) MathWorks:

Advancing Model-Based Design by
Modeling Approximations of
Computational Semantics

Pieter J. Mosterman

Senior Research Scientist Adjunct Professor
Design Automation Department School of Computer Science
4\ MathWorks B McGill

© 2011 The MathWorks, Inc.

| 4\ MathWorks'
Agenda

> = Model-Based Design
= Problem statement
= A solution approach
= Outlook

Design of an engineered system

@\ MathWorks:

Increasingly more detail

4\ MathWorks:

| @\ MathWorks:

System behavior

| 4\ MathWorks:

Simulation studies

¢ [Tagetstacc_

| 4\ MathWorks:

Model-Based Design

¢ [Targetstac_

| 4\ MathWorks:

Model-Based Design

¢ [Tagetstacc_

@\ MathWorks:

Executable specifications

Host stack

¢ [Tagetstack |

4\ MathWorks:

Model elaboration

Elaborate

Host stack

<:> Target stack

10

@\ MathWorks:

Automatic code generation

Elaborate
e Synthesize
-l
= mlem -«_I: -g: ~,
Host stack <:> Target stack
1
4\ MathWorks:

Model-Based Design

Raises level of abstraction
Enables continuous testing

Elaborate

Explore
Verify
Test

Synthesize

Explore L& .. IT_E.

Verify
Test
Explore
Verify
Test

= [Tagetsta_|

Host stack

%

Agenda

= Model-Based Design
Problem statement
= A solution approach

= Qutlook

4\ MathWorks:

13

Modeling a physical system

From first principles ...

@\ Mathworks'
Hooke’s Law: F=-X"%
C
Newton’s Second: F =ma
Abit of calculus: a(t) = _d\cll(tt)
dx(t)
v(t)=—2
(t) "
An ideal oscillator: v(t) =_d);it)

SO __x)-x,
dt C

14

| @\ MathWorks:

Modeling a physical system

From first principles ... Hooke’s Law: F=-X"%
C
Newton’s Second: F =ma
’Zi dv(t)
Q ~ o Abit of calculus: a(t) = 4
dx(t
lx v(t) = #
vz t
' ax(t)
V4 An ideal oscillator: v(t) :T

Let's develop a numerical v _ X1 -x
solver to compute a solution ... dt C

15

| @\ Mathworks'
Numerical integration

Euler: step hin time along x = f (x,t)

%o (tisa) = X(&) +X(t)h,

16

4\ MathWorks:

|

Numerical integration

Euler: step hiin time along x = f (x,t) X
%o (t)| = X(t) + X, =
Trapezoidal: average the end points

s — X(tk+1) T X(tk)
X (te.g)[= X(t,) + 5

Taylor series expansion for error analysis

+

— X(tk) X(tk) 2 3
X(te.p) = X(t,) + 3 h H o he [+ O(hY)

‘Se(tkﬂ) ‘Et (tk+1)
When x(t) changes little, h, can be large!

17

@\ Mathworks'

|
Numerical integration

Euler: step hin time along x = f (x,t) X
~ . v +1
X (ta)| = X(E) + X(t)y

Trapezoidal: average the end points

s — X(tk+1) T X(tk)
R ()= X(t) 4=

Taylor series expansion for error analysis

=+

2
‘Se (tk+1) ‘Et (tk+1)

(b = X0+ X 458 ild o)

X(tk) h2
k

Change step size based on estimate: X, (t,.,) = X (t,,;) = =

4\ MathWorks:

Sophisticated solver ... ?

= Let's compute a solution to the ideal oscillator
} XY Graph 9=l B3

—~ XY Plot
Q = A 1
3 O

-1 a 1
Axis

Y Axis
o

Yy~

= We can make the error small ... but only locally!

19

@\ Mathworks'

|
Sophisticated solver ... ?

= Let's compute a solution to the ideal oscillator

} X¥ Graph
—~ %Y Plat
— A
Q ~L 1
=

-1 0 1
\\// VvV ‘\4 X Axis

= We can make the error small ... but only locally!
= It accumulates for long time behavior

= So, ... how come we can engineer today’s complex
systems?!

- [Of =]

¥ Axis
o

20

4\ MathWorks:

Engineering an embedded system

physical

validate

theoretical

- mvO
F(t)=m p

|11

.

verify

In collaboration with Hans Vangheluwe, McGill University 21

computational

void main () {
int i;

}

@\ Mathworks'

Engineering an embedded system

physical theoretical
F(t) = m% —
| validate |01 v&ify
1! [N . JAQ —>
|
validate

computational

void main () {
int i;

}

In collaboration with Hans Vangheluwe, McGill University 22

| 4\ MathWorks:

Create executable computational models in all
phases

= % %

¢ [Targetstac_

23

| 4\ MathWorks:

Make the computational approximation the
primary design deliverable—the real thing!

