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Abstract

In order to describe phenomena and systems in the real world, the use of models
is employed. These models provide an approximate description of something complex,
and are generally developed by those knowledgeable on the domain of the subject, called
domain experts.

For a domain expert without programming experience to create a model, a domain
specific language needs to exist or be engineered for them to work with. Such a language
may describe models visually through drawings, graphs and symbols, or by writing out
a description in text. In both cases, a computer needs to be able to read the model and
turn it into something it understands and can work with efficiently.

Complex systems with many aspects may not be describable with a single language,
languages may need to be composed in their syntax and semantics in order to describe
these systems, giving us hybrid languages.

In this thesis we look at specifying and implementing a way of parsing these hybrid
languages when they are specified using a textual notation. As part of this thesis, a Python
implementation is provided that handles the concepts discussed in this document.
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Nederlandstalige Samenvatting

Om fenomenen en systemen uit de echte wereld te beschrijven maakt men gebruik van
modellen. Deze modellen geven een benadering van iets complex, en worden algemeen
ontwikkeld door mensen met kennis van de materie van het domein, domeinexperten
genoemd.

Om als domeinexpert zonder programmeerervaring een model te creëren moet er een
domeinspecifieke taal bestaan of ontwikkeld worden om mee te werken. Zo een taal kan
dan modellen beschrijven aan de hand van tekeningen, grafieken en symbolen, of door een
stuk geschreven text. In beide gevallen is het nodig dat een computer deze modellen kan
lezen, om deze dan om te vormen naar iets dat het begrijpt en efficiënt mee kan werken.

Complexe systemen met verschillende aspecten zijn niet beschrijfbaar met één enkele
taal. Talen moeten dan mogelijks samengevoegd worden met betrekking tot hun syntaxis
en semantiek om deze systemen toch te kunnen beschrijven, wat ons dan hybride talen
geeft.

In deze thesis kijken we naar het specificeren en implementeren van een manier om
deze hybride talen te kunnen parsen wanneer zij een tekstuele notatie gebruiken. Als deel
van deze thesis is er ook een Python implementatie gegeven die de concepten in beschreven
in dit document gebruikt.
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CHAPTER 1

Introduction

The world of Model Driven Engineering is one where complex systems are engineered
by turning them into a model representing their essence. A model often contains facets
across multiple levels of abstraction and specified using different formalisms, using the
most appropriate formalism at the most appropriate level of abstraction. This multi-level
modelling philosophy is known as Multi-Paradigm Modelling.

The combination of these formalisms is a challenge, as they need to be able to reference
each other or be composed as a single hybrid model. This composition requires the joining
of the concrete syntax, abstract syntax, semantics, and the transformation steps from
each to the other.

In this chapter we will look at our motivations, previous work we did, the contributions
we make in this thesis, and give a brief overview of the structure of the document.

1.1 Motivation
In order to allow a domain expert to design a model in a hybrid formalism, a concrete

syntax must exists. This syntax can be either visual through drawings and graphs, or
through text as a text document. In [21], [22] Mustafiz et al. described the process needed
for composing the visual concrete syntax, abstract syntax and semantics of languages
into a hybrid language. Similarly, Paredis et al. in [26] used a hybrid visual concrete
syntax, and used the DEVS formalism as a semantic domain, skipping the abstract syntax
combination step. We note that the composing of abstract syntax and semantics lies
outside of our scope.
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We will focus on the composing of the textual concrete syntax of multiple languages,
with the goal of being able to specify the syntax for each language individually and having
them parse together flawlessly, without having to resort to combining the syntaxes such
that they become one, or having to perform multiple passes of parsing. An additional
goal we set is to be able to define languages in a document, and then dynamically parse
these languages in the same document.

1.2 Contributions

In [28] as part of a previous research project (see Chapter C), we compared several
tools such as language workbenches, editors and IDEs, and parsing libraries. We concluded
that current language workbenches are too rigid for handling hybrid models, and don’t
support dynamically defining new languages. Instead a hybrid option whereby we pick
an editor that supports the Language Server Protocol (LSP) and implement a language
server using a parsing library would be the best course of action. This thesis continues
on this work by creating a parsing framework that can handle hybrid models.

As part of this, we propose a reusable and extensible formalism for the declaration
of parse trees, and a language agnostic syntax for declaring how these parse trees should
be constructed. We also provide a workflow for the parsing of hybrid models through
the combination of multiple individual parsers, as well as a basic syntax for arbitrarily
choosing the language of a language fragment.

Parallel to this document, we also built a new framework named Weave, implementing
the models, algorithms and formalisms in Python. In order to support (multi-language)
parsing in our framework, we used an the existing parsing library Lark and extended its
functionality.

1.3 Structure
We start by introducing background information in Part I, starting off with the terms

‘incremental ’ and ‘dynamic’ in Chapter 2, and ‘black box ’ and ‘white box ’ systems. Next
we give a brief overview of the concept of ‘island grammars’ in Chapter 4, followed by
concepts and terms used in the world of parsers in Chapter 5. Lastly in Chapter 6, we
provide information on the concepts used in the world of Model Driven Engineering and
Multi-Paradigm Modelling.

