = meas - vhat;

W= P*M' *inv (M*P*H'+ R

xhat = xhat + U*residual;

xhatOut = xhat;

P = (eye(4)-U*H) *P* (eye (4) —W*M) ' + WERRW';

-sin(Bhat) /Rhat 0 cos(Bhat)/Rhat O 15

function [residual, xhatOut] = extkalmanimeas,

Phi = [1 deltat 00; 0100 ; 00 1 deltat; O
0 = diag([0 .005 0 .005]): B = diag{[300°2
P = Phi*P*Phi' + Q: %
xhat = Phi*xhat; %
Bhat = sqrt(xhat (1) “2+xhat (3)°2); 5
Bhat = atanZ (xhat (3),xhat (1)) ;

vhat = [Phat; Bhat]'; %
M = [cos(Bhat) 0 sin(Bhat) ]

o

e

deltat)

0011
0.00172]1)

Propagate covariance
Track sstimate
Observation estimates

Observation wvector

Estimation error

Kalmain gain
Update estimate
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Early and progressive system testing ... ?

HEADER
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implementation
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HAL HAL
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communication network
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@mp_to_subrout\ ne %
1 2

i
do_branch

en:branch_fcn();

2 T

=
=

[ready==1]

continue_jsr .
{pc_assign_mar({):;}

en:pc_increment(); |

do_jsr
enwrite_mem=1

1 [grant==1]

{addr=mar;
2 data_assign();}

Early and progressive system testing ... ?

implementation
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Early and progressive system testing ... ?

implementation

REQ85 |
Atno ... @

v v

Iy PR D
uint8! sfix16

Woltege Source resistance
source S0chm 1
_W\N\PD_. "
Vs

=
i HdS API HdS AP

o Comm. [0S| [Comm. OS]
HAL HAL
HAL API HAL API

erip [interf.] [periph]
JT JT

communication network

) MathWorks MATLAB&SIMULINK

Early and progressive system testing ... ?

implementation
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Integrated multi-domain modeling!

Modeling domains Disciplines

Continuous-time
R \ Physical environment
Simulink
Discrete-time
~ —]  Digital hardware

Simulink
Discrete-event }// : X
; e\ \‘ Analog/RF hardware
SimEvents %025 D >

State-machine ’/
\1 Embedded software

O Ntet S |
Stateflow
Noncausal
Simscape Mechanical hardware

SimElectronics Text-based
SimMechanics .
SimHydraulics MATLAB Electrical hardware

SimDriveline ﬂ
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Integration of computational semantics
across many domains

= Once a model has been designed, consistency is
more important than ‘semantic correctness’

= This requires a precise definition of the
computational semantics

= Multiple formalisms in heterogeneous systems
amplify the importance of computational semantics

— Block diagrams with discrete functionality
(switches, reinitialization, inequalities, etc.)

— State transition diagrams
= Can we define a common semantic domain?

highly
sensitive

} MathWorks MATLAB&SIMULINK

v

Agenda

= Model-Based Design

= Computer Automated Multiparadigm Modeling
= Modeling time as discrete events

= A unifying semantic domain

= A heterogeneous system example

= Conclusions
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What is a model anyway?

Jean Bézivin Jean-Marie Favre Pieter J. Mosterman

“Everything is a model” “Nothing is a model” “Nothing is not a model”

4 model
model 4 model system
Z% system Z}
A \—_|
system system under study model
d system

under study
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What is a model anyway?

Jean Bézivin Jean-Marie Favre Pieter J. Mosterman Hans Vangheluwe

“Everything is a model” “Nothing is a model” “Nothing is not a model” “Model everything”

model 4 model
system Computer Automated
Z% Multiparadigm Modeling
A (CAMPaM)
system system under study

In collaboration with Hans Vangheluwe, McGill University
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Computer Automated Multiparadigm
Modeling (CAMPaM)

= Initiated in 2000
— Two special sessions at [IEEE CACSD Symposium
— Annual McGill Bellairs workshop since 2004
= Three elements of CAMPaM
— Multi-(domain-specific)-formalism models
— Metamodeling
— Multiple levels of abstraction
= Model everything!
— Reasoning vs. efficiency (denotation vs. operation)
— Model model transformation (e.g., graph grammar)
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A domain-specific formalism: syntax
versus semantics
= Fasten seat belt syntax

8] €

= Fasten semantics ...

