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Get Your Blue Book® Value then Price Your Next Car
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1992 Mitsubishi Galant LS Sedan 4D | Mileage: 210,000
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Tell us your car's options or See value with standard equipment

Standard equipment pre-selected below

Search Local Listings

Engine Transmission

(®) Search Mitsubishi Galant

(®) 4-Cyl, 2.0 Liter (®) Automatic

() Manual, 5-5pd () Search Al Cars for Sale near Framingham

Drivetrain
Steering Search
(@) FWD
Power Steering More Mitsubishi Galant Vehicles for Sale
Comfort and Convenience T Wheel

Air Conditioning
Power Windows Entertammer!t and
Instrumentation

Power Door Locks

Cruise Control AM/FM Stereo
Cassette
Seats [] cD (Single Disc)

[] Leather [] €D (Muti Disc)

Roof and Glass Wheels and Tires

Steel Wheels
] Alloy Wheels

[ Sun Roof (Flip-Up)
[] Sun Roof (Sliding)

] Moon Roof [ Premium Wheels
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Get Your Blue Book® Value then Price Your Next Car

2012 Mitsubishi Galant SE Sedan 4D | Mileage: 50,000

Tell us your car's options or  See value with standard equipment

Standard equipment pre-selected below

Engine

(@) 4-Cyl, 2.4 Liter

Drivetrain

@® FWD

Comfort and Convenience

Transmission

(@) Auto, 4-Spd w/Sportronic

Braking and Traction

Keyless Entry

[] Keyless Start

Traction Contral
Active Stability Contral
ABS (4-Wheel)

Air Conditioning
Power Windows
Power Door Locks
Cruise Control

Safety and Security

Steering

[v] Power Steering
Tit Wheel

Entertainment and
Instrumentation

AM/FM Stereo

Backup Camera

v
Dual Air Bags
Side Air Bags

F&R Head Curtain Air Bags

Seats

Heated Seats
Power Seat
[] Leather

MP3 (Multi Disc)
Rockford Premium Sound
SiriusXM Satelite
Navigation System
Bluetooth Wireless

Multi-Communication Sys

Roof and Glass

[#] Moon Roof

Search Local Listings

(®) Search Mitsubishi Galant

(O Search Al Cars for Sale near Framingham

Search

More Mitsubishi Galant Vehicles for Sale
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Get Your Blue Book® Value then Price Your Next Car

$35,000

“When one car learns something, the whole
fleet learns it”

£
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e e Elon Musk
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Machines are connecting
and collaborating

Where can we have
Impact, which solutions
are needed, what
challenges these
solutions, and how can we
overcome the challenges?

A smart emergency
response system

A smart emergency
response system
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A smart emergency A feature
response system classification
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A smart emergency A feature Evolving
response system classification architectures
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Strategic R&D
Opportunities for
21" Century

\ N Cyber-Physical

Systems

o fino 4,

Oppdrtunities for
CPS ensembles

Physics

Michael A. Jacksonﬂ |
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A feature Evolving
classification architectures

A smart emergency
response system

Future value drivers
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2013 MathWorks Summer Research Internship

Kun Zhang Enes Bilgin David Escobar Sanabria
University of Arizona Boston University  University of Minnesota
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lzmit, Turkey, 1999
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Where can we help' make a
difference?
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Deploy a heterog

eneous fleet ...

4\ MathWorks
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... to serve many (changing!) requests ...

4\ MathWorks'
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. across an uncertain infrastructure ...
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... all in a time optimal manner!