Next in Part II, we introduce the Weave framework. We describe and model the
required systems, formalisms, and algorithms in order to parse hybrid models, which are
the building blocks of Weave Chapter 7 gives a more in-depth overview of this part. In
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Chapter 8 we start by comparing existing implementations of parse trees, and providing
a set of formalisms in order to describe, represent, and build parse trees that is language
agnostic and reusable. We also provide instructions on how parsers could make use of
these formalisms. Next in Chapter 9 we describe an API with which support for languages
and parsers can be added and defined. Chapter 10 provides structures and an explanation
on how to handle tracing in order to allow a program to go back to the definition of a
model or model element from a textual model description. Lastly in Chapter 11 we delve
into multi-language and dynamic multi-language parsing in order to be able to parse
hybrid models.

In Part III we go over the process of going from the specifications from the previous
part into a working software system. Chapter 12 starts by providing an overview of
the implementation, with Chapter 13 we provide some information on introduced types
that are not part of the modelling specification, but are used to provide information
on operations such as failures, and to convey that information to the user. Next in
Chapter 14 we describe the implementation of the tracing structures, and the specific
handling of tracing with embedded languages as we implemented it. In Chapter 16 we
describe the grammar specification language used to define grammars used by Weave
to generate parsers, and its specific handling of language embedding and indentation
sensitive languages. Following that, we describe the API provided by Lark, and how we
used it to make our own parsers in Chapter 17. Lastly, in Chapter 18 we go over the
process of loading the parse tree formalisms and Weave grammar language by using
themselves as a meta-language.

Finally in Part IV Chapter 19 we list some conclusions, as well as some future to be
done on the formalisms, techniques, and Weave architecture.



Glossary

abstract syntax Description of the set of valid models for a formalism. See Chapter 6.

abstract syntax tree A tree representation of a source document after parsing. Con-
tains annnotated data relevant to the program and omits irrelevant tokens. See
Chapter 5.

application programming interface A type of software interface that provides ser-
vices to other software.

black box A system which does not provide information on its inner workings. See
Chapter 3.

concrete syntax Description of how models in a given formalism should appear. See
Chapter 6.

context-free grammar A grammar specification formalism describing a set of produc-
tion rules that describe all possible strings for a language. See Chapter 5.

domain specific language A language that is specialized to be used in a specific ap-
plicatiom domain, such as when modelling or programming. The opposite is a
General-Purpose Language, which is usable in a broad domain, but lacks special-
ized features.

dynamic A process that can adapt during execution and evaluation. See Chapter 2.

formal language See formalism.

formalism Set of models that can be used for modelling purposes. See Chapter 6.
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incremental A process that builds on top of previous executions to reduce repetitive
work. See Chapter 2.

integrated development environment A software application for using programming
or domain specific languages that provides the user with facilities to aid in usage
and development. Facilities include assisted editing and build automation.

island A part of the input which interests us when using an island grammar.

island grammar A grammar that consists of detailed productions for constructs one
is interested in (islands), and liberal productions for those one is not interested in
(water). See Chapter 4.

lake Part of input in an island which does not interest us when using a lake grammar.

lake grammar An island grammar which primarily consists of detailed productions and
has some liberal productions for uses such as language embedding. See Chapter 4.

language server protocol A protocol for for communication between an editor or IDE
(client) and a language server which provides language features to the client. See
[17].

language type model Description of the language that describes the abstract syntax
of a formalism. See Chapter 6.

metamodel See language type model.

model An abstraction of an aspect of reality (as-is or to-be) that is built for a given
purpose. See Chapter 6.

modelling language See formalism.

parse tree A tree representation of a source document after parsing, containing minimal
data such as tokens, their position and type. See Chapter 5.

parsing expression grammar A grammar specification formalism like Context-Free
Grammars, but which does not support ambiguous grammars, and supports some
languages which are nont context-free. See Chapter 5.

scannerless parser A parser that takes in a character stream instead of a token stream.
See Chapter 5.

water A part of input which does not interest us when using an island grammar.

white box A system which can have its inner workings inspected. See Chapter 3.



Acronyms

API Application Programming Interface.

CFG Context-Free Grammar.

DSL Domain Specific Language.

IDE Integrated Development Environment.

LSP Language Server Protocol.

PEG Parsing Expression Grammar.
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CHAPTER 2

Incrementality and dynamicity

When talking about parsers and compilers, the words “dynamic” and “incremental”
are often used and with differing meanings. We give a short overview of the different
meanings as they have been used.

Dynamic linking A method of linking compiled objects and libraries to an executable
at run time which loads these from separate files on the filesystem. This, as opposed
to static linking which happens at compile time and includes all objects and libraries
directly into the executable file [27].

Dynamic loading Similar to dynamic linking, but where dynamic linking occurs at
program load time, dynamic loading can happen at any point during execution. It
allows for the unloading of dynamically loaded libraries as well [27].

Incremental linking A method of compiling executable files and libraries that, instead
of recreating the output file every time a change was done, only updates those
parts that were changed in it [18]. This eliminates recurring computations such as
reference resolution for unchanged parts and gives a boost in compilation time. This
sort of linking is usually only used for debugging purposes as it produces bigger and
slower programs.

Incremental compilation Like incremental linking, but more general to include this
process across the entire compilation pipeline rather than just the linking step. One
way to achieve this is to create and save a dependency graph between data in each
step [42].

Incremental parsing Incremental parsing allows a parser to update its Parse Tree with-
out completely reparsing an input file when it gets changed [41]. It does this by
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reusing the parse tree of a previous parse and only updating those nodes that re-
late to changed pieces of text, while maintaining a valid parse tree that should be
identical to a complete reparse.

