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Executing models in less time—some 
solver insight

Pieter J. Mosterman
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What all may affect simulation performance?

� Model
– Initialization (images, ML script, set_params, …)

– Execution

– Code generation

� Solver
� Processing (Engine, Code Generator, Compiler)

– Optimization

– Diagnostics

� Interaction
– Debugging

– Logging

– Viewing

� Simulation mode
� Platform
� Use scenarios

– Simstate

http://www.mathworks.com/company/events/webinars/webinarconf.html?id=54186&language=en
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The make up of a simulation

initialize compile
model
(ctrl+d)

generate
code

compile
code

execute
loop

terminate

simulation time
budget

• Integrate
• Reduce step
• Find zero crossing
• Solve algebraic loop
• …
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Comparing performance of different 
simulation modes

Help Search: comparing performance

must rebuild code from
blocks (e.g., model reference 
blocks, MATLAB Function 
blocks, Stateflow charts)

No need to rebuild 
code from blocks
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Agenda

� Constructing models with increasing fidelity
� Execution of models explained

– Fixed step solver methods

– Variable step solver methods

– Zero crossings

� Conclusions
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Host stack Target stack

Elaborate

Synthesize

Raises level of abstraction

Enables continuous testing

Model-Based Design

High-level design Detailed design Implementation

Explore
Verify
Test

Explore
Verify
Test

Explore
Verify
Test

Explore
Verify
Test
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Host stack Target stack

Create executable models in all phases
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Host stack Target stack

Make the computational approximation the 
primary design deliverable—the real thing!
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Agenda

� Constructing models with increasing fidelity
� Execution of models explained

– A reference model

– Fixed step solver methods

– Variable step solver methods

– Zero crossings

� Conclusions
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A Simscape model—what solver to choose?
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Using a Simscape solver to generate 
reference behavior
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The corresponding Simulink model with an 
ideal diode
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Agenda

� Constructing models with increasing fidelity
� Execution of models explained

– A reference model

– Fixed step solver methods

– Variable step solver methods

– Zero crossings

� Conclusions
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ode1: forward Euler numerical integration
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ode1: stability analysis
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In MATLAB:
>> clear i
>> [X,Y]= meshgrid(-3:0.01:1,-3:0.01:3);
>> Mu = X + i*Y;
>> R = 1 + Mu;
>> Rhat = abs(R);
>> contour(X,Y,Rhat,[1, 1],’b’)
>> grid
>> hold
>> plot([0 0],[-3 3],’k’)
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Trapezoidal numerical integration
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ode2: Heun method

� But, we do not have the value at tk+1 because that is 
what we are trying to compute

� So, combine trapezoidal with Euler approximation 
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ode2: (Heun) stability

In MATLAB:
>> clear i
>> [X,Y]= meshgrid(-3:0.01:1,-3:0.01:3);
>> Mu = X + i*Y;
>> R = 1 + Mu;
>> Rhat = abs(R);
>> contour(X,Y,Rhat,[1, 1],’b’)
>> grid
>> hold
>> plot([0 0],[-3 3],’k’)
>> R = 1 + Mu + .5*Mu.^2;
>> Rhat = abs(R);
>> contour(X,Y,Rhat,[1, 1],’m’)

Stability area of Runge-Kutta methods increases with order
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In general, varying order of numerical solvers
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For example: ode1, ode2, ode3, ode4, ode5, ode8

More accurate and stable as order increases
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Stiff systems mix behavior at widely differing 
time scales
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Fixed step and solver order must be chosen 
carefully—ode1, 6e-5
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Fixed step and solver order must be chosen 
carefully—ode2, 6e-5
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Fixed step and solver order must be chosen 
carefully—ode3, 6e-5
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Fixed step and solver order must be chosen 
carefully—ode4, 6e-5



25

Fixed step and solver order must be chosen 
carefully—ode5, 6e-5

26

Fixed step and solver order must be chosen 
carefully—ode8, 6e-5
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Step size and order determine simulation time

28

Step size and order determine simulation time
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Step size and order determine simulation time
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But these solvers really used an explicit 
formulation
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How about a truly implicit approach?

� Trapezoidal integration
– Requires future points!

– Impossible?

� Can do, but requires inverting the system
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� Trapezoidal is stable in entire left half plane

� But, expensive!
– Linearization

– Inversion

Plusses and deltas?

