

"Leakage Aware" design strategy includes	
A.	Gate/Circuit-level techniques Use of multiple V _{th} • Dual-V _{th} design. • Mixed-V _{th} (MVT) CMOS design. • MTCMOS. - Sleep transistor insertion/Voltage islands - State retention FFs
В.	 Techniques for memory circuits Cell state (stored value) determines exactly which transistors "leak" State-preserving techniques: Only suitable choice for non-cache memories (e.g., scratchpad). State-destroying techniques: Suitable for caches (can invalidate values).
C.	 Architectural techniques Adaptive Body Biasing (ABB). Adaptive Voltage Scaling (AVS). V_{th} hopping. Multiple V_{BB}