Dynamic typing Dynamic typing relates to the semantics of an executed program.
With it, ‘type’ information for variables is not known at compile time as is the
case for static typing. Instead this information is only available at run-time, and
may change for any name throughout the course of program execution.

Dynamic Parser Less frequently used but related to the eventual goal of our research is
the term Dynamic Parser as defined by Cabasino et al. [6] and further extended by
Boullier [3]. Dynamic parsers are a set of parsers that support “evolving grammars”,
which is a set of grammars that during parsing progressively have more production
rules added to them, specific to the parsed string.

Based on these we can say that the term “dynamic” is mostly referred to when speaking
of processes during run-time execution and evaluation, as opposed to processes that run
beforehand such as compilation or pre-processing. The term “incremental” is used when
talking about processes that build on top of previous executions of the same process,
adding onto or replacing pieces of the previous output to get a new output.



CHAPTER 3

Black box and White box

According to Bunge in [5], a “black box” is a system which has some inputs or stimuli,
and some outputs that act as a reaction to the stimuli. The construction and structure
of the system are irrelevant and only the behavior is important.

However, when talking about systems, and in our case software applications and li-
braries, we use the terms “black box” and “white box” to denote whether or not they show
their inner workings or not.

Definition 1 A black box is a system that gives no knowledge about its inner workings,
or that obfuscates it in such a way that attempting to understand how it works is difficult.

Definition 2 A white box is a system which allows us to see and understand the inner
workings.

Both black boxes and white boxes have some form of inputs and outputs. Additionally,
a ‘contract’ can exist which specifies the valid operating conditions of a box. Figure 3.1
gives an illustration of black and white boxes. It shows how a white box allows its internal
structure and operation to be seen, while a black box does not and obscures it instead.

There are two possible definitions for a contract:

Definition 3 A contract is a collection of requirements (pre-conditions), guarantees
(post-conditions), and invariants, which define the valid operating conditions of a sys-
tem. Inputs to the system must satisfy its requirements, and in turn its outputs will
satisfy their guarantees, while the invariants will always hold.

Definition 4 A contract is a collection of specifications that define relations between
inputs and outputs.
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While contracts in Definition 3 only provide their guarantees if their requirements are
met, there is no way to specify relations such as “if A holds, then B holds, otherwise if
C holds then D holds, etc.”. Definition 4 gives more flexibility in this by allowing the
definition of a relation between inputs and outputs. For example, a box that has two
inputs x, y and an output z could specify the following relations, with → indicating an
‘implies’ relationship:

x+ y > 0 −→ z < 0

x+ y = 0 −→ z = x

x+ y < 0 −→ z = y

White Box

Black Box

Inputs Outputs

Inputs Outputs

Figure 3.1: Illustration showing the difference between a white box that shows its inner
workings, and a black box that shields its inner workings.



CHAPTER 4

Island Grammars

“Island grammars” are grammars that usually only parse a subset of another language,
such as for finding all pieces of documentation in a source file as described by van Deursen
in [10]. According to van Deursen [10] and Moonen [20], island grammars are defined as
follows:
Definition 5 An island grammar is a grammar that consists of (1) detailed productions
for the language constructs we are interested in (called islands) and (2) liberal productions
that catch the remainder of the input (called water).

A different approach to this concept are “lake grammars”, which start with a complete
grammar for a given language, and are extended with some liberal productions (water or
lakes) instead. Van Deursen noted that these are useful for allowing arbitrary embedding
of code [10]. They also noted that islands and water productions can be mixed to get
islands with lakes and lakes with islands.

⟨start⟩ ::=--
� �� � ⟨island⟩� ⟨water⟩ �� � -�

⟨island⟩ ::=-- src = ⟨string⟩ -�

⟨string⟩ ::=-- ′′([ˆ′′\\]|\\.)′′ -�

⟨water⟩ ::=-- .+ -�

Listing 4.1: Example island grammar that searches for src tags in HTML documents.
Note that for the grammar to be unambiguous the 〈island〉 rule needs to have precedence
over the 〈water〉 rule (for example through priorities or ordered choice).



CHAPTER 5

Parsers

There are two ways to define what a parser is: it can be a phase in the compiler
pipeline called the syntax analyzer [1], or it can seen as something that simply takes an
input string and turns it into a parse tree. We will explain what a parse tree is shortly in
Section 5.2.

When looking at it from the perspective of a traditional compiler pipeline, the parser
(syntax analyzer, or syntactical analysis phase) takes as input a stream of tokens. This
token stream is itself derived from a string of characters, such as a file on disk, by a
lexer (lexical analyzer, or lexical analysis phase). The output of the parser is a parse tree
that in turn gets fed into a semantic analyzer, which checks the validity of the program
and annotates the parse tree with data such as type information. See Figure 5.1 for an
overview of the entire pipeline as given by Aho et al. in [1]. We note that this traditional
pipeline is usually represented as having information flowing in a single direction ‘down’
the pipeline, however some compilers also allow information to flow ‘up’, for example for
optimization or changing the selection of possible tokens.

Looking at it from the other direction, we can say that a parser is actually just some-
thing that transforms a character stream, such as a file on disk and turns it into a parse
tree. The difference with compiler pipeline viewpoint lies in the fact that in this defini-
tion the lexical and syntactic analyzer phases of the compiler pipeline are considered to
be the “parser”, rather than only the syntactic analyzer. Some programs that call them-
selves “parser generators” follow this viewpoint and generate not only a parser (syntactic
analyzer only), but a lexer as well.

