
1

A Computational Semantics of Time-
based Models and Its Role in Model-
Based Design
Pieter J. Mosterman

2

Agenda

� On the importance of computation

� Challenges in engineering systems

� Why model time as discrete events

� A unifying semantic domain

� A heterogeneous system example

� Conclusions

3

What are the super trends?

� Design automation

� Computation

� Power

� Network

� Actuation and manipulation

� Autonomy

4

An example—or; what I want … ☺☺☺☺

http://alistairpott.com/2008/11/26

http://www.channel4.com/4homes

5

An example—or; what I want … ☺☺☺☺

http://www.anybots.com—Monty

http://alistairpott.com/2008/11/26

http://www.channel4.com/4homes

6

manipulation
security

trust
sensor fusion

situational
awareness

planning
autonomy

networked
control

mixed initiative

safety

hierarchical
controlmobility

uncertainty

training

materials

power density

instructing

automatic
management

electro-mechanics

A few things we must design for …

http://www.anybots.com—Monty

7

Overwhelming complexity of required
technologies

� Computation in control
� Formalisms

– Parallel programming languages

– Semantic anchoring

� Model transformation
� Architecture (performance) modeling
� Platforms
� Heterogeneity
� Component-based design (system integration)
� Static checking of dynamic properties
� Co-simulation (hybrid dynamic systems)
� Sensor fusion
� …

8

Overwhelming complexity of required
technologies

� Computation in control
� Formalisms

– Parallel programming languages

– Semantic anchoring

� Model transformation
� Architecture (performance) modeling
� Platforms
� Heterogeneity
� Component-based design (system integration)
� Static checking of dynamic properties
� Co-simulation (hybrid dynamic systems)
� Sensor fusion
� …

9

On the importance of computation

10

On the importance of computation

Together with theory and experimentation,
computational science now constitutes the “third
pillar” of scientific inquiry,

In industry, computational science provides a
competitive edge by transforming business and
engineering practices.

11

On the importance of computation

12

On the importance of computation

As new funding becomes available, the following four areas
should receive disproportionally larger increases […]
� NIT Systems Connected with the Physical World (which are

also called embedded, engineered, or cyber-physical systems)
� […]
� Software: The NITRD Subcommittee should facilitate efforts by

leaders from academia, industry, and government to identify
critical issues in software design and development

13

On the importance of computation

14

On the importance of computation

Resolved, That the House of Representatives—
3) encourages the expansion of modeling and simulation as a tool

and subject within higher education;
4) recognizes modeling and simulation as a National Critical

Technology;

15

Agenda

� On the importance of computation

� Challenges in engineering systems

� Why model time as discrete events

� A unifying semantic domain

� A heterogeneous system example

� Conclusions

16

Model-Based Design

Explore
Verify
Test

Explore
Verify
Test

Explore
Verify
Test

Technology stack

17

Model-Based Design

Technology stack

Explore
Verify
Test

Explore
Verify
Test

Explore
Verify
Test

Simulation stack

18

Model-Based Design

Technology stack

Explore
Verify
Test

Explore
Verify
Test

Explore
Verify
Test

Simulation stack

19

Model-Based Design

Technology stack

Explore
Verify
Test

Explore
Verify
Test

Explore
Verify
Test

Simulation stack

Explore
Verify
Test

Explore
Verify
Test

Compute

20

Model-Based Design

Technology stack

Explore
Verify
Test

Explore
Verify
Test

Explore
Verify
Test

Simulation stack

Explore
Verify
Test

Explore
Verify
Test

Compute
Raises level of abstraction

Enables continuous testing

21

Model-Based Design

Technology stack

Explore
Verify
Test

Explore
Verify
Test

Explore
Verify
Test

Simulation stack

Explore
Verify
Test

Compute
Raises level of abstraction

Enables continuous testing

Explore
Verify
Test

22

Model-Based Design

Technology stack

Explore
Verify
Test

Explore
Verify
Test

Explore
Verify
Test

Simulation stack

Explore
Verify
Test

Compute
Raises level of abstraction

Enables continuous testing

Elaborate

Explore
Verify
Test

Construct

23

Model-Based Design

Technology stack

Explore
Verify
Test

Explore
Verify
Test

Explore
Verify
Test

Simulation stack

Explore
Verify
Test

Compute
Raises level of abstraction

Enables continuous testing

Elaborate

Explore
Verify
Test

Construct

24

Model-Based Design

Technology stack

Explore
Verify
Test

Explore
Verify
Test

Explore
Verify
Test

Simulation stack

Explore
Verify
Test

Compute
Raises level of abstraction

Enables continuous testing

Elaborate

Explore
Verify
Test

Construct

CompileSynthesize

25

Model-Based Design

Technology stack

Compile

Simulation stack

Construct

Compute

26

Model-Based Design

Connect

Compile

Construct

Compute

27

The good of computation …

� Computation in
– Design to inspire creativity

– Features for unparalleled flexibility

28

The good of computation …
… and the ‘not so good’

