

e Programming multiprocessor platforms
- Multiprocessor platforms are here today and they are here to stay!

- Current mismatch between platform and programming model

- How to map sequential code on a parallel platform?

e IMEC'’s MPSoC tool suite

- Eclipse Code Cleaning plug-in to get your C code in parallel shape
- MH tool: Memory Hierarchy optimization tool

- MPA tool: a Multiprocessor Parallelization Assistant

« A concrete case: towards Gbit/s Cognitive Reconfigurable Radio
and MPEG4-ENC

* Run time management

e Wouters
ed 2009 3

* Programming multiprocessor platforms
— Multiprocessor platforms are here today and they are here to stay!

— Current mismatch between platform and programming model

- How to map sequential code on a parallel platform?

e IMEC’s MPSoC tool suite

- Eclipse Code Cleaning plug-in to get your C code in parallel shape
- MH tool: Memory Hierarchy optimization tool

— MPA tool: a Multiprocessor Parallelization Assistant

+ A concrete case: towards Gbit/s Cognitive
Reconfigurable Radio

e Wouters
ed 2009 4

Multiprocessor platforms are here

... and they are here to stay!

Texas Instruments IBM Cell

YT

248

How to efficiently program them?

of Components
2
2
g
N
=
k3

s
S

What are the fundamental issues?

\
Max Processing Performance [TFLOPS]

Year of Production

[mm# of Main CPUs C1# of DPEs - Max Processing Performance |

e Wouters
icted 2009 5

Platform Evolution — Embedded System

Single processor, Multi processor, parallel
sequential programs programs

e Designer uses sequential C code e Memory access will not scale up
and assumes a single (shared) « Communication and

memory space synchronization becomes

e Platform consist of a single problematic
processor with a cache Debugging is a nightmare
(hierarchy?) and a main * Existing programming model will
memory, interconnected by a break

bus.
e There's a g_ood match between
programming mode| and e Keep scalability across platform

computing platform . . generations (#processors/amount
* Designer focuses on algorithmic of memory/available bandwidth)

development and code Keep retargetability to different
optimizations vendors

e Parallelization, componentization
and composability

e Multi-application predictability

e Wouters
icted 2009 6

How can we program multi processor
platforms?

Buying a commercial MP-RTOS and use the primitives available
- Is just an abstraction layer on top of the MPSoC platform ... all problems remain

Pre-parallelized libraries
- Limited flexibility and no context awareness

- Platform specific

Create parallel threaded code using explicit data communication
with message passing (MPI)
- Parallelization is manual and error-prone

- Explicit data communication needs to be added by designer.
- A lot of existing algorithms do not map efficiently to a pure message passing model

Create parallel threaded code assisted by tools like OpenMP.
— Less manual work, but still error-prone.

- Coherency problem still exists and is assumed to be solved in HW

How do we program multi processor platfor

now?

* How do we guarantee that it works for a single
application
- Simulation ... over and over and over again

e And if it does not work or does not reach the required
performance
- Do it all again

- And then: Simulation ... over and over and over again

ters
09 8

What do we need to get back to sequential C
programming with a single (shared) memory s

e Tool that performs parallelization and also adds
synchronization, inter-task communication and manages the
memory hierarchy

e Explicitly controlling (data) communication to avoid hardware
cache coherency problem/scaling bottleneck

e Embedded SW designer remains on the “sequential code with
single memory space” level. Designer is responsible for
giving parallelization hints.

e Tools make the code-transition to the parallel world and
make sure the transition is functionally correct and optimized
for a given set of platform parameters.

e Tools that provide fast feedback on a sequential level!

Such tools minimize the error-prone and time-consuming work ... over
and over and over again.

ryse Wouters
stricted 2009 9

¢ Programming multiprocessor platforms
- Multiprocessor platforms are here today and they are here to stay!

- Current mismatch between platform and programming model

- How to map sequential code on a parallel platform?

IMEC’s MPSoC tool suite

Eclipse Code Cleaning plug-in to get your C code in parallel shape
- MH tool: Memory Hierarchy optimization tool
- MPA tool: a Multiprocessor Parallelization Assistant

- Application on MPEG4-ENC

A concrete case: towards Gbit/s Cognitive Reconfigurable Radio

Run time management

ryse Wouters
stricted 2009 10

MPSoC Programming Model & Flow

| MPSoC Cleaning-assist toolsuite | * Sequential C
+ Shared memory

Sequential Clean-C code

1!

