) MathWorks MATLAB&SIMULINK

On Computational Semantics as a Precise
Foundation of an Industrial Toolchain for
Analysis and Design of Multi-domain Systems

Pieter J. Mosterman

Senior Research Scientist Adjunct Professor
Design Automation Department School of Computer Science
4\ MathWorks B McGill

® 2010 The MathWarks, Inc.

) MathWorks MATLAB&SIMULINK

Computational

Analysis and Design

® 2010 The MathWarks, Inc.

10/13/2010

10/13/2010

) MathWorks MATLAB&SIMULINK

Multi-domain Systems

® 2010 The MathWarks, Inc.

) MathWorks MATLAB&SIMULINK

Industrial Toolchain

® 2010 The MathWarks, Inc.

) MathWorks MATLAB&SIMULINK

Accumulating cost of latent errors

Relative Cost to Fix Defects per Phase Found
[50
45
40
r35
| 30 .
Lo Relatlve_ Cost
to Fix
20
15
Requiremem.s L10
Design
Code 5
Test -0
o
«© eé@“ o <@
Ra ©
e Phase Found
B Test @ Code ODesign @ Requirements

NASA, Return on Investment for Independent Verification & Validation, 2004 n

) MathWorks MATLAB&SIMULINK

Accumulating cost of latent errors

Relative Cost to Fix Defects per Phase Found

e

40
r35

Engineers did not get the
problem (completely)

Engineers got the problem
but solution does not work

10 FIX ‘
The solution works but the
implementation has faults

Requirements

Design

Code

Test
X
. 0@ <&
o

“\e“‘% Oer,\g @)

N

Qe Phase Found

B Test @ Code ODesign @ Requirements

NASA, Return on Investment for Independent Verification & Validation, 2004 n

10/13/2010

) MathWorks

MATLAB&SIMULINK

Where errors are

and where
errors are detected

Detected

Introduced
Implement

Test

Paul Yanik, “Migration from Simulation to Verification with ModelSim®,” EDA Tech Forum, Newton, MA, March 11, 2004

) MathWorks

MATLAB&SIMULINK

Where errors can be detected

= Early verification with Model-Based Design

Detected
N Introduced
Design

I nt
mpleme Test

The MathWorks, Early Verification presentation n

10/13/2010

) MathWorks MATLAB&SIMULINK

Agenda

2 = Model-Based Design
= Computer Automated Multiparadigm Modeling
= Modeling time as discrete events
= A unifying semantic domain
= A heterogeneous system example
= Conclusions

) MathWorks MATLAB&SIMULINK

Gaps in the traditional design workflow

A

‘ Technology stack ‘

Explore
Verify
Test

10/13/2010

10/13/2010

) MathWorks MATLAB&SIMULINK

Gaps in the traditional design workflow

Explore |

Verify :

Test
‘ Technology stack ‘

) MathWorks MATLAB&SIMULINK

Gaps in the traditional design workflow

=
Explore |
Verify :
Test
Simulation stack ‘ Technology stack ‘

10/13/2010

) MathWorks MATLAB&SIMULINK

Model-Based Design

Compute

Explore
Verify
Test

Explore -
Verify — — =
Test =

Explore
Verify
Test

AN

Simulation stack ‘ Technology stack ‘

) MathWorks MATLAB&SIMULINK

Model-Based Design

Raises level of abstraction

Compute

Enables continuous testing

Explore
Verify
Test

£

Explore e
Verify — — =
Test =

Explore
Verify
Test

AN

Simulation stack ‘ Technology stack ‘

10/13/2010

) MathWorks MATLAB&SIMULINK

Model-Based Design

Raises level of abstraction

Compute

Enables continuous testing

Explore
Verify
Test

£

Explore %
Verify =
Test
Explore
Verify
Test

Simulation stack ‘ Technology stack ‘

) MathWorks MATLAB&SIMULINK

Model-Based Design

Raises level of abstraction

Compute

Enables continuous testing

Elaborate
Explore
Verify
Test

Construct

Explore - - ﬂ ; % .