� Computation in
– Design to inspire creativity

– Features for unparalleled flexibility

– Systems of unforeseen complexity

29

� Computation in
– Design to inspire creativity

– Features for unparalleled flexibility

– Systems of unforeseen complexity

The good of computation …
… and the ‘not so good’

30

… perform complete, closed-loop, system testing.

Ariane 5 has[…] a build-up of horizontal velocity which
is five times more rapid than for Ariane 4. […]

� Computation in
– Design to inspire creativity

– Features for unparalleled flexibility

– Systems of unforeseen complexity

The internal SRI software exception was caused during
execution of a data conversion from 64-bit floating point
to 16-bit signed integer value.

The good of computation …
… and the ‘not so good’

31

System-level testing is critical!

http://www.nasaimages.org

32

System-level testing is critical!

End-to-end testing to validate the small forces ground
software performance and its applicability to the
specification did not appear to be accomplished.

http://www.nasaimages.org

“Although starting from MGS-heritage software, the coded MGS
thruster equation had to be changed […] the 4.45 conversion factor […]
was not immediately identifiable by inspection (being buried in the
equation) or commented in the code in an obvious way …”

E.E. Euler, S.D. Jolly, and H.H. Curtis, “The Failures of the Mars Climate Orbiter and Mars Polar Lander: A Perspective from the
People Involved,” Proceedings of Guidance and Control 2001, American Astronautical Society, paper AAS 01-074, 2001.

33

What is the problem (1.)?

34

What is the problem (1.)?

35

What is the problem (1.)?

… initial software development tasks related to
blocks 3 and 3.1 have been delayed between 1
and 14 months behind the 1997 schedule.

7 Block 3 is the third major avionics software segment, which
brings most avionics software in an integrated system.

Too complex to design …

36

s = fitoptions('Method' , 'NonlinearLeastSquares' , 'Lower' ,[0,1], 'Upper' ,[inf,1901], ...
'Startpoint' ,[1 1901]);

f = fittype(' a*(x-b)^n + 1' , 'problem' , 'n' , 'independent' , 'x' , 'options' ,s)

What is the problem (2.) ?

37

s = fitoptions('Method' , 'NonlinearLeastSquares' , 'Lower' ,[0,1901,0], 'Upper' ,[inf,2020,inf], ...
'Startpoint' ,[1,1901,0.01]);

f = fittype(' a*tan(c*(x-b))+n' , 'problem' , 'n' , 'independent' , 'x' , 'options' ,s)

What is the problem (2.) ?

38

What is the problem (2.) ?

39

What is the problem (2.) ?

We do not ‘understand’ computation!

[…] engineers used Crater during STS-107 to analyze a piece of
debris that was at maximum 640 times larger in volume than the
pieces of debris used to calibrate and validate the Crater model.

Dr. Scott Lieberman—AP Photo/Tyler Morning Telegraph

40

Electronics Design, Strategy, News (EDN) Asia

What is the problem (3.)

41

Electronics Design, Strategy, News (EDN) Asia

What is the problem (3.)

A historical precedent:
� “Added wiring increased vehicle weight, weakened performance,

and made adherence to reliability standards difficult.”
� “Also complex wiring harnesses took up large amounts of

vehicle volume, limiting expanded functionality. Eventually, the
wiring harness became the single most expensive and
complicated component in vehicle electrical systems.”

G. Leen and D. Heffernan, “Expanding automotive electronic systems,” Computer, pp. 88 – 93, 35(1), 2002

42

Electronics Design, Strategy, News (EDN) Asia

What is the problem (3.)

A historical precedent:
� “Added wiring increased vehicle weight, weakened performance, and

made adherence to reliability standards difficult.”

� “Also complex wiring harnesses took up large amounts of vehicle
volume, limiting expanded functionality. Eventually, the wiring harness
became the single most expensive and complicated component in
vehicle electrical systems.”