Seq. C & pragmas
| m]

* Sequential C + pragmas
+ Shared memory

MPSoC Mapping Tools

Parallel programming

(onto RTLib

Parallel programming model
RTLib-API

* Threaded parallel
programming on RTLib API|

* Memory model:

*Shared memory and message
passing
*Mixed to have best of both worlds

Compiler/Rurjime Manager |

Platform services

Platform Services Hardware components

11

CleanC: promoting an MPSoC-friendly coding st

Guideline 6 (Keep variables local) (100 of 262 items)
Guideline 10 (Make sure a pointer points to only one
Guideline 15 (Use switch statements instead of func
Guideline 16 (Use the manifest loop pattern) (100 of
Restriction 17 (Make the control fiow regular) (100 ¢
= Guideline 19 (Keep side-effects out of expressions)
Restriction 21 (Use indexes instead of pointer arithn
Guideline 22 (Specify variable ranges) (100 of 500 it
Restriction 23 (Do not cast from/to a pointer) (18 ite
Restriction 24 (Cast the result of malloc() to the con
Guikieliia 25 e tiwlicogaribs & pa kRl e / To help convert arbitrary C
code to CleanC code, IMEC
develops a tool suite

Analyzes code for adherence to
CleanC coding style

e e e m e m e e o

ol

Static analysis of arbitrary
C code has its limitations

b

e

Wi

IMEC promotes a coding
style that is MPSoC-
frlendly - CleanC

28 guidelines and restrictions on
how to write C code

Rk

Can analyze code for
parallelization purposes

Wl

HEEEEEEHEESE
ay @ a @ oay ay ay ey ay anar

Provides code transformation
support to “clean” C code

Integrated in Eclipse 3.3 / CDT

ceine 26 (v he dark comersof e C stander) (tems)
ieine 27 Respect the sementes o tyoss) (100 o 39 fers) 4.0 IDE

3‘2

e

J

Wouters
ed 2009 il2)

CleanC tool box

€ cice+
e Edt_Eg

- [h] memalioc.h

{ &R mmaxh & Analysis tool
B mode_dedcsion.h %f e e il i e implemented
- r==1 r==
A mVjarch.h s P B_e= - Eclipse 3.3 / CDT 4.0 IDE
plug-in
S, 7 Search - Restrictions implemented
5 3,802 wamings, 0 infos (Filter matched 3302 of 3910 items) - Number of warnings reduced
pton))
& Function pointer call ‘getiNeighbour” - !:I rst transformation
& Function pointer call "updateQP” implemented
& Function pointer call "updateQP” - Lots of visibility in the press

@& Function pointer call "updateQP”

& rFunction pointer call "OneComponentChromaPrediction4x4”

- Free download
/ available
e Future work

- Support user specified
“regions of interest” to focus
on most relevant parts of
code

- Further implement code
transformation support

3
& Functon ponter cal getheghbous™ macodiock.c Aplcatons e 1923
& Functon ponter cal ‘gethieghbou™ macasiock.. Appicatons/ ne 252 -]

I Funcion ponter cal OneCanpanentchvamaPredctonsyd” I

e Wouters
icted 2009 5

Multi-Core Association

e Mutlicore Programming Practice (MPP)

- "“[...] has a goal to develop a multicore software programming guide
for the industry that will aid in improving consistency and
understanding of multicore programming issues. Initially the group
is working on best practices leveraging the C/C++ language to
generate a guide of genuine value to engineers who are
approaching multicore programming. [...]".

» Officially Working Group Member since end of
September
— Objective is to promote the CleanC guidelines and rules

e Wouters
icted 2009 14

Memory hierarchy: cache versus scratchpad

. High Lower
High BW — 7 Energy Reduced BW — Energy
- Large - - Sma”er

Area Area

Misses (latency)

*~ Unpredictable « Predictable

e Costly (power, cycles, BW, ...) e More efficient (power, cycles, BW, ...)
e Unpredictable access latency e More predictable
e Poor scaling to MP e Better scaling to MP

e Simple to program e Harder to program Tool support

needed!

