
1© 2011 The MathWorks, Inc.

Executing models in less time—some
solver insight

Pieter J. Mosterman

2

What all may affect simulation performance?

� Model
– Initialization (images, ML script, set_params, …)

– Execution

– Code generation

� Solver
� Processing (Engine, Code Generator, Compiler)

– Optimization

– Diagnostics

� Interaction
– Debugging

– Logging

– Viewing

� Simulation mode
� Platform
� Use scenarios

– Simstate

http://www.mathworks.com/company/events/webinars/webinarconf.html?id=54186&language=en

3

The make up of a simulation

initialize compile
model
(ctrl+d)

generate
code

compile
code

execute
loop

terminate

simulation time
budget

• Integrate
• Reduce step
• Find zero crossing
• Solve algebraic loop
• …

4

Comparing performance of different
simulation modes

Help Search: comparing performance

must rebuild code from
blocks (e.g., model reference
blocks, MATLAB Function
blocks, Stateflow charts)

No need to rebuild
code from blocks

5

Agenda

� Constructing models with increasing fidelity
� Execution of models explained

– Fixed step solver methods

– Variable step solver methods

– Zero crossings

� Conclusions

6

Host stack Target stack

Elaborate

Synthesize

Raises level of abstraction

Enables continuous testing

Model-Based Design

High-level design Detailed design Implementation

Explore
Verify
Test

Explore
Verify
Test

Explore
Verify
Test

Explore
Verify
Test

7

Host stack Target stack

Create executable models in all phases

8

Host stack Target stack

Make the computational approximation the
primary design deliverable—the real thing!

9

Agenda

� Constructing models with increasing fidelity
� Execution of models explained

– A reference model

– Fixed step solver methods

– Variable step solver methods

– Zero crossings

� Conclusions

10

A Simscape model—what solver to choose?

11

Using a Simscape solver to generate
reference behavior

12

The corresponding Simulink model with an
ideal diode

13

Agenda

� Constructing models with increasing fidelity
� Execution of models explained

– A reference model

– Fixed step solver methods

– Variable step solver methods

– Zero crossings

� Conclusions

14

ode1: forward Euler numerical integration

14

),(txfx =�

kt

kx�

kkkke htxtxtx)()()(ˆ 1 �+=+

kx

1+kt

1+kx

1ˆ +kx

),(txφ

kkk tth −= +1

)()(2
1 kk hOt =+ε

)(
!2

)(

!1

)(
)()(32

1 kk
k

k
k

kk hOh
tx

h
tx

txtx +++=+
���

Step h in time

Along instantaneous vector component

Gives the estimate

Comparison with Taylor series expansion

Gives error of the estimate

15

ode1: stability analysis

1)0(; == xkxx� ktetx =)(

kkkke htxtxtx)()()(ˆ 1 �+=+

)(ˆ)1()(ˆ)(ˆ)(ˆ)(ˆ 1 ke
n

nkekekeke txkhtxtxkhtxtx +=⇒+= ++

{ }11|, <+∈⇒=∈ zCzkhzCk

Re(z)

Im(z)

In MATLAB:
>> clear i
>> [X,Y]= meshgrid(-3:0.01:1,-3:0.01:3);
>> Mu = X + i*Y;
>> R = 1 + Mu;
>> Rhat = abs(R);
>> contour(X,Y,Rhat,[1, 1],’b’)
>> grid
>> hold
>> plot([0 0],[-3 3],’k’)

16

Trapezoidal numerical integration

16

)(
)()(

)(1
k

k

kk
k hO

h

txtx
tx +−= + ��

�� kt 1+kt

kx
1+kx

k
kk

kkt h
txtx

txtx
2

)()(
)()(ˆ 1

1

�� ++= +
+

)(
2

)(

2

)(
)()()(31

1 kk
k

k
k

kkkk hOh
tx

h
tx

htxtxtx +−++= +
+

��
�

)(ˆ 1+kt tx

Average beginning and end point

Finite difference …

… to approximate Taylor series expansion

)(
!2

)(

!1

)(
)()(32

1 kk
k

k
k

kk hOh
tx

h
tx

txtx +++=+
���

)(1+ktε

17

ode2: Heun method

� But, we do not have the value at tk+1 because that is
what we are trying to compute

