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What are the super trends?

� Design automation

� Computation

� Power

� Network

� Actuation and manipulation

� Autonomy
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An example—or; what I want … ☺☺☺☺

http://alistairpott.com/2008/11/26

http://www.channel4.com/4homes



5

An example—or; what I want … ☺☺☺☺

http://www.anybots.com—Monty

http://alistairpott.com/2008/11/26

http://www.channel4.com/4homes
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A few things we must design for …

http://www.anybots.com—Monty
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Overwhelming complexity of required 
technologies

� Computation in control
� Formalisms

– Parallel programming languages

– Semantic anchoring

� Model transformation
� Architecture (performance) modeling
� Platforms
� Heterogeneity
� Component-based design (system integration) 
� Static checking of dynamic properties
� Co-simulation (hybrid dynamic systems) 
� Sensor fusion 
� …
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On the importance of computation
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On the importance of computation

Together with theory and experimentation, 
computational science now constitutes the “third 
pillar” of scientific inquiry, 

In industry, computational science provides a 
competitive edge by transforming business and 
engineering practices.
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On the importance of computation
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On the importance of computation

As new funding becomes available, the following four areas 
should receive disproportionally larger increases […]
� NIT Systems Connected with the Physical World (which are 

also called embedded, engineered, or cyber-physical systems)
� […]
� Software: The NITRD Subcommittee should facilitate efforts by 

leaders from academia, industry, and government to identify 
critical issues in software design and development



13

On the importance of computation
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On the importance of computation

Resolved, That the House of Representatives—
3) encourages the expansion of modeling and simulation as a tool 

and subject within higher education;
4) recognizes modeling and simulation as a National Critical 

Technology;
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Model-Based Design
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Model-Based Design

Connect
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The good of computation …

� Computation in
– Design to inspire creativity

– Features for unparalleled flexibility
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The good of computation …
… and the ‘not so good’

� Computation in
– Design to inspire creativity

– Features for unparalleled flexibility

– Systems of unforeseen complexity
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� Computation in
– Design to inspire creativity

– Features for unparalleled flexibility

– Systems of unforeseen complexity

The good of computation …
… and the ‘not so good’
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… perform complete, closed-loop, system testing.

Ariane 5 has[…] a build-up of horizontal velocity which 
is five times more rapid than for Ariane 4. […] 

� Computation in
– Design to inspire creativity

– Features for unparalleled flexibility

– Systems of unforeseen complexity

The internal SRI software exception was caused during 
execution of a data conversion from 64-bit floating point 
to 16-bit signed integer value.

The good of computation …
… and the ‘not so good’
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System-level testing is critical!

http://www.nasaimages.org
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System-level testing is critical!

End-to-end testing to validate the small forces ground 
software performance and its applicability to the 
specification did not appear to be accomplished.

http://www.nasaimages.org

“Although starting from MGS-heritage software, the coded MGS 
thruster equation had to be changed […] the 4.45 conversion factor […] 
was not immediately identifiable by inspection (being buried in the 
equation) or commented in the code in an obvious way …”

E.E. Euler, S.D. Jolly, and H.H. Curtis, “The Failures of the Mars Climate Orbiter and Mars Polar Lander: A Perspective from the
People Involved,” Proceedings of Guidance and Control 2001, American Astronautical Society, paper AAS 01-074, 2001.
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What is the problem (1.)?
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What is the problem (1.)?

… initial software development tasks related to 
blocks 3 and 3.1 have been delayed between 1 
and 14 months behind the 1997 schedule.

7 Block 3 is the third major avionics software segment, which 
brings most avionics software in an integrated system.

Too complex to design …
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s = fitoptions( 'Method' , 'NonlinearLeastSquares' , 'Lower' ,[0,1], 'Upper' ,[inf,1901], ...
'Startpoint' ,[1 1901]);

f = fittype( ' a*(x-b)^n + 1' , 'problem' , 'n' , 'independent' , 'x' , 'options' ,s)

What is the problem (2.) ?
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s = fitoptions( 'Method' , 'NonlinearLeastSquares' , 'Lower' ,[0,1901,0], 'Upper' ,[inf,2020,inf], ...
'Startpoint' ,[1,1901,0.01]);

f = fittype( ' a*tan(c*(x-b))+n' , 'problem' , 'n' , 'independent' , 'x' , 'options' ,s)

What is the problem (2.) ?
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What is the problem (2.) ?
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What is the problem (2.) ?

We do not ‘understand’ computation!

[…] engineers used Crater during STS-107 to analyze a piece of 
debris that was at maximum 640 times larger in volume than the 
pieces of debris used to calibrate and validate the Crater model.

Dr. Scott Lieberman—AP Photo/Tyler Morning Telegraph
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Electronics Design, Strategy, News (EDN) Asia

What is the problem (3.)
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Electronics Design, Strategy, News (EDN) Asia

What is the problem (3.)

A historical precedent:
� “Added wiring increased vehicle weight, weakened performance, 

and made adherence to reliability standards difficult.” 
� “Also complex wiring harnesses took up large amounts of 

vehicle volume, limiting expanded functionality. Eventually, the 
wiring harness became the single most expensive and 
complicated component in vehicle electrical systems.”