In MATLAB:
>> clear i
>> [X,Y]= meshgrid(-3:0.01:1,-3:0.01:3);
>> Mu = X + i*Y;
>> R = 1 + Mu;
>> Rhat = abs(R);
>> contour(X,Y,Rhat,[1, 1],’b’)
>> grid
>> hold
>> plot([0 0],[-3 3],’k’)
>> R = 1 + Mu + .5*Mu.^2;
>> Rhat = abs(R);
>> contour(X,Y,Rhat,[1, 1],’m’)
>> R = (2 + Mu)./(2-Mu);
>> Rhat = abs(R);
>> contour(X,Y,Rhat,[1, 1],’r’)
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Advantage: a large step size is possible

34

Still stable with very large step size
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Agenda

� Constructing models with increasing fidelity
� Execution of models explained

– A reference model

– Fixed step solver methods

– Variable step solver methods

– Zero crossings

� Conclusions
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A fixed step size has to be stable for the 
fastest behavior anywhere in a simulation

kt
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kt
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1−kt

From k-1 to k
Fast behavior, so 
a small step is 
necessary

From k to k+1
Slow behavior, so 
a large step is 
possible

Is the ‘fast’ behavior 
holding us hostage?
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Step size control

� Compute Euler approximation

� Compute Heun approximation

� Compare the results for the error estimate, ε

� Reduce step size from hmax till ε < tol

– For example, bisection
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Tolerance consists of two components

� Relative tolerance depends on signal magnitude
� Absolute tolerance is constant

0

abstol

-abstol

magnitude + reltol * magnitude

magnitude - reltol * magnitude

magnitude
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Approximations determined by absolute and 
relative tolerance

� Absolute tolerance prevents infinitely accurate solution 
around 0

0

abstol

-abstol

magnitude + reltol * magnitude

magnitude - reltol * magnitude

magnitude
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Approximations determined by absolute and 
relative tolerance

� Combined relative and absolute tolerance drive solver 
step size selection

0

abstol

-abstol

magnitude + reltol * magnitude

magnitude - reltol * magnitude

magnitude
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Variable step solvers

� ode45
– Compares RK methods of order 4 and 5

� ode23
– Compares RK methods of order 2 and 3

� ode23tb
– Trapezoidal (implicit) integration with BDF error estimate

But now we better be careful with our computational complexity?
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A variable-step solver may actually take much 
less time to simulate
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And we can do even better: multi-step solvers 
reuse effort
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(e.g., ode23tb, ode23t)
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So, yet more efficient integration

ode45: 1.055492

ode113: 0.8866972

multi-stage is ~19% 
slower than multi-step
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But the reuse may turn against us

1−t

kx

0t

1+kx

2−t

We do not have initial values at t-2 and t-1

How do we build this history?
• Single-step integration algorithm
• Either implicit or explicit with very small step size, ε

How about t1 in case of implicit methods?
• Linearize system and invert system matrix

1t

But now when we reach a discontinuity …
… smoothness is violated … solver reset!
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Many discontinuities require many solver 
resets

diode current
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A single-step solver …
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…versus a multi-step solver …



49

… and another multi-step solver …
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But there is more to it than just the single step 
nature
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Or even …
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Note: extrapolation becomes unreliable for 
high order
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Agenda

� Constructing models with increasing fidelity
� Execution of models explained

– Fixed step solver methods

– Variable step solver methods

– Zero crossings

� Conclusions
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Discontinuities

� Variable-step solvers ‘zoom in’ on zero crossings
– Is solver step size reduction an efficient mechanism?
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� How about we use a dedicated root-finding algorithm?
– Bisection, Newton-Raphson

� Disregard the discontinuity, then search

Discontinuities
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Reduced simulation time for ode23t

Zero-crossing location OFF
>> tic;sim(gcs,’reltol’,’1e-4’,’Solver’,’ode23t’,’stoptime’,’0.5’);toc
Elapsed time is 6.255886 seconds.

Zero-crossing location ON
>> tic;sim(gcs,’reltol’,’1e-4’,’Solver’,’ode23t’,’stoptime’,’0.5’);toc
Elapsed time is 5.634365 seconds.
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But not for ode113 … because it resets its 
history anyway

Zero-crossing location OFF
>> tic;sim(gcs,’reltol’,’1e-4’,’Solver’,’ode113’,’stoptime’,’0.5’);toc
Elapsed time is 3.947801 seconds.