We note that that in some cases no lexical analysis is performed, and instead the
parser or syntactic analyzer operates directly on the character stream rather than the
token stream. These are called Scannerless Parsers [13], [40]. We provide an overview of
all these different definitions and what their differences are in Figure 5.2.



14

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code Generator

Machine-Independent
Code Optimizer

Code Generator

Machine-Dependent Code Optimizer

character stream

token stream

parse tree

abstract syntax tree

intermediate representation

intermediate representation

target-machine code

target-machine code

Symbol Table

Figure 5.1: Phases of a compiler, adapted from Aho et al. [1].

For the purpose of clarity, from this point on we will follow the traditional definitions
and use the following terms to avoid ambiguity:

Lexer A program that takes in a character stream and puts out a token stream.

Parser A program that takes in a token stream and puts out a parse tree.

Scannerless Parser A parser that takes in a character stream instead of a token stream.

Lexer-Parser The combination of a Lexer and a Parser as a whole, which takes in a
character stream and puts out a parse tree, having a token stream in the middle.

Lexer Generator A program that takes a specification of a lexical structure and turns
it into a Lexer.
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Parser Generator A program that takes a syntax specification and turns it into a
Parser.

Scannerless Parser Generator A program that takes a syntax specification and turns
it into a Scannerless Parser.

Lexer-Parser Generator A program that takes a syntax specification and a specifica-
tion of a lexical structure (combined: language specification), and turns it into a
Lexer and Parser, or a Lexer-Parser.

Character
Stream

Token
Stream

Parse
Tree

Character
Stream

Parse
Tree

Character
Stream

Token
Stream

Parse
Tree

Character
Stream

Parse
Tree

ParserLexer Semantic Analyser

Semantic Analyser

Parser

Compiler pipeline

Standalone

Sc
an

ne
rle

ss
Sc

an
ne

rle
ss

Lexing Parsing

Parsing

Lexing Parsing

Parsing

Analysis

Analysis

Parse Tree Consumer

Parse Tree Consumer

...

...

...

...

Figure 5.2: Comparison of the main definitions of “parser”. Above: the definition in a
compiler pipeline, see also Figure 5.1. Below: the definition such as when using a parser
generator. In both cases an instance with lexer, and a scannerless version are shown.
What is understood as the “parser” in each case is encompassed by a dashed line.
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5.1 Language and Grammar Classifications
Languages can be divided into several categories based on their expressiveness. Chom-

sky formally defined a hierarchy to divide languages into four types, named ‘Type-0’ (most
expressive) through ‘Type-3’ (most restrictive) [7], [8].

Given:

a a terminal;

A,B non-terminals;

α, β a possibly empty string of terminals and/or non-terminals;

γ a non-empty string of terminals and/or non-terminals; and

the ‘production’ relation → indicating the left-hand side can be substituted with
the right-hand side,

then the types are given as:

Type-0 Recursively enumerable languages, recognizing a language in this type requires
a Turing machine. Grammars for these languages have productions of the form
γ → α.

Type-1 Context-sensitive languages, which can be recognized by linear-bounded non-
deterministic Turing machines. Grammars for these languages have productions of
the form αAβ → αγβ and are called “context-sensitive” due to the production rule
requiring context α and β to transform a non-terminal A.

Type-2 context-free languages, which can be recognized by non-deterministic pushdown
automata. Grammars for these languages have productions of the form A → α
and are called “context-free” because the production does not require a context to
transform a non-terminal A.

Type-3 Regular languages, which can be recognized by finite-state machine. Grammars
for these languages have productions of the form A → a and A → aB.

In general, during the lexical analysis phase the simplest form of languages is used to
turn text into tokens: the regular languages. Usually, this is done through the definition
of ‘regular expressions’ which is a grammar specification formalism for parsing regular
languages.

For the syntactical analysis phase of a parser, context-free grammars are generally
used. Some parsers ‘cheat’ and allow for feedback to change their parsing process slightly,
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making them not entirely context-free, but also not able to parse all context-sensitive
languages.

There are several algorithms for parsing languages specified using context-free gram-
mars, but not each algorithm is able to parse every language specified using a context-free
grammar: some specified grammars can be ambiguous, or have constructs that are difficult
to handle (e.g. recursion). Some algorithms are: LL, LR, SLR, LALR, GLR, Earley,
CYK. Figure 5.3 shows the relationship between these algorithms and the grammars they
can handle.

Additionally, there exists other algorithms that can parse context-free languages. For
example, a Parsing Expression Grammar (PEG) parser can parse all context-free lan-
guages, but also some context-sensitive languages due to its ability to perform look-aheads.

Context-Free Grammars

Unambiguous Grammars Ambiguous
Grammars

LL(0)

LL(1)

LL(k)

LR(0)

SLR

LALR(1)

LR(1)

LR(k)

GLR, Earley, CYK

Figure 5.3: Hierarchical representation of Context-Free Grammar classes, adapted from
[12].
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5.2 Parse Trees
A parse tree is the output of a parser, and as the name implies is a tree structure. A

basic example of a parse tree can be seen in Figure 5.4. This example conforms to the
definition of a parse tree by Aho et al. in [1], which is given as follows:

1. A Parse Tree is a tree structure.

2. The root node is labeled by the start symbol.

3. Each leaf node is labeled by a terminal or the empty symbol ϵ.

4. Each interior node is labeled by a non-terminal.

5. If A is the non-terminal labeling some interior node with X1, X2, . . . , Xn the labels
of the children of the node from left to right, then there must be a production
A → X1X2 · · ·Xn, with X1, X2, . . . , Xn each standing for either a terminal or a
non-terminal.