� So, combine trapezoidal with Euler approximation

k
kk

kkt h
txtx

txtx
2

)()(
)()(ˆ 1

1

�� ++= +
+

()kkk ttxftx),()(=�

()11),()()(++ += kkkk ttxhtxftx ��

18

ode2: (Heun) stability

In MATLAB:
>> clear i
>> [X,Y]= meshgrid(-3:0.01:1,-3:0.01:3);
>> Mu = X + i*Y;
>> R = 1 + Mu;
>> Rhat = abs(R);
>> contour(X,Y,Rhat,[1, 1],’b’)
>> grid
>> hold
>> plot([0 0],[-3 3],’k’)
>> R = 1 + Mu + .5*Mu.^2;
>> Rhat = abs(R);
>> contour(X,Y,Rhat,[1, 1],’m’)

Stability area of Runge-Kutta methods increases with order

 <++∈⇒=∈ 1

2

1
1|, 2zzCzkhzCk

19

In general, varying order of numerical solvers

kt

kx

1+kt

1+kx

kt

kx

1+kt

1+kx

Two-stage Multi-stage

kt

kx

1+kt

1+kx

One-stage

For example: ode1, ode2, ode3, ode4, ode5, ode8

More accurate and stable as order increases

20

Stiff systems mix behavior at widely differing
time scales

21

Fixed step and solver order must be chosen
carefully—ode1, 6e-5

22

Fixed step and solver order must be chosen
carefully—ode2, 6e-5

23

Fixed step and solver order must be chosen
carefully—ode3, 6e-5

24

Fixed step and solver order must be chosen
carefully—ode4, 6e-5

25

Fixed step and solver order must be chosen
carefully—ode5, 6e-5

26

Fixed step and solver order must be chosen
carefully—ode8, 6e-5

27

Step size and order determine simulation time

28

Step size and order determine simulation time

29

Step size and order determine simulation time

30

But these solvers really used an explicit
formulation

kt

kx

1+kt

1+kx

kt

kx

1+kt

1+kx

kt

kx

1+kt

1+kx

kt

kx

1+kt

1+kx

kt

kx

1+kt

1+kx

kt

kx

1+kt

1+kx

Two-stage Multi-stageOne-stage

31

How about a truly implicit approach?

� Trapezoidal integration
– Requires future points!

– Impossible?

� Can do, but requires inverting the system

kt

kx

1+kt

1+kx
k

kk
kkt h

txtx
txtx

2

)()(
)()(ˆ 1

1

�� ++= +
+

k
ktkt

ktkt h
txAtxA

txtx
2

)(ˆ)(ˆ
)(ˆ)(ˆ 1

1

++= +
+

() ())(ˆ2)(ˆ2 1 ktkt txAhItxAhI +=− +

() ())(ˆ22)(ˆ 1
1 ktkt txAhIAhItx +−= −

+

32

� Trapezoidal is stable in entire left half plane

� But, expensive!
– Linearization

– Inversion

Plusses and deltas?

In MATLAB:
>> clear i
>> [X,Y]= meshgrid(-3:0.01:1,-3:0.01:3);
>> Mu = X + i*Y;
>> R = 1 + Mu;
>> Rhat = abs(R);
>> contour(X,Y,Rhat,[1, 1],’b’)
>> grid
>> hold
>> plot([0 0],[-3 3],’k’)
>> R = 1 + Mu + .5*Mu.^2;
>> Rhat = abs(R);
>> contour(X,Y,Rhat,[1, 1],’m’)
>> R = (2 + Mu)./(2-Mu);
>> Rhat = abs(R);
>> contour(X,Y,Rhat,[1, 1],’r’)

33

Advantage: a large step size is possible

34

Still stable with very large step size

35

Agenda

� Constructing models with increasing fidelity
� Execution of models explained

– A reference model

– Fixed step solver methods

– Variable step solver methods

– Zero crossings

� Conclusions

36

A fixed step size has to be stable for the
fastest behavior anywhere in a simulation

kt

kx

1−kt kt

kx

1−kt

kt

kx

1+kt

1+kx

1−kt

From k-1 to k
Fast behavior, so
a small step is
necessary

From k to k+1
Slow behavior, so
a large step is
possible

Is the ‘fast’ behavior
holding us hostage?