Zero-crossing location ON
>> tic;sim(gcs,’reltol’,’1e-4’,’Solver’,’ode113’,’stoptime’,’0.5’);toc
Elapsed time is 4.155692 seconds.
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Is computational complexity the only zero 
crossing issue?
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Chattering in our electrical circuit
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Resolve the chattering by adaptive zero 
crossings
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Or, employ a Simscape fixed-step solver with 
fixed cost

62

But a fixed-cost solver may be less accurate
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But a fixed-cost solver may be less accurate
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Agenda

� Constructing models with increasing fidelity
� Execution of models explained

– Fixed step solver methods

– Variable step solver methods

– Zero crossings

� Conclusions
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Conclusions

� Solvers selection is a trade off
– Stability

– Accuracy

– Time to simulate

� Compare different solvers and solver parameters
– Use a computationally expensive variable-step solver to 

generate a reference solution

– If the model is sensitive, investigate why
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Characterization

� My model
– Must have a predictable 

execution time (could be 
long)

– Must have a short 
simulation time

– Has widely varying time 
constants (stiff)

– Includes discontinuities

– Includes many 
discontinuities

– Exhibits chattering

– Should not be dissipative

� My solver
– Fixed step vs. variable 

step

– Explicit vs. implicit

– Single step vs. multi step

– Zero crossing location or 
not

NB: Fixed step solvers do not do root finding
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Characterization

� My model
– Must have a predictable 

execution time (could be 
long)

– Must have a short 
simulation time

– Has widely varying time 
constants (stiff)

– Includes discontinuities

– Includes many 
discontinuities

– Exhibits chattering

– Should not be dissipative

� My solver
– Fixed-step integration

� Experiment with integration 
order, step size, and 
accuracy
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Characterization

� My model
– Must have a predictable 

execution time (could be 
long)

– Must have a short 
simulation time

– Has widely varying time 
constants (stiff)

– Includes discontinuities

– Includes many 
discontinuities

– Exhibits chattering

– Should not be dissipative

� My solver
– Fixed-step integration

� If the accuracy suffices

– Variable-step integration
� Multi-step methods are 

preferred
� Zero-crossing on may 

shorten simulation time
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Characterization

� My model
– Must have a predictable 

execution time (could be 
long)

– Must have a short 
simulation time

– Has widely varying time 
constants (stiff)

– Includes discontinuities

– Includes many 
discontinuities

– Exhibits chattering

– Should not be dissipative

� My solver
– Preferably implicit

– Fixed step
� ode14x

– Variable step
� ode15s, ode23s, ode23t, 

ode23tb
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Characterization

� My model
– Must have a predictable 

execution time (could be 
long)

– Must have a short 
simulation time

– Has widely varying time 
constants (stiff)

– Includes discontinuities

– Includes many 
discontinuities

– Exhibits chattering

– Should not be dissipative

� My solver
– Variable-step integration

� No integration history (at 
least single step) with zero 
crossing location

� ode23t
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Characterization

� My model
– Must have a predictable 

execution time (could be 
long)

– Must have a short 
simulation time

– Has widely varying time 
constants (stiff)

– Includes discontinuities

– Includes many 
discontinuities

– Exhibits chattering

– Should not be dissipative

� My solver
– Fixed-step integration

� If the accuracy suffices
� Choose the fundamental 

sample time as the step 
size
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Characterization

� My model
– Must have a predictable 

execution time (could be 
long)

– Must have a short 
simulation time

– Has widely varying time 
constants (stiff)

– Includes discontinuities

– Includes many 
discontinuities

– Exhibits chattering

– Should not be dissipative

� My solver
– Fixed-step integration

� If the accuracy suffices

– Variable-step integration
� Adaptive zero crossing 

location
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Characterization

� My model
– Must have a predictable 

execution time (could be 
long)

– Must have a short 
simulation time

– Has widely varying time 
constants (stiff)

– Includes discontinuities

– Includes many 
discontinuities

– Exhibits chattering

– Should not be dissipative

� My solver
– Nondissipative integration 

method
� ode23t
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And …

Do not fall in love with a model -
-- Jacques LeFèvre



75

®


