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Design of an engineered system
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Increasingly more detail
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Target stack

System behavior
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Target stackHost stack

Simulation studies
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Host stack Target stack

Model-Based Design
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Host stack Target stack

Model-Based Design
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Host stack Target stack

Executable specifications
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Host stack Target stack

Model elaboration

Elaborate
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Host stack Target stack

Automatic code generation

Elaborate

Synthesize
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Host stack Target stack

Explore
Verify
Test

Elaborate

Synthesize

Explore
Verify
Test

Raises level of abstraction

Enables continuous testing

Model-Based Design

Explore
Verify
Test
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Modeling a physical system
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From first principles … Hooke’s Law:

Newton’s Second:
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Modeling a physical system
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Let’s develop a numerical
solver to compute a solution …

From first principles … Hooke’s Law:

Newton’s Second:
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Numerical integration
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Numerical integration
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Trapezoidal: average the end points

Taylor series expansion for error analysis
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When x(t) changes little, hk can be large!
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Numerical integration
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Trapezoidal: average the end points

Taylor series expansion for error analysis
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Sophisticated solver … ?

� Let’s compute a solution to the ideal oscillator

� We can make the error small … but only locally!
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Sophisticated solver … ?

� Let’s compute a solution to the ideal oscillator

� We can make the error small … but only locally!
� It accumulates for long time behavior
� So, … how come we can engineer today’s complex 

systems?! 
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Engineering an embedded system

physical theoretical computational
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verifyvalidate

void main () {
int i;

}

In collaboration with Hans Vangheluwe, McGill University
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Engineering an embedded system

physical theoretical computational

dt

tdv
mtF
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validate

verifyvalidate

refine

void main () {
int i;

}

In collaboration with Hans Vangheluwe, McGill University
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Host stack Target stack

Create executable computational models in all 
phases
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Host stack Target stack

Make the computational approximation the 
primary design deliverable—the real thing!
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So that gets the job done … but …

� More than 50% of the modeling effort is in verification, 
validation, and testing!

� Semantics of models is in the execution engine
� Engine code base is extensive and complex

– Interaction of approximations

– Interaction and interfacing of different formalisms

� How can we mature the field?
� Model the semantics of the execution engine! 
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Agenda

� Model-Based Design
� Problem statement
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� Outlook
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Host stack

Modeling the execution engine
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Host stack

Create abstractions in the simulation stack …

specification

implementation
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Host stack

Create abstractions in the simulation stack …

declarative model

imperative model

implementation
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Host stack

analyze

Analyze as little as possible

declarative model
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Host stack

analyzedesign

reuse

Further facilitate design, reuse, …

declarative model
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– Repeated application of a monotonically increasing partial 
function converges to a fixed point

A declarative formalism with fix-point 
semantics

1/z21

Constant Gain Delay Scope

1 5
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– Repeated application of a monotonically increasing partial 
function converges to a fixed point

– One implementation is a data dependency schedule

A declarative formalism with fix-point 
semantics

1/z21

Constant Gain Delay Scope

1 6 512
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Dynamic systems evolve over time

� Sequences of fix-point evaluations
� Define input and output signals as (potentially infinite) 

streams of values
– Stream(Type) = Type : Stream(Type)

� Delay as a function application
– Delay x0 u = x0 : u

1/z{2, 4, 7, …}
5

{5, 2, 4, …}
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The two stages of a stream based functional 
solver
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Trapezoidal integration
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The two stages of a stream based functional 
solver
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previous increment

The two stages of a stream based functional 
solver







−
−−−= ∑ =

otherwise

eoddif

ey

ipihiuihiu
ey

e

e

i
e

)(

)1(

)()2()2()()(
)( 1

( ) ( )∑ =
−−−+−−−+−= e

it ip
ihiuiuihiuiu

ey
1

)1(
2

)3()2()3(

2

)1()()1(
)(

( )
toleheu

eheueu
ed <−−−−−+−= )2()2(

2

)3()2()3(
)(

previous increment

Euler integration

Trapezoidal integration

Error computation

increment

increment

38

Implement in a time-based block diagram
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Modeling a bouncing ball

� Newton’s Law 
mg

m
amamgmaFg
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R C

Ffloor = FR + FC
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Modeling a bouncing ball

� Newton’s Law 

� Viscous friction

mg
m

amamgmaFg

1=⇔=⇔=

Fg

R C

RvFR =

Ffloor = FR + FC
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Modeling a bouncing ball

� Newton’s Law 

� Viscous friction

� Hooke’s Law

mg
m

amamgmaFg
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Ffloor = FR + FC

R C

( ) CxFxxCF cC =⇔−= 0

RvFR =
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Modeling a bouncing ball

� Contact behavior
– Discontinuous changes
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Explicitly modeling the execution engine

Completely modeled solver …
… all with two basic ‘sequential’ blocks
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How about the interaction between 
continuous and discrete behavior

� Rate transition on boundary

� Which t should tevent map onto?
– Euler evaluation

� Instantaneously

– Trapezoidal evaluation
� Instantaneously

� Violates trapezoidal continuity assumption

– Accepted evaluations
� After an integration step
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Comparing with an analytic solution
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Justyna Zander, Pieter J. Mosterman, Grégoire Hamon, and Ben Denckla,  “On the Structure of Time 
in Computational Semantics of a Variable-Step Solver for Hybrid Behavior Analysis," in  the 
Proceedings of the IFAC World Congress, Milan, Italy, August 28 – September 2, 2011
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Control synthesis for a surface mount device
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Control synthesis for a surface mount device
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Model checking to generate a counterexample

Pieter J. Mosterman, Justyna Zander, Grégoire Hamon, and Ben Denckla,  "A Computational Model of 
Time for Stiff Hybrid Systems Applied to Control Synthesis," in Control Engineering Practice, 
in press
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Model checking to generate a counterexample

Pieter J. Mosterman, Justyna Zander, Grégoire Hamon, and Ben Denckla,  "A Computational Model of 
Time for Stiff Hybrid Systems Applied to Control Synthesis," in Control Engineering Practice, 
in press
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Characteristics of the semantic domain

� Declarative
– Purely functional (no side effects)

� Ordered evaluations
� Untimed

– Time as explicit function, t(e)

– Time is not strictly increasing

� Broadly applicable to dynamic systems
– Differential equations, difference equations, discrete events

Pieter J. Mosterman, Justyna Zander, Grégoire Hamon, and Ben Denckla,  "Towards Computational 
Hybrid System Semantics for Time-Based Block Diagrams," in 3rd IFAC Conference on 
Analysis and Design of Hybrid Systems (ADHS'09), A. Giua, C. Mahulea, M. Silva, and J. Zaytoon 
(eds.), pp. 376-385, Zaragoza, Spain, September 16-18, 2009, plenary paper.
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Conclusions

� Computation is still maturing
– Currently, computational methods require extensive testing

� Computational methods must be better defined
– We must formalize the computational execution semantics

– Model at a declarative level

� Define solvers using a functional stream-based 
approach
– Precise computational semantics of the execution engine
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Opportunities

� Bring disciplines together
– Engineering

– Computer Science

– Physics

– Mathematics

� Exploit the abstraction to develop computational 
methods for
– Analysis 

– Design

– Synthesis (e.g., control synthesis)
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