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$1,052
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$11,221

Moore’s Law
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“When one car learns something, the whole 

fleet learns it”

$35,000

Moore’s Law Metcalfe’s Law
Elon Musk
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A smart emergency 
response system

A feature 
classification

Evolving 
architectures

Future value drivers

Machines are connecting

and collaborating 

Where can we have 

impact, which solutions

are needed, what 

challenges these 

solutions, and how can we 

overcome the challenges?

A smart emergency 

response system
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Opportunities for 
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Kun Zhang

University of Arizona

Enes Bilgin

Boston University

David Escobar Sanabria

University of Minnesota

2013 MathWorks Summer Research Internship
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İzmit, Turkey, 1999
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Where can we help make a 

difference?
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Deploy a heterogeneous fleet …
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… to serve many (changing!) requests …
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… across an uncertain infrastructure …
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… all in a time optimal manner!… all in a time optimal manner!

?
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2013 MathWorks Summer Research Internship: A Spectacular Challenge (Get cyber real!) 

https://youtu.be/MxrySx1m8VQ?t=2m42s
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hover transfer control control by responder

Man-machine control transfer

https://youtu.be/M3vq1ywbe10?t=41s

2013 MathWorks Summer Research Internship: A Self-flying Drone (Take cyber control!) 



https://youtu.be/YytL8-zLE6E

RIVeR Lab has participated in the Global City 

Teams Challenge in collaboration with Austin 

Texas Fire Department, MathWorks, University 

of North Texas, and Worcester Polytechnic 

Institute.  
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Colonel John Richard Boyd
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The Observe-Orient-Decide-Act (OODA) loop
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Orient

Decide
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OODA and the stages of cognition

Perception

Interpretation

Cognition
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Process (video)
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Engineered systems and the stages of cognition
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Automatic Adaptive Autonomous

Engineered systems and the stages of cognition
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Michael Anthony Jackson
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specification
requirements &

domain knowledgeprogram

Machine (mh) Environment (eh)

O 

(mv)

I (ev)

Requirements engineering

 A requirement is a desired relationship 

among the phenomena

(e.g., actions/events, states) of the 

environment

 Phenomena are categorized as

– eh: controlled (or initiated) by the 

environment and hidden from (i.e., 

invisible to, not shared with) the machine

– ev: controlled by the environment but 

visible to (i.e., shared with) the machine

– mv: controlled by the machine but visible 

to (shared with) the environment

– mh: controlled by the machine and hidden 

from (i.e., not shared with) the 

environment
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34https://youtu.be/STlt48wXsyY?t=17s

For fully-automated container handling in large terminals 

and terminal environments, Terex Port Solutions supplies 

solutions with outstanding performance.
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physics

H(s) G(s)

control Centrifugal governor
(James Watt designed his first governor in 1788 

following a suggestion from his business partner 

Matthew Boulton)
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H(s) G(0)

ADC

DAC
ECU

feature

Engine control unit
(from a 1996 Chevrolet Beretta)

require
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Physics
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Information Information
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Open but tightly coupled! 
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Argentinian director Fernando Livschitz of Black Sheep 

Films transforms a busy intersection into a choreographed 

dance by cloning cars, bikes, and people. 

https://youtu.be/ufK2XRGUjuc
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Reliably configure an ensemble 

online to exploit exogenous 

functionality

Contract out endogenous 

resources and balance use of 

exogenous resources

Purpose functionality to create 

novel system features post 

deployment

Hardware resource sharing Functionality sharingRuntime system adaptation

Collaborative

Reasoning and planning 

adaptation of an ensemble of 

systems

Multi-use functionality post-

deployment

Feature interaction

Flexible and transferable 

embedded functionality dispatch

Performance characterization 

from abstract functionality

Data distribution 

service (DDS)

Online calibrationRequirements mining Multi-rate double 

buffering
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Service orchestrationService oriented sensor 

programming
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Collaborate between 

stakeholders throughout the 

system life cycle

Confidently design systems as 

part of a reliable ensemble

Systematically design optimal 

behavior of system ensembles

Tool coupling among disparate 

organizations

Support manifold views and tools 

in design

Proper models in design

System-level design and analysis 

by using models

Connectivity among models, 

software, and hardware

Collaborative planning, guidance, 

and control

Design artifact sharingVirtual system integration

Design

Emerging behavior design

Graph transformationsSingle underlying modelOpen services for 

lifecycle collaboration
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Pieter J. Mosterman and Justyna Zander, “Cyber-physical 

systems challenges: a needs analysis for collaborating 

embedded software systems,” in Software & Systems 

Modeling, Springer Berlin/Heidelberg, ISSN 1619-1366, vol. 

15, nr. 1, pp. 5-16, 2016
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Conclusions

 World is becoming machines that

– Adapt to the environment

– Make decisions autonomously

– Are connected

– Work together

 Metcalfe is supplanting Moore as 

value driver

 Key M&S application areas

– Performance

– Concurrency

– Physics

 We need a stupendous range of 

technologies combined

– Do not be an individualist!

 MathWorks touches on most any 

of these technologies

 Come seek us out to discuss!

– Opportunities

– Solution needs

– Starting points 
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Environment models to enable 
surrogate interactions

Open tool platforms with trusted 
interfaces for communication 

across synchronized and 
coordinated models, software, 

and hardware devices

Efficient simulation models to be used across dynamic and 
execution semantics

Online model calibration

Maintenance of consistent 
information and management of 
inconsistencies regarding the 
ensemble of systems with 
sufficient fidelity at runtime

Introspection of the system 
state, configuration, and 
services it makes available

Generation of models with 
necessary detail based on 
property selection

Connecting, combining, and integrating models represented in 
different formalisms



Model-based test generation from 
requirements while preserving the 
context of dynamic configurations

Setting of initial conditions and 
injecting fault data

Temporal and spatial 
partitioning to isolate 

functionality for a specific 
system architecture under 

investigation

Information represented as high-
level models with well-defined 

metamodels and ontologies

Synchronization of data from incongruent sources

Assumption formalization and 
dependency effect analysis

Online calibration based on 
objective and performance criteria

Performance characterization via 
performance models and measures

Generation of models for a 
desired task perspective by 
property identification and 
model behavior selection

Accessible formal methods 
that apply to collaborative 
problems

Planning and synthesis of 
distributed control functionality 
on concurrent resources

Analysis methods across 
loosely coupled architectures



Real-time middleware and service oriented 
architectures with physical capabilities

Service ontologies with taxonomies 
for similarity and transformability 

matching

Language and ontology 
infrastructure to support 

translation and transformation

Scheduling of periodic and 
aperiodic events with reliable 

execution times

Physical layer based timing and 
synchronization architectures

Real-time services of graded quality with a low 
footprint and a configurable protocol stack that 

includes time and location information

Characterization of computational architectures

Dynamically mixing safety integrity levels

Modeling the semantics of time

Platform-based modeling of 
execution behavior functionality

Standardized and configurable 
real-time execution stack

Traceability across semantic 
and technology adaptation, 
and intellectual property 
protection

Information extraction from 
obfuscated intellectual property

Configurable view projections 
that are tool specific

Consistent semantics across tools by 
modeling execution engines


