
1
Copyright © Stephen J. Mellor. 2009. All rights reserved.

Methods for Parallel Platforms

Methods for
 Hardware/Software

and
 Parallel Computing

Platforms
Stephen J Mellor
Freeter

 2
Copyright © 2009 Stephen J. Mellor. All rights reserved.

Designing for Parallel Computing Platforms

Not only must we deal with
  Connection and memory issues
  Latency
  Throughput
  Bandwidth
  Energy dissipation
  Thermal issues
  Reliability and
  Quality of service

We must also deal with…

Cool Hand
1

2
Copyright © Stephen J. Mellor. 2009. All rights reserved.

Methods for Parallel Platforms

 3
Copyright © 2009 Stephen J. Mellor. All rights reserved.

… Change!

Today’s optimal solution may not have any relationship
with the optimal solution using tomorrow’s technology.

How can we:
 Reuse application

logic?

 Reuse architectural
knowledge?

Even as the technology changes?

Cold Heart
3.2

Bit Whack
350

Cool Hand
1

 4
Copyright © 2009 Stephen J. Mellor. All rights reserved.

Issues to Address

Any method must be capable of managing and
maintaining:
  Interfaces, specifically a change in approach
  Differing hardware and software cultures
  Control at multiple levels of abstraction
  Concurrency between hardware

and software and multiple cores
  Control at multiple levels

of abstraction

3
Copyright © Stephen J. Mellor. 2009. All rights reserved.

Methods for Parallel Platforms

 5
Copyright © 2009 Stephen J. Mellor. All rights reserved.

Interfaces…

  Tight coupling
  Easy to misunderstand
  Distributed throughout

implementation

0x8003

0x8002

0x8001

0x8000

Pulse Tim
er

Pow
er O

utput

23 10

TRUE

D
oor O

pen

Memory-mapped I/O

 6
Copyright © 2009 Stephen J. Mellor. All rights reserved.

…Change

Data 0x8000

0x0081

10

Pow
er O

utput

0x0082

Pulse Tim
er

23

Pulsetim
er

TRUE

0x0043 0x8001

1

Control

 Changes ripple through both:
  Software and
  Hardware

Manual maintenance is
  Expensive
  Error-prone

Register I/O

4
Copyright © Stephen J. Mellor. 2009. All rights reserved.

Methods for Parallel Platforms

 7
Copyright © 2009 Stephen J. Mellor. All rights reserved.

Different Cultures

Hardware
Algorithm
Micro-architecture
Implementation:
  C, C++, HDL, RTL

Software
Algorithm
Software architecture
Implementation:
  C, C++, Java

How do we go about development?

  Partition into hardware and software early
  Develop independently
  Meet in the lab some months later
  Hope you understood the partition correctly

 8
Copyright © 2009 Stephen J. Mellor. All rights reserved.

Perhaps Not So Different

Both teams are doing similar things.

Create Formalize Verify

5
Copyright © Stephen J. Mellor. 2009. All rights reserved.

Methods for Parallel Platforms

 9
Copyright © 2009 Stephen J. Mellor. All rights reserved.

A Method Application

Architecture

Translation
 Rules

for Software

Translation
 Rules

for Hardware

Translation
Rules

We can, jointly:
  Build a single executable

application model
  Don’t model implementation

structure

  Build transformation rules for
hardware and software

  Map the application to the
implementation

 10
Copyright © 2009 Stephen J. Mellor. All rights reserved.

Abstraction in Hardware

  Gate density is increasing exponentially
  Complexity is increasing along with gate density
  We need a way to manage this complexity
  We need to move to a higher level of abstraction

 The answer is C!

Gate Density

Time

6
Copyright © Stephen J. Mellor. 2009. All rights reserved.

Methods for Parallel Platforms

 11
Copyright © 2009 Stephen J. Mellor. All rights reserved.

Abstraction in Software

Assembly

Assembler

Machine
Code

1980s

Compiler

High Level
Language

1990s

Assembly

2000s

UML Models

Model
 Compiler

High Level
Language

System Complexity Price Performance

Increased
Productivity

 12
Copyright © 2009 Stephen J. Mellor. All rights reserved.

UML – A Big Language

UML is the industry standard.
  It has notations for

everything you could
possibly do in software

  Can we add notations for
everything we can possibly
do in hardware?