J
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Help request

App
—
WiFi drone
Biobot Mission
Command and Control Google Earth
visualization
KUKA
robot Video stream
| — analysis
I;ap_tlc —
evice Human Machine
Interface
ATLAS = ">
- =
Ground
vehicle
UAV
—

Infrastructure
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2013 MathWorks Summer Research Internship: A Spectacular Challenge (Get cyber real!)

https://youtu.be/MxrySx1m8VQ?t=2m42s -
Image Landsat ('(‘():glk\ ,.;1'[.-



Man-machine control transfer

hover transfer control control by responder

2013 MathWorks Summer Research Internship: A Self-flying Drone (Take cyber control!)
https://youtu.be/M3vqlywbel0?t=41s

4\ MathWorks
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RIVeR Lab has par,ticipated in the Global City
Teams Challenge in collaboration with Austin
Texas Fire Department, MathWorks, University
of North Texas, and Worcester Polytechnic
Institute. '

https://youtu.be/YytL8-zLEGE
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A smart emergency
response system

A feature
classification

Evolving
architectures
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Colonel John Richard Boyd
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The Observe-Orient-Decide-Act (OODA) loop

Unfolding

Circumstances

Outside
Information

Interaction

Environment

Observe Orient
Implicit
Guidance =7
| & Control
e ™

Observations|

/

Unfolding

With

Forward

New
% nformatio Previous
penenc By

Feedback

Decide

Implicit

(Hypothesis

Act

Guidance
& Control

Decision

Feedback

Feed

v

Action
(Test)

Unfolding
Interaction
With
Environment
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OODA and the stages of cognition

Cognition e,
’
Interpretation l
L
Perception |

L.

> Decide
—> Orient
l \ 4
Observe Act
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Engineered systems and the stages of cognition

Observe —» Act

L Environment J

|—> Orient —l

Observe Act

T— Environment J

—» Decide

!

Observe Act

T\ Environment <J

Perception

Process (video)
Analyze for validity (filter, reject)

Compute control signals

Interpretation

Map to semantic concepts
Fuse sensor data

Adjust control
Reconfigure behavior

Cognition

Reason based on knowledge
Plan for objectives and constraints

Assess alternatives
Determine course of action
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Engineered systems and the stages of cognition

; M l ,;ru/\
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Automatic Adaptive Autonomous

Perception

Process (video)
Analyze for validity (filter, reject)

Compute control signals

Interpretation

Map to semantic concepts
Fuse sensor data

Adjust control
Reconfigure behavior

Cognition

Reason based on knowledge
Plan for objectives and constraints

Assess alternatives
Determine course of action
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Michael Anthony Jackson
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Requirements engineering

Arequirement is a desired relationship
among the phenomena

(e.g., actions/events, states) of the
environment

Phenomena are categorized as

e,: controlled (or initiated) by the
environment and hidden from (i.e.,
invisible to, not shared with) the machine

e, controlled by the environment but
visible to (i.e., shared with) the machine

m,: controlled by the machine but visible
to (shared with) the environment

m,,: controlled by the machine and hidden
from (i.e., not shared with) the
environment

&\ MathWorks

specification _
requirements &
program < > domain knowledge
O
(m,)

Machine (m,)

Environment (e;)

30



A behavioral view

Closed loop designed behavior
Property satisfying behavior
Closed loop possible behavior
Open loop possible behavior
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A behavioral view

Closed loop designed behavior
Property satisfying behavior
Closed loop possible behavior
Open loop possible behavior

L West
-W >
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A behavioral view

Closed loop designed behavior
Property satisfying behavior
Closed loop possible behavior
Open loop possible behavior

Program

Machine

Out

Environment

Out

In

World
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A feature classification

Individual Ensemble

Reason

10:38 AM

Interpret

, JenloPark o

o “Foothill-Expy.

Adaptive / Connected
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A feature classification

Reason

Interpret

Individual Ensemble
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A smart emergency
response system

A feature
classification

Evolving
architectures
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Future value drivers
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H(s)

G(s)

Centrifugal governor

(James Watt designed his first governor in 1788
following a suggestion from his business partner
Matthew Boulton)

@\ MathWorks
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H(s)

physics

———
require
ments

I

feature

G(0)

Engine control unit
(from a 1996 Chevrolet Beretta)

4\ MathWorks
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feature
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| S— 1

physics Freescale MPC561 MCU

(32-bit PowerPC embedded microprocessors that
operate between 40 and 66 MHz, used in engine
controllers for General Motors)
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H(s)

physics
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Information

Physics
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Information

Network o

Physics

Information
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A smart emergency
response system