6. If A → ϵ is a production, then a node labeled A may instead have a single child
labeled with the empty symbol ϵ.

We will sometimes also refer to a leaf node as a terminal node in this document.

⟨assignment⟩ ::=-- ⟨id⟩ ‘=’ ⟨addition⟩ -�

⟨addition⟩ ::=-- � ⟨multiplication⟩ ‘+’ ⟨addition⟩� ⟨multiplication⟩ �� -�

⟨multiplication⟩ ::=-- � ⟨atom⟩ ‘*’ ⟨multiplication⟩� ⟨atom⟩ �� -�

⟨atom⟩ ::=-- � ⟨id⟩� ⟨int⟩ �� -�

⟨id⟩ ::=-- ID -�

⟨int⟩ ::=-- INT -�

Listing 5.1: Example grammar for a simple calculation language with addition and mul-
tiplication. The start symbol is 〈assignment〉.
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⟨assignment⟩

⟨addition⟩

⟨addition⟩

⟨multiplication⟩

⟨multiplication⟩

⟨atom⟩

⟨int⟩

5*

⟨atom⟩

⟨id⟩

y+

⟨multiplication⟩

⟨atom⟩

⟨int⟩

10=

⟨id⟩

x

Figure 5.4: Example parse tree representation for the string x = 10 + y * 5 for the
language defined in Listing 5.1.

Aho et al. write in [1] that parse trees resemble Abstract Syntax Trees (ASTs), but
that instead of interior nodes representing non-terminals, the interior nodes of an AST
represent programming constructs. They note that many non-terminals already represent
programming constructs themselves, but that some are helpers that on a semantic level are
unnecessary. To add contrast between the two, parse trees are sometimes called Concrete
Syntax Trees instead [1]. The Object Management Group (OMG) maintains a similar
distinction between parse trees and abstract syntax trees in their Abstract Syntax Tree
Metamodel standard documentation [23].

We note that Figure 5.1 differs slightly from the original by Aho et al. in [1], in it both
the Syntax Analyzer and the Semantic Analyzer would output syntax trees. However,
based on their work we would instead say that the output of the Syntax Analyzer can
more accurately be described as a concrete syntax tree or parse tree, while the output of
the Semantic Analyzer is an abstract syntax tree.

While the definition of a parse tree by Aho et al. [1] is good to get a theoretical
understanding of the concept of parse trees, for the purposes of implementing a parser it
is rather constraining:

• The order of the children of a node is determined by the order in which they were
matched, which is based on the definition of the matched rule in the grammar of
the language.

• If a rule has alternatives, it’s possible to have two or more nodes with the same
labeling but with a different number of child nodes, or with the labels of their nth
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child not matching up (with n any number from 1 to the number of child nodes).
For example, in Figure 5.4 the ‘addition’ and ‘multiplication’ nodes have either one
child or three children, and ‘atom’ nodes can have either an ‘id’ or an ‘int’ node as
their child.

• If changes are made to any productions in the grammar, the shape of the parse trees
also changes.

This all means that anything consuming the parse tree, such as a semantic analyzer or
code generator, needs to be updated almost every time a change is made to the grammar.

We would like to avoid these issues, and instead work with a nicer data structure, so
in Chapter 8 we will look into how we will work with parse trees instead.



CHAPTER 6

Modelling

In this chapter we will provide some context for terms used in the discipline of Model
Driven Engineering (MDE). MDE focuses on modelling in order to better handle essential
complexities (those that are inherent to the problem or solution), and to reduce accidental
complexities (those that arise from using inappropriate software or none at all) [9]. To
this end, modelling languages (also referred to as formal languages or formalisms [14])
define a set of models that can be used to for the purposes of modelling.

According to Stachowiak in [33], a model is made up of the following features:

Mapping feature A model is based on an original.

Reduction feature A model only reflects a (relevant) selection of an original’s proper-
ties.

Pragmatic feature A model needs to be usable in place of an original with respect to
some purpose.

Or more succinctly as put by Combemale et al. in [9]: “a model is an abstraction of an
aspect of reality (as-is or to-be) that is built for a given purpose”.

A modelling language then defines a set of models that can be used for modelling
purposes. According to Combemale et al. [9] and Heinrich et al. [14] its definitions
consists of:

• Syntax (also referred to as concrete syntax ), describing how models described in the
language should appear.

• Semantics, describing the meaning of each of its models. This can be through a
semantic mapping to a semantic domain.
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• Pragmatics, to describe how to use its models according to their purpose.

Heinrich et al. in [14] used, for a given language, L for the set of well-formed models
(also referred to as the abstract syntax by others), S for the semantic domain, and M for
the semantic mapping. See Figure 6.1 for a graphical representation of these.

LTML LTMS

M JMK

Abstract Syntax Semantic DomainSemantic Mapping

L M S

Language Type Model for L Language Type Model for S

J·K

Figure 6.1: Overview of the relationship between abstract syntax and semantics for a
formalism.