{8

» ... Or open semantics?

10/13/2010
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The elements of a formalism

= A syntax, a semantic domain, and a mapping

For graphical syntax, often
e e a meta model is used
i ®
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Define semantics as a syntactic
transformation—semantic anchoring

= Target semantic domain must be subsumed

Fu Fr
Transformation
e model

b- N3N

GRS
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Modeling a model transformation

) MathWorks MATLAB&SIMULINK

Modeling a model transformation
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Modeling a model transformation

) MathWorks MATLAB&SIMULINK

Now back to Model-Based Design

= Declarative and reusable transformations
— But, many different formalisms involved ...

Elaborate

Synthesize

Simulation stack ) ‘ Technology stack ‘ ﬂ
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Now back to Model-Based Design

= Declarative and reusable transformations

[ = S e B 2

~ 'ismsinvolved ...

Synthesize

Simulation stack <> ‘ Technology stack ‘
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Multi-domain models comprise many
formalisms ...

= Can we develop a unifying semantic domain?
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Multi-domain models comprise many
formalisms ...

= Can we develop a unifying semantic domain?
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Agenda

= Model-Based Design

= Computer Automated Multiparadigm Modeling
_» = Modeling time as discrete events

= A unifying semantic domain

= A heterogeneous system example

= Conclusions
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Modeling a physical system

From first principles ... ~ Hooke’s Law: F=_X"%
C
Newton’s Second: F =ma
,_2< y
N Abit of calculus:  a(?) =‘;,_(t)
t
S dx(t
n » MRS
VR t
' 20
Vi An ideal oscillator: v(t) = )iT
t

Let’s develop a numerical

" dv(t) _ x(t)—x,

solver to compute a solution ... dt

C
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Numerical integration

Euler: step h in time along x = f(x,t)
X)) =x(t,)+x(t,)h,

MATLAB&SIMULINK
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Numerical integration

X, () = x(t,) +x(t )by

Euler: step h in time along x = f(x,t)

MATLAB&SIMULINK
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Numerical integration

X, () = x(t,) +x(t )by

X(tk+1) it X(tk)
2

X, (8= x(t,)+

Euler: step h in time along x = f(x,t)

Trapezoidal: average the end points

k

MATLAB&SIMULINK

tk+1

10/13/2010
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Numerical integration

X, () = x(t,) +x(t, )by

X(tk+1) it X(tk)
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Numerical integration

X, () = x(t,) +x(t, )by

X, (8= x(t )+

2

Euler: step h in time along x = f(x,t)

Trapezoidal: average the end points
)+,

k
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Numerical integration

Euler: step h in time along x = f(x,t)
X)) =x(t,)+x(t,)h,

Trapezoidal: average the end points

$l) + (1) |

X, (t)=x(t,)+ k

Taylor series expansion for error analysis

x(t) = x(t,) +%h,€ +%h§ LO(R)
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Numerical integration

Euler: step h in time along x = f(x,t)
X)) =x(t,)+x(t,)h,

Trapezoidal: average the end points

MATLAB&SIMULINK

$le) + (1) |

X, (t)=x(t,)+ k

Taylor series expansion for error analysis

it
K =300+ 2 O g ogh)

&,(t)

When x(t) changes little, #, can be large!

10/13/2010
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Numerical integration

Euler: step h in time along x = f(x,t)
X)) =x(t,)+x(t,)h,

Trapezoidal: average the end points

MATLAB&SIMULINK

HOMEEI

X, (t,) =x(t,)+ X

Taylor series expansion for error analysis

()
I 2!

k

x(t,,)=x(t,)+

e 28 bl o)

et &)

. , . . X (¢
Change step size based on estimate: x,(¢,,,) — X, (t,,,) = %hf

'l. WEHN S

Sophisticated solver ... ?

—~
vA

= \We can make the error small

= Let’'s compute a solution to the ideal oscillator

MATLAB&SIMULINK

) XY Graph 9 [=] E3
XY Plot

1
D O
-1

-1 0 1
# Axis

... but only locally!

