
Computational Design Using MATLAB ® and
Simulink ®

Pieter J. Mosterman
Senior Research Scientist

©
 T

he M
athW

orks, Inc., 2006

Introduction — Model-Based Design

� Computational models are key!

Agenda

� Computational design example (~5 min.)

– Engine calibration

� Accelerated simulation (~5 min.)
– The Embedded MATLAB Simulink block

� Distributed Simulation (~10 min.)
– Distributed MATLAB

� Conclusions (~5 min.)

Engine Calibration

� Derive extensive calibration tables for control

� Determine experiments and their density
� Obtain optimal representation

� Typically towards the end of the design process

� Desire to implement as a concurrent activity
� Apply computational models!

Model-Based Engine Calibration

Accelerated Simulation

� Compiled simulation model

� M code in Simulink?
� Embedded MATLAB block!

� Asteroids in Simulink

% 1. Compute Phi, Q, and R
Phi = [1 deltat 0 0; 0 1 0 0 ; 0 0 1 deltat; 0
Q = diag([0 .005 0 .005]);
R = diag([300^2 0.001^2]);

% 2. Propagate the covariance matrix:
P = Phi*P*Phi' + Q;

% 3. Propagate the track estimate:
xhat = Phi*xhat;

% 4 a). Compute observation estimates:
Rangehat = sqrt(xhat(1)^2+xhat(3)^2);
Bearinghat = atan2(xhat(3),xhat(1));

% 4 b). Compute o bservation vector y and linea
yhat = [Rangehat;
 Bearinghat];
M = [cos(Bearinghat) 0 sin(Bearingha
 - sin(Bearinghat)/Rangehat 0 cos(Bearingha

% 4 c). Compute residual (Estimation Error)
residual = meas - yhat;

% 5. Compute Kalman Gain:
W = P*M'*inv(M*P*M'+ R);

% 6. Update estimate

Distributed Simulation

� The calibration process is ‘embarrassingly

parallel’
� Large number of independent experiments
� Distributed approach!

� Convenient and efficient implementation
� Powerful language constructs desired

– Dynamic typing
– …

Conventional High Performance
Computing Workflow

� Without the distributed computing tools

Conventional High Performance
Computing Workflow

� Without the distributed computing tools

�

High Productivity Computing Workflow

� Using distributed computing tools

Enabling the High Productivity Workflow

� Availability of hardware with super computing

power from our desktop
� Multi-core
� Multi-processor
� Cluster
� Grid

� Ability to take advantage of this for highly

productive computational design

How did The MathWorks do it?

� Pluggable scheduler

How did The MathWorks do it?

� Pluggable scheduler

Benefit of Pluggable Scheduler

� Integration of distributed computing tools with

existing cluster environment of customer
� Heterogeneous clusters
� MATLAB and other applications run on the

same cluster
� Increased throughput
� Reduced cost of ownership

� Exploit unique capabilities of schedulers
� Advanced scheduling
� Batch workflow support
� Utilization and performance increase
� Scalability, reliability, and security

Object-oriented and Functional Interface

Distributed Simulation and GT-Power

Resource Management Trends

� Microsoft Cluster Computing Server

Other Applications — EIM Group

Why no parallel MATLAB before?

� Cleve’s Corner in 1995

� It did not make business sense at the time…

Market Trend

� The 10 GFLOP Personal Computer!

Recap

� High productivity computing

Conclusions

� Hardware

� Less expensive
� Networked

� Software infrastructure
� Operating system support
� Scheduling software

� Software applications
� Inherent support for distributed computing
� Think matrices not messages!