AN

Simulation stack ‘ Technology stack ‘

Verify =
Test =K -
Explore
Verify
Test

10/13/2010

) MathWorks MATLAB&SIMULINK

Model-Based Design

Raises level of abstraction

Compute

Enables continuous testing

Elaborate

Explore

Verify
Test

Construct

Explore it
Verify

Test e Dl :

Explore
Verify
Test

Simulation stack ‘ Technology stack ‘

) MathWorks MATLAB&SIMULINK

Model-Based Design

Raises level of abstraction

Compute

Enables continuous testing

Elaborate
Explore
Verify
Test

Construct

Explore - - ﬂ [%
Verify PR
Test =K -

[

Explore |

Verify

Test
Simulation stack ‘ Technology stack ‘

10/13/2010

) MathWorks MATLAB&SIMULINK

Model-Based Design

Compute

Compile

Simulation stack <]Z> ‘ Technology stack ‘

) MathWorks MATLAB&SIMULINK

Model-Based Design

Compute

Construct Connect
7 Compile

10

10/13/2010

) MathWorks MATLAB&SIMULINK

Designing an embedded system

algorithm timed tasked implementation

REQ13.2 [[REQ12 | 5 REQ2.1.2 | REQ8.5 |
Incase ... @ For each ... @ Ifupand ... W Atno ... @

HdS API HdS API
Comm. [0S| [Comm. [0S
HAL HAL
HAL APT HAL APT
1SS 1SS
[abstract uP | [men{ [abstract uP [155] [155]
1 1] 1] [periph] [periph]
communication network 1T T

communication network

In collaboration with Katalin Popovici, TIMA n

) MathWorks MATLAB&SIMULINK

Early and progressive system testing ... ?

. .
Zratle implementation
»{ Z)
Rsngs
REQ8.5 |
- AtnO .. @
R Clesing
Bandwidth Rdot —> Ve Velocity
of Estimator
0y

Iy P >
Initislized uints jz%ﬂ sfix16

st scquisition

HdS API HdS API
Comm. [0S| [Comm. [0S
HAL HAL
HAL API HAL API

(interf.] [periph]

1T JT

communication network

11

) MathWorks

Early and progressive system testing ... ?

Int

hamming 2si
Win i
/_\ Gain Noize
Window Estimstor Scaling
Function

MA

B&SIMULINK

implementation

Y

HdS API HdS API
Comm. [0S| [Comm. OS]
HAL HAL
HAL API HAL API
(interf.] [periph]
dT

communication network

) MathWorks

Early and progressive system testing ... ?

persistent P, xhat;

residual = meas - vhat;

W= P*M' *inv (M*P*H'+ R

xhat = xhat + U*residual;

xhatOut = xhat;

P = (eye(4)-U*H) *P* (eye (4) —W*M) ' + WERRW';

-sin(Bhat) /Rhat 0 cos(Bhat)/Rhat O 15

function [residual, xhatOut] = extkalmanimeas,

Phi = [1 deltat 00; 0100 ; 00 1 deltat; O
0 = diag([0 .005 0 .005]): B = diag{[300°2
P = Phi*P*Phi' + Q: %
xhat = Phi*xhat; %
Bhat = sqrt(xhat (1) “2+xhat (3)°2); 5
Bhat = atanZ (xhat (3),xhat (1)) ;

vhat = [Phat; Bhat]'; %
M = [cos(Bhat) 0 sin(Bhat)]

o

e

deltat)

0011
0.00172]1)

Propagate covariance
Track sstimate
Observation estimates

Observation wvector

Estimation error

Kalmain gain
Update estimate

MA

B&SIMULINK

implementation

REQ >

|

oy PEMo Db
uint8! sfix16

HdS API HdS API
Comm. [0S| [Comm. OS]
HAL HAL
HAL API HAL API
(interf.] [periph]
dT

communication network

10/13/2010

12

) MathWorks MATLAB&SIMULINK

Early and progressive system testing ... ?