' Axis

10/13/2010
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Sophisticated solver ... ?

= Let’'s compute a solution to the ideal oscillator

A XY Graph = [=] E3
4 %Y Plat
A
\ vV :
o .
Z0
- ., &
U l X 4
X A i 1
N\ vl < X Axis

= We can make the error small ... but only locally!

= |t accumulates for ‘long time’ behavior,
= So, ... how come the JSF flies?!
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Engineering an embedded system

physical theoretical computational

void main () {
# — F(t):m% — int i;
}

l validate l [ verify l
I I I [T —> /Jf — = —

In collaboration with Hans Vangheluwe, McGill University ﬂ
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Engineering an embedded system

physical theoretical computational

void main () {

# — F(zf)=mM — int i;
dt }

l validate l [ verify l
I I I [T —_— /”* — = —
|
validate

In collaboration with Hans Vangheluwe, McGill University ﬂ
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Engineering an embedded system

physical theoretical computational
-
| - [ro-nt0| o
dt }

l validate l [ v&ify l
[1 — L= - refine
I ! I 7 / 7 - e,
- ~
| I

validate

In collaboration with Hans Vangheluwe, McGill University n
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Engineering an embedded system

physical theoretical computational
| — |ro=2"2] 10
dt . 0“ \_\me
L e s\ -
yvali~ imo e\ “,S use
| e must d rs\and l
\ e — p—_refine
[ s / 7 — .°o\
I
|
validate

In collaboration with Hans Vangheluwe, McGill University n
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Agenda

= Model-Based Design
= Computer Automated Multiparadigm Modeling
= Modeling time as discrete events
2 = Aunifying semantic domain
= A heterogeneous system example
= Conclusions
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A declarative formalism with fix-point
semantics

A LATTICE-THEQRETICAL FIXPOINT THEOREM
AND ITS APPLICATIONS

ALFRED TARSKI Pacific . Math. 5{1955), 285- 309

— Repeated application of a monotonically increasing
partial function converges to a fixed point

1 L 1 5
1 g #E:>——>1u5 N[

Constant Gain Delay Scope

) MathWorks MATLAB&SIMULINK

A declarative formalism with fix-point
semantics
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AND ITS APPLICATIONS
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— Repeated application of a monotonically increasing
partial function converges to a fixed point
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A declarative formalism with fix-point
semantics

A LATTICE-THEQRETICAL FIXPOINT THEOREM
AND ITS APPLICATIONS

ALFRED TARSKI Pacific . Math. 5{1955), 285- 309

— Repeated application of a monotonically increasing
partial function converges to a fixed point

1 6>|2>—>12 11z 2]
A 5

Constant Gain Delay Scope

— One implementation is a data dependency schedule
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A declarative formalism with fix-point
semantics

A LATTICE-THEQRETICAL FIXPOINT THEOREM
AND ITS APPLICATIONS

ALFRED TARSKI Pacific . Math. 5{1955), 285- 309

— Repeated application of a monotonically increasing
partial function converges to a fixed point

1 LN 6:2 12 1z SN ]
A 5

Constant Gain Delay Scope

— One implementation is a data dependency schedule

10;2 1 ;‘(::3 6 '|2:0:4 12 1/0z: 5 ‘@

Constant Gain Delay Scope
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Multiple rates; a potential problem ...

= Streams are only practical if we can limit the
stream entries being accessed

= Not this:

even
+ %
{x0, x1, X2, X3, x4, ... > {x0+x0, x1+x2, x2+x4 , ... }

{x0, x1, x2, x3, x4, ... }

X2
x3
x4

) MathWorks MATLAB&SIMULINK

Clock calculus to detect

= Require compatible clocks: the synchronous

assumption
= Match against base clock
{x0,L, x2, 1, x4, ...} x0, 0, x2, 0, x4, ... }
{LFETFT, ..} {LTTTT ..}

’% even j) Opal | ——>

>
Ll

{x0, x1, x2, x3, x4, ...

{x0, x1, x2, x3, x4, ... }
{TL, . T, T T, ...}

34
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A multi-rate system example

Source
Delay _J L[ L[ L [

Find greatest common divisor (Ts)!