G. Leen and D. Heffernan, “Expanding automotive electronic systems,” Computer, pp. 88 – 93, 35(1), 2002

Google

Need infrastructure platforms

43

uint8 sfix16

ISS mem

interf. periph.

ISS mem

interf.
mem.

periph.

HdS API

Comm. OS

HAL

HAL API

HdS API

Comm. OS

HAL

HAL API

REQ 8.5
At no ... TEST 6.5

implemented

communication network

REQ 1.3.2
In case ... TEST 4.2

algorithm

REQ 1.2
For each ... TEST 6.3

timed

uint8 sfix16

communication network

abstract uP mem abstract uP

REQ 2.1.2
If up and ... TEST 3.7

tasked

The context of engineering system design

In collaboration with Katalin Popovici, TIMA

44

uint8 sfix16

ISS mem

interf. periph.

ISS mem

interf.
mem.

periph.

HdS API

Comm. OS

HAL

HAL API

HdS API

Comm. OS

HAL

HAL API

REQ 8.5
At no ... TEST 6.5

implemented

communication network

REQ 1.3.2
In case ... TEST 4.2

algorithm

REQ 1.2
For each ... TEST 6.3

timed

uint8 sfix16

communication network

abstract uP mem abstract uP

REQ 2.1.2
If up and ... TEST 3.7

tasked

1. Too complex to design …

integration is not composition

no proper refinement

The context of engineering system design

In collaboration with Katalin Popovici, TIMA

45

uint8 sfix16

ISS mem

interf. periph.

ISS mem

interf.
mem.

periph.

HdS API

Comm. OS

HAL

HAL API

HdS API

Comm. OS

HAL

HAL API

REQ 8.5
At no ... TEST 6.5

implemented

communication network

REQ 1.3.2
In case ... TEST 4.2

algorithm

REQ 1.2
For each ... TEST 6.3

timed

uint8 sfix16

communication network

abstract uP mem abstract uP

REQ 2.1.2
If up and ... TEST 3.7

tasked

dynamics of computation

2. We do not ‘understand’ computation!

1. Too complex to design …

integration is not composition

no proper refinement

The context of engineering system design

In collaboration with Katalin Popovici, TIMA

46

uint8 sfix16

ISS mem

interf. periph.

ISS mem

interf.
mem.

periph.

HdS API

Comm. OS

HAL

HAL API

HdS API

Comm. OS

HAL

HAL API

REQ 8.5
At no ... TEST 6.5

implemented

communication network

The context of engineering system design

REQ 1.3.2
In case ... TEST 4.2

algorithm

REQ 1.2
For each ... TEST 6.3

timed

uint8 sfix16

communication network

abstract uP mem abstract uP

REQ 2.1.2
If up and ... TEST 3.7

tasked

dynamics of computation

3. Need infrastructure platforms

2. We do not ‘understand’ computation!

1. Too complex to design …
application configuration

integration is not composition

no proper refinement

In collaboration with Katalin Popovici, TIMA

47

uint8 sfix16

ISS mem

interf. periph.

ISS mem

interf.
mem.

periph.

HdS API

Comm. OS

HAL

HAL API

HdS API

Comm. OS

HAL

HAL API

REQ 8.5
At no ... TEST 6.5

implemented

communication network

Integrated system testing … ?

48

uint8 sfix16

ISS mem

interf. periph.

ISS mem

interf.
mem.

periph.

HdS API

Comm. OS

HAL

HAL API

HdS API

Comm. OS

HAL

HAL API

REQ 8.5
At no ... TEST 6.5

implemented

communication network

Integrated system testing … ?

49

uint8 sfix16

ISS mem

interf. periph.

ISS mem

interf.
mem.

periph.

HdS API

Comm. OS

HAL

HAL API

HdS API

Comm. OS

HAL

HAL API

REQ 8.5
At no ... TEST 6.5

implemented

communication network

Integrated system testing … ?

50

uint8 sfix16

ISS mem

interf. periph.

ISS mem

interf.
mem.

periph.

HdS API

Comm. OS

HAL

HAL API

HdS API

Comm. OS

HAL

HAL API

REQ 8.5
At no ... TEST 6.5

implemented

communication network

Integrated system testing … ?

51

uint8 sfix16

ISS mem

interf. periph.

ISS mem

interf.
mem.

periph.