HEADER
Genarste Headers
IN1

@
FAYLOAD f—|INZ u}’ﬁju out

P3|

PIT_IN PKT_OUT

©
N3
Genarste Paylosds Y —
TRAILER

Genarsts Trailers

Set Parity Bit

implementation

REQ85 |
Atno ... @

ey [‘jg%ln ’
uint8t sfix16

HdS API HdS API
Comm. [0S| [Comm. OS]
HAL HAL
HAL API HAL API

P [interf.] [periph]
JT JT

communication network

) MathWorks MATLAB&SIMULINK

@mp_to_subrout\ ne %
1 2

i
do_branch

en:branch_fcn();

2 T

=
=

[ready==1]

continue_jsr .
{pc_assign_mar({):;}

en:pc_increment(); |

do_jsr
enwrite_mem=1

1 [grant==1]

{addr=mar;
2 data_assign();}

Early and progressive system testing ... ?

implementation

REQ8.5 |
Atno ... @

v v

HdS API HdS API
Comm. [0S| [Comm. OS]
HAL HAL
HAL API HAL API

(interf.] [periph]

1T JT

communication network

10/13/2010

13

) MathWorks MATLAB&SIMULINK

Early and progressive system testing ... ?

implementation

REQ85 |
Atno ... @

v v

Iy PR D
uint8! sfix16

Woltege Source resistance
source S0chm 1
W\N\PD. "
Vs

=
i HdS API HdS AP

o Comm. [0S| [Comm. OS]
HAL HAL
HAL API HAL API

erip [interf.] [periph]
JT JT

communication network

) MathWorks MATLAB&SIMULINK

Early and progressive system testing ... ?

implementation

REQ8.5 |
Atno ... @

02 v

HdS APT HdS APT

Comm. [0S| [Comm. OS]
HAL HAL
HAL API HAL API

[interf.] [periph]

T JT

communication network

M

10/13/2010

14

10/13/2010

) MathWorks MATLAB&SIMULINK

Integrated multi-domain modeling!

Modeling domains Disciplines

Continuous-time
R \ Physical environment
Simulink
Discrete-time
~ —] Digital hardware

Simulink
Discrete-event }// : X
; e\ \‘ Analog/RF hardware
SimEvents %025 D >

State-machine ’/
\1 Embedded software

O Ntet S |
Stateflow
Noncausal
Simscape Mechanical hardware

SimElectronics Text-based
SimMechanics .
SimHydraulics MATLAB Electrical hardware

SimDriveline ﬂ

) MathWorks MATLAB&SIMULINK

Integrated multi-domain modeling!

Modeling domains Disciplines

Continuous-time . .
o Physical environment
Simulink

Discrete-time ’\ . S‘\Or\? __wware

Simulink

Discrete-event P/
Sim™ \J\Jha‘- G

_ <
Stateflow /
Noncausal
Simscape Mechanical hardware
SimElectronics Text-based
SimMechanics

SimHydraulics MATLAB Electrical hardware

SimDriveline

\1 Embedded software

15

) MathWorks MATLAB&SIMULINK

Integration of computational semantics
across many domains

= Once a model has been designed, consistency is
more important than ‘semantic correctness’

= This requires a precise definition of the
computational semantics

= Multiple formalisms in heterogeneous systems
amplify the importance of computational semantics

— Block diagrams with discrete functionality
(switches, reinitialization, inequalities, etc.)

— State transition diagrams
= Can we define a common semantic domain?

highly
sensitive

} MathWorks MATLAB&SIMULINK

v

Agenda

= Model-Based Design

= Computer Automated Multiparadigm Modeling
= Modeling time as discrete events

= A unifying semantic domain

= A heterogeneous system example

= Conclusions

10/13/2010

16

10/13/2010

) MathWorks MATLAB&SIMULINK

What is a model anyway?

Jean Bézivin Jean-Marie Favre Pieter J. Mosterman

“Everything is a model” “Nothing is a model” “Nothing is not a model”

4 model
model 4 model system
Z% system Z}
A \—_|
system system under study model
d system

under study

) MathWorks MATLAB&SIMULINK

What is a model anyway?

