AT oM? meta-modelling research project

Marc Provost
School of Computer Science, McGill University
Montréal, Québec, Canada

August 17, 2002

Thanks!

This project could not have come to life without the help of my “mentors”
Hans Vangheluwe and Juan de Lara. I have learned quite a lot in only 4
months! Specials thanks also to Ernesto Posse and Simon Lacoste for their
very useful comments on my work!

Preface

This report describes the results of a complete summer of work in the Mod-
elling, Simulation and Design lab (MSDL) with Prof. Hans Vangheluwe.
Although the primary objective of the project was to introduce me to the
world of research, some concrete results were obtained and may be used for
the next generation of AToM? (I hope!!). ! The results are divided into 2
parts:

Chapter 1 discuss the details of a UML class diagram modelling envi-
ronmeng | meta-modeled with the Entity-Relationship formalism. Many as-
pects of its implementation are discussed in details including the problems
that were encountered. The features that could not be implemented are also
justified, possible solutions are suggested in some cases.

Chapter 2 explains how a sketch of a UML class diagram meta-meta-
model containing inheritance was built in AToM?3. Everything is discussed
in details so that it will be possible to improve the implementation.

!More information about AToM?® can be reached on the web at
http://moncs.cs.mcgill.ca/MSDL /research/projects/AToM3/

Contents

1 UML class diagram modelling environment in AToM3
1.1 Introduction
1.2 AtomClass entity L.
1.2.1 Appearance
1.2.2 Constraints
1.3 AtomAssociation L.
1.3.1 Appearance
1.3.2 Constraints,
1.4 AtomGeneralization
1.5 Model examples Lo oL

2 Entity-Relationship with inheritance meta-meta model
2.1 Introduction
22 AtomClass
2.2.1 Attributes and Cardinalities
2.2.2 Constraints e
2.3 AtomAssociation and AtomInheritance
2.4 Steps required to generate a modelling environment
2.4.1 Introduction
24.2 Creatingamodel 0L
2.4.3 Running the GG to express inheritance semantics . . .

3 Conclusion

18
18
19
19
19
21
21
21
22
22

27

1 UML class diagram modelling environment
in AToM3

1.1 Introduction

One of the first objective of my project was to get used to AT'oM?, and
the best way to learn a designing tool is actually to design with it! So we
decided to meta-model UML class diagram using entity-relationship (ER)
as a first step toward creating a new meta-meta model based on UML class
diagram to replace ER. We wanted to create a meta-model as close as possible
to the meta-model described in the OMG ? specifications document. Of
course, since the latter meta-model is constructed using UML class diagrams
formalism, it would have been quite a task to reproduce it exactly with
entity-relationship. The goal was not to built a perfect equivalent formalism,
but was to select important features from the OMG specifications document
and try to meta-model them in AToM? (A document containing the chosen
features was provided). > Hence, we wanted to prove that it was possible to
implement a usable UML class diagram modelling environment in AToM3.
Afterwards, AToM? devellopers could polish my implementation by adding
the missing features and try to implement solutions to the problems I wasn’t
able to solve.

http:/ /www.omg.org
3http:/ /moncs.cs.mcgill.ca/people/mprovost /projects/designV1

4

AToM3 v0.2.1 using: Entity Relationship i] ol x|
File Model Transformation Graphics

;Entity Relationshipi MDdE‘JDFEI Edit entitp | Connect | Delete | Insertmodel | - Expand model EHitl
Smoath | Insert point | Dielete point | Changs connector
Entity i
rel.
Atormilass

name type=String init.val
class_methods type=List
class_attribs type=Listi

atom_interface type=Bool ;
=3

trpe—appe -t
= Generalization

Figure 1: UML class diagram meta-model

Filename: ClassDiagram MM _mdl.py

The UML class diagrams meta-model seems quite simple. It has only one
entity AtomClass related with itself via two relationships AtomAssociation
and AtomInheritance. This was expected since, in the UML class diagrams
specifications, two non-stereotyped class can only be connected via inheri-
tance or associations.