Source

{2,7,3,...} | Ts=2(s)

_NF
6“9——>|2 11z [

Gain Delay Scope
Ts=1(s)

\ 4
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A multi-rate system example

Source

Delay _J L[ L[ L [

Base T T.T T.T T T
—><—

Ts

{2,7,3, ...} | Ts=2(s)

_NF
6“9——>|2 » 1/z [

Gain Delay Scope
Ts=1(s)
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A multi-rate system example
Source _. T F T_F T F 1
Delay T T.T T.T T.T
Base T T.T T.T T T
Source ' :
Ts
{2,7,3,...} | Ts=2(s)
NV
6“9——>|2 » 1/z [
Gain Delay Scope
Ts=1(s)

) MathWorks MATLAB&SIMULINK

A multi-rate system example

{2,7,3, ...} | Ts=2(s)

:m
N
A\ 4
—
~
N

Gain Delay Scope
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A multi-rate system example
Source T F T F T F T

Delay T T T T T T T
Base T T TTTTT

Source

{2,7,3,...} | Ts=2(s)

NS
69——>|2 > 1z (I
A
Gain Delay Scope
Ts=1(s)

) MathWorks MATLAB&SIMULINK

A multi-rate system example

Source T F T F T F T

Source

2,7,3,..} [ Ts=2(s) Delay T T T T T TT
} Base T T T TTTT
hold
v -

E‘?—_.|2 o 112 O]
Gain Dolay p—
Ts=1(s)
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solver?

= Separate
— Time (explicit)
— Evaluations (ordered)

= Time as a function of
evaluations

Can we use this framework to define a

'\. WEHN S

MATLAB&SIMULINK

solver?

= Separate
— Time (explicit)
— Evaluations (ordered)

= Time as a function of
evaluations

Can we use this framework to define a

]

Ts

-

TTTTTTT
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Can we use this framework to define a

variable-step solver?

= Separate
— Time (explicit)
— Evaluations (ordered)

. . Q
- Time as a function of £

evaluations
2*Ts
Ts

TTTTTTT
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MATLAB&SIMULINK

Can we use this framework to define a

variable-step solver?

= Separate
— Time (explicit)
— Evaluations (ordered)

. . Q
- Time as a function of £

evaluations
2*Ts
Ts

evaluation
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variable-step solver?

= Separate
— Time (explicit)
— Evaluations (ordered)

= Time as a function of
evaluations

Can we use this framework to define a

t(0)

evaluation

'\. WEHN S
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variable-step solver?

= Separate
— Time (explicit)
— Evaluations (ordered)
= Time as a function of
evaluations
— Step is variable

Can we use this framework to define a

t(2)

t(1)
t(0)

evaluation

10/13/2010
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Can we use this framework to define a

variable-step solver?

= Separate
— Time (explicit)
— Evaluations (ordered)

= Time as a function of 3)¢2)
evaluations
— Step is variable (1)
— Step may be 0 1(0)

—C

evaluation
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MATLAB&SIMULINK

Can we use this framework to define a

variable-step solver?

= Separate
— Time (explicit)
— Evaluations (ordered)

= Time as a function of 3¢
evaluations )
— Step is variable (1)
— Step may be 0 1(0)

— Step may be negative 7
= Time may recede

evaluation
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Can we use this framework to define a
variable-step solver?

= Separate
— Time (explicit)
— Evaluations (ordered)
= Time as a function of t(g)Iiii
evaluations )
— Step is variable (1)
— Step may be 0 1(0)
— Step may be negative 7
= Time may recede

evaluation

) MathWorks MATLAB&SIMULINK

A stream based functional solver

Euler integration

increment  previous increment

J(e)= {Z;u(i)h(i) (i =2)(i-2)p() | I 0dd(©)

otherwise

Trapezoidal integration

incremgnt pravious increment
n@=" (i =D+ th(i))h(i -1 | (mG-3)+ u?\;\—\ 2))h(i—3) l;(i -
Error computation
d(e)= AR u(; ey _”(6—2)h(e—q <tol =
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Rate transition a function of time