Jean Bézivin Jean-Marie Favre Pieter J. Mosterman Hans Vangheluwe

“Everything is a model” “Nothing is a model” “Nothing is not a model” “Model everything”

model 4 model
system Computer Automated
Z% Multiparadigm Modeling
A (CAMPaM)
system system under study

In collaboration with Hans Vangheluwe, McGill University

17

) MathWorks MATLAB&SIMULINK

Computer Automated Multiparadigm
Modeling (CAMPaM)

= Initiated in 2000
— Two special sessions at [IEEE CACSD Symposium
— Annual McGill Bellairs workshop since 2004
= Three elements of CAMPaM
— Multi-(domain-specific)-formalism models
— Metamodeling
— Multiple levels of abstraction
= Model everything!
— Reasoning vs. efficiency (denotation vs. operation)
— Model model transformation (e.g., graph grammar)

) MathWorks MATLAB&SIMULINK

A domain-specific formalism: syntax
versus semantics
= Fasten seat belt syntax

8] €

= Fasten semantics ...

{8

» ... Or open semantics?

10/13/2010

18

10/13/2010

) MathWorks MATLAB&SIMULINK

The elements of a formalism

= A syntax, a semantic domain, and a mapping

For graphical syntax, often
e e a meta model is used
i ®

) MathWorks MATLAB&SIMULINK

Define semantics as a syntactic
transformation—semantic anchoring

= Target semantic domain must be subsumed

Fu Fr
Transformation
e model

b- N3N

GRS

19

10/13/2010

) MathWorks MATLAB&SIMULINK

Modeling a model transformation

) MathWorks MATLAB&SIMULINK

Modeling a model transformation

N
mr2new Any2 []
Elack

.
Anyl []

Mod=l 4
—

fode!

20

) MathWorks MATLAB&SIMULINK

Modeling a model transformation

) MathWorks MATLAB&SIMULINK

Now back to Model-Based Design

= Declarative and reusable transformations
— But, many different formalisms involved ...

Elaborate

Synthesize

Simulation stack) ‘ Technology stack ‘ ﬂ

10/13/2010

21

10/13/2010

) MathWorks MATLAB&SIMULINK

Now back to Model-Based Design

= Declarative and reusable transformations

[= S e B 2

~ 'ismsinvolved ...

Synthesize

Simulation stack <> ‘ Technology stack ‘

) MathWorks MATLAB&SIMULINK

Multi-domain models comprise many
formalisms ...

= Can we develop a unifying semantic domain?

22

) MathWorks MATLAB&SIMULINK

Multi-domain models comprise many
formalisms ...

= Can we develop a unifying semantic domain?

) MathWorks MATLAB&SIMULINK

Agenda

= Model-Based Design

= Computer Automated Multiparadigm Modeling
_» = Modeling time as discrete events

= A unifying semantic domain

= A heterogeneous system example

= Conclusions

10/13/2010

23

10/13/2010

MATLAB&SIMULINK

'l. WEHN S

Modeling a physical system

From first principles ... ~ Hooke’s Law: F=_X"%
C
Newton’s Second: F =ma
,_2< y
N Abit of calculus: a(?) =‘;,_(t)
t
S dx(t
n » MRS
VR t
' 20
Vi An ideal oscillator: v(t) =)iT
t

Let’s develop a numerical

" dv(t) _ x(t)—x,

solver to compute a solution ... dt

C

'l. WEHN S

Numerical integration

Euler: step h in time along x = f(x,t)
X)) =x(t,)+x(t,)h,

MATLAB&SIMULINK

24

_\ WEHN S

Numerical integration

X, () = x(t,) +x(t)by

Euler: step h in time along x = f(x,t)

MATLAB&SIMULINK

_\ WEHN S

Numerical integration

X, () = x(t,) +x(t)by

X(tk+1) it X(tk)
2

X, (8= x(t,)+

Euler: step h in time along x = f(x,t)

Trapezoidal: average the end points

k

MATLAB&SIMULINK

tk+1

10/13/2010

25

MATLAB&SIMULINK

_\. WEHN S

Numerical integration

X, () = x(t,) +x(t,)by

X(tk+1) it X(tk)
2

X, (8= x(t,)+

Euler: step h in time along x = f(x,t)

Trapezoidal: average the end points

k

_\. WEHN S

Numerical integration

X, () = x(t,) +x(t,)by

X, (8= x(t)+

2

Euler: step h in time along x = f(x,t)