HdS API

Comm. OS

HAL

HAL API

HdS API

Comm. OS

HAL

HAL API

REQ 8.5
At no ... TEST 6.5

implemented

communication network

Integrated system testing … ?

52

uint8 sfix16

ISS mem

interf. periph.

ISS mem

interf.
mem.

periph.

HdS API

Comm. OS

HAL

HAL API

HdS API

Comm. OS

HAL

HAL API

REQ 8.5
At no ... TEST 6.5

implemented

communication network

Integrated system testing … ?

53

Integrated system testing … ?

uint8 sfix16

ISS mem

interf. periph.

ISS mem

interf.
mem.

periph.

HdS API

Comm. OS

HAL

HAL API

HdS API

Comm. OS

HAL

HAL API

REQ 8.5
At no ... TEST 6.5

implemented

communication network

54

Modeling domains

Simulink

Simulink

SimEvents

Stateflow

Simscape
SimElectronics
SimMechanics
SimHydraulics
SimDriveline

MATLAB

Integrated multi-domain modeling!

Continuous-time

Discrete-time

Discrete-event

State-machine

Noncausal

Text-based

55

Modeling domains System elements

Simulink

Simulink

SimEvents

Stateflow

Simscape
SimElectronics
SimMechanics
SimHydraulics
SimDriveline

MATLAB

Integrated multi-domain modeling!

Continuous-time

Discrete-time

Discrete-event

State-machine

Noncausal

Text-based

System environment

Digital hardware

Analog/RF hardware

Embedded software

Mechanical systems

56

Modeling domains System elements

Simulink

Simulink

SimEvents

Stateflow

Simscape
SimElectronics
SimMechanics
SimHydraulics
SimDriveline

MATLAB

Integrated multi-domain modeling!

Continuous-time

Discrete-time

Discrete-event

State-machine

Noncausal

Text-based

System environment

Digital hardware

Analog/RF hardware

Embedded software

Mechanical systems

57

Integration of computational semantics
across many domains

� Once a model has been designed, consistency is
more important than ‘semantic correctness’

� This requires a precise definition of the
computational semantics

� Multiple formalisms in heterogeneous systems
amplify the importance of computational semantics
– Block diagrams with discrete functionality

(switches, reinitialization, inequalities, etc.)
– State transition diagrams

� Can we define a common semantic domain?

highly
sensitive

58

Agenda

� On the importance of computation

� Challenges in engineering systems

� Why model time as discrete events

� A unifying semantic domain

� A heterogeneous system example

� Conclusions

59

v

x

Modeling a physical system

v

x

From first principles … Hooke’s Law:

Newton’s Second:
C

xx
F 0−−=

maF =

A bit of calculus:

dt

tdx
tv

dt

tdv
ta

)(
)(

)(
)(

=

=

C

xtx

dt

tdv
m

dt

tdx
tv

0)()(

)(
)(

−−=

=An ideal oscillator:

60

v

x

Modeling a physical system

v

x

Let’s develop a numerical
solver to compute a solution …

From first principles … Hooke’s Law:

Newton’s Second:
C

xx
F 0−−=

maF =

A bit of calculus:

dt

tdx
tv

dt

tdv
ta

)(
)(

)(
)(

=

=

C

xtx

dt

tdv
m

dt

tdx
tv

0)()(

)(
)(

−−=

=An ideal oscillator:

