
2© 2016 The MathWorks, Inc.

Value Drivers in a Changing Landscape of

Modeling & Simulation

Pieter J. Mosterman

Chief Research Scientist, Director

Advanced Research & Technology Office (MARTO)

Adjunct Professor

School of Computer Science

3

$1,052

4

$11,221

Moore’s Law

5

“When one car learns something, the whole

fleet learns it”

$35,000

Moore’s Law Metcalfe’s Law
Elon Musk

6

A smart emergency
response system

A feature
classification

Evolving
architectures

Future value drivers

Machines are connecting

and collaborating

Where can we have

impact, which solutions

are needed, what

challenges these

solutions, and how can we

overcome the challenges?

A smart emergency

response system

7

John R. Boyd

Michael A. Jackson

A smart emergency
response system

A feature
classification

Evolving
architectures

Future value drivers

8

John R. Boyd

Michael A. Jackson

A smart emergency
response system

A feature
classification

Evolving
architectures

Future value drivers

Physics

Information

Electronics

Network

9

Opportunities for

CPS ensembles

John R. Boyd

Michael A. Jackson

A smart emergency
response system

A feature
classification

Evolving
architectures

Future value drivers

Physics

Information

Electronics

Network

10

Kun Zhang

University of Arizona

Enes Bilgin

Boston University

David Escobar Sanabria

University of Minnesota

2013 MathWorks Summer Research Internship

11

İzmit, Turkey, 1999

12

13

Where can we help make a

difference?

14

Deploy a heterogeneous fleet …

15

1002

… to serve many (changing!) requests …

16

1004

… across an uncertain infrastructure …

17

1004

… all in a time optimal manner!… all in a time optimal manner!

?

18

Simulation

Mission

Command and Control

Infrastructure

ATLAS

Biobot

KUKA

robot

Haptic

device

WiFi drone

Help request

App

Video stream

analysis

Human Machine

Interface

Google Earth

visualization

Ground

vehicle

UAV

19

2013 MathWorks Summer Research Internship: A Spectacular Challenge (Get cyber real!)

https://youtu.be/MxrySx1m8VQ?t=2m42s

20

hover transfer control control by responder

Man-machine control transfer

https://youtu.be/M3vq1ywbe10?t=41s

2013 MathWorks Summer Research Internship: A Self-flying Drone (Take cyber control!)

https://youtu.be/YytL8-zLE6E

RIVeR Lab has participated in the Global City

Teams Challenge in collaboration with Austin

Texas Fire Department, MathWorks, University

of North Texas, and Worcester Polytechnic

Institute.

22

Simulation

Mission

Command and Control

Infrastructure

ATLAS

Biobot

KUKA

robot

Haptic

device

WiFi drone

Help request

App

Video stream

analysis

Human Machine

Interface

Google Earth

visualization

Ground

vehicle

UAV

23

A smart emergency
response system

A feature
classification

Evolving
architectures

Future value drivers

24

Colonel John Richard Boyd

25

The Observe-Orient-Decide-Act (OODA) loop

26

Orient

Decide

Observe Act

Environment

OODA and the stages of cognition

Perception

Interpretation

Cognition

27

Process (video)

Analyze for validity (filter, reject)

Automatic

Orient

Decide

Observe Act

Environment

Adaptive

Orient

Decide

Observe Act

Environment

Autonomous

Orient

Decide

Observe Act

Environment

Compute control signals

Map to semantic concepts

Fuse sensor data

Perception Interpretation Cognition

Reason based on knowledge

Plan for objectives and constraints

Assess alternatives

Determine course of action

Adjust control

Reconfigure behavior

Engineered systems and the stages of cognition

28

Automatic Adaptive Autonomous

Engineered systems and the stages of cognition

Process (video)

Analyze for validity (filter, reject)

Compute control signals

Map to semantic concepts

Fuse sensor data

Perception Interpretation Cognition

Reason based on knowledge

Plan for objectives and constraints

Assess alternatives

Determine course of action

Adjust control

Reconfigure behavior

29

Michael Anthony Jackson

30

specification
requirements &

domain knowledgeprogram

Machine (mh) Environment (eh)

O

(mv)

I (ev)