Trapezoidal: average the end points
)+,

k

MATLAB&SIMULINK

10/13/2010

26

MATLAB&SIMULINK

'l. WEHN S

Numerical integration

Euler: step h in time along x = f(x,t)
X)) =x(t,)+x(t,)h,

Trapezoidal: average the end points

$l) + (1) |

X, (t)=x(t,)+ k

Taylor series expansion for error analysis

x(t) = x(t,) +%h,€ +%h§ LO(R)

'l. WEHN S

Numerical integration

Euler: step h in time along x = f(x,t)
X)) =x(t,)+x(t,)h,

Trapezoidal: average the end points

MATLAB&SIMULINK

$le) + (1) |

X, (t)=x(t,)+ k

Taylor series expansion for error analysis

it
K =300+ 2 O g ogh)

&,(t)

When x(t) changes little, #, can be large!

10/13/2010

27

'l. WEHN S

Numerical integration

Euler: step h in time along x = f(x,t)
X)) =x(t,)+x(t,)h,

Trapezoidal: average the end points

MATLAB&SIMULINK

HOMEEI

X, (t,) =x(t,)+ X

Taylor series expansion for error analysis

()
I 2!

k

x(t,,)=x(t,)+

e 28 bl o)

et &)

. , . . X (¢
Change step size based on estimate: x,(¢,,,) — X, (t,,,) = %hf

'l. WEHN S

Sophisticated solver ... ?

—~
vA

= \We can make the error small

= Let’'s compute a solution to the ideal oscillator

MATLAB&SIMULINK

) XY Graph 9 [=] E3
XY Plot

1
D O
-1

-1 0 1
Axis

... but only locally!

' Axis

10/13/2010

28

MATLAB&SIMULINK

) MathWorks

Sophisticated solver ... ?

= Let’'s compute a solution to the ideal oscillator

A XY Graph = [=] E3
4 %Y Plat
A
\ vV :
o .
Z0
- ., &
U l X 4
X A i 1
N\ vl < X Axis

= We can make the error small ... but only locally!

= |t accumulates for ‘long time’ behavior,
= So, ... how come the JSF flies?!

MATLAB&SIMULINK

) MathWorks

Engineering an embedded system

physical theoretical computational

void main () {
— F(t):m% — int i;
}

l validate l [verify l
I I I [T —> /Jf — = —

In collaboration with Hans Vangheluwe, McGill University ﬂ

10/13/2010

29

10/13/2010

) MathWorks MATLAB&SIMULINK

Engineering an embedded system

physical theoretical computational

void main () {

— F(zf)=mM — int i;
dt }

l validate l [verify l
I I I [T —_— /”* — = —
|
validate

In collaboration with Hans Vangheluwe, McGill University ﬂ

) MathWorks MATLAB&SIMULINK

Engineering an embedded system

physical theoretical computational
-
| - [ro-nt0| o
dt }

l validate l [v&ify l
[1 — L= - refine
I ! I 7 / 7 - e,
- ~
| I

validate

In collaboration with Hans Vangheluwe, McGill University n

30

10/13/2010

) MathWorks MATLAB&SIMULINK

Engineering an embedded system

physical theoretical computational
| — |ro=2"2] 10
dt . 0“ _\me
L e s\ -
yvali~ imo e\ “,S use
| e must d rs\and l
\ e — p—_refine
[s / 7 — .°o\
I
|
validate

In collaboration with Hans Vangheluwe, McGill University n

) MathWorks MATLAB&SIMULINK

Agenda

= Model-Based Design
= Computer Automated Multiparadigm Modeling
= Modeling time as discrete events
2 = Aunifying semantic domain
= A heterogeneous system example
= Conclusions

31

) MathWorks MATLAB&SIMULINK

A declarative formalism with fix-point
semantics

A LATTICE-THEQRETICAL FIXPOINT THEOREM
AND ITS APPLICATIONS

ALFRED TARSKI Pacific . Math. 5{1955), 285- 309

— Repeated application of a monotonically increasing
partial function converges to a fixed point