Note that both L and S are defined through a “metamodel” (also sometimes called the
language type model), which is a model used to describe the abstract syntax of a language.
Thus, the semantic mapping M can be a conversion of one formalism to another. However,
the semantic domain S may also be the set of valid inputs for a state machine, or the
set of possible states with inputs, etc. In general, the semantic domain is often precisely
defined mathematically, such as a well known formalism like Statecharts or Petri Nets,
that represent what we want to describe [9].

Also note that the semantic mapping M maps the entirety (or sometimes only a
portion) of the well-formed models onto only a subset of the semantic domain S, because
some elements of S may not be described by any model in L. Additionally, some models
in L may map to the same model in S due to variations in syntax that may describe the
same semantics.

Heinrich et al. in [14] say that a model conforms to a metamodel if each model
element is an instance of a metamodel element. This “instance of” relation is need not
be the same as is encountered in most Object Oriented Languages. Instead, it can be
interpreted as “does this model element have all the properties and relationships required
for this metamodel element, and does it satisfy all constraints?”

With regards to the concrete syntax of a formalism, the following are some ways of
presenting a model [14]:

• Graphical, using diagrams (often referred to as visual concrete syntax );

• Tabular, with the use of tables;
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• Textual, written down using text (often referred to as textual concrete syntax ); or

• A combination of the above.

An example of a combined syntax are Statecharts, which have their main syntax as
graphical to represent states and transitions, but embed pieces of textual syntax in order
to describe operational semantics (see Figure 6.2).

D

entry / turn light on
exit / turn light off

F

after 0.5 s
E

G

flick

Figure 6.2: Example statechart model, showing a combined visual and textual concrete
syntax, from the statecharts.dev project (https://statecharts.dev/).

A formalism may have one or more concrete syntaxes associated with it. For example,
class diagrams may be specified using a graphical representation or a textual notation, or
a language may have several “dialects”, such as the Prompto language [39]. We note that
there also may languages that have very similar syntaxes, but are considered a separate
language due to differences in their abstract syntax. For example, ALGOL has different
implementations that each have their own specialized facilities.

The relationship between the concrete syntax and the abstract syntax is similar to
the relationship between the abstract syntax and the semantic domain. That is, the
concrete syntax for a language, its conversion into abstract syntax (parsing), and its
abstract syntax itself, describe the same principles as the set of well-formed models L,
the semantic mapping M, and the semantic domain S respectively. In effect, the concrete
syntax is a set of strings, graphs, etc. that describe valid instances of models in a language
acting as the domain of the language. The mapping itself is performed through a “parser”,
which is a specialization of semantic mapping. The only difference lies in the fact that
there may be a way of turning an abstract model back into a concrete model through the
use of a “renderer” or “pretty-printer”, the reverse of a parser. See Figure 6.3 for how this
looks graphically.

https://statecharts.dev/
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parse

render

LTMCS LTML

MCS M

Concrete Syntax Abstract SyntaxRenderer

CS Parser & L

Language Type Model for CS Language Type Model for L

Figure 6.3: Overview of the relationship between abstract syntax and semantics for a
formalism.

6.1 Hybrid Languages
Hybrid languages are a combination of one or more languages or formalisms in order

to model features of complex systems, while using the most appropriate formalism for
each of those features.

The combination of languages requires several aspects to be combined, some of which
are:

- The abstract syntax;

- The concrete syntax;

- The semantics;

- The mapping of concrete syntax onto abstract syntax (parsing) and back (rendering);

- The semantic mapping.

For the abstract syntax, this combination (referred to as composing by Mustafiz et
al. [21], [22]) might involve adding new classes, relations, properties, etc. or replacing/s-
plitting/... parts. Likewise, for the concrete syntax, languages may need to introduce
new syntaxes or modify existing ones. We note that in some cases it may be possible to
forego the composing of abstract syntax, and go straight from concrete syntax to semantic
domain, such as done by Paredis et al. in [26].

In the MontiCore handbook [30], the term language embedding is used to refer to the
combining of languages that have been developed independently, but can define a model
through their combination. Language embedding is a more specialized version of what



6.1. HYBRID LANGUAGES 25

they refer to as language aggregation, as the latter only combines the abstract syntax, and
the former also combines the concrete syntax of the languages.

In a case study Mustafiz et al. [21] provided the example combination of Timed
Finite-State Automata (TFSA), used for describing reactive systems, and Causal Block
Diagramss (CBDs), used for describing embedded control systems, into the hybrid TFSA-
CBD language. This example (see Figure 6.4) modelled a bouncing ball that could be
three distinct states (aside from initializing): (i) falling, (ii) bouncing off the floor, or
(iii) getting kicked. Additionally in each state, the ball has distinct behaviour modelled
for its speed and position: (i) increasing downwards speed and decreasing x position, (ii)
inverting and decreasing speed, and (iii) adding speed.

Figure 6.4: Example hybrid TFSA-CBD model, modelling a bouncing ball. From [22].

We note that in this example, the hybrid language uses a composed visual concrete
syntax. For our framework, we will instead be focusing on composing textual concrete
syntax.



