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Where errors can be detected

Introduced

Detected0%

10%

20%

30%

40%

50%

60%

70%

Spec
Design

Implement
Test

60%

21%

12%

7%

55%

22%

15%

8%

The MathWorks, Early Verification presentation

� Early verification with Model-Based Design



10/13/2010

5

9

Agenda

� Model-Based Design

� Computer Automated Multiparadigm Modeling

� Modeling time as discrete events

� A unifying semantic domain

� A heterogeneous system example

� Conclusions
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Integration of computational semantics 

across many domains

� Once a model has been designed, consistency is 
more important than ‘semantic correctness’

� This requires a precise definition of the 
computational semantics

� Multiple formalisms in heterogeneous systems 
amplify the importance of computational semantics

– Block diagrams with discrete functionality 
(switches, reinitialization, inequalities, etc.)

– State transition diagrams

� Can we define a common semantic domain?

highly

sensitive

32

Agenda

� Model-Based Design

� Computer Automated Multiparadigm Modeling

� Modeling time as discrete events

� A unifying semantic domain

� A heterogeneous system example

� Conclusions



10/13/2010

17

33

What is a model anyway?

Jean Bézivin

“Everything is a model”

Jean-Marie Favre

“Nothing is a model”

Pieter J. Mosterman

“Nothing is not a model”

system
model

system under study

model

system

system

model

model

system
under study

34

What is a model anyway?

Jean Bézivin

“Everything is a model”

Jean-Marie Favre

“Nothing is a model”

Pieter J. Mosterman

“Nothing is not a model”

Hans Vangheluwe

“Model everything”

system
model

system under study

model

system

In collaboration with Hans Vangheluwe, McGill University

Computer Automated 
Multiparadigm Modeling

(CAMPaM)
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Computer Automated Multiparadigm

Modeling (CAMPaM)

� Initiated in 2000

– Two special sessions at IEEE CACSD Symposium

– Annual McGill Bellairs workshop since 2004

� Three elements of CAMPaM

– Multi-(domain-specific)-formalism models

– Metamodeling

– Multiple levels of abstraction

� Model everything!

– Reasoning vs. efficiency (denotation vs. operation)

– Model model transformation (e.g., graph grammar)

36

A domain-specific formalism: syntax 

versus semantics

� Fasten seat belt syntax

� Fasten semantics A

� A or open semantics?
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� A syntax, a semantic domain, and a mapping

The elements of a formalism

F0

SY SE

FM

SY SE For graphical syntax, often 

a meta model is used

38

� Target semantic domain must be subsumed

Define semantics as a syntactic 

transformation—semantic anchoring

FI
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T
L  R 
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L  R 

I

L  R 

IA⇒

FT

SY SE Transformation 

model
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Modeling a model transformation

40

Modeling a model transformation
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Modeling a model transformation

42

� Declarative and reusable transformations

– But, many different formalisms involved A

Now back to Model-Based Design

Simulation stack Technology stack

Elaborate

Synthesize
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� Can we develop a unifying semantic domain?

Multi-domain models comprise many 

formalisms 7

F0

SY SE
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Modeling a physical system

v

x

Let’s develop a numerical

solver to compute a solution A

From first principles A Hooke’s Law:

Newton’s Second:
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Numerical integration
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When x(t) changes little, hk can be large!
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Sophisticated solver 7 ?

� Let’s compute a solution to the ideal oscillator

� We can make the error small A but only locally!

v
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v

x



10/13/2010

29

57

Sophisticated solver 7 ?

� Let’s compute a solution to the ideal oscillator

� We can make the error small A but only locally!

� It accumulates for ‘long time’ behavior

� So, $ how come the JSF flies?! 

v

x

v

x

58

Engineering an embedded system

physical theoretical
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In collaboration with Hans Vangheluwe, McGill University

computational

verify

void main () {
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}
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partial function converges to a fixed point
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Multiple rates; a potential problem 7

� Streams are only practical if we can limit the 

stream entries being accessed

� Not this:

even
+

x4

x3

x2

x4

{x0+x0, x1+x2, x2+x4 , A }

{x0, x1, x2, x3, x4, A }

{x0, x1, x2, x3, x4, A
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Clock calculus to detect

� Require compatible clocks: the synchronous 

assumption

� Match against base clock

even
+

{x0, x1, x2, x3, x4, A

{x0, x1, x2, x3, x4, A }

{ T,   T,   T,   T,   T,   A }

{T, F, T, F, T, A } {T, T, T, T, T, A }

0 pad

{x0,   , x2,   , x4, A } {x0, 0, x2, 0, x4, A }
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Can we use this framework to define a 

solver?

