Image Processing exploiting new dimensions in reconfigurable multiprocessor systems

Diana Göhringer¹, Thomas Perschke¹, Jürgen Becker²

FGAN-FOM¹ (Research Institute for Optronics and Pattern Recognition), Germany ITIV², Universität Karlsruhe (TH), Germany

20 March 2009

πv

FGAN-FOM

Outline

- Introduction and Motivation
 - Experimental System for Object Detection and Tracking
 - Limitations of the traditional MPSoC Approach
 - Traditional Designflow versus RAMPSoC Designflow
 - Dynamic and Partial Reconfiguration
- Hierarchy-/Virtualization-Levels of RAMPSoC
 - RAMPSoC System Architecture
 - Reconfigurable Instruction Set Processor (RISP)
 - Run-time Adaptive Multi-Processor System-on-Chip (RAMPSoC)
 - Software Designflow
 - Case Study: Digital Image Processing
- Benefits of the RAMPSoC Approach
- Conclusion and Outlook

20 March 2009

ιΤιV

Outline

- Introduction and Motivation
 - Experimental System for Object Detection and Tracking
 - Limitations of the traditional MPSoC Approach
 - Traditional Designflow versus RAMPSoC Designflow
 - Dynamic and Partial Reconfiguration
- Hierarchy-/Virtualization-Levels of RAMPSoC
 - RAMPSoC System Architecture
 - Reconfigurable Instruction Set Processor (RISP)
 - Run-time Adaptive Multi-Processor System-on-Chip (RAMPSoC)
 - Software Designflow
 - Case Study: Digital Image Processing
- Benefits of the RAMPSoC Approach
- Conclusion and Outlook

20 March 2009

ιΤι∨

FGAN-FOM-

Experimental System for Object Detection and Tracking

Experimental system to analyze and evaluate different

- sensors (IR, Dual-Band IR, laser range finders,...)
- hardware (reconfigurable HW, DSP, ...)
- algorithms (e. g. tracking : edge, centroid, correlation, ...)

for object detection and tracking.

20 March 2009

ΤiV

Challenge

Experimental system "failed" with respect to serve as an

easy to use rapid prototyping system

Why?

The implementation of complex software tracking algorithms on the FPGA needs a lot of expertise and time

Full system functionality is only reached after hardware implementation

Possible solution?

Rapid Prototyping with RAMPSoC system on FPGA

20 March 2009 7 TTV

Outline

- Introduction and Motivation
 - Experimental System for Object Detection and Tracking
 - Limitations of the traditional MPSoC Approach
 - Traditional Designflow versus RAMPSoC Designflow
 - Dynamic and Partial Reconfiguration
- Three Abstraction-Levels of RAMPSoC
 - RAMPSoC System Architecture
 - Reconfigurable Instruction Set Processor (RISP)
 - Run-time Adaptive Multi-Processor System-on-Chip (RAMPSoC)
 - Software Designflow
 - Case Study: Digital Image Processing
- Benefits of the RAMPSoC Approach
- Conclusion and Outlook

20 March 2009

13 **ITiV**

Benefits of the RAMPSoC Approach

- Programming model available Designtools (Compiler, Tools, Processors) exist
- Advantages over pure hardware solutions:
 - More time-efficient designflow through software adaptation and the usage of existing processor cores
 - More flexible through Hardware-Software-Codesign
 - Adapting the system more easily to new tasks through software design
- Advantages over RISPs:
 - Better Performance due to extended parallelism
 - Higher computation power (expected ②)
 - Possibility to execute several applications in parallel

20 March 2009

FGAN-FOM-

Benefits of the RAMPSoC Approach

- Advantages over traditional MPSoCs
 - Better Performance due to parallelization of complex tasks in Hardware
 - Lower power consumption → Computing power on-demand
 - More flexible and versatile → optimizable during design-time and during run-time
 - Reduced costs and faster Time-to-Market
- → RAMPSoC inherits the advantages of RISPs and traditional MPSoCs and extends them by using the dynamic and partial reconfiguration feature in the MPSoC-level (Adaptation of the communication infrastructure, whole processors and instruction sets).

20 March 2009

Outline

- Introduction and Motivation
 - Experimental System for Object Detection and Tracking
 - Limitations of the traditional MPSoC Approach
 - Traditional Designflow versus RAMPSoC Designflow
 - Dynamic and Partial Reconfiguration
- Hierarchy-/Virtualization-Levels of RAMPSoC
 - RAMPSoC System Architecture
 - Reconfigurable Instruction Set Processor (RISP)
 - Run-time Adaptive Multi-Processor System-on-Chip (RAMPSoC)
 - Software Designflow
 - Case Study: Digital Image Processing
- Benefits of the RAMPSoC Approach
- Conclusion and Outlook

20 March 2009

ιΤι\

FGAN-FOM

Conclusion

- Marce Processor Comment of the Comme
- Modular and adaptive MPSoC → RAMPSoC
- Run-time adaptation through dynamic and partial reconfiguration:
 - Processor (bitwidth, architecture (VLIW, RISC, CISC))
 - Accelerator
 - Communication infrastructure (e.g. Network-on-Chip)
 - Optimizing the communication paths through component migration
- Advantages over traditional MPSoCs:
 - Lower power consumption → on-demand functionality
 - More flexibility → run-time adaptation
 - Reduced costs → re-use for a multitude of applications
 - Better performance → exploitation of parallelization and reconfiguration

20 March 2009

24 **TTIV**

Outlook

- Deployment of a complete tool-set with a library of processing elements
- Connect the design flow to higher level design tools
- Building a Demonstrator including a camera and a monitor and using the FPGA of the Experimental System
- Exploration of a more complex image processing application: → Real application scenario: Tracking system on RAMPSoC

20 March 2009

FGAN-FOM

Thank you!

Questions?

20 March 2009

26 TTIV