61

Numerical integration

kt

kx

),(txfx =&

kkkke htxtxtx)()()(ˆ 1 &+=+

Euler: step h in time along

1+kt

1+kx
kx&

62

Numerical integration

kt

kx

),(txfx =&

kkkke htxtxtx)()()(ˆ 1 &+=+

Euler: step h in time along

1+kt

1+kx

1ˆ +kx

1+kε

63

Numerical integration

kt

kx

),(txfx =&

kkkke htxtxtx)()()(ˆ 1 &+=+

Euler: step h in time along

1+kt

1+kx
1+kε

k
kk

kkt h
txtx

txtx
2

)()(
)()(ˆ 1

1

&& ++= +
+

Trapezoidal: average the end points

64

Numerical integration

kt

kx

),(txfx =&

kkkke htxtxtx)()()(ˆ 1 &+=+

Euler: step h in time along

1+kt

1+kx
1+kε

k
kk

kkt h
txtx

txtx
2

)()(
)()(ˆ 1

1

&& ++= +
+

Trapezoidal: average the end points

65

Numerical integration

kt

kx

),(txfx =&

kkkke htxtxtx)()()(ˆ 1 &+=+

Euler: step h in time along

1+kt

1+kx
1+kε

k
kk

kkt h
txtx

txtx
2

)()(
)()(ˆ 1

1

&& ++= +
+

Trapezoidal: average the end points

66

Numerical integration

kt

kx

),(txfx =&

kkkke htxtxtx)()()(ˆ 1 &+=+

Euler: step h in time along

1+kt

1+kx
1+kε

k
kk

kkt h
txtx

txtx
2

)()(
)()(ˆ 1

1

&& ++= +
+

Trapezoidal: average the end points

Taylor series expansion for error analysis

)(
!2

)(

!1

)(
)()(32

1 kk
k

k
k

kk hOh
tx

h
tx

txtx +++=+
&&&

67

Numerical integration

kt

kx

),(txfx =&

kkkke htxtxtx)()()(ˆ 1 &+=+

Euler: step h in time along

1+kt

1+kx
1+kε

k
kk

kkt h
txtx

txtx
2

)()(
)()(ˆ 1

1

&& ++= +
+

Trapezoidal: average the end points

Taylor series expansion for error analysis

)(
!2

)(

!1

)(
)()(32

1 kk
k

k
k

kk hOh
tx

h
tx

txtx +++=+
&&&

)(1+ke tε
When x(t) changes little, hk can be large!

68

Numerical integration

kt

kx

),(txfx =&

kkkke htxtxtx)()()(ˆ 1 &+=+

Euler: step h in time along

1+kt

1+kx
1+kε

k
kk

kkt h
txtx

txtx
2

)()(
)()(ˆ 1

1

&& ++= +
+

Trapezoidal: average the end points

Taylor series expansion for error analysis

)(
!2

)(

!1

)(
)()(32

1 kk
k

k
k

kk hOh
tx

h
tx

txtx +++=+
&&&

)(1+kt tε

Change step size based on estimate: 2
11 !2

)(
)(ˆ)(ˆ k

k
ktke h

tx
txtx

&&
≈− ++

)(1+ke tε

69

Sophisticated solver … ?

� Let’s compute a solution to the ideal oscillator

� We can make the error small … but only locally!

� It accumulates for ‘long time’ behavior

� So, … how come the JSF flies?!

v

x

v
x

70

Engineering an embedded system

physical theoretical

dt

tdv
mtF

)(
)(=

validate

In collaboration with Hans Vangheluwe, McGill University

computational

verify

void main () {
int i;

}

71

Engineering an embedded system

physical theoretical

dt

tdv
mtF

)(
)(=

validate

In collaboration with Hans Vangheluwe, McGill University

computational

validate

verify

void main () {
int i;

}

72

Engineering an embedded system

physical theoretical

dt

tdv
mtF

)(
)(=

validate

In collaboration with Hans Vangheluwe, McGill University

computational

validate

verify

void main () {
int i;

}

refine

73

Engineering an embedded system

physical theoretical

dt

tdv
mtF

)(
)(=

validate

In collaboration with Hans Vangheluwe, McGill University

computational

validate

verify

void main () {
int i;

}

refine

74

Agenda

� On the importance of computation

� Challenges in engineering systems

� Why model time as discrete events

� A unifying semantic domain

� A heterogeneous system example

� Conclusions

75

A declarative formalism with fix-point
semantics

1/z21

Constant Gain Delay Scope

1 5
5

� Tarski’s fix-point theorem
– Repeated application of a monotonically increasing

partial function converges to a fixed point

76

A declarative formalism with fix-point
semantics

1/z21

Constant Gain Delay Scope

1 6 512
5

� Tarski’s fix-point theorem
– Repeated application of a monotonically increasing

partial function converges to a fixed point

77

A declarative formalism with fix-point
semantics

1/z21

Constant Gain Delay Scope

5

0:2 0:00:3 0:4 0:1

� Tarski’s fix-point theorem
– Repeated application of a monotonically increasing

partial function converges to a fixed point

– One implementation is a data dependency schedule

1/z21

Constant Gain Delay Scope

1 6 512
5

78

A declarative formalism with fix-point
semantics

1 6 512
1/z21

Constant Gain Delay Scope

5

0:2 0:00:3 0:4 0:1

� Tarski’s fix-point theorem
– Repeated application of a monotonically increasing

partial function converges to a fixed point

– One implementation is a data dependency schedule

1/z21

Constant Gain Delay Scope

1 6 512
5

79

Dynamic systems evolve over time

1/z{2, 4, 7, …}
5

{5, 2, 4, …}

� Sequences of fix-point evaluations
� Define input and output signals as (potentially

infinite) streams of values
– Stream(Type) = Type : Stream(Type)