1.2 AtomClass entity

Usual classes attributes were given to the AtomClass entity such as a name,
a list of methods and a list of attributes. Other attributes were added for the
purpose of the UML editor, atirib_appear, method_appear, stereotype_appear
and abstract_appear. Those unusual attributes are used for the appearance
of the class in the modelling environment. They should be considered as
being private, but the user can still edit them since private attributes are
not supported yet in AToM?3. Also several constraints were created in the

Edit value

FIanme

!.-'-‘-.t::umEIass

Cardinalities edit |

attributes

constraints

news | edit | delete Lt

name pe=5String ik waly
clazz methods type=List |
clazz_attribs tppe=Lizt init.
atorn_interface type=EBoal
stereotupe appear type==t
atorn_abztract twpe=Boole:
abstract appear ype=Shi
methodz_appear lwpe=5tr
attrib_appear type=5ting

LARH!

niew | edit | delete

Attrib_Mames ; §Constrair
tethod_Mames ; #Conztr
method_creation : methoe
create wanables : self izt
attnbz creation ;| attnbs =
create puthon_code : #tk

z

appearance edit |

k. | Eancel

Figure 2: AtomClass entity details

6

AtomClass entity. The constraints will be explained in detail later, but they
are used mostly for python code generation, method/attribute parsing and, of
course, to verify the correctness of user-defined models.

1.2.1 Appearance

An expected rectangular box was defined as the apprearance (figure 3) for
the class in the modelling environment. The name of the class, the stereo-
type and the abstract tag are drawn in the top sub-rectangle. Without any
surprises, class attributes and methods are located respectively in the middle
and botton sub-rectangle.

Some constraints were defined (table 1) to update the appearance of the
class as the user modify the internal variables. Indeed, the constraints at-
trib_constr, method_constr, abstract and interface update the variables at-
trib_appear, method_appear, stereotype_appear and abstract_appear each
time the user edit an AtomClass in a model.

#Code for interface
#set up the appearance depending if abstract property is on
inter = self.semanticObject.atom _interface.getValue() #interface value
self.gf12.setVisible(inter[1])
#Code for method_constr
list = self.semanticObject.class_methods.get Value()
tmpString = 77
for a in list:

tmpString = tmpString + a.getValue() + ‘\n’
self.semanticObject.methods_appear.set Value(tmpString)

table 1

But, why do we need to create such constraints for the appearance of
the attributes/methods? Why don’t we just put the list_of-methods and
list_of_attrib instead of creating a formatted string on the fly? Because most
of the ATOMTypes are not well formatted when they are displayed on the
appearance of an entity or a relationship at the model level. Indeed, they
were designed to be well formatted when we create meta-models and, since
AToM? uses the same interface for creating both models and meta-models,

Aftributes Appearance
Fiame: e .
class_methods sstere Dg:riaipp Bt Select
clazs_attribs =abstfact appears
atom_interface Delete
stereotype appear
atarn: abstract gls
abztract_appear Fattrib_appears Line
rethods appear
a_ttrlh-_appear B
0
qmethods_appear= v
2 Fectangle
Teut
Atribute
Conrector
F'ru:uperties
et Constraint
. o — [T Changes at n-time:

Ok

Cancel

Figure 3: AtomClass appearance

AToM? cannot satisfy (for now) two modelling environments that have dif-
ferent appearance needs. This is why I had to create manually a formatting
for the modelling level. A solution to this problem in the next generation of
AToM?’s GUI could be that we pass an indicator of the environment we are
working on to the type, so that the "toString()” function returns a nicely
formatted string. It would even be better if AToM? could automatically
detect that environment.

1.2.2 Constraints

The constraints section of the AtomClass entity is the most complicated part
of the meta-model. We will go over them one by one.

A constraint,create_variables, was added to initialize hidden variables in
an AtomClass at creation time (table 2). Unfortunately, this trick to hide
variables did not work completely since the saving process of an AToM?3
model does not include variables created on the fly. Indeed, saved variables
must be included in a particular list that is also used to generate the Atom-
Class user interface! So, even if we added the variables to that list, they
would be editable in an instance of an AtomClass! So, to solve the saving
problem, I could have made all the variables “public”. I did not implement
that solution because the class diagram modelling environment with hided
variables is closer to a real editor such as dia. Not to mention that it is more
impressive and simple to demonstrate a formalism with 8 hided variables,
than to show all the implementation in every single example. Also, I am
confident that we will, in the near future, implement a way to add hidden
variables in a meta-model since the implementation of a formalism must be
abstracted from the user in order to simplify model creation. At that point
in time, it will be easy to port my class diagram formalism in AToM?.