Requirements engineering

 A requirement is a desired relationship

among the phenomena

(e.g., actions/events, states) of the

environment

 Phenomena are categorized as

– eh: controlled (or initiated) by the

environment and hidden from (i.e.,

invisible to, not shared with) the machine

– ev: controlled by the environment but

visible to (i.e., shared with) the machine

– mv: controlled by the machine but visible

to (shared with) the environment

– mh: controlled by the machine and hidden

from (i.e., not shared with) the

environment

31

A behavioral view

Program

Open loop possible behavior

Closed loop possible behavior

Property satisfying behavior

Closed loop designed behavior

Machine Environment
Out

In

World
Out

In

||

32

EnvironmentMachine

Out

In

A behavioral view

Program

Open loop possible behavior

Closed loop possible behavior

Property satisfying behavior

Closed loop designed behavior

||

World
Out

In

33

Machine Environment

Out

In

A behavioral view

Program

Open loop possible behavior

Closed loop possible behavior

Property satisfying behavior

Closed loop designed behavior

World

||

Out

In

34https://youtu.be/STlt48wXsyY?t=17s

For fully-automated container handling in large terminals

and terminal environments, Terex Port Solutions supplies

solutions with outstanding performance.

35

Individual Ensemble

Reason

Interpret

Adaptive

Autonomous

Connected

Collaborative

A feature classification

36

Individual Ensemble

Reason

Interpret

Adaptive

Autonomous

Connected

Collaborative

A feature classification

37

A smart emergency
response system

A feature
classification

Evolving
architectures

Future value drivers

38

physics

H(s) G(s)

control Centrifugal governor
(James Watt designed his first governor in 1788

following a suggestion from his business partner

Matthew Boulton)

39

physics

H(s) G(0)

ADC

DAC
ECU

feature

Engine control unit
(from a 1996 Chevrolet Beretta)

require

ments
tests

40

App

physics

H(s) C

ADC

DAC
μP

G(z)

G(s)

feature

Freescale MPC561 MCU
(32-bit PowerPC embedded microprocessors that

operate between 40 and 66 MHz, used in engine

controllers for General Motors)

RTOS

require

ments
tests

41

App App

physics

H(s) C

ADC

DAC
μP

G(z)

G(s)

comms

network

comms physicsμP

G(z)

H(s)

G(s)

C

ADC

DAC

feature feature

RTOS RTOS

require

ments
tests

require

ments
tests

42

App App

physics

H(s)

ADC

DAC
μP comms

network

comms physicsμP

H(s)

ADC

DAC

G(z)

G(s)

C

feature

G(z)

G(s)

C

feature

require

ments
tests

OS OS

C++

feature

view1 view2

classes

C++

feature

view1 view2

classes

require

ments
tests

VM VM

43

μP μPphysics

H(s)

ADC

DAC
μP comms

network

comms physicsμP

H(s)

ADC

DAC

OS

VM

App

OS

VM

App

G(z)

G(s)

C

feature

G(z)

G(s)

C

feature

require

ments
tests

C++

feature

view1 view2

classes

C++

feature

view1 view2

classes

require

ments
tests

44

physics μP

G(z)

H(s)

OS

comms

VM

μP

G(s)

C

feature

C++

feature

view1 view2

classes

ADC

DAC
FPGA

network

HDL

physicsμP

G(z)

H(s)

comms FPGA

G(s)

C

feature

C++

feature

view1 view2

classes

ADC

DAC
μP

HDL

require

ments
tests

require

ments
tests

bit

stream

bit

stream

App

OS

VM

App

46

physics μP

G(z)

H(s)

OS

commsμP

G(s)

C

feature

C++

feature

view1 view2

classes

ADC

DAC
FPGA

network

HDL

physicsμP

G(z)

H(s)

comms FPGA

G(s)

C

feature

C++

feature

view1 view2

classes

ADC

DAC
μP

HDL

require

ments
tests

require

ments
tests

bit

stream

bit

stream

App

OS

App

middleware

47

physics μP

G(z)

H(s)

OS

commsμP

G(s)

C

feature

C++

feature

view1 view2

classes

ADC

DAC
FPGA

network

HDL

physicsμP

G(z)

H(s)

comms FPGA

G(s)

C

feature

C++

feature

view1 view2

classes

ADC

DAC
μP

HDL

require

ments
tests

require

ments
tests

bit

stream

bit

stream

App

OS

App

middleware

48

physics μP

G(z)

H(s)

OS

commsμP

G(s)

C

feature

C++

feature

view1 view2

classes

ADC

DAC
FPGA

network

HDL

physicsμP

G(z)

H(s)

comms FPGA

G(s)