G. Leen and D. Heffernan, “Expanding automotive electronic systems,” Computer, pp. 88 – 93, 35(1), 2002
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Electronics Design, Strategy, News (EDN) Asia

What is the problem (3.)

A historical precedent:
� “Added wiring increased vehicle weight, weakened performance, and 

made adherence to reliability standards difficult.” 

� “Also complex wiring harnesses took up large amounts of vehicle 
volume, limiting expanded functionality. Eventually, the wiring harness 
became the single most expensive and complicated component in 
vehicle electrical systems.”

G. Leen and D. Heffernan, “Expanding automotive electronic systems,” Computer, pp. 88 – 93, 35(1), 2002

Google

Need infrastructure platforms
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Integrated system testing … ?
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Modeling domains

Simulink
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Integration of computational semantics 
across many domains

� Once a model has been designed, consistency is 
more important than ‘semantic correctness’

� This requires a precise definition of the 
computational semantics

� Multiple formalisms in heterogeneous systems 
amplify the importance of computational semantics
– Block diagrams with discrete functionality 

(switches, reinitialization, inequalities, etc.)
– State transition diagrams

� Can we define a common semantic domain?

highly
sensitive
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Modeling a physical system

v

x

Let’s develop a numerical
solver to compute a solution …
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Numerical integration
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Sophisticated solver … ?

� Let’s compute a solution to the ideal oscillator

� We can make the error small … but only locally!

� It accumulates for ‘long time’ behavior

� So, … how come the JSF flies?! 

v

x

v
x
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Engineering an embedded system

physical theoretical
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In collaboration with Hans Vangheluwe, McGill University
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void main () {
int i;

}
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A declarative formalism with fix-point 
semantics

1/z21

Constant Gain Delay Scope
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5

� Tarski’s fix-point theorem
– Repeated application of a monotonically increasing 

partial function converges to a fixed point
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A declarative formalism with fix-point 
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Dynamic systems evolve over time

1/z{2, 4, 7, …}
5

{5, 2, 4, …}

� Sequences of fix-point evaluations
� Define input and output signals as (potentially 

infinite) streams of values
– Stream(Type) = Type : Stream(Type)

� Delay as a function application
– Delay x0 u = x0 : u

– A variable has a ‘clock’ that encodes its sample time
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Multiple rates; a potential problem …

� Streams are only practical if we can limit the 
stream entries being accessed

� Not this:

even

x0

+

x4
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x2
x1
x0

x4
x2
x0

x0+x0{x0, x1, x2, x3, x4, …

x1
x2
x3
x4

x1+x2

x2+x4

x5
x5
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Clock calculus to detect

� Require compatible clocks: the synchronous 
assumption

� Match against base clock

even
+

{x0, x1, x2, x3, x4, …
{x0, x1, x2, x3, x4, … }
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Clock calculus to detect

� Require compatible clocks: the synchronous 
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{2, 7, 3, …}

Source

Ts = 2 (s)

T T T T T T T

A multi-rate system example

1/z2

Gain Delay Scope

Ts = 1 (s)

Source
Delay
BaseFind greatest common divisor (Ts)!
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Can we use this framework to define a 
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� Separate
– Time (explicit)

– Evaluations (ordered)

� Time as a function of 
evaluations
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– Step may be 0

– Step may be negative
� Time may recede
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Now we can create a variable step solver inside 1/s that maps onto
the synchronous paradigm
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Now we can create a variable step solver inside 1/s that maps onto
the synchronous paradigm

Dynamically compute ‘hold’ output 
as an argument of time ...

No predetermined sequence of 
output values
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Agenda

� On the importance of computation

� Challenges in engineering systems

� Why model time as discrete events
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Unifying formalisms with different 
semantics

� Newton and Hooke’s Laws
– Differential equations as before

� Control behavior
– Sampled data (periodic)

� Contact behavior
– Discontinuous changes …
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Modeling the contact behavior

� Simultaneous inequalities

� Finite state machine

free contact
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Computational simulation

Position vs. time Time vs. evaluations (detail)

Simultaneous inequalities Finite state machine
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Characteristics of the semantic domain

� Declarative
– Purely functional (no side effects)

� Ordered evaluations
� Untimed

– Time as explicit function, t(e)

– Time is not strictly increasing

� Broadly applicable to dynamic systems
– Differential equations, difference equations, discrete 

events
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Conclusions

� Challenges in engineering system design
1. Too complex to design …
2. We do not ‘understand’ computation!
3. Need infrastructure platforms

� What can we do to address this?
1. Improve composition and abstraction
2. Model computation!!
3. Decouple functionality from implementation

� A unifying denotational semantics!
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Precise computational semantics as a 
foundation for …

� Integrated multi-domain modeling

� End-to-end system analysis

� Support for design automation
– Multi-view/abstraction models (with approximation)

– Design of new languages (e.g., for concurrency, 
heterogeneity)

– Compositionality and composability
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