self.list_of_methods = ATOM3List([1,1,1,0], None)
self list_of_attribs = ATOM3List([1,1,1,0], None)
#will contains methods code, index correspond to list_of_methods
self.method_code = ATOM3List([1,1,1,0], None)
self.attrib_code = ATOM3List([1,1,1,0], None)
self.default_code = ”\t\tpass\n”
self.user_code = {} #dictionnary method signature mapped to code part
self.code = ATOM3String() #String that contains the global class code
self.code.setValue(” Class My_class\n\tpass”)

table 2

There are two constraints that update list_of methods and list_of attribs
each time the the user edit class_methods and class_attribs. Method_creation
and attribs_creation are called after an instance of AtomClass are edited.
Some checks (not all) were implemented to warn the user if he use the wrong
input syntax for the methods. The parsing was done (figure 3) by extracting
the types, names and signatures and store them as individual strings in the
two lists, thus creating a lists of lists.

class_methods list_of_methods
“double meth(int a, int b)” | ((double, meth, (int, a), (int, b)))
class_attribs list_of_attribs
“int a” ((int, a))
table 3

Also, two contraints were created in the AtomClass entity to verify the
correctness of models. The first one, as you can see on table 4, Attrib_Names
checks that attribute’s names are unique. The name of an attribute is simply
compared to the names in the list of attributes and the list of methods. If
we find out that the user wrongly assigned equal names when the model is
saved, AToM? pop-up a warning message in the modelling environment.

10

Constraint that check that attribute’s names are unique

attrib_len = len(self.list_of attribs.getValue()) # length of attrib list
attrib = self.list_of attribs.getValue() # get the attributes list
methods = self.list_of methods.getValue() # get methods list

attrib.extend(methods) # combining the 2 lists
We only compare attrib—attrib and attrib—-methods
for a in range(0, attrib_len):
for b in range(0, len(attrib)):
if(a 1= b):
if(strip((attribla].get Value())[1].toString()) ==

strip removes blank spaces

strip((attrib[b].getValue())[1].toString())):

return (“Attribute/methods names must be unique in ”
+ self.name.getValue(), attrib[a].getValue()[1].toString())
table 4

Similar code is used in Method_Names to ensure that method’s signatures
are unique. We check if the following conditions hold before issuing a warning
to the user:

e equality in the method names
e equality in the number of arguments

e equality in the corresponding argument types

Finally, one last constraint is responsible for generating python code.
How does it work? First, it checks if the current class is a children of one
or multiple parent. Then it creates the appropriate class definition, such as
def class Child(Parent): , etc. After that, the attributes are being scanned
in the list_of attribs and then written correctly. Finally, the methods are
being written with their appropriate code part specified or not by the user.
Where does the code part come from? I have added an ”Edit Code” button
to the buttons model of my meta-model. It allow the user to add code part
to the automatically generated code for the methods. The signature of each
method is mapped its code part in a dictionnary (yes, the hidden one we
talked about). If the signature is not found in the dictionnary, a defaut one

11

is written ("pass”). Methods or attributes added in by the user that were not
specified in the class_methods or class_attribs are erazed from the code part
automatically. The code for each class is stored in an independent variable,
thus python files can be easily created.

1.3 AtomAssociation

The AtomAssociation relationship contains anticipated attributes, a name,
a type, a multiplicity integer for the source and a multiply integer for the
target. The type of the AtomAssociation can be Aggregation, Composition
or plain association.

1.3.1 Appearance

I wanted to adapt the appearance of the relationship depending on its type,
but I couldn’t due to some AToM? bug. However, the multiplicity and the
name were added on the link.

1.3.2 Constraints

Only one constraint was created to parse the multiplicity string entered by
the user into some hidden variables. Again, This should be modified in order
to save models. This section was not completed, but the multiplicities were
going to be used in the python code generation to add automatically created
attributes such as its_friend[x] (for a x..x multiplicity).

‘ Syntax: “5..10”
table 5

1.4 AtomGeneralization

This relationship was not given any attributes, and no fancy constraint or
appearance were created. Very simple since my project did not need anything
more complex.

1.5 Model examples

Filename for the modelling environment: ClassDiagram.py

12

The following figures are models using my UML class diagram formalism.
As you can see in the figures, the button edit code is used, as stated, to edit
the python code of the classes.

Figure 4 represent a company hiearchy where the Manager and the Cashier
are more specialized than the plain employee.

As you can see on figure 5, the class Cashier inherits from the class em-
ployee. Also, default methods were created for the variable item_per_min.