C

feature

C++

feature

view1 view2

classes

ADC

DAC
μP

HDL

require

ments
tests

require

ments
tests

bit

stream

bit

stream

App

OS

App

middleware

49

A
b

s
tr

a
c

ti
o

n
P

h
y
s
ic

s
 (

s
ta

te
)

P
h

y
s
ic

s
 (

s
tr

u
c

tu
re

)

physics μP

G(z)

H(s)

OS

commsμP

G(s)

C

feature

C++

feature

view1 view2

classes

ADC

DAC
FPGA

network

HDL

physicsμP

G(z)

H(s)

comms FPGA

G(s)

C

feature

C++

feature

view1 view2

classes

ADC

DAC
μP

HDL

require

ments
tests

require

ments
tests

bit

stream

bit

stream

App

OS

App

middleware

physics

50

Information

Physics

Electronics

Network

51

Physics

Information Information

Physics

ElectronicsElectronics

Network Network

52

Physics

Electronics

Network

Information Information

Physics

Electronics

Network

53

Physics

Electronics

Network

Information Information

Physics

Electronics

Network

Open but tightly coupled!

54

Argentinian director Fernando Livschitz of Black Sheep

Films transforms a busy intersection into a choreographed

dance by cloning cars, bikes, and people.

https://youtu.be/ufK2XRGUjuc

55

A smart emergency
response system

A feature
classification

Evolving
architectures

Future value drivers

56

Wireless communication Service utilization

Exploit distributed information

resources

Reliably configure features with

varying quality of service

Assemble available functionality

into features after deployment

Data sharing

Connected

57

Exploit distributed information

resources

Reliably configure features with

varying quality of service

Assemble available functionality

into features after deployment

Multirate architectures

Extracting and deriving specific

value from general information

Wireless communication Service utilizationData sharing

Connected

Megamodeling and

metamodeling

Technology challenges in

CPS

58

Exploit distributed information

resources

Reliably configure features with

varying quality of service

Assemble available functionality

into features after deployment

Multirate architectures

Extracting and deriving specific

value from general information

Physically aware configurable

protocol stack that is IP

compatible

Precise timing and

synchronization in a distributed

environment

Wireless communication Service utilizationData sharing

Connected

IEEE 802.15.4e low cost

communication

IEEE 1588 precise timing Distributed real-time

systems task scheduling

Processor and

network scheduling

59

Exploit distributed information

resources

Reliably configure features with

varying quality of service

Assemble available functionality

into features after deployment

Multirate architectures

Extracting and deriving specific

value from general information

Physically aware configurable

protocol stack that is IP

compatible

Precise timing and

synchronization in a distributed

environment

Real-time embedded services

operating in a physical

environment

Smart services discovery

Information sharing in a

heterogeneous system ensemble

Wireless communication Service utilizationData sharing

Connected

Real-time discovery

services

Real-time middleware Semantic middleware

60

Hardware resource sharing Functionality sharing

Reliably configure an ensemble

online to exploit exogenous

functionality

Contract out endogenous

resources and balance use of

exogenous resources

Purpose functionality to create

novel system features post

deployment

Runtime system adaptation

Collaborative

61

Reliably configure an ensemble

online to exploit exogenous

functionality

Contract out endogenous

resources and balance use of

exogenous resources

Purpose functionality to create

novel system features post

deployment

Reasoning and planning

adaptation of an ensemble of

systems

Hardware resource sharing Functionality sharingRuntime system adaptation

Collaborative

Models @ runtime Automated model

calibration

62

Reliably configure an ensemble

online to exploit exogenous

functionality

Contract out endogenous

resources and balance use of

exogenous resources

Purpose functionality to create

novel system features post

deployment

Hardware resource sharing Functionality sharingRuntime system adaptation

Collaborative

Reasoning and planning

adaptation of an ensemble of

systems

Flexible and transferable

embedded functionality dispatch

Performance characterization

from abstract functionality

Real-time virtualizationOpen Services Gateway

Initiative (OSGi)

Platform-based design

63

Reliably configure an ensemble

online to exploit exogenous

functionality

Contract out endogenous

resources and balance use of

exogenous resources

Purpose functionality to create

novel system features post

deployment

Hardware resource sharing Functionality sharingRuntime system adaptation

Collaborative

Reasoning and planning

adaptation of an ensemble of

systems

Multi-use functionality post-

deployment

Feature interaction

Flexible and transferable

embedded functionality dispatch

Performance characterization

from abstract functionality

Data distribution

service (DDS)