2008 | 15

Why is SPM even more important for multi proce

systems

e Cache requires more BW than SPM

e Cache coherency > write through - more BW
e No direct L1-L1 communication >more BW
e Main memory becomes central bottleneck > Bad scalability
e Cache usage is implicit for the designer
¢ Does not need programming
e Hard to control - need for simulation/trial and error

16

MH: A compiler like tool exploiting scratc

Copy candidate graphs:
e O(1000) copy candidates
e Too much to manually select and map

Life-time Analysis:
e SPM utilization (in-place mapping)
e Block transfer scheduling (pre-fetch)

“ selected Copy Candidates:
e Reuse buffers in SPM

MPEG-4 part 2 SP encoder results:
e 24 copies selected
e 42 block transfers introduced

e 80% of transfer latency hidden
- (i.e. in parallel with processing)

e MPEG-4 p2 SP encoder (£8950 lines of C code)

- 40% 30 frames @ CIF

- 22%

100

50

Execution time
[x106¢ cycles]

AHB multi-layer o
SPM 16k D$ 16k D$ 64k

- 30%

-19%

Power [mW]

SPM 16k D$ 16k D$ 64k

WADRES OL1 @L2 OCA

Wouters
ed 2009 18

MPA
user assisted parallelization tool

o o » Parallelizes sequential Clean-C source
Parallelization Application code code

directives - Correct-by-construction multi-threaded code

— Higher level than openMP (=less work,
exploration ease)

Directives in separate file

e Supported types of parallelism
- Functional split

- (Coarse) Data-level split

- Combinations
e Dumps parallel code
e Dumps parallel code

e Sets up communication
- Communication by means of FIFO's

- FIFO sizes determined by tool

thread 1 thread 2 thread 3

B

MPA on MPEG-4 p2 SP encoder

* Prototype tool used to explore different parallel

software architecture for MPEG-4 p2 SP encoder
— 10 parallelization alternatives explored in half a day

— 20 to 30 lines of parallelization directives

~123 Mcycles ~109 Mcycles ~62 Mcycles

me (97M)

mc (26M)

tc (92M)

tu (17M)

ec (6M)

vic (47M)

parsection (338M)

ps (OM)

fram eprocessing (339M)

lputbits (40M)

dp (2M)
padding (1M)

3 processors 5 processors 7 processors
speed x 2.75 speed x 3.11 speed x 5.45

e Wouters
icted 2009 20

10

e Programming multiprocessor platforms
- Multiprocessor platforms are here today and they are here to stay!

- Current mismatch between platform and programming model

- How to map sequential code on a parallel platform?

e IMEC'’s MPSoC tool suite

- Eclipse Code Cleaning plug-in to get your C code in parallel shape
- MH tool: Memory Hierarchy optimization tool

- MPA tool: a Multiprocessor Parallelization Assistant
« A concrete case: towards Gbit/s Cognitive Reconfigurable Radio

* Run time management

Wouters
ed 2009 21

The need for reconfigurable radio platfor

functional and techno-economical constra

Functional constraints

Advantage 1: lower cost

CcDMA2000

= Advantage 2: higher flexibility

Techno-economical constraints

$1M
10kbps 100 kbps 1 Mbps 10Mbps 100 Mbps 1 Gbps.
Mask cost
“>6 radios/terminal in 2009”
$400Kk
Technology roadmaps
(2014 horizon): I
Intel, Nokia, TI, Infineon, - 1
NXP, ST, Motorola 350nm 250nm 180nm 130nm 90nm 65nm 40gm
Wouters
ed 2009 | 22

11

IMEC's flexible baseband platforms:

DFEtile SyncPro

e

Ayt eIyt
Esa
=

A

r]@]‘.’ﬂn..n.
EE

Baseband
engine

BW optimized
DFE tile SyncPro scalable | Bas.eband
_interconnect = €ngine

FEC engine

23

Sensing-enabled
Digital Front-end

e Crucial ‘Must-have’ Block for CR

e Large scope for innovation

* Need for algorithm-architecture
co-design

e (Virtual) silicon proof-of-concept

* Specifications under definition

L | Aliaivy 1rc

Analog FE

Baseband/Inner Modem

e Target: 4G requirements
(performance and concurrency)

e Power Budget: 250-300mW?
¢ Performance Budget: 20GOPs

e 20X increase in performance
¢ 3X with architecture-extensions
e 4X with increased cores (Multi-
threading and/or more cores)
e 2X with increased arch-friendly
algorithms