37

Step size control

� Compute Euler approximation

� Compute Heun approximation

� Compare the results for the error estimate, ε

� Reduce step size from hmax till ε < tol

– For example, bisection

37

() kkkke htxftxtx)()()(ˆ 1 +=+

() ()
k

kke
kkt h

txftxf
txtx

2

)()(ˆ
)()(ˆ 1

1

++= +
+

)(
!2

)(
)()(1

2
11 +++ =≈− kek

k
ktke th

tx
txtx ε

��

38

Tolerance consists of two components

� Relative tolerance depends on signal magnitude
� Absolute tolerance is constant

0

abstol

-abstol

magnitude + reltol * magnitude

magnitude - reltol * magnitude

magnitude

39

Approximations determined by absolute and
relative tolerance

� Absolute tolerance prevents infinitely accurate solution
around 0

0

abstol

-abstol

magnitude + reltol * magnitude

magnitude - reltol * magnitude

magnitude

40

Approximations determined by absolute and
relative tolerance

� Combined relative and absolute tolerance drive solver
step size selection

0

abstol

-abstol

magnitude + reltol * magnitude

magnitude - reltol * magnitude

magnitude

41

Variable step solvers

� ode45
– Compares RK methods of order 4 and 5

� ode23
– Compares RK methods of order 2 and 3

� ode23tb
– Trapezoidal (implicit) integration with BDF error estimate

But now we better be careful with our computational complexity?

42

A variable-step solver may actually take much
less time to simulate

43

And we can do even better: multi-step solvers
reuse effort

kt

kx

1+kt

1+kx

kt

kx

1+kt

1+kx

1−kt

Implicit multi-stage
(e.g., ode23tb, ode23t)

Explicit multi-step
(e.g., ode113)

1−kt kt

kx

1+kt

1+kx

1−kt

Implicit multi-step
(e.g., ode15s)

44

So, yet more efficient integration

ode45: 1.055492

ode113: 0.8866972

multi-stage is ~19%
slower than multi-step

45

But the reuse may turn against us

1−t

kx

0t

1+kx

2−t

We do not have initial values at t-2 and t-1

How do we build this history?
• Single-step integration algorithm
• Either implicit or explicit with very small step size, ε

How about t1 in case of implicit methods?
• Linearize system and invert system matrix

1t

But now when we reach a discontinuity …
… smoothness is violated … solver reset!

46

Many discontinuities require many solver
resets

diode current

47

A single-step solver …

48

…versus a multi-step solver …

49

… and another multi-step solver …

50

But there is more to it than just the single step
nature

51

Or even …

52

Note: extrapolation becomes unreliable for
high order

kt

kx

1+kt

1+kx

1−kt

kt
kx�

1+kt

1+kx�

1−kt

1−kx�

0th order

1st order

2nd order

Stability area of multistep methods (explicit: ode113, implicit: ode15s) decreases with order!

)(tx

)(tx�

53

Agenda

� Constructing models with increasing fidelity
� Execution of models explained

– Fixed step solver methods

– Variable step solver methods

– Zero crossings

� Conclusions

54

Discontinuities

� Variable-step solvers ‘zoom in’ on zero crossings
– Is solver step size reduction an efficient mechanism?

kt

kx

1+kt

1+kx

kt

kx

1+kt

1+kx

55

� How about we use a dedicated root-finding algorithm?
– Bisection, Newton-Raphson

� Disregard the discontinuity, then search

Discontinuities

kt

kx

1+kt

1+kx

kt

kx

1+kt

1+kx

kt

kx

1+kt

1+kx

56

Reduced simulation time for ode23t

Zero-crossing location OFF
>> tic;sim(gcs,’reltol’,’1e-4’,’Solver’,’ode23t’,’stoptime’,’0.5’);toc
Elapsed time is 6.255886 seconds.

Zero-crossing location ON
>> tic;sim(gcs,’reltol’,’1e-4’,’Solver’,’ode23t’,’stoptime’,’0.5’);toc
Elapsed time is 5.634365 seconds.

57

But not for ode113 … because it resets its
history anyway

Zero-crossing location OFF
>> tic;sim(gcs,’reltol’,’1e-4’,’Solver’,’ode113’,’stoptime’,’0.5’);toc
Elapsed time is 3.947801 seconds.

