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CMOS Roadmap: 3 main showstoppers

Pat Gelsinger, CTO Intel Corp.
Quote from DAC’04 Keynote:

Power is the only limiter !!Power is the only limiter !!

CMOS Roadmap: 3 main showstoppers:

1. Subthreshold Leakage Current ( Ioff )

2 Huge Process Variation Spread2. Huge Process Variation Spread

3. Interconnect Performance and 
Signal Integrity

A further quote, to start with…
Roberto Zafalon, Low Power System Design mngr, 

STMicroelectronics

CLEAN-IP General Project Manager

Quote from CLEAN Press Release published by 
EETIMES on Jan 2006:

“Semiconductor industry urges to overcome the 
technology shortcomings for 65nm and below, and 
in particular, process variability and unreliability, 

as well as leakage currents ”as well as leakage currents,  

“Industry needs to decrease power consumption of 
nanoelectronic devices, increase design 

productivity and thus make the raised SoC’s 
complexity manageable.”
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Why bothering for low power systems?

• Practical market issue:
– Increasing market share of mobile, asking 

for longer cruising lifefor longer cruising life
– Limitations of battery technology

• Economic issue:
– Reducing packaging costs and achieving 

energy savings
• Technology issue:

– Enabling the realization of high-density 
chips 
(heat poses severe constraints to reliability)

Electronic Technology Today: CMOS Convergence
• CMOS technology dominates in modern ICs.
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CMOS at core of chip making still for many years

• The theoretical limit for transistor gate length on silicon 
is around 1.5nm. 

– Today’s 65nm CMOS process has a gate length of 42nm: 
i.e 28X larger than the theoretical limit! 

– In 32nm, the gate length is 21nm 
i.e. 14X above limit

• The gate delay determines the fundamental speed of 
the logic. The theoretical limit is 0.04ps 

– Today’s 65nm logic NAND2 is ~1ps, i.e. 24X slower!
• Transistor density, i.e. the number of device which can 

be squeezed into a chip reaches the limit around 1 8be squeezed into a chip, reaches the limit around 1.8 
billion Tx per cm². 

– Today’s 65nm CMOS device is 7.5X larger! 
(i.e. 750Kgate/mm2 = 2.4M Tx/mm2 = 240M Tx/cm2)

• Performance as measured by clock speed, fell off 
Moore’s Law during the last decade, thanks to Multi 
Processors computing architectures.

Source: ITRS, STM, IFX

• Power consumption of a CMOS gate:
P = PSW + PSC + PLk

where:
• PSW = Switching (or dynamic) power.

Basics of CMOS Power Consumption

PSW  Switching (or dynamic) power.
• PSC = Short-circuit power.
• PLk = Leakage (or stand-by) power.

• In older technologies (0.25um and above), PLk was 
marginal w.r.t. switching power:
– Switching power minimization was the primary objective.

• In deep sub-micron processes, PLk becomes 
i i lcritical:

– Leakage accounts for around 5-10% of power budget at 
180nm;
this grows to 20-25% at 130nm and to 35-60% at 65 nm.



6

Leakage Currents in Bulk CMOS

• Isub: 
Subthreshold current. 

• Igs, Igb, Igd: 
G t id t li

GATE
DRAINSOURCE

IDIS

IG
Igb IgdIgs

Gate oxide tunneling.

• Ijbs, Ijbd:
Junction reverse current.

• IGIDL, IGISL:
Gate induced D,S leakage. 

• I : Impact ionization current

BULK IB

Iii

IjbdIjbs

Isub

IGIDL
IGISL

• Iii: Impact ionization current.

Long Channel 
(L > 1 um) 
Very small 
leakage

Short Channel
(L > 180nm, 
Tox > 30A0)
Subthreshold 
leakage

Very Short 
Channel
(L > 90nm, 
Tox > 20A0)
Subthreshold  +
Gate leakage

Nano-scaled
(L < 90nm, 
Tox < 20A0)
Subthreshold  +
Gate + Junction 
leakage

Technology Scaling

• Smaller geometries
–Higher device density:

• Smaller gate capacitance, yet many more g p , y y
gates/chip 

• Higher switched capacitance Higher switching 
power.

–Higher clock frequencies:
• Higher switching power

–Lower supply voltages:
• Lower switching power, but also lower speed 

Lower threshold voltages Exponential leakage

• Consequence:
–Power density increases as technology scales!
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ITRS Roadmap 2007 vs Moore’s law

Squeezing costs of computing cores
ARM 9
180 nm
11.8 mm2

90 nm, 

130 nm, 
5.2 mm2

65 nm
1.4 mm2

2.6 mm2
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VDD (no more) scaling is increasing the «power 
crisis»

Evolution of VDD (LSTP)
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CMOS Logic Tech Overview

Source: STMicroelectronics 
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90/65/45nm Speed vs Leakage

Source: STMicroelectronics 
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Technology Scaling

• Increasing contribution of leakage power:

125
150

– Example: ASICs [source: STMicroelectronics]

80%

100%Itanium 2:
180nm 1 5V 1 0GHz

– Example: Microprocessors [source: Intel].

0
25
50
75

100
125

Power Density 
(Watts/cm2)

250nm 180nm 130nm 90nm 65nm

Leakage Power

Dynamic Power

0%

20%

40%

60%

80%

Itanium 2 Itanium 3

Leakage Power

I/O Power

Dynamic Power

180nm, 1.5V, 1.0GHz, 
221MTx (core+cache)

Itanium 3:
130nm, 1.3V, 1.5GHz, 
410MTx (core+cache)

SoC Requirements for MP platforms  (1)

• Processing performance is expected to grow more 
than 200x in the next 15 years.
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SoC Requirements for MP platforms (2)

• # PE per chip; Processing Performance; ND2’s max 
switching frequency (normalized to 2007)
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Dynamic vs. Leakage Power
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Leakage crisis: Is it a technology issue only?