Cognitive Aspects

eMore complex system software
(platform-level)
e High-level PHY and time-
critical MAC features
¢ CR control functionality
* Run-time support (scheduling
and management of tasks)
e 1 or 2 processors? ARM?

o FlexFEC will do the job!

e Scale further with specific
extensions (DG-LDPC) and to
higher data rates

FEC/Outer Modem

12

Two ways to higher throughput (Gbps):
Exploring multi-threading and multi-processing wi

Goal: balanced load and minimal communication overhead

Multi-threading | Split per antenna Multi-processing | Split per symbol

Fork Join Fork

on

MAIN Partition Confidential Until
(| Published
r I (submitted to
1 ISSCC 2009)
- JAN

Checked for FFT-only: 2 cycle overhead on
694 cycles; IPC=24.2 out of 32

Needed: fast switching between threads

Needed: low communication between
symbols due to lower inter-ADRES

|
|
|
|
|
|
|
|
|
~\ |
|
|
|
|
|
|
|
|
1 communication bandwidth than intra-ADRES

e Wouters
ed 2009 25

e Programming multiprocessor platforms
- Multiprocessor platforms are here today and they are here to stay!

- Current mismatch between platform and programming model

- How to map sequential code on a parallel platform?

e IMEC's MPSoC tool suite

- Eclipse Code Cleaning plug-in to get your C code in parallel shape
- MH tool: Memory Hierarchy optimization tool

- MPA tool: a Multiprocessor Parallelization Assistant

- A concrete case: towards Gbit/s Cognitive Reconfigurable Radio

* Run time management

e Wouters
ed 2009 26

13

Run-time manager integrated in the flo

#cycles/pixel

N

OO 88 -ssoee 1z
& & 168

Number of Processors
-+ 100MB/s -=- 20MB/s

Application(s)

Metadata % = System Quality
> K g Manager
S olie
BW/ #proc. § é § Resource Manager Run-Time
o = (Policy) Library
ctfie
,“;’ 2 Resource Manager
L (7]

(Mechanism)

MPSoC Platform Hardware Properties and Services

ryse Wouters
stricted 2009 27

A glimpse of the future

e What the future brings

- More and more run-time solutions required

e Multi-core evolves to many-core
e Applications and usage patterns grow increasingly dynamic

e Advanced CMOS processing technology becomes a source of un-
predictability: run-time mitigation of variability/reliability issues
- Advances in integration technologies

e 3D-stacking of devices with Through-Silicon-Via

e Will radically change the way we build memory hierarchies
and hence multi-core architectures

/ 0 1 2 3 4 5 6 7 8

ryse Wouters
stricted 2009 28

14

Variability in process technology

Processor
(120Kgate, 32nm CI

0.014

0.012

0.008 .|

0.006

0.004

0.002

Probability to occur in reality

Maryse Wouters
imec restricted 2009 29

Variability in process technology

Processor

(120Kgate, 32nm CMOS) - All chips are equal -

but some will be more
equal

e Ageing: degradation of
performance over time

e Solutions:

—. Develop software for the
worst-case?

0.014

0.012

0.006

0.004

0.002

Probability to occur in reality

Adaptive system?

9 9
y[/)]] 55 7 Lon

A Maryse Wouters
iMmecC imec restricted 2009 | 30

15

Conclusion

e IMEC’'s MPSoC tool suite automates the mapping of single-
threaded applications on multi-processor platforms
- Eclipse Code Cleaning plug-in to get your C code in parallel shape

- MH tool: Memory Hierarchy optimization tool

- MPA tool: a Multiprocessor Parallelization Assistant

e The tool suite is used by IMEC and its partners for multi-
processor platforms targeting gigabit/s wireless
communication.

e The MPSoC technology is currently being transferred to two
semiconductor companies, and is available for transfer to
others.

: |
9 Bk

e invent achieve

16