� Separate

– Time (explicit)

– Evaluations (ordered)

� Time as a function of 

evaluations
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Can we use this framework to define a 

variable-step solver?
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– Time (explicit)
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� Time as a function of 
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evaluation

Can we use this framework to define a 

variable-step solver?
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evaluations

t(0)
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evaluation

Can we use this framework to define a 

variable-step solver?

� Separate

– Time (explicit)

– Evaluations (ordered)

� Time as a function of 

evaluations

– Step is variable

– Step may be 0 t(0)

t(1)

t(2)t(3)
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evaluation

Can we use this framework to define a 

variable-step solver?

� Separate

– Time (explicit)

– Evaluations (ordered)

� Time as a function of 

evaluations

– Step is variable

– Step may be 0

– Step may be negative

� Time may recede

t(0)

t(1)

t(2)t(3)

t(4)
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evaluation

Can we use this framework to define a 

variable-step solver?

� Separate

– Time (explicit)

– Evaluations (ordered)

� Time as a function of 

evaluations

– Step is variable

– Step may be 0

– Step may be negative

� Time may recede

t(0)

t(1)

t(2)t(3)

t(4)

t(5)

84

previous incrementincrement

A stream based functional solver
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{2, 7, 3, A}

Source

Ts = 2 (s)

Rate transition a function of time

1/s2

Gain Integrator Scope

hold (t)

Now we can create a variable step solver inside 1/s that maps onto

the synchronous paradigm

Dynamically compute ‘hold’ output 

as an argument of time ...

No predetermined sequence of 

output values

)/()( sTtuty =

t
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Agenda

� Model-Based Design

� Computer Automated Multiparadigm Modeling

� Modeling time as discrete events

� A unifying semantic domain

� A heterogeneous system example

� Conclusions
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Unifying formalisms with different 

semantics

� Newton’s and Hooke’s Laws

– Differential equations as before

� Control behavior

– Sampled data (periodic Ts=0.5)

� Contact behavior

– Discontinuous changes A
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Ffloor
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Modeling the contact behavior

� Simultaneous inequalities

� Finite state machine

free contact

0<x

0≥x
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Computational simulation

Position vs. time Time vs. evaluations (detail)

Simultaneous inequalities Finite state machine
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Characteristics of the semantic domain

� Declarative

– Purely functional (no side effects)

� Ordered evaluations

� Untimed

– Time as explicit function, t(e)

– Time is not strictly increasing

� Broadly applicable to dynamic systems

– Differential equations, difference equations, discrete 
events
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Agenda

� Model-Based Design

� Computer Automated Multiparadigm Modeling

� Modeling time as discrete events

� A unifying semantic domain

� A heterogeneous system example

� Conclusions
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Conclusions

� Transformation technology in Model-Based 

Design 

– Vertical; the simulation stack

– Horizontal; the elaboration and synthesis

� Model the transformations

– Denotational vs. operational

� Nonmonotonic tagged synchronous formulation

– Unifying semantic domain for multi-domain models
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Precise computational semantics as a 

foundation for 7

� Integrated multi-domain modeling

� End-to-end system analysis

� Support for design automation

– Multi-view/abstraction models (with approximation)

– Design of new languages (e.g., for concurrency, 

heterogeneity)

– Compositionality and composability

� Reference Pieter J. Mosterman, Justyna Zander, Gregoire Hamon, and Ben Denckla,  

"Towards Computational Hybrid System Semantics for Time-Based 

Block Diagrams," in 3rd IFAC Conference on Analysis and Design of 

Hybrid Systems (ADHS'09), A. Giua, C. Mahulea, M. Silva, and J. Zaytoon 

(eds.), pp. 376-385, Zaragoza, Spain, September 16-18, 2009, plenary paper.
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