A feature
classification

Evolving
architectures
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Future value drivers
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Exploit distributed information
resources

Data sharing

Connected

Reliably configure features with
varying quality of service

Wireless communication

4\ MathWorks

Assemble available functionality
into features after deployment

Service utilization
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Exploit distributed information

I daYealallldataYel

e o

- Foundations for
5

Innovation:

Strategic R&D
Opportunities for

21" Century
Cyber-Physical
Systems

Connecting computer
and information systems
with the physical world

Technology challenges in Megamodeling and
EPS metamodeling

Data sharing

Multirate architectures

Extracting and deriving specific
value from general information

Connected

&\ MathWorks
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Connected

Reliably configure features with

\WZalaVWilaYallall Iﬁll"'\l f\'F latalaYilata

Standardized Protocol Stack for the An Implementation of e Configurable Middleware for Distributed
Internet of (Important) Things 1EEE 802.11b for Sy Real-Time Systems with Aperiodic and Periodic
% —— Tasks

A Survey on Standards for Real-Time Distribution Middleware

IEEE 1588 precise timing Distributed real-time Processor and
systems task scheduling network scheduling

IEEE 802.15.4e low cost
communication

Wireless communication

Physically aware configurable
protocol stack that is IP
compatible

Precise timing and
synchronization in a distributed
environment
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Assemble available functionality
intA fAAatiirac AaftAar AAanlAavimmAant

ddleware for Real-Time (:::) axonomy
e Oriented Distributed

Connected

iLAND: An Enhance
Reconfiguration of Si
R

Real-time discovery Semantic middleware
services

me middleware

Service utilization

Real-time embedded services
operating in a physical
environment

Smart services discovery

Information sharing in a
heterogeneous system ensemble
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Reliably configure an ensemble
online to exploit exogenous
functionality

M

Runtime system adaptation

Collaborative

Contract out endogenous
resources and balance use of
ex0genous resources

Hardware resource sharing

Purpose functionality to create
novel system features post
deployment

Functionality sharing

4\ MathWorks'
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Reliably configure an ensemble

nnlina tn avnlnit avnnanniic

Automated model
calibration

Models @ runtime

Runtime system adaptation

Reasoning and planning
adaptation of an ensemble of
systems

Collaborative

4@\ MathWorks
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Collaborative

Contract out endogenous

racniircac and halanca 1ica nf

Developing Services in a Service Oriented Architecture for

1 Co
Evolutionary Algorithms A State-of-the-Art Survey on Real-Time Issues in
Embedded Systems Virtualization

Open Services Gateway
Initiative (OSGi)

Platform-based desi

Hardware resource sharing

Flexible and transferable

from abstract functionality

embedded functionality dispatch

Performance characterization

&\ MathWorks
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Collaborative
Purpose functionality to create
nnval ecvietem faatiirae nnet
Mining Requirements from Closed-Loop Control Models - oo e " @ ing

Automatic Online Calibration of INDUSTRY VOICE
Cameras and Lasers

Industry 4.0 as a Cyber-Physical System study

er 1. Masterman' - Sty Zamler’

Online calibration Multi-rate double
buffering

Data dlstrlbutlon
service (DDS)

Requirements mining

Functionality sharing

Multi-use functionality post-
deployment

Feature interaction
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Confidently design systems as
part of a reliable ensemble

Virtual system integration

Design

Systematically design optimal
behavior of system ensembles

Emerging behavior design

4\ MathWorks'

Collaborate between
stakeholders throughout the

system life cycle
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Design artifact sharing
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Confidently design systems as

Design

Model Building Counterexample .
Automation System guided abstraction
refinement

Computer-Automated Multiparadigm Modeling in
I Systems Technolog

Multiparadigm modeling

systems

Hybrid dynai \

A Hyperdense Semantic Domain for Hybrid Dynamic
Systems to Model Different Classes of Discontinuities

Hyperdense time domain
for hybrid bond graphs

- and Application

o

Real-time simulation

Virtual system integration

Proper models in design

System-level design and analysis
by using models

Connectivity among models,
software, and hardware
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Design