Part II

Model Overview



CHAPTER 7

Overview

In this part we will provide an initial introduction to the Weave framework by intro-
ducing and detailing the models that surround it, which describe the types and operations
involved with the parsing of textual models of hybrid languages. The end goal is to de-
scribe how a dynamic multi-language parser may operate, which can then be used as a
description for an actual implementation, which we will cover in the next part. Figure 7.1
shows a high-level overview of Weave. Central to it is the “orchestrator”, whose job
it is to handle the interaction between different parsers, which is the preferred way of
dynamically handling multiple languages (see Section 11.5 in Chapter 11).

The following chapters will cover how each part is modeled, starting with Chapter 8
we will describe the structures for representing parse trees, where we will introduce three
formalisms that are to be used together: the Tree Definition Formalism (tdf), the Tree
Instance Formalism (tif), and the Tree Construction Formalism (tcf). In Chapter 9 we
will cover the ‘Parsers & Generators’ block, which contains a collection of parsers or parser
generating objects, and part of the ‘Languages’ block. This chapter describes the basic
interfaces required for a parser to be used by Weave in order to work with it. Chapter 10
provides a framework for ‘tracing’, which is used to provide a way to store how something
was made (token, parse tree, model element, etc.). Lastly, in Chapter 11 we describe how
we envision the textual concrete syntax of hybrid languages (see Section 6.1), how the
syntax may need to look for a basic implementation, and how parsing should be handled.
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Weave Orchestrator Parsers &
Generators

Languages Grammars tdf Models

Wrapper

Parser

Parser Parser
Generator

Parser

«use»«use»

text Mtif

input output

Grammar
Mtcf

∋«use»

Figure 7.1: Overview of the Weave parsing framework.



CHAPTER 8

Parse Trees

As we mentioned near the end of Section 5.2, the classic parse tree representation is
simple in its implementation, but due to its simplicity can cause complications further
along the line. This is why generally a parser either doesn’t generate parse trees themselves
and leaves it up to the developer (Yacc, GNU Bison, Python PLY), or they implement their
own tree structure (ANTLR4, Python Lark).

Due to our requirement of being able to augment languages these issues are made more
apparent, as changing the concrete syntax might bring along a lot of intrusive changes
elsewhere the parse tree is consumed if using the classic representation. For example: if
we were to augment a single parse rule to always start with some other rule, the tree
children all shift right by one, and anything consuming trees for this grammar would
require changes to account for this one change. As such, we will immediately require here
that any implementation we use or make should always use something that is not tied to
the order of occurrence in the definition. Additionally, due to our requirement of being
able to combine the parse trees of multiple parsers, a common data structure would be
beneficial to the interoperability of the parsers.

We will first compare different implementations of parse trees in some popular parsing
tools, and compare some available academic literature on the subject in Section 8.1. We
note that we looked at GNU Bison and the Python library PLY (both based on Yacc), but
these leave the construction of a tree up completely to the writer of the grammar, and
so are of no use for this comparison. Aside from those, we looked at ANTLR4, and the
Python library Lark as popular parsing tools. Table 8.1 shows a general comparison of the
tools, as well as their supported language targets.

Over in the academic world, we looked at the Object Management Group’s (OMG)
Abstract Syntax Tree Metamodel (ASTM) [23], Annotated Terms (ATerms) by van den
Brand et al. [4], and the markup languages JavaML, CppML, and OOML introduced by



8.1. COMPARISON OF IMPLEMENTATIONS 30

Mamas et al. [16]. We also compared these to the theoretical implementation as given by
Aho et al. in [1].

We show the specifications for our proposed parse tree structures in Section 8.2. Then
in Section 8.3, we show how a parser can integrate our parse trees through example,
followed by a grammar specification in Section 8.4. Finally, we provide a list of considered
variations and why we decided not to add them in Section 8.5.

Tool
Generates Parse

Trees Languages
Run-time parser

creation

GNU Bison No, but runs actions on
rule match

C, C++ No a

ANTLR4 Yes (generates class per
non-terminal, tree nodes
are class instances)

C#, C++, Dart, Go,
Java, JavaScript, PHP,
Python, Swift

No a

Python Lark Yes (single tree class for
all node instances)

Python Yes

Python PLY No, but runs code on
rule match

Python Yes, but using a
workaround [28]

a Counted as no, because it requires running one or more external programs
(ex. C compiler and linker), and writing several files to disk.
In effect this would require a lot of code to achieve and isn’t available natively.

Table 8.1: General overview of the parser generators and parsing libraries we looked at.

8.1 Comparison of Implementations

As we mentioned earlier both GNU Bison and the Python library PLY, which are
based on Yacc, leave construction of the parse tree up to the person writing the grammar.
As such they are not included in this comparison.

ANTLR4 requires running a code generator that allows targeting different languages,
these include but are not limited to C#, C++, Java, and Python (see Table 8.1 for a
more complete list). Each target language has a similar interface for accessing the parse
tree using classes for both interior nodes and terminal nodes. Note that each rule is
automatically turned into a class definition for an interior node, while terminal nodes all
share a single class definition. The interior nodes store their children in a list structure,
and access is provided through both getters that are generated based on rule names, as
well as direct access into the list structure (though this should probably be avoided).
Making a change to the grammar definition requires running the code generator again.
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Parse Tree Node Storage Node Type Children Child Access

Theoretical
(Aho et al. [1])

Tree structure Node value Outward edges
(ordered by rule)

By index (order)

ANTLR4 Class (Tree) Class name List of children By rule name, by
index

Python Lark Class (Tree) data field
(rule name)

List of children By rule name, by
index

ASTM Class Class name Class fields Field name

ATerms APPL term Function symbol Term Parame-
ters

Pattern match-
ing

JavaML,
CppML,
OOML

XML Element Element name Child elements
(nodes)
Attributes (val-
ues)

By child element
or attribute
name

Our tree Record-like Name Record at-
tributes

By name

Table 8.2: Overview of differences in parse tree structure between different tools and
documents.