Moreover, multiple inheritance is also supported by the code generation,
as you can see on the figure 6 and 7

13

AToM3 v0.2.1 using: ClassDiagram il (=13
File MWodel Transformation Graphics

ClassDiagram rModeI opz | Edit entit_l,ll Connect | Delete | Insert model | Expand model E uif
e sl ops | Smooth | Insertpaint | Delete point Ei"uange-connec_tnr
Mew Atomdssociation
Mev Generalization Employee
Edit Code
int salary
int age

boolean promote_salaryd

-

Manager Cashier
douhle sales_achieved dougble item_gper_min
baolean has_honusd hoolean promote_salan

i | 2

|Editing ’...I:py' !:mcrdjﬂed) |Edi1ing transf. Monarmed (not modified) in i

Figure 4: Company diagram

14

Edit value .

Caonstraint name; ||:|:n:|e

EDIT i
& Puthon ¢ PREcondition [34YE
: . L CREATE :
£ OCL % POSTcondition |COMMECT
DELETE ;i
Cazhier.py was generated by ATOM3Z, e
clazz Cazhier(Emplayes]:
def zet_itemn_per_min[zelf, walugs]:
zelf.iterm_per_min = value
def get_itern_per_min(]:
return zelf.item_per_min
def __init__[itern_per_min]
zelf.iterm_per_min = ikerm_per_min
def promaote_zalanf(]
pazz
4 | »[+]

0K Cancel

Figure 5: Edit code for the class cashier

15

AToM3 v0.2.1 using: ClassDiagram
File Model Transformation Graphics

ClassDiagram | Model ops Editentit:_l,l-l Connect

Delete

Expand model

Insert model

hew AtomClass | “Visualops | Smaoth | Irzert poikk | Delete point"l Change cdhhectdr.l

Esit |

Mew dtombssociation |

Mew Gen_e_LaIizatip:rﬁ |

Emplovee

Edit Cade |

int salary

Person

String gender

John

ij.

__}.J

|E_|:Iiting_ |:AUtilsfatomaiclassDiagramiexamples/mult_CD_n|Editing transf. Monamed' (not maodified) in file Monamed'

Figure 6: Multiple inheritance code generation

16

x|

Constraint nane;]n::-:n_:le

EDIT 2
% Python ¢ PREcondiion |[SAVE
: | : CREATE
" OCL & POSTeondition [CONMECT _
DELETE ﬂ
John.py waz generated by AT O3 i
clasz John[Employee, Person):
def__init__[]
pazs
1 ‘| I P I -

Ok Cancel

Figure 7: Multiple inheritance example

17

2 Entity-Relationship with inheritance meta-
meta model

2.1 Introduction

The second step of my project was to meta-meta-model a new formalism
which would include, as its most important feature, inheritance. The plan
was to implement a partial UML class diagram formalism including inheri-
tance in AToM?3. The first solution we had was to create a graph-grammar
that would transform a model of my class diagram formalism (as explained
in chapter 1) directly into entity-relationship. Hence, each AtomClass at
the model level would be replaced by an entity with a list of attributes cor-
responding to the attributes that the AtomClass had. If a Generalization
was encountered, an algorithm, via the graph grammar, would copy the at-
tributes from the parent to the child and add an appropriate number of
relationships to express its semantics. Afterwards, we could easily use ER
code-generation for modelling environments. However, this approach had its
limits. Since I am using a list of strings to store the class attributes in the
ClassDiagram formalism, identifying the type of a given attribute and then
create the appropriate AtomType in an entity would have been a nightmare.
Not mentionning that the meaning of a method is not clear in a meta-model.
I started to think that maybe we could create a simpler meta-meta-model
with inheritance but without methods. Then, I learned how the formalism
code-generation was working in AToM? and we develloped another solution
that could be called entity-relationship with inheritance.

The idea was to meta-meta-model a formalism like entity-relationship
with an entity named AtomClass with atrributes such as a name, a list of
ATOMS3Attributes, a list of ATOM3Constraints, a list of ATOM3Connection
and an ATOM3Appearance. But, instead of having only one relationship like
in entity-relationship, an inheritance and an association relasionship would
be included. The main difference between this approach and the previous
one is that every class attribute is an ATOM3Attribute so its they can be
generated at the lower meta-level (depending on the type) by the build-in
code-generation algorithm used by entity-relationship. Also, the other gener-
ative types also generates an appearance, a list of constraints and cardinalities
at the lower meta-level. In the next sections, we will go over the implemen-

18

tation of that meta-meta-model and we will explain the steps required to
create a modelling environment from the newly created meta-meta model.