Executable UML is a:
  Streamlined
  Tractable
  Subset of UML

Achieved by having defined
execution rules

7
Copyright © Stephen J. Mellor. 2009. All rights reserved.

Methods for Parallel Platforms

 13
Copyright © 2009 Stephen J. Mellor. All rights reserved.

Sequence
Diagrams

Actions

Class
 Diagrams

Communcation
Diagrams

Activity Diagrams

State
Diagrams

Executable UML

 14
Copyright © 2009 Stephen J. Mellor. All rights reserved.

Engine Translation
Rules

xtUML Models UML Metamodel

System

Application

Legacy

Repository

Generator

Architecture

8
Copyright © Stephen J. Mellor. 2009. All rights reserved.

Methods for Parallel Platforms

 15
Copyright © 2009 Stephen J. Mellor. All rights reserved.

Executable Models
  Class Diagram
  State Diagram
  Action Language
  Summary diagrams

derived from these
base diagrams

Checking Settings

Entry/

OpenShutter(0.5);

MeasureLight();

ExposureTime(Mode);

Defines
Lifecycle
for Shutter

Shutter

Shutter ID

Aperture

Zoom

OpenTime

Status

Exposure

Exposure #

Shutter ID {R4}

NumberOfBytes

FileFolder

Status

R4

Closed

Checking Settings

Open

 Half (ShutterID)

Released(Shutter ID)

 Released (ShutterID)

Full(ShutterID)

 16
Copyright © 2009 Stephen J. Mellor. All rights reserved.

Concurrency

  Each instance has its own state
  Each instance goes through states
  Each instance—or parts of instances—can

be assigned to different processors

Closed

Checking Settings

Open

 Half (ShutterID)

Released(Shutter ID)

Full(ShutterID)

Closed

Checking Settings

Open

 Half (ShutterID)

Released(Shutter ID)

Full(ShutterID)

Closed

Checking Settings

Open

 Half (ShutterID)

Released(Shutter ID)

Full(ShutterID)

9
Copyright © Stephen J. Mellor. 2009. All rights reserved.

Methods for Parallel Platforms

 17
Copyright © 2009 Stephen J. Mellor. All rights reserved.

Model Capture
An application model is captured in a metamodel.

Filling

Cooking

Emptying

Create Batch(Amount of Batch,

 Recipe Name)

Filled(Batch ID)

Temperature Ramp

Complete(Batch ID)

Emptied(Batch ID)

Recipe

Batch
Temp.
Ramp

 18
Copyright © 2009 Stephen J. Mellor. All rights reserved.

Translation Rules

Translation rules:
  Read the database

to produce text
  Text can be a language for

software or hardware
  Build a complete system from

models consistently
  Maintain control of the

implementation

Repository

Translation
 Rules
for Software

Translation
 Rules
for Hardware

Model
Compiler

10
Copyright © Stephen J. Mellor. 2009. All rights reserved.

Methods for Parallel Platforms

 19
Copyright © 2009 Stephen J. Mellor. All rights reserved.

Translation Rules Generate Text

Application

State
Name {I}
Class {R7}
isFinal

Class
Number {I}
Name
KeyLetters
Description

Class

Number Name

101 Shutter

102 Exposure

State

Name Class Number isFinal

Closed 101 973 No

Checking 101 974 No

Open 101 975 No

Metamodel

Repository

Entity Shutter_VHDL { …

Class Exposure_C { …

Shutter (S)
Shutter ID {I}
Aperture
Zoom
OpenTime
Status Closed

Checking

Open

Translation
Rules

 20
Copyright © 2009 Stephen J. Mellor. All rights reserved.

public:
 enum states_e
 { NO_STATE = 0 ,
 CAMERA_OPEN ,
 CAMERA_CHECKING ,
 NUM_STATES = CAMERA_CLOSED
 };

Two Translation Rule Sets
.select many stateS related to instances of
 class->State where (isFinal == False)
public:
 enum states_e
 { NO_STATE = 0 ,
.for each state in stateS
 .if (not last stateS)
 ${state.Name } ,
 .else
 NUM_STATES = ${state.Name}
 .end if
.end for
};

.select many stateS related to instances of
 class->State where (isFinal == False)
TYPE t_${class.Name}State IS (
.for each state in stateS
 ${class.Name}_${state.Name}\
 .if (not last stateS)
 ${state.Name } ,
 .else
 ${state.Name }
 .end if
.end for
) ;

 TYPE t_CameraState IS (
 CAMERA_OPEN ,
 CAMERA_CHECKING ,
 CAMERA_CLOSED
);

11
Copyright © Stephen J. Mellor. 2009. All rights reserved.

Methods for Parallel Platforms

 21
Copyright © 2009 Stephen J. Mellor. All rights reserved.

Marks

Marks are extended properties of the metamodel that allow
different rules to be applied.

Metamodel

Shutter 

Shutter ID {I}

Aperture

Zoom

OpenTime

Status

Exposure

Exposure # {I}

Shutter ID {R4}

NumberOfBytes

FileFolder {R5}

Status

R4

State
Name {I}
Class {R7}
isFinal

Class
Number {I}
Name
KeyLetters
Description
markIsHW

.select many classes where markIsHW == TRUE;
// generate VHDL

.select many classes where markIsHW == FALSE;
// generate logic for a C++ class

 22
Copyright © 2009 Stephen J. Mellor. All rights reserved.

Marks

Repository

Translation
 Rules
for Software

Model
Compiler

Repository

Translation
 Rules
for Hardware

Application

  Write rules to
create instances in
the repositories

  Write clean rules
from each
repository

12
Copyright © Stephen J. Mellor. 2009. All rights reserved.

Methods for Parallel Platforms

 23
Copyright © 2009 Stephen J. Mellor. All rights reserved.

Retargeting the
Environment

Repository

Translation
 Rules
for Software

Model
Compiler

Repository

Translation
 Rules
for Hardware

Application

  Application models
can be targeted to
different partitions
and multiple cores

  The rules stay the
same.