1 L 1 5
1 g #E:>——>1u5 N[

Constant Gain Delay Scope

) MathWorks MATLAB&SIMULINK

A declarative formalism with fix-point
semantics

A LATTICE-THEQRETICAL FIXPOINT THEOREM
AND ITS APPLICATIONS

ALFRED TARSKI Pacific . Math. 5{1955), 285- 309

— Repeated application of a monotonically increasing
partial function converges to a fixed point

1 1, 6#2 12 1z SN]
A 5

Constant Gain Delay Scope

10/13/2010

32

) MathWorks MATLAB&SIMULINK

A declarative formalism with fix-point
semantics

A LATTICE-THEQRETICAL FIXPOINT THEOREM
AND ITS APPLICATIONS

ALFRED TARSKI Pacific . Math. 5{1955), 285- 309

— Repeated application of a monotonically increasing
partial function converges to a fixed point

1 6>|2>—>12 11z 2]
A 5

Constant Gain Delay Scope

— One implementation is a data dependency schedule

0:2 0:3 9:4 0:0
1 »O—12 1z, — ﬂl

Constant Gain Delay Scope

) MathWorks MATLAB&SIMULINK

A declarative formalism with fix-point
semantics

A LATTICE-THEQRETICAL FIXPOINT THEOREM
AND ITS APPLICATIONS

ALFRED TARSKI Pacific . Math. 5{1955), 285- 309

— Repeated application of a monotonically increasing
partial function converges to a fixed point

1 LN 6:2 12 1z SN]
A 5

Constant Gain Delay Scope

— One implementation is a data dependency schedule

10;2 1 ;‘(::3 6 '|2:0:4 12 1/0z: 5 ‘@

Constant Gain Delay Scope

10/13/2010

33

10/13/2010

) MathWorks MATLAB&SIMULINK

Multiple rates; a potential problem ...

= Streams are only practical if we can limit the
stream entries being accessed

= Not this:

even
+ %
{x0, x1, X2, X3, x4, ... > {x0+x0, x1+x2, x2+x4 , ... }

{x0, x1, x2, x3, x4, ... }

X2
x3
x4

) MathWorks MATLAB&SIMULINK

Clock calculus to detect

= Require compatible clocks: the synchronous

assumption
= Match against base clock
{x0,L, x2, 1, x4, ...} x0, 0, x2, 0, x4, ... }
{LFETFT, ..} {LTTTT ..}

’% even j) Opal | ——>

>
Ll

{x0, x1, x2, x3, x4, ...

{x0, x1, x2, x3, x4, ... }
{TL, . T, T T, ...}

34

10/13/2010

) MathWorks MATLAB&SIMULINK

A multi-rate system example

Source
Delay _J L[L[L [

Find greatest common divisor (Ts)!

Source

{2,7,3,...} | Ts=2(s)

_NF
6“9——>|2 11z [

Gain Delay Scope
Ts=1(s)

\ 4

) MathWorks MATLAB&SIMULINK

A multi-rate system example

Source

Delay _J L[L[L [

Base T T.T T.T T T
—><—

Ts

{2,7,3, ...} | Ts=2(s)

_NF
6“9——>|2 » 1/z [

Gain Delay Scope
Ts=1(s)

35

10/13/2010

) MathWorks MATLAB&SIMULINK
A multi-rate system example
Source _. T F T_F T F 1
Delay T T.T T.T T.T
Base T T.T T.T T T
Source ' :
Ts
{2,7,3,...} | Ts=2(s)
NV
6“9——>|2 » 1/z [
Gain Delay Scope
Ts=1(s)

) MathWorks MATLAB&SIMULINK

A multi-rate system example

{2,7,3, ...} | Ts=2(s)

:m
N
A\ 4
—
~
N

Gain Delay Scope

36

10/13/2010

) MathWorks MATLAB&SIMULINK

A multi-rate system example
Source T F T F T F T

Delay T T T T T T T
Base T T TTTTT

Source

{2,7,3,...} | Ts=2(s)

NS
69——>|2 > 1z (I
A
Gain Delay Scope
Ts=1(s)

) MathWorks MATLAB&SIMULINK

A multi-rate system example

Source T F T F T F T

Source

2,7,3,..} [Ts=2(s) Delay T T T T T TT
} Base T T T TTTT
hold
v -

E‘?—_.|2 o 112 O]
Gain Dolay p—
Ts=1(s)

37

10/13/2010

MATLAB&SIMULINK

'\. WEHN S

solver?