• Trends:
– nominal Vdd getting stable around 1V 

MOS’s Vth linearly scales to keep costant speed– MOS s  Vth  linearly scales to keep costant speed
– But… leakage grows exponentially with Vth reduction 

!!
– sub-threshold current from 100 to 1000 pA/um
– gate leakage to become larger that sub-threshold
– total static power from 21E-12 to 60E-12 W/Transistorp

• SOI has major disadvantages w.r.t. sub-
threshold reduction! 

“Leakage Aware” design strategy includes
A. Gate/Circuit-level techniques

Use of multiple Vth
• Dual-Vth design.
• Mixed-Vth (MVT) CMOS design.
• MTCMOS.

Sleep transistor insertion/Voltage islands– Sleep transistor insertion/Voltage islands
– State retention FFs

B. Techniques for memory circuits
Cell state (stored value) determines exactly which transistors 
“leak” 
– State-preserving techniques:

• Only suitable choice for non-cache memories (e.g., scratchpad).
– State-destroying techniques:y g

• Suitable for caches (can invalidate values).

C. Architectural techniques
– Adaptive Body Biasing (ABB).
– Adaptive Voltage Scaling (AVS).
– Vth hopping.
– Multiple VBB
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Low Leakage Memory Approaches

• Leakage reduction techniques can be broadly 
classified in terms of how memory state is 
managed :
– State-preserving techniques:

• Memory cell value is preserved when in low-leakage state.
• Suitable choice for non-cache memories (e.g., scratch-pad).

– State-destroying techniques:
• Memory cell value is NOT preserved when in low-leakage 

state.
• Suitable only for caches (can invalidate values).

• Tradeoff between:
– Residual leakage paid to preserve the state.
– Restoring the lost state from higher levels of the 

memory hierarchy.
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Low Leakage Memory Approaches (cont.)

• Circuit-level techniques:
– Modify internal structure of SRAM cells. 

• Transistor size, P/N ratio, Vth, body bias.
• Additional transistors.
• Precharge policy tuning

– May possibly require specialized process (e.g., 
different Tox, Halo doping, multiple Vth).

• Architectural techniques.Architectural techniques.
– Use system level information to determine 

conditions to drive portions of memory into low-
leakage state.

– Portions of Memory: bit lines, blocks, regions, 
etc.

Spatio-Temporal-Value Cache

Tag1 Data1CM1

• Partitioned Architecure (Outcome of CLEAN):
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...
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TagN DataNCMN
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SoC Design Grand Challenges
(source: ITRS 2007)

• MANAGEMENT OF OVERALL POWER
– Due to the Moore’s law, power management is theDue to the Moore s law, power management is the 

primary issue across most application segments. 
– Needs to be addressed across multiple levels, 

especially system, design, and process technology. 

• MANAGEMENT OF LEAKAGE POWER
– Leakage currents increase by 10x per tech node. 
– From system design requirements & improvements 

in CAD design tools, downto leakage and 
performance requirements for new architectures. 

Subthreshold Leakage vs. Temperature
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Thermal map of a Multi Processor SoC 

Chip floorplan Steady state temperatureChip floorplan Steady state temperature
Some hot spots in steady state:
§ Silicon is a good thermal conductor (only 4x worse than Cu) 
and temperature gradients are likely to occur on large dies
§ Lower power density than on a high performance CPU 

(lower frequency and less complex HW)

Thermal Management Challenge

BGA Normalized cost vs. thermal enhancement
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Source: STM Corporate Packaging
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• BGA package rough (Cost-performance ÷ High-performance)
– max power density = 50÷60 W/cm2
– Cost per pin = 0.25÷1.1 ¢/pin    (~ 90 pins/cm2)
– Max pincount = 500÷2500+
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Increased share of Mobile Phone Subscribers

• Cellular Phones: GSM+CDMA
– The fastest growing communication technology of all time.

• The billionth subcriber user was connected in Q1 
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Mobile Phones Regional Split at Q2-2008

• 3665 M subscribers as of Q2-2008
• Mobile Broadband Network (HSPA) subscribers has 

reached 
50 M from 11 M on 2007 (i.e. 4 M/Month growth rate). 

GSM Regional Statistics Q2-2008
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Cellular Phone’s standby current

Nomadik™: ST’s example of 
Mobile Multi-Media driver

Audio Video
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Nomadik™: a flagship design for ultra low power!

… and … not Only Mobile!

• 20% of electrical energy consumed in 
Amsterdam is used for Telecom

• In the US, Internet is responsible for 9% of the 
electrical energy consumed nation wideelectrical energy consumed nation-wide
– This grows to 13% with all computer applications

• Transfering 2 MBytes of data through the internet
consumes the energy of 1 pound of coal (1 pound=0.453 Kg)

Source: 2000 CO2 conference, Amsterdam, NL
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Complexity goes non-linear
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Conclusion

• Semiconductor market is still CMOS dominated:
– Switching and leakage power.

• Leakage will become dominant for technology nodes 
b l 65below 65nm.
– Leakage power optimization must be addressed from both 

technology and design points of view.

• Many circuit-level techniques have been 
investigated recently:
– Not yet fully supported by commercial EDA tools. 

• Higher-level approaches are still in their infancy:
– Results are promising.

• The electronics industry calls for a 
REVOLUTION!
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• Ultra low power systems
• Ultra low power cognitive 

Industry’s Needs

p g
radio

• Energy scavenging
• Micro-Nano systems
• System In Package

System On Wafer…

System In Package
• System On Wafer 
• …