 24
Copyright © 2009 Stephen J. Mellor. All rights reserved.

Engine Translation
Rules

xtUML Models UML Metamodel

System

Application

Legacy

Repository

Generator

Architecture

Control

  Of the
application

  Of the
architecture

13
Copyright © Stephen J. Mellor. 2009. All rights reserved.

Methods for Parallel Platforms

 25
Copyright © 2009 Stephen J. Mellor. All rights reserved.

A New Method

name name name

name name

Model the application

 26
Copyright © 2009 Stephen J. Mellor. All rights reserved.

Mark it

name name name

name name
Hardware

Hardware

Software

Software Software

Assign classes to
hardware or software

14
Copyright © Stephen J. Mellor. 2009. All rights reserved.

Methods for Parallel Platforms

 27
Copyright © 2009 Stephen J. Mellor. All rights reserved.

Mark it

name name name

name name
Hardware

Hardware

Software

Software Software

Assign classes to
hardware or software

 28
Copyright © 2009 Stephen J. Mellor. All rights reserved.

Make it

name name name

name name
Software

Software

Hardware

Hardware Software

15
Copyright © Stephen J. Mellor. 2009. All rights reserved.

Methods for Parallel Platforms

 29
Copyright © 2009 Stephen J. Mellor. All rights reserved.

Profile it

  Run Profiler

  Analyze the performance

  Not as good as you
 expected?

 30
Copyright © 2009 Stephen J. Mellor. All rights reserved.

Re-Mark it

name name name

name name
Hardware

Hardware

Software

Software Software Software Hardware

Repartition hardware/
software

16
Copyright © Stephen J. Mellor. 2009. All rights reserved.

Methods for Parallel Platforms

 31
Copyright © 2009 Stephen J. Mellor. All rights reserved.

Make it Again

name name name

name name
Software

Software

Hardware

Software Hardware

 32
Copyright © 2009 Stephen J. Mellor. All rights reserved.

Application
xtUML is a streamlined subset of the UML
industry standard that:
(X) Executes models

  Allows for early verification
  Integration of legacy code

(T) Translates models
  Complete code generation from models
  Customizable compilation rules
  Optimized code

Architecture

Translation
 Rules

for Software

Translation
 Rules

for Hardware

Translation
Rules

17
Copyright © Stephen J. Mellor. 2009. All rights reserved.

Methods for Parallel Platforms

Questions and Discussion

Why Systems-on-Chip needs
More UML like a Hole in the
Head

By Mellor, Wolfe, McCausland

 in

UML for SoC Design, edited
by Martin and Mueller

 34
Copyright © 2009 Stephen J. Mellor. All rights reserved.

Customer X

  Customer X has been using xtUML and BridgePoint
on pilot projects.

  They measured memory requirements, processor
speed etc. and calculated the cost differential
between generated and hand coding

18
Copyright © Stephen J. Mellor. 2009. All rights reserved.

Methods for Parallel Platforms

 35
Copyright © 2009 Stephen J. Mellor. All rights reserved.

(results from projects where high performance was essential)

Results from Pilot Projects

No time spent on optimizing the generated code

Performance of Generated Code vs. Hand-written Code

Th
e

Pi
lo

t P
ro

je
ct

s

Prop.
language

C++

•  0.8% higher data memory cost
•  5.2% lower program memory cost
•  worst case 6.4% higher cpu cost

•  no additional data memory cost (0%)
•  no additional program memory cost (~0%)
•  cpu cost not verified yet

Firmware
(C)

•  no additional data memory cost (0%)
•  2.4% higher program memory cost
•  0.7% lower cpu cost

 36
Copyright © 2009 Stephen J. Mellor. All rights reserved.

Customer X

Customer X used Logiscope to get a measure of code
in terms of:
  Maintainability,
  Testability,
  Stability,
  Changeability and
  Analyzability

(out-of-the-box settings determined by the vendor.)

19
Copyright © Stephen J. Mellor. 2009. All rights reserved.

Methods for Parallel Platforms

 37
Copyright © 2009 Stephen J. Mellor. All rights reserved.

Functions possible to grade (% of total)

Lo
gi

sc
op

e
Q

ua
lit

y
R

ep
or

t

Maintainability

Legacy (51%) Generated (86%)

Testability

Stability

Changeability

Analyzability

Excellent 58%
Good 37%

Excellent 86%
Good 10%

Excellent 65%
Good 18%

Excellent 57%
Good 36%

Excellent 56%
Good 18%

Excellent 63%
Good 28%

Excellent 74%
Good 14%

Excellent 82%
Good 18%

Excellent 82%
Good 13%

Excellent 88%
Good 7%

Logiscope Code Quality Results

  Legacy application
has 394 functions

  193 of these not
possible to grade

  Application has
215 functions

  29 of these not
possible to grade