= Separate
— Time (explicit)
— Evaluations (ordered)

= Time as a function of
evaluations

Can we use this framework to define a

'\. WEHN S

MATLAB&SIMULINK

solver?

= Separate
— Time (explicit)
— Evaluations (ordered)

= Time as a function of
evaluations

Can we use this framework to define a

]

Ts

-

TTTTTTT

38

10/13/2010

MATLAB&SIMULINK

_\. WEHN S

Can we use this framework to define a

variable-step solver?

= Separate
— Time (explicit)
— Evaluations (ordered)

. . Q
- Time as a function of £

evaluations
2*Ts
Ts

TTTTTTT

_\. WEHN S

MATLAB&SIMULINK

Can we use this framework to define a

variable-step solver?

= Separate
— Time (explicit)
— Evaluations (ordered)

. . Q
- Time as a function of £

evaluations
2*Ts
Ts

evaluation

39

MATLAB&SIMULINK

'\. WEHN S

variable-step solver?

= Separate
— Time (explicit)
— Evaluations (ordered)

= Time as a function of
evaluations

Can we use this framework to define a

t(0)

evaluation

'\. WEHN S

MATLAB&SIMULINK

variable-step solver?

= Separate
— Time (explicit)
— Evaluations (ordered)
= Time as a function of
evaluations
— Step is variable

Can we use this framework to define a

t(2)

t(1)
t(0)

evaluation

10/13/2010

40

MATLAB&SIMULINK

'\. WEHN S

Can we use this framework to define a

variable-step solver?

= Separate
— Time (explicit)
— Evaluations (ordered)

= Time as a function of 3)¢2)
evaluations
— Step is variable (1)
— Step may be 0 1(0)

—C

evaluation

'\. WEHN S

MATLAB&SIMULINK

Can we use this framework to define a

variable-step solver?

= Separate
— Time (explicit)
— Evaluations (ordered)

= Time as a function of 3¢
evaluations)
— Step is variable (1)
— Step may be 0 1(0)

— Step may be negative 7
= Time may recede

evaluation

10/13/2010

41

10/13/2010

) MathWorks MATLAB&SIMULINK

Can we use this framework to define a
variable-step solver?

= Separate
— Time (explicit)
— Evaluations (ordered)
= Time as a function of t(g)Iiii
evaluations)
— Step is variable (1)
— Step may be 0 1(0)
— Step may be negative 7
= Time may recede

evaluation

) MathWorks MATLAB&SIMULINK

A stream based functional solver

Euler integration

increment previous increment

J(e)= {Z;u(i)h(i) (i =2)(i-2)p() | I 0dd(©)

otherwise

Trapezoidal integration

incremgnt pravious increment
n@=" (i =D+ th(i))h(i -1 | (mG-3)+ u?\;\—\ 2))h(i—3) l;(i -
Error computation
d(e)= AR u(; ey _”(6—2)h(e—q <tol =

42

) MathWorks MATLAB&SIMULINK

Rate transition a function of time

Now we can create a variable step solver inside 1/s that maps onto
the synchronous paradigm

Dynamically compute ‘hold’ output
as an argument of time ...
{2,7,3,...} | Ts=2(s) y(l)ZM(I/TS)

No predetermined sequence of
output values

Source

N
» 1/s I:I
Integrator Scope

) MathWorks MATLAB&SIMULINK

Agenda

= Model-Based Design
= Computer Automated Multiparadigm Modeling
= Modeling time as discrete events
= A unifying semantic domain
2 = Aheterogeneous system example
= Conclusions

10/13/2010

43

) MathWorks MATLAB&SIMULINK

Unifying formalisms with different
semantics

= Newton’s and Hooke’s Laws
— Differential equations as before

= Control behavior m IFM
— Sampled data (periodic T,=0.5) l
20 if k=0 F,
. Tx TF oor
FPull(k) =<10 if k=1 =0 '
0 else
. R C

= Contact behavior z

— Discontinuous changes ...