Filename for the meta-meta-model ClassDiagram_ER _mdl.py

2.2 AtomClass

One entity, AtomClass, is related with itself via AtomAssociation and Atom-
Inheritance relationships to constitute the meta-meta-model. Key attributes,
that are used for the code-generation, are specified for each object in the
meta-meta-model. There is also a model key attribute: ModelName.

2.2.1 Attributes and Cardinalities

AtomClass, as stated before, possesses the following attributes: a name
(key), a list of ATOM3Attributes, a list of ATOM3Constraints, a list of
ATOM3Connections * and an ATOM3Appearance. The cardinalities are
0..N as a source and as a destination via AtomAssociation and AtomInheri-
tance.

2.2.2 Constraints

Several constraints were written to create the cardinalities at lower meta-
level. At first, the list of ATOM3Connections is empty and the role of the
constraints is to update it as soon as AtomAssociations are linked with Atom-
Classes, in order that the user can edit the cardinalities at the lower meta-
level. For now, the connections are considered undirected, but it’s easy to
modify the code to make them directed. ® If we go over the constraints one
by one :

createCardinality is trigerred to add ATOM3Connections to the current
AtomClass object, after a link had been created. In order to do this, the in
and out connections of the current AtomClass are scanned and the connected
AtomAssociations are added to the list of ATOM3Connections.

“for the cardinalities, see section 2.2.2
5comments in the code explain what to do

19

AToM3 v0.2.1 using: Entity Relationship 1= I'Ellﬁl

File Model Transformation Graphics
Entity Relationship E dit entity | Connect | Delste

;‘-Fis'_wiflps' _Smi:lgth'

Insert model

Expand madel | E it

1ns’er_t.'|:|'i:|'r_nt'- Delé;te'ﬁbirit’_'l Change connectar

Entity

rel.

Atombssociation

Classtame type=5tring it
ClassCardinality type=Lis
Clagsattributes type=List
ClassConstraints type=Li

Il e L] S e Y Sl el B W) 2 T LN =]
lgcoimmeatanea b 4]

thomlnhertance

A1 |

Figure 8: Entity-Relationship with inheritance meta-meta model

20

preDeleteCardinality is called just before a disconnection to remove an
AtomAssociation connection object from the AtomClasses linked to it, if the
AtomAssociation is deleted completely.

deleteCardinality is called after a disconnection to delete the AtomAsso-
ciations that are not connected anymore to the current AtomClass.

preEditName and postEditName are called when the name of the current
AtomClass changes, to update the names in the connection list of the Atom-
Associations connected to the current AtomClass.

2.3 AtomAssociation and AtomInheritance

The simplest form of relationship was implemented for the AtomAssociation
and the Atomlnheritance with a basic appearance. In AtomAssociation,
two constraints were added to generate the ATOM3Connections if two or
more AtomClasses are linked. The key attributes are AssociationName and
InheritanceName.

2.4 Steps required to generate a modelling environ-
ment

2.4.1 Introduction

Now that we have created a meta-meta model, how can we generate a mod-
elling environment from a meta-model? Since the algorithm to generate
code from the entity-relationship formalism does not understand the mean-
ing of “AtomlInheritance”, we must first use a graph grammar that will ex-
press its semantics by transferring the parent’s attributes to the child and
adding AtomAssociations (that are equivalent as the relationships in ER).
And then, we will be able to generate the formalism when we execute the
code-generation algorithm on any model. However, a special graph gram-
mar for generating buttons at the lower meta-level need to be used by the
code-generation alorithm. Lets go over each step in details.

21

AToM3 v0.2.1 using: ClassDiagramB o =] 3]

Expand rmodel | Exit |

E'hange connector

File Model Transformation Graphics

ClagsDiagramB | Mod_elo_&sj Editentityl Connect | Delete | Insert model

| i_\u".isual UM Smooth

Mew AtormClass

Mew Atominheritance I
Ne b tornss comialicn I Farent Farenttssociate
‘a[entMame type=String in

Insert paint | Delete point

-

a
|

Child

Figure 9: Simple meta-model using entity-relationship with inheri-
tance

2.4.2 Creating a model

To create a model, open our formalism ¢ as a meta-model in AToM?3. you
can see an example of a model on figure 9.