� Delay as a function application
– Delay x0 u = x0 : u

– A variable has a ‘clock’ that encodes its sample time

80

Multiple rates; a potential problem …

� Streams are only practical if we can limit the
stream entries being accessed

� Not this:

even

x0

+

x4
x3
x2
x1
x0

x4
x2
x0

x0+x0{x0, x1, x2, x3, x4, …

x1
x2
x3
x4

x1+x2

x2+x4

x5
x5

81

Clock calculus to detect

� Require compatible clocks: the synchronous
assumption

� Match against base clock

even
+

{x0, x1, x2, x3, x4, …
{x0, x1, x2, x3, x4, … }

82

Clock calculus to detect

� Require compatible clocks: the synchronous
assumption

� Match against base clock

even
+

{x0, x1, x2, x3, x4, …
{x0, x1, x2, x3, x4, … }

{ T, T, T, T, T, … }

{T, F, T, F, T, … }

83

Clock calculus to detect

� Require compatible clocks: the synchronous
assumption

� Match against base clock

even
+

{x0, x1, x2, x3, x4, …
{x0, x1, x2, x3, x4, … }

{ T, T, T, T, T, … }

{T, F, T, F, T, … }
0 pad

84

Clock calculus to detect

� Require compatible clocks: the synchronous
assumption

� Match against base clock

even
+

{x0, x1, x2, x3, x4, …
{x0, x1, x2, x3, x4, … }

{ T, T, T, T, T, … }

{T, F, T, F, T, … }
0 pad

{T, T, T, T, T, … }

{x0, , x2, , x4, … } {x0, 0, x2, 0, x4, … }

85

{2, 7, 3, …}

Source

Ts = 2 (s)

T T T T T T T

A multi-rate system example

1/z2

Gain Delay Scope

Ts = 1 (s)

Source
Delay
BaseFind greatest common divisor (Ts)!

86

{2, 7, 3, …}

Source

Ts = 2 (s)

T T T T T T T

A multi-rate system example

1/z2

Gain Delay Scope

Ts = 1 (s)

Source
Delay
Base

Ts

87

{2, 7, 3, …}

Source

Ts = 2 (s)

T T T T T T T

A multi-rate system example

1/z2

Gain Delay Scope

Ts = 1 (s)

Source
Delay
Base

Ts

T F T F T TF
T T T T T T T

88

{2, 7, 3, …}

Source

Ts = 2 (s)

T T T T T T T

A multi-rate system example

1/z2

Gain Delay Scope

Ts = 1 (s)

Source
Delay
Base

T F T F T TF
T T T T T T T

89

{2, 7, 3, …}

Source

Ts = 2 (s)

T T T T T T T

A multi-rate system example

1/z2

Gain Delay Scope

Ts = 1 (s)

Source

Delay
Base

T F T F T TF

T T T T T T T

T F T F T F TRT
T T T T T T T

90

{2, 7, 3, …}

Source

Ts = 2 (s)
T T T T T T T

A multi-rate system example

1/z2

Gain Delay Scope

Ts = 1 (s)

Source

Delay
Base

T F T F T TF

T T T T T T T

T F T F T F TRT
T T T T T T T

{2, 7, 3, …}hold

91

Can we use this framework to define a
solver?

� Separate
– Time (explicit)

– Evaluations (ordered)

� Time as a function of
evaluations

92

Can we use this framework to define a
solver?

� Separate
– Time (explicit)

– Evaluations (ordered)

� Time as a function of
evaluations

T T T T T T T

Ts

93

Can we use this framework to define a
solver?

� Separate
– Time (explicit)

– Evaluations (ordered)

� Time as a function of
evaluations

Ts

2*Ts

tim
e

T T T T T T T

94

evaluation

Can we use this framework to define a
solver?

� Separate
– Time (explicit)

– Evaluations (ordered)

� Time as a function of
evaluations

tim
e

Ts

2*Ts

95

evaluation

Can we use this framework to define a
solver?

� Separate
– Time (explicit)

– Evaluations (ordered)

� Time as a function of
evaluations

t(0)

96

evaluation

Can we use this framework to define a
solver?