&géﬁé

¢ [Tagetstacc_

24

’ 4\ MathWorks

So that gets the job done ... but ...

= More than 50% of the modeling effort is in verification,
validation, and testing!

= Semantics of models is in the execution engine

= Engine code base is extensive and complex
— Interaction of approximations
— Interaction and interfacing of different formalisms

= How can we mature the field?
= Model the semantics of the execution engine!

25

‘ @\ MathwWorks'

Agenda

= Model-Based Design
= Problem statement

» = Asolution approach
= Outlook

26

| 4\ MathWorks:

Modeling the execution engine

Host stack

27

| 4\ MathWorks:

Create abstractions in the simulation stack ...

specification

implementation

Host stack

28

4\ MathWorks:

Create abstractions in the simulation stack ...

&)

declarative model
imperative model

implementation

Host stack

29

4\ MathWorks:

Analyze as little as possible

8)

declarative model ‘

Host stack

30

4\ MathWorks:

Further facilitate design, reuse, ...

design C & /> analyze

declarative model ‘ .

reuse

Host stack

31

@\ Mathworks'
A declarative formalism with fix-point
semantics
A LATTICE-THEOQORETICAL FIXPOINT THEOREM
AND ITS APPLICATIONS
ALFRED TaRSKI Pacific J. Math. 5 {1955), 285- 309

— Repeated application of a monotonically increasing partial
function converges to a fixed point

1 L L 5
1 > ¢{>—> 1z, »[]

Constant Gain Delay Scope

32

@\ MathWorks:

A declarative formalism with fix-point
semantics

A LATTICE-THEORETICAL FIXPOINT THEOREM
AND ITS APPLICATIONS

ALFRED Tarsk1 Pacific J. Math, 5 (1955), 285- 309

— Repeated application of a monotonically increasing partial
function converges to a fixed point

I NN 1z, =N]

A
Constant Gain Delay Scope

— One implementation is a data dependency schedule

I . 0i36¢|2 12 1/()22 I]

A
Constant Gain Delay Scope

33

@\ MathwWorks'

Dynamic systems evolve over time

= Sequences of fix-point evaluations

= Define input and output signals as (potentially infinite)
streams of values
— Stream(Type) = Type : Stream(Type)

= Delay as a function application
— DelayxQOu=x0:u

2,4,7,..} {1, b 5,24, ..}

34

4\ MathWorks:

The two stages of a stream based functional
solver

Euler integration

if odd(e)
otherwise

Trapezoidal integration

v.(6) = Ze:l (ud -1 +l;(i))h(i -1)

35

@\ Mathworks'

The two stages of a stream based functional
solver

Euler integration

increment
_BS ° u@h@) if odd(e)
V(= %(e—l) otherwise

Trapezoidal integration
increment

MCE (uGi -1) +;(i))h(i -1)

Error computation

d(e) = (u(e=3)+u(e-2))h(e-3

2 —u(e-2)h(e-@)| <tol >

36

4\ MathWorks:

The two stages of a stream based functional
solver

Euler integration
increment previous increment
y (e):gz;u(i)h(i)—u(i—2)h(i—2) p(i) |if odd(e)
) Ey.(e-1) X_ otherwise

Trapezoidal integration

increment pravious increment
M (uG-2)+ ;(| -2 | (ui-3)+ u?}z\—\Z))ho -3)

Error computation

d(e) =|tE=3 +u(:—2))h<e—3>

p(i-1)
P

—u(e—2)h(e—gz <tol

37

@\ Mathworks'
Implement in a time-based block diagram

di do

wariable-step
salwer

38

| 4\ MathWorks:
Modeling a bouncing ball

= Newton’s Law

_ _ _1
Fy,=ma - mg=ma - a—amg

39

‘ @\ MathwWorks'
Modeling a bouncing ball

= Newton’s Law 1
F,=ma - mg=ma - a:Emg

= Viscous friction
F. =Rv

40

@\ MathWorks:

|
Modeling a bouncing ball

= Newton’s Law

F = _ 1
,=ma = mg=ma - a—amg
= Viscous friction

Fr =Rv

= Hooke's Law
Fe =C(x—x0) = F.=Cx

41

@\ MathwWorks'

|
Modeling a bouncing ball

= Contact behavior
— Discontinuous changes

B—ER\/(t)+@H if x(t) <0
0 CO

Ffloor (t) = D OtherVVISG

model 42

4\ MathWorks:
Explicitly modeling the execution engine

odedS (Dormand-Prince)
discrete (N0 continuous states)
oded5 (Dor mand-Prince)
ode23 (Bogacki-Shampine)
ode113 (Adams)

ode15s (stiff NDF)

ode23s (stiffMod. Rosenbrack)
ode23t (mod. stiff/Trapezoidal)
ode23th (stiff/TR-BOF2)