) MathWorks MATLAB&SIMULINK

Modeling the contact behavior

= Simultaneous inequalities

—(Rv(t)+%t)j if x(1)<0

F t)=
foor) 0 otherwise

= Finite state machine

x<0

Frop ()=0 ‘ free ‘ ‘ contact ‘ F e (1) =—(Rv(t)+%)

x>0

10/13/2010

44

10/13/2010

. .
) MathWorks MATLAB&SIMULINK
Computational simulation
;
o 0.
)
0.
o
\
. A °
o o E [5)) 1
time evaluations
Position vs. time Time vs. evaluations (detail)
Simultaneous inequalities Finite state machine

Eval Time Position Velocity Fpoor Error Eval T Position Velocity Fpogy Error &eon
532 25450 i -1.4381 0 532 L0037 -1.4381 1]
533 2.5450 | 0. -1.4381 B.5EE8 0 581 ¢ -0.0035 -1.4381 il 0 o
534 -1.430% 114717 534 -0.0107 -1.4521 11.5331 1
535 -1.4377 | 14.3430 | 0.0021 535 -0.0179 -1.4438 14.3980 | 0.0082 1
536 -1.434% 85700 536 -0.0035 -1.4348 R.5820 1
537 -1.4369 11.4555 | 0.0021 537 2 -0.0107 -1.4369 | 114614 | 0.0021 1
538 -1.4375 1] 538 0.000T -1.4375 7.1446 1
539 -1.4395 10,0333 0.0020 530 -0.0071 -1.4382 1] 0.0008 0
540 -1.4380 1] 540 0.0019 -1.4308 6.4386 1
51 -1.4380 93125 0.0000 541 -0.0053 -1.4302 0 0.0006 0
542 -1.4381 1]
543 -1.4385 BO508 0.0004

) MathWorks MATLAB&SIMULINK

Characteristics of the semantic domain

Declarative

— Purely functional (no side effects)
Ordered evaluations

Untimed

— Time as explicit function, #(e)

— Time is not strictly increasing

Broadly applicable to dynamic systems

— Differential equations, difference equations, discrete
events

45

10/13/2010

) MathWorks MATLAB&SIMULINK

Agenda

Model-Based Design
Computer Automated Multiparadigm Modeling
Modeling time as discrete events
A unifying semantic domain
= A heterogeneous system example
2 = Conclusions

) MathWorks MATLAB&SIMULINK

Conclusions

= Transformation technology in Model-Based
Design
— Vertical; the simulation stack
— Horizontal; the elaboration and synthesis

= Model the transformations
— Denotational vs. operational

= Nonmonotonic tagged synchronous formulation
— Unifying semantic domain for multi-domain models

46

) MathWorks MATLAB&SIMULINK

Precise computational semantics as a
foundation for ...

= Integrated multi-domain modeling
= End-to-end system analysis

= Support for design automation
— Multi-view/abstraction models (with approximation)

— Design of new languages (e.g., for concurrency,
heterogeneity)

— Compositionality and composability

Pieter J. Mosterman, Justyna Zander, Gregoire Hamon, and Ben Denckla,
- Refe rence "Towards Computational Hybrid System Semantics for Time-Based
Block Diagrams," in 3rd IFAC Conference on Analysis and Design of
Hybrid Systems (ADHS'09), A. Giua, C. Mahulea, M. Silva, and J. Zaytoon
(eds.), pp. 376-385, Zaragoza, Spain, September 16-18, 2009, plenary paper.

) MathWorks MATLAB&SIMULINK

Acknowledgments

Justyna Zander
Harvard University
Fraunhofer Institute FOKUS, Berlin

Gregoire Hamon
MathWorks

Ben Denckla
Independent Thinker

Hans Vangheluwe
University of Antwerp
McGill University

Many thanks for their continuing collaboration!

10/13/2010

47

) MathWorks MATLAB&SIMULINK

@\ MathWorks-

Accelerating the pace of engineering and science

10/13/2010

48