� Separate
– Time (explicit)

– Evaluations (ordered)

� Time as a function of
evaluations
– Step is variable

t(0)

t(1)

t(2)

97

evaluation

Can we use this framework to define a
solver?

� Separate
– Time (explicit)

– Evaluations (ordered)

� Time as a function of
evaluations
– Step is variable

– Step may be 0 t(0)

t(1)

t(2)t(3)

98

evaluation

Can we use this framework to define a
solver?

� Separate
– Time (explicit)

– Evaluations (ordered)

� Time as a function of
evaluations
– Step is variable

– Step may be 0

– Step may be negative
� Time may recede

t(0)

t(1)

t(2)t(3)

t(4)

99

evaluation

Can we use this framework to define a
solver?

� Separate
– Time (explicit)

– Evaluations (ordered)

� Time as a function of
evaluations
– Step is variable

– Step may be 0

– Step may be negative
� Time may recede

t(0)

t(1)

t(2)t(3)

t(4)

t(5)

100

previous incrementincrement

A stream based functional solver

otherwise

eoddif

ey

ipihiuihiu
ey

e

e

i
e

)(

)1(

)()2()2()()(
)(1

−
−−−= ∑ =

() ()
∑ =

−−−+−−−+−= e

it ip
ihiuiuihiuiu

ey
1

)1(
2

)3()2()3(

2

)1()()1(
)(

()
toleheu

eheueu
ed <−−−−−+−=)2()2(

2

)3()2()3(
)(

increment previous increment

Euler integration

Trapezoidal integration

Error computation

101

{2, 7, 3, …}

Source

Ts = 2 (s)

Rate transition a function of time

1/s2

Gain Integrator Scope

hold (t)

Now we can create a variable step solver inside 1/s that maps onto
the synchronous paradigm

102

{2, 7, 3, …}

Source

Ts = 2 (s)

Rate transition a function of time

1/s2

Gain Integrator Scope

hold (t)

Now we can create a variable step solver inside 1/s that maps onto
the synchronous paradigm

Dynamically compute ‘hold’ output
as an argument of time ...

No predetermined sequence of
output values

)/()(sTtuty =

t

103

Agenda

� On the importance of computation

� Challenges in engineering systems

� Why model time as discrete events

� A unifying semantic domain

� A heterogeneous system example

� Conclusions

104

Unifying formalisms with different
semantics

� Newton and Hooke’s Laws
– Differential equations as before

� Control behavior
– Sampled data (periodic)

� Contact behavior
– Discontinuous changes …

Fpull

R C

m

Fg

x=0
Ffloorx

=
=

=
else

kif

kif

kFpull

0

110

020

)(

105

Modeling the contact behavior

� Simultaneous inequalities

� Finite state machine

free contact

0<x

0≥x

 <

 +−=
otherwise

txif
C

tx
tRv

tF floor

0)(

0

)(
)(

)(

0)(=tF floor

 +−=
C

tx
tRvtFfloor

)(
)()(

106

Computational simulation

Position vs. time Time vs. evaluations (detail)

Simultaneous inequalities Finite state machine

107

Characteristics of the semantic domain

� Declarative
– Purely functional (no side effects)

� Ordered evaluations
� Untimed

– Time as explicit function, t(e)

– Time is not strictly increasing

� Broadly applicable to dynamic systems
– Differential equations, difference equations, discrete

events

108

Agenda

� On the importance of computation

� Challenges in engineering systems

� Why model time as discrete events

� A unifying semantic domain

� A heterogeneous system example

� Conclusions

109

Conclusions

� Challenges in engineering system design
1. Too complex to design …
2. We do not ‘understand’ computation!
3. Need infrastructure platforms

� What can we do to address this?
1. Improve composition and abstraction
2. Model computation!!
3. Decouple functionality from implementation

� A unifying denotational semantics!

110

Precise computational semantics as a
foundation for …

� Integrated multi-domain modeling

� End-to-end system analysis

� Support for design automation
– Multi-view/abstraction models (with approximation)

– Design of new languages (e.g., for concurrency,
heterogeneity)

– Compositionality and composability

111

Acknowledgments

Justyna Zander
Harvard University

Fraunhofer Institute FOKUS, Berlin

Gregoire Hamon
MathWorks

Ben Denckla
Independent Thinker

Hans Vangheluwe
University of Antwerp

McGill University

Many thanks for their continuing collaboration!