Now we can create a variable step solver inside 1/s that maps onto
the synchronous paradigm

Dynamically compute ‘hold’ output
as an argument of time ...
{2,7,3,...} | Ts=2(s) y(l)ZM(I/TS)

No predetermined sequence of
output values

Source

N
» 1/s I:I
Integrator Scope

) MathWorks MATLAB&SIMULINK

Agenda

= Model-Based Design
= Computer Automated Multiparadigm Modeling
= Modeling time as discrete events
= A unifying semantic domain
2 = Aheterogeneous system example
= Conclusions
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Unifying formalisms with different
semantics

= Newton’s and Hooke’s Laws
— Differential equations as before

= Control behavior m IFM
— Sampled data (periodic T,=0.5) l
20 if k=0 F,
. Tx TF oor
FPull(k) =<10 if k=1 =0 '
0 else
. R C

= Contact behavior z

— Discontinuous changes ...

) MathWorks MATLAB&SIMULINK

Modeling the contact behavior

= Simultaneous inequalities

—(Rv(t)+%t)j if x(1)<0

F t)=
foor ) 0 otherwise

= Finite state machine

x<0

Frop ()=0 ‘ free ‘ ‘ contact ‘ F e (1) =—(Rv(t)+%)

x>0

10/13/2010
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Computational simulation
;
o 0.
)
0.
o
\
. A °
o o E [5) ) 1
time evaluations
Position vs. time Time vs. evaluations (detail)
Simultaneous inequalities Finite state machine

Eval Time Position Velocity Fpoor Error Eval T Position  Velocity  Fpogy Error  &eon
532 25450 i -1.4381 0 532 L0037 -1.4381 1]
533 2.5450 | 0. -1.4381 B.5EE8 0 581 ¢ -0.0035 -1.4381 il 0 o
534 -1.430% 114717 534 -0.0107 -1.4521 11.5331 1
535 -1.4377 | 14.3430 | 0.0021 535 -0.0179 -1.4438 14.3980 | 0.0082 1
536 -1.434% 85700 536 -0.0035 -1.4348 R.5820 1
537 -1.4369 11.4555 | 0.0021 537 2 -0.0107 -1.4369 | 114614 | 0.0021 1
538 -1.4375 1] 538 0.000T -1.4375 7.1446 1
539 -1.4395 10,0333 0.0020 530 -0.0071 -1.4382 1] 0.0008 0
540 -1.4380 1] 540 0.0019 -1.4308 6.4386 1
51 -1.4380 93125  0.0000 541 -0.0053 -1.4302 0 0.0006 0
542 -1.4381 1]
543 -1.4385 BO508  0.0004
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Characteristics of the semantic domain

Declarative

— Purely functional (no side effects)
Ordered evaluations

Untimed

— Time as explicit function, #(e)

— Time is not strictly increasing

Broadly applicable to dynamic systems

— Differential equations, difference equations, discrete
events
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Agenda

Model-Based Design
Computer Automated Multiparadigm Modeling
Modeling time as discrete events
A unifying semantic domain
= A heterogeneous system example
2 = Conclusions

) MathWorks MATLAB&SIMULINK

Conclusions

= Transformation technology in Model-Based
Design
— Vertical; the simulation stack
— Horizontal; the elaboration and synthesis

= Model the transformations
— Denotational vs. operational

= Nonmonotonic tagged synchronous formulation
— Unifying semantic domain for multi-domain models
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Precise computational semantics as a
foundation for ...

= Integrated multi-domain modeling
= End-to-end system analysis

= Support for design automation
— Multi-view/abstraction models (with approximation)

— Design of new languages (e.g., for concurrency,
heterogeneity)

— Compositionality and composability

Pieter J. Mosterman, Justyna Zander, Gregoire Hamon, and Ben Denckla,
- Refe rence "Towards Computational Hybrid System Semantics for Time-Based
Block Diagrams," in 3rd IFAC Conference on Analysis and Design of
Hybrid Systems (ADHS'09), A. Giua, C. Mahulea, M. Silva, and J. Zaytoon
(eds.), pp. 376-385, Zaragoza, Spain, September 16-18, 2009, plenary paper.
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