
1© 2011 The MathWorks, Inc.

Advancing Model-Based Design by
Modeling Approximations of
Computational Semantics

Pieter J. Mosterman

Senior Research Scientist
Design Automation Department

Adjunct Professor
School of Computer Science

®

2

Agenda

� Model-Based Design
� Problem statement
� A solution approach
� Outlook

3

Design of an engineered system

4

Increasingly more detail

5

Target stack

System behavior

6

Target stackHost stack

Simulation studies

7

Host stack Target stack

Model-Based Design

8

Host stack Target stack

Model-Based Design

9

Host stack Target stack

Executable specifications

10

Host stack Target stack

Model elaboration

Elaborate

11

Host stack Target stack

Automatic code generation

Elaborate

Synthesize

12

Host stack Target stack

Explore
Verify
Test

Elaborate

Synthesize

Explore
Verify
Test

Raises level of abstraction

Enables continuous testing

Model-Based Design

Explore
Verify
Test

13

Agenda

� Model-Based Design
� Problem statement
� A solution approach
� Outlook

14

v

x

Modeling a physical system

v

x

From first principles … Hooke’s Law:

Newton’s Second:
C

xx
F 0−−=

maF =

A bit of calculus:

dt

tdx
tv

dt

tdv
ta

)(
)(

)(
)(

=

=

C

xtx

dt

tdv
m

dt

tdx
tv

0)()(

)(
)(

−−=

=An ideal oscillator:

15

v

x

Modeling a physical system

v

x

Let’s develop a numerical
solver to compute a solution …

From first principles … Hooke’s Law:

Newton’s Second:
C

xx
F 0−−=

maF =

A bit of calculus:

dt

tdx
tv

dt

tdv
ta

)(
)(

)(
)(

=

=

C

xtx

dt

tdv
m

dt

tdx
tv

0)()(

)(
)(

−−=

=An ideal oscillator:

16

Numerical integration

kt

kx

1+kε

1+kt

1+kx

),(txfx =�

kkkke htxtxtx)()()(ˆ 1 �+=+

Euler: step h in time along

kx�
1ˆ +kx

17

Numerical integration

kt

kx

1+kε

1+kt

1+kx

k
kk

kkt h
txtx

txtx
2

)()(
)()(ˆ 1

1

�� ++= +
+

Trapezoidal: average the end points

Taylor series expansion for error analysis

)(
!2

)(

!1

)(
)()(32

1 kk
k

k
k

kk hOh
tx

h
tx

txtx +++=+
���

)(1+kt tε

),(txfx =�

kkkke htxtxtx)()()(ˆ 1 �+=+

Euler: step h in time along

kx�
1ˆ +kx

)(1+ke tε
When x(t) changes little, hk can be large!

18

Numerical integration

kt

kx

1+kε

1+kt

1+kx

k
kk

kkt h
txtx

txtx
2

)()(
)()(ˆ 1

1

�� ++= +
+

Trapezoidal: average the end points

Taylor series expansion for error analysis

)(
!2

)(

!1

)(
)()(32

1 kk
k

k
k

kk hOh
tx

h
tx

txtx +++=+
���

)(1+kt tε

),(txfx =�

kkkke htxtxtx)()()(ˆ 1 �+=+

Euler: step h in time along

kx�
1ˆ +kx

)(1+ke tε

Change step size based on estimate: 2
11 !2

)(
)(ˆ)(ˆ k

k
ktke h

tx
txtx

��
≈− ++

19

Sophisticated solver … ?

� Let’s compute a solution to the ideal oscillator

� We can make the error small … but only locally!

v

x

v
x

20

Sophisticated solver … ?

� Let’s compute a solution to the ideal oscillator

� We can make the error small … but only locally!
� It accumulates for long time behavior
� So, … how come we can engineer today’s complex

systems?!

v

x

v
x

21

Engineering an embedded system

physical theoretical computational

dt

tdv
mtF

)(
)(=

verifyvalidate

void main () {
int i;

}

In collaboration with Hans Vangheluwe, McGill University

22

Engineering an embedded system

physical theoretical computational

dt

tdv
mtF

)(
)(=

validate

verifyvalidate

refine

void main () {
int i;

}

In collaboration with Hans Vangheluwe, McGill University

23

Host stack Target stack

Create executable computational models in all
phases

24

Host stack Target stack

Make the computational approximation the
primary design deliverable—the real thing!

25

So that gets the job done … but …

� More than 50% of the modeling effort is in verification,
validation, and testing!

� Semantics of models is in the execution engine
� Engine code base is extensive and complex

– Interaction of approximations

– Interaction and interfacing of different formalisms

� How can we mature the field?
� Model the semantics of the execution engine!

26

Agenda

� Model-Based Design
� Problem statement
� A solution approach
� Outlook

27

Host stack

Modeling the execution engine

28

Host stack

Create abstractions in the simulation stack …

specification

implementation

29

Host stack

Create abstractions in the simulation stack …

declarative model

imperative model

implementation

30

Host stack

analyze

Analyze as little as possible

declarative model

31

Host stack

analyzedesign

reuse

Further facilitate design, reuse, …

declarative model

32

– Repeated application of a monotonically increasing partial
function converges to a fixed point

A declarative formalism with fix-point
semantics

1/z21

Constant Gain Delay Scope

1 5
5

33

– Repeated application of a monotonically increasing partial
function converges to a fixed point

– One implementation is a data dependency schedule

A declarative formalism with fix-point
semantics

1/z21

Constant Gain Delay Scope

1 6 512
5

1 6 512
1/z21

Constant Gain Delay Scope

5

0:2 0:00:3 0:4 0:1

34

Dynamic systems evolve over time

� Sequences of fix-point evaluations
� Define input and output signals as (potentially infinite)

streams of values
– Stream(Type) = Type : Stream(Type)