Online calibrationRequirements mining Multi-rate double

buffering

64

Design artifact sharing

Collaborate between

stakeholders throughout the

system life cycle

Confidently design systems as

part of a reliable ensemble

Virtual system integration

Design

Emerging behavior design

Systematically design optimal

behavior of system ensembles

65

Collaborate between

stakeholders throughout the

system life cycle

Confidently design systems as

part of a reliable ensemble

Systematically design optimal

behavior of system ensembles

Proper models in design

System-level design and analysis

by using models

Connectivity among models,

software, and hardware

Design artifact sharingVirtual system integration

Design

Emerging behavior design

Model Building

Automation System
Counterexample

guided abstraction

refinement

Hybrid dynamic

systems

Multiparadigm modeling Real-time simulationHyperdense time domain

for hybrid bond graphs

66

Collaborate between

stakeholders throughout the

system life cycle

Confidently design systems as

part of a reliable ensemble

Systematically design optimal

behavior of system ensembles

Proper models in design

System-level design and analysis

by using models

Connectivity among models,

software, and hardware

Collaborative planning, guidance,

and control

Design artifact sharingVirtual system integration

Design

Emerging behavior design

Service orchestrationService oriented sensor

programming

67

Collaborate between

stakeholders throughout the

system life cycle

Confidently design systems as

part of a reliable ensemble

Systematically design optimal

behavior of system ensembles

Tool coupling among disparate

organizations

Support manifold views and tools

in design

Proper models in design

System-level design and analysis

by using models

Connectivity among models,

software, and hardware

Collaborative planning, guidance,

and control

Design artifact sharingVirtual system integration

Design

Emerging behavior design

Graph transformationsSingle underlying modelOpen services for

lifecycle collaboration

68

Pieter J. Mosterman and Justyna Zander, “Cyber-physical

systems challenges: a needs analysis for collaborating

embedded software systems,” in Software & Systems

Modeling, Springer Berlin/Heidelberg, ISSN 1619-1366, vol.

15, nr. 1, pp. 5-16, 2016

69

A smart emergency
response system

A feature
classification

Evolving
architectures

Future value drivers

70

Conclusions

 World is becoming machines that

– Adapt to the environment

– Make decisions autonomously

– Are connected

– Work together

 Metcalfe is supplanting Moore as

value driver

 Key M&S application areas

– Performance

– Concurrency

– Physics

 We need a stupendous range of

technologies combined

– Do not be an individualist!

 MathWorks touches on most any

of these technologies

 Come seek us out to discuss!

– Opportunities

– Solution needs

– Starting points

71

®

Environment models to enable
surrogate interactions

Open tool platforms with trusted
interfaces for communication

across synchronized and
coordinated models, software,

and hardware devices

Efficient simulation models to be used across dynamic and
execution semantics

Online model calibration

Maintenance of consistent
information and management of
inconsistencies regarding the
ensemble of systems with
sufficient fidelity at runtime

Introspection of the system
state, configuration, and
services it makes available

Generation of models with
necessary detail based on
property selection

Connecting, combining, and integrating models represented in
different formalisms

Model-based test generation from
requirements while preserving the
context of dynamic configurations

Setting of initial conditions and
injecting fault data

Temporal and spatial
partitioning to isolate

functionality for a specific
system architecture under

investigation

Information represented as high-
level models with well-defined

metamodels and ontologies

Synchronization of data from incongruent sources

Assumption formalization and
dependency effect analysis

Online calibration based on
objective and performance criteria

Performance characterization via
performance models and measures

Generation of models for a
desired task perspective by
property identification and
model behavior selection

Accessible formal methods
that apply to collaborative
problems

Planning and synthesis of
distributed control functionality
on concurrent resources

Analysis methods across
loosely coupled architectures

Real-time middleware and service oriented
architectures with physical capabilities

Service ontologies with taxonomies
for similarity and transformability

matching

Language and ontology
infrastructure to support

translation and transformation

Scheduling of periodic and
aperiodic events with reliable

execution times

Physical layer based timing and
synchronization architectures

Real-time services of graded quality with a low
footprint and a configurable protocol stack that

includes time and location information

Characterization of computational architectures

Dynamically mixing safety integrity levels

Modeling the semantics of time

Platform-based modeling of
execution behavior functionality

Standardized and configurable
real-time execution stack

Traceability across semantic
and technology adaptation,
and intellectual property
protection

Information extraction from
obfuscated intellectual property

Configurable view projections
that are tool specific

Consistent semantics across tools by
modeling execution engines