Systematically design optimal
IhAahAaviiAar Af cvictArm Aane~AamhlAace

Machine ballets don’t need conductors
aphis fn a sl automation

mmmmmm

Service orchestration

Service oriented sensor
programming

Emerging behavior design

Collaborative planning, guidance,
and control

4@\ MathWorks
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Design
Collaborate between
ctal/ArnlhAldAve thvAaininalhAnit tha
B coverreaune |

@ A Tool Integration
Framework for

> 32T Lo Sustainable
8 o~$%{ Embedded
Systems
RS Development

Open services for
lifecycle collaboration

Single underlying model

A Comparison of Incremental Triple Graph Grammar Tools

Graph transformations

Design artifact sharing

in design

Tool coupling among disparate
organizations

Support manifold views and tools
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Cyber-physical systems challenges: a needs analysis
for collaborating embedded software systems

Pieter J. Mosterman® . Justyna Zander?

© Springer-Verlag Berlin Heidelberg 2015

Abstract  Embedding computing power in a physical envi-
ronment has provided the functional flexibility and perfor-
mance necessary in modern products such as automobiles,
aircraft, smartphones, and more. As product features came
to increasingly rely on software, a network infrastructure
helped factor out commoen hardware and offered sharing
functionality for further innovation. A logical consequence
was the need for system integration. Even in the case of a
single original end manufacturer who is responsible for the
final product, system integration is quite a challenge. More
recently, there have been systems coming online that must
perform system integration even after deployment—that is,
during operation, This has given rise 1o the cyber-physical
systems (CPS) paradigm. In this paper, select key enablers
fora new type of system integration are discussed. The needs
and challenges for designing and operating CPS are identified
along with corresponding technologies to address the chal-
lenges and their potential impact. The intent is to contribute to
a model-based research agenda in terms of design methods,
implementation technologies, and organization challenges
necessary to bring the next-generation systems online.

Communicated by Tony Clark, Gabor Karsai, and Roel J. Wieringa

B4 Justyna Zander
Jjustyna.zander®gmail.com; drjustyna.zander @ieee.org

Pieter J. Mosterman and Justyna Zander, “Cyber-physical
tems challenges: a needs analysis for collaborating

Keywords  Cyber-physical systems - Computation -
Embedded systems - Challenges - Internet of Things -
Maodeling and simulation

1 Motivation

Engineered systems rely on ingenuity and technology to
implement adesired functionality, examples of which include
aircraft, automobiles, power plants, smartphones, robots,
washers and dryers, pacemakers, and more. Embedded sys-
tems are engineered systems that implement functionality
by employing computational technologies. The embedded
nature allows the computational elements to interact directly
(i) with a physical computing platform that it executes on
and (ii) with its physical surroundings. In other words, com-
putational logic may obtain input from sensors that measure
physical quantities, execute physical instructions of a com-
puting platform to compute output from this input, and
provide the output to actuators that effect change in phys-
ical quantities and affect the physical behavior.

The intent of this paper is to explore the maturation
of embedded systems and the evolution of the concept of
cyber-physical systems (CPS). A result of this exploration
is the identification of challenges specific (o systems of a
CPS nature. The perspective reflects upon an industry van-
tage point. Focus is on models for solving industry-relevant
challenges when developing next-generation software sys-
tems. While the material is intended to be accessible to the

embedded software systems,” in Software & Systems
Modeling, Springer Berlin/Heidelberg, ISSN 1619-1366, vol.

1

, nr. 1, pp. 5-16, 2016
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Conclusions

= World is becoming machines that
— Adapt to the environment
— Make decisions autonomously
— Are connected
— Work together

= Metcalfe is supplanting Moore as
value driver

- Key M&S application areas
— Performance
— Concurrency
— Physics

We need a stupendous range of
technologies combined
— Do not be an individualist!

MathWorks touches on most any
of these technologies

Come seek us out to discuss!
— Opportunities

— Solution needs

— Starting points

&\ MathWorks
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Accelerating the pace of engineering and science
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Connecting, combining, and integrating models represented in
different formalisms
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