� Delay as a function application
– Delay x0 u = x0 : u

1/z{2, 4, 7, …}
5

{5, 2, 4, …}

35

The two stages of a stream based functional
solver







−
= ∑ =

otherwise

eoddif

ey

ihiu
ey

e

e

i
e

)(

)1(

)()(
)(1

()∑ =

−+−= e

it

ihiuiu
ey

1 2

)1()()1(
)(

Euler integration

Trapezoidal integration

36

The two stages of a stream based functional
solver







−
= ∑ =

otherwise

eoddif

ey

ihiu
ey

e

e

i
e

)(

)1(

)()(
)(1

()∑ =

−+−= e

it

ihiuiu
ey

1 2

)1()()1(
)(

()
toleheu

eheueu
ed <−−−−−+−=)2()2(

2

)3()2()3(
)(

Euler integration

Trapezoidal integration

Error computation

increment

increment

37

previous increment

The two stages of a stream based functional
solver







−
−−−= ∑ =

otherwise

eoddif

ey

ipihiuihiu
ey

e

e

i
e

)(

)1(

)()2()2()()(
)(1

() ()∑ =
−−−+−−−+−= e

it ip
ihiuiuihiuiu

ey
1

)1(
2

)3()2()3(

2

)1()()1(
)(

()
toleheu

eheueu
ed <−−−−−+−=)2()2(

2

)3()2()3(
)(

previous increment

Euler integration

Trapezoidal integration

Error computation

increment

increment

38

Implement in a time-based block diagram

39

Modeling a bouncing ball

� Newton’s Law
mg

m
amamgmaFg

1=⇔=⇔=

Fg

R C

Ffloor = FR + FC

40

Modeling a bouncing ball

� Newton’s Law

� Viscous friction

mg
m

amamgmaFg

1=⇔=⇔=

Fg

R C

RvFR =

Ffloor = FR + FC

41

Modeling a bouncing ball

� Newton’s Law

� Viscous friction

� Hooke’s Law

mg
m

amamgmaFg

1=⇔=⇔=

Fg

Ffloor = FR + FC

R C

() CxFxxCF cC =⇔−= 0

RvFR =

42

Modeling a bouncing ball

� Contact behavior
– Discontinuous changes





 <





 +−=

otherwise

txif
C

tx
tRv

tFfloor

0)(

0

)(
)(

)(

43

Explicitly modeling the execution engine

Completely modeled solver …
… all with two basic ‘sequential’ blocks

44

How about the interaction between
continuous and discrete behavior

� Rate transition on boundary

� Which t should tevent map onto?
– Euler evaluation

� Instantaneously

– Trapezoidal evaluation
� Instantaneously

� Violates trapezoidal continuity assumption

– Accepted evaluations
� After an integration step





 <





 +−=

otherwise

etxif
C

etx
etRv

etF event
event

event
eventfloor

0))((

0

))((
))((

))((

45

Comparing with an analytic solution

0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

time

p
os

iti
on

evaluated on accepted
time step

analytic solution

always evaluated

Justyna Zander, Pieter J. Mosterman, Grégoire Hamon, and Ben Denckla, “On the Structure of Time
in Computational Semantics of a Variable-Step Solver for Hybrid Behavior Analysis," in the
Proceedings of the IFAC World Congress, Milan, Italy, August 28 – September 2, 2011

46

Control synthesis for a surface mount device

47

Control synthesis for a surface mount device

48

Model checking to generate a counterexample

Pieter J. Mosterman, Justyna Zander, Grégoire Hamon, and Ben Denckla, "A Computational Model of
Time for Stiff Hybrid Systems Applied to Control Synthesis," in Control Engineering Practice,
in press

49

Model checking to generate a counterexample

Pieter J. Mosterman, Justyna Zander, Grégoire Hamon, and Ben Denckla, "A Computational Model of
Time for Stiff Hybrid Systems Applied to Control Synthesis," in Control Engineering Practice,
in press

50

Characteristics of the semantic domain

� Declarative
– Purely functional (no side effects)

� Ordered evaluations
� Untimed

– Time as explicit function, t(e)

– Time is not strictly increasing

� Broadly applicable to dynamic systems
– Differential equations, difference equations, discrete events

Pieter J. Mosterman, Justyna Zander, Grégoire Hamon, and Ben Denckla, "Towards Computational
Hybrid System Semantics for Time-Based Block Diagrams," in 3rd IFAC Conference on
Analysis and Design of Hybrid Systems (ADHS'09), A. Giua, C. Mahulea, M. Silva, and J. Zaytoon
(eds.), pp. 376-385, Zaragoza, Spain, September 16-18, 2009, plenary paper.

51

Agenda

� Model-Based Design
� Problem statement
� A solution approach
� Outlook

52

Conclusions

� Computation is still maturing
– Currently, computational methods require extensive testing

� Computational methods must be better defined
– We must formalize the computational execution semantics

– Model at a declarative level

� Define solvers using a functional stream-based
approach
– Precise computational semantics of the execution engine

53

Opportunities

� Bring disciplines together
– Engineering

– Computer Science

– Physics

– Mathematics

� Exploit the abstraction to develop computational
methods for
– Analysis

– Design

– Synthesis (e.g., control synthesis)

54

Acknowledgments

Justyna Zander
Harvard University

Grégoire Hamon
MathWorks

Ben Denckla
Independent Thinker

Hans Vangheluwe
University of Antwerp

McGill University

Many thanks for their continuing collaboration!

55

®