2.4.3 Running the GG to express inheritance semantics

The second step is to execute the graph grammar CD_to_ER to transform the
current instance of the model into something that AToM? will understand.
How does the graph grammar works ? As you can see on figure 10 and 11,
a simple pattern is matched by the graph grammar algorithm and replaced
without inheritance.

In the condition part of the rule, we verify that the model is transformed

6Filename: ClassDiagramB.py

22

AToM3 v0.2.1 using: ClassDiagramb x|
File Model Graphics

ClassDiagramB Etlit'erjtitj,ll Connect | Delete | Inzertmodel | Expand mj:::‘dell
Wi e | Wisual ops Smooth | Insert pbir‘it 'Ifiele'tepu;‘n't Changs connector
Mew Stominheritance
New Slombs ssaciation SART=
AN
<ANY=
AN
FT— 5]

|Editing Manamed’ (not modified) |[Editing transf. Nonamed' (not modi

oK | Cancel |

Figure 10: LHS of the unique rule of CD_to_ER graph grammar
23

AToM3 v0.2.1 using: ClassDiagramB x|

File Model Graphics

Dielate

ClassDiagramB Edi ity Cornect Insert model | Expand madel
Mew dtomiClass Wizual ops | Smooth | Insert point | Dielete point '_ﬂﬁari‘u,gé-c"nﬁhéc.tu‘r.
Hew Ataminbertance
Hewe Stomdssoniation SCORIED=
<CORIED>
=CORIED=
<COPIED>

»

|Editing Mamnamed' fnot modified)

oK

|Editing-trans’i’. Maonarned' (not rradi

| Carnicel |

Figure 11: RHS of the unique rule of CD_to_ER graph grammar

24

in the right order. Indeed, we must transform the root of the model, at any
given point in time, to ensure that every sub-type will inherit from all the
parents. Take notice that, since the inheritance relation from the root is
removed at each step of the graph grammar, we will always find a root, until
the execution is finished.

In the action part of the rule, we copy, from the parent to the child, the
attributes and the appearance if they are not already present in the child.
Also, we must create the appropriate number of AtomAssociation. Indeed,
every sub-types must be associated with the AtomClasses related to the
parent-types. In order to to that, we have used the power of hyper-edges as
you can see on figure 12 (which is the result of the graph grammar applied
on figure 9). However, some constraint must be created to prevent the sub-
types from being able to connect to other sub-types via the hyper-edges. *
Unfortunately, this functionality was not implemented during the summer
but I have understood how to do it. It could be implemented during the fall
semester, if time permits it.

Finally, the last thing to do is to choose CD_buttons as a graph grammar
to generate buttons at the lower meta-level. Indeed, AToM? uses a graph
grammar to generate the user interface of the lower modelling environment.
Hence, I created a graph grammar for the class diagram formalism that
generates buttons for AtomClass, AtomInheritance and AtomAssociation.
You can see the modelling environment in action in figure 13.

"see my talk about this issue at http://moncs.cs.mcgill.ca/people/mprovost /present /index.html

25

AToM3 v0.2.1 using: ClassDiagramB

File Model Transformation Graphics

ClassDiagramB | Model ops Editentit}l .Eahr'rectl D'elet'el Inseftmodell Erpand modell

Mo Al | izuslops | Smooth | Inizert point | Delete point"l Change cdhhectdr_l

Exit |

Hew Somlnhertance

L

= T Farent
Mew AtomAssociation —
- ParertMame tupe=

Child

FatertMame tupe=String in

ParentAssociate

A, |

Figure 12: Result of the graph grammar applied on figure 9

Figure 13: Parent/Child modelling environment example

26

3 Conclusion

I think that the primary objective of the summer was attained: convincing
me to pursue a career in research. However, some details need to be im-
proved in order that my UML class diagram modelling environment be near
the level of commercial tools. Still, it can be used for “local” modelling, and
suggestion of improvement are appreciated! Also, my approach of meta-meta
modelling has proven that we must update the graph grammar engine before
becoming able to implement inheritance completely in AToM?3. But, my
approach can still be reproduced to add inheritance in small projects that
do not need a powerful graph grammar knowing about the implemented se-
mantics. . Finally, the amount of knowledge I acquired is quite satisfying,
and I will continue to learn about meta-modelling in the next several years.

If there are any questions, fell free to email me mprovol@cs.mcgill.ca

8for example, pattern matching of sub-types

27