Zero-crossing location ON
>> tic;sim(gcs,’reltol’,’1e-4’,’Solver’,’ode113’,’stoptime’,’0.5’);toc
Elapsed time is 4.155692 seconds.

58

Is computational complexity the only zero
crossing issue?

kt

kx

1+kt

1+kx

2+kt

2+kx

kt

kx

1+kt

1+kx

59

Chattering in our electrical circuit

60

Resolve the chattering by adaptive zero
crossings

61

Or, employ a Simscape fixed-step solver with
fixed cost

62

But a fixed-cost solver may be less accurate

63

But a fixed-cost solver may be less accurate

64

Agenda

� Constructing models with increasing fidelity
� Execution of models explained

– Fixed step solver methods

– Variable step solver methods

– Zero crossings

� Conclusions

65

Conclusions

� Solvers selection is a trade off
– Stability

– Accuracy

– Time to simulate

� Compare different solvers and solver parameters
– Use a computationally expensive variable-step solver to

generate a reference solution

– If the model is sensitive, investigate why

66

Characterization

� My model
– Must have a predictable

execution time (could be
long)

– Must have a short
simulation time

– Has widely varying time
constants (stiff)

– Includes discontinuities

– Includes many
discontinuities

– Exhibits chattering

– Should not be dissipative

� My solver
– Fixed step vs. variable

step

– Explicit vs. implicit

– Single step vs. multi step

– Zero crossing location or
not

NB: Fixed step solvers do not do root finding

67

Characterization

� My model
– Must have a predictable

execution time (could be
long)

– Must have a short
simulation time

– Has widely varying time
constants (stiff)

– Includes discontinuities

– Includes many
discontinuities

– Exhibits chattering

– Should not be dissipative

� My solver
– Fixed-step integration

� Experiment with integration
order, step size, and
accuracy

68

Characterization

� My model
– Must have a predictable

execution time (could be
long)

– Must have a short
simulation time

– Has widely varying time
constants (stiff)

– Includes discontinuities

– Includes many
discontinuities

– Exhibits chattering

– Should not be dissipative

� My solver
– Fixed-step integration

� If the accuracy suffices

– Variable-step integration
� Multi-step methods are

preferred
� Zero-crossing on may

shorten simulation time

69

Characterization

� My model
– Must have a predictable

execution time (could be
long)

– Must have a short
simulation time

– Has widely varying time
constants (stiff)

– Includes discontinuities

– Includes many
discontinuities

– Exhibits chattering

– Should not be dissipative

� My solver
– Preferably implicit

– Fixed step
� ode14x

– Variable step
� ode15s, ode23s, ode23t,

ode23tb

70

Characterization

� My model
– Must have a predictable

execution time (could be
long)

– Must have a short
simulation time

– Has widely varying time
constants (stiff)

– Includes discontinuities

– Includes many
discontinuities

– Exhibits chattering

– Should not be dissipative

� My solver
– Variable-step integration

� No integration history (at
least single step) with zero
crossing location

� ode23t

71

Characterization

� My model
– Must have a predictable

execution time (could be
long)

– Must have a short
simulation time

– Has widely varying time
constants (stiff)

– Includes discontinuities

– Includes many
discontinuities

– Exhibits chattering

– Should not be dissipative

� My solver
– Fixed-step integration

� If the accuracy suffices
� Choose the fundamental

sample time as the step
size

72

Characterization

� My model
– Must have a predictable

execution time (could be
long)

– Must have a short
simulation time

– Has widely varying time
constants (stiff)

– Includes discontinuities

– Includes many
discontinuities

– Exhibits chattering

– Should not be dissipative

� My solver
– Fixed-step integration

� If the accuracy suffices

– Variable-step integration
� Adaptive zero crossing

location

73

Characterization

� My model
– Must have a predictable

execution time (could be
long)

– Must have a short
simulation time

– Has widely varying time
constants (stiff)

– Includes discontinuities

– Includes many
discontinuities

– Exhibits chattering

– Should not be dissipative

� My solver
– Nondissipative integration

method
� ode23t

74

And …

Do not fall in love with a model -
-- Jacques LeFèvre

75

®