Completely modeled solver ...
... all with two basic ‘sequential’ blocks

delay latch

T—\

hd V!

bauncing ball
del
“ariable-step made
solwer

43

@\ Mathworks'
How about the interaction between

continuous and discrete behavior
= Rate transition on boundary

if X(toyen(€)) <O
otherwise

X(toen (€))
l:ﬂoor (tevent (e)) = Q_ Q:\N(tevem (e)) ¥ C H

= Which t should t,; map onto?
— Euler evaluation
= Instantaneously
— Trapezoidal evaluation
= Instantaneously

= Violates trapezoidal continuity assumption
— Accepted evaluations

= After an integration step

a4

4\ MathWorks:

Comparing with an analytic solution

0.02

0

position

-0.02

-0.04

-0.06

-0.08

-0.1

| | i
| | |
012 I I I I]
0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46

Justyna Zander, Pieter J. Mosterman, Grégoire HamahBan Denckla, On the Structure of Time
in Computational Semantics of a Variable-Step Solver for Hybrid Behavior Analysis," in the
Proceedings of the IFAC World Congress, Milan, Italy, August 28 — September 2, 2011

45

4\ MathWorks
Control synthesis for a surface mount device

control properties

surface mount device

wariable step
solver

46

@\ MathWorks:
Control synthesis for a surface mount device

o
- (EUN::@;'I:?I:EST\ME) tales
i
Gﬂ
[1l
[
[
47
4\ MathWorks:
Model checking to generate a counterexample
Counterexample 1 HE

3.4 | -contral farce

Hame: ‘comrol farce | T:| ‘ T:| ‘

index: |1 v v [| e ‘

Pieter J. Mosterman, Justyna Zander, Grégoire HamahBan Denckla, A Computational M odel of
Timefor Stiff Hybrid SystemsApplied to Control Synthesis," in Control Engineering Practice,

in press
P 48

@\ MathWorks:

Model checking to generate a counterexample

3.4 | _contral force

—&-no control
—=—force profile

acceleration
o

| of
4.8 !

5

_1 0 -
LLett Por
Hame: cortrol force Tz =2 - - 4 - e . 1
0 0 0.01 0.02 0.03 0.04 0.05
ndex: 1 hd .
time

Pieter J. Mosterman, Justyna Zander, Grégoire HamanBan Denckla, A Computational M odel of
Timefor Stiff Hybrid Systems Applied to Control Synthesis," in Control Engineering Practice,

in press 49

@\ MathwWorks'

Characteristics of the semantic domain

= Declarative
— Purely functional (no side effects)
= Ordered evaluations
= Untimed
— Time as explicit function, t(e)
— Time is not strictly increasing
= Broadly applicable to dynamic systems
— Differential equations, difference equations, discrete events

Pieter J. Mosterman, Justyna Zander, Grégoire HamanBan Denckla, Towards Computational
Hybrid System Semantics for Time-Based Block Diagrams,” in 3rd IFAC Conference on
Analysis and Design of Hybrid Systems (ADHS'09), A. Giua, C. Mahulea, M. Silva, and J. Zaytoon
(eds.), pp. 376-385, Zaragoza, Spain, September 16-18, 2009, plenary paper.

50

’ 4\ MathWorks

Agenda

= Model-Based Design

= Problem statement

= A solution approach
2« Outlook

51

‘ @\ MathwWorks'

Conclusions

= Computation is still maturing
— Currently, computational methods require extensive testing
= Computational methods must be better defined
— We must formalize the computational execution semantics
— Model at a declarative level
= Define solvers using a functional stream-based
approach
— Precise computational semantics of the execution engine

52

Opportunities

= Bring disciplines together
Engineering

Computer Science

Physics

Mathematics

= Exploit the abstraction to develop computational

methods for

— Analysis

— Design

— Synthesis (e.g., control synthesis)

@\ MathWorks:

53

Acknowledgments

Justyna Zander
Harvard University

Grégoire Hamon
MathWorks

Ben Denckla
Independent Thinker

Hans Vangheluwe
University of Antwerp
McGill University

Many thanks for their continuing collaboration!

@\ MathwWorks'

54

4\ MathWorks

@\ MathWorks:

Accelerating the pace of engineering and science

55