The Python Lark library also makes use of classes for interior nodes and terminal nodes.
However, here only a single class is used for all interior node types, with the distinction
being made through a field called data that stores which production was used to create
the node. Child nodes can be accessed through index access, with interior nodes also
being accessible through querying by node type. Generating the parser happens at run-
time based on a grammar definition, and no files are written to disk unless the result of
is saved for performance reasons.

The Abstract Syntax Tree Metamodel (ASTM) [23] is defined using the Unified
Modeling Language (UML) as a class hierarchy and is split up into a core ‘Generalized
ASTM’ (GASTM) and extensions to the core, which are combined under the umbrella term
‘Specialized ASTM’ (SASTM). The GASTM is focused on imperative and object oriented
programming languages, so its contents are of little use to us as our focus does not lie
towards any specific kind of language at all. Additionally, the purpose of the ASTM is
not to be an in-memory representation of parse trees, but it is instead meant as a way of
providing interoperability between programs. It does this by defining how the structures
should be passed along. However, one of the properties of interest to us is the fact that
node instances have named attributes and relationships (children).

Annotated Terms [4] is another solution for providing cross-program compatibility
by defining a basic general purpose format for representing parse trees. As opposed to
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Parse Tree Positives Negatives

ANTLR4 + Wide support for languages
+ Node shapes are fixed at parser gen-
eration
+ Supports typing of node instances
(through turning rules into class defi-
nitions)
+ Uses names for accessing child
nodes

- Does not allow run-time parser cre-
ation

Python Lark + Allows run-time creation of parsers
+ Uses names for accessing child
nodes

- Node shapes are not defined (i.e. no
typing)

ASTM + Class diagrams for definition
+ Child ‘nodes’ are attributes or rela-
tionships
+ Node shapes are defined in model

- Focused on OOP, not general pur-
pose
- Definition in a highly technical stan-
dard
- Not for in-memory representation

ATerms + Simple record-like syntax
+ Defined operations
+ General purpose

- Too heavy for our use case
- Not for in-memory representation
- Node shapes are not defined

JavaML,
CppML,
OOML

+ Uses a well known storage format
(XML)
+ Node shapes are defined in a well
known format (DTD)

- Slow speed
- High memory usage
- High disk usage
- Not for in-memory representation

Table 8.3: Overview of the positives and negatives of the compared tools and papers.

ASTM, ATerms are generic and not targeted at any specific type of language. This makes
it a good candidate when working with any kind of language. For example, the Spoofax
Language Workbench makes use of ATerms in order to process and store parse trees.

Lastly, Mamas et al. [16] proposed using XML to provide interoperability between pro-
grams, and introduced three languages: Java Markup Language (JavaML), C++ Markup
Language (CppML), and Object Oriented Markup Language (OOML). The advantage
here lies in the usage of a well known language like XML and it’s Document Type Defini-
tion (DTD) language, requiring implementors of the scheme to only need an XML parser
(and possibly verifier) to be able to read it. However, according to Anderson in [2] it
suffers from slow speed, and high memory and disk usage as opposed to custom built
binary formats. And for our use case, storing the parse tree into an XML data structure
would be detrimental unless it was to be passed to a different program.

In Table 8.2 we show an overview of the implementation of parse trees in each of the
above looked at tools and documents, and Table 8.3 shows the positives and the negatives
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for each. Note that while ANTLR4 and Lark both have a lot of positives, they each lack an
important part: ANTLR4 does not allow run-time parser creation, and while Lark does, it
does not provide the type safety provided by ANTLR4 do to its run-time parser creation.
In other words: Lark provides the best solution, but does not provide static or dynamic
analysis.

8.2 Implementation
Having compared different existing implementations and what’s available, as well as

looking at some example use cases, we have the following goals for working with parse
trees:

• Detachment of parse trees from the syntax definition, to allow re-use of structure
by for example languages with dialects, or when migrating parser (e.g. LALR(1) to
PEG).

• Using some form of identification for parse tree children.

• Allowing specification of parse tree structure, and ensuring this structure is obeyed.

• Analyzing and validating the structure of grammar specifications.

Additionally, it would be nice to have the ability to, based on the sort of parse tree
node, know what children can be expected or are allowed, and what sort they themselves
can be. For example: in a code block we have statements, and a statement could be an
expression, assignment, conditional, etc. An advantage of this could be allowing more
advanced static analysis of grammar specifications to find accidental mistakes. As such,
we also introduce a basic type system to our parse trees:

• A node has a type.

• A node type can ‘extend’ from other node types, called the parents (the closure on
node parents are called the ancestors).

• The type of a node defines the children it can have.

• The children are defined per node-type, and are inherited from all ancestors.

• Each child definition also defines the type of nodes expected.

Note that for the purposes of quick language prototyping we will allow this type system
and its corresponding type checks to be disabled, though this will depend on the grammar
specification language.
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Based on the above goals, we will start with a formalism to define the shapes of parse
trees in Sections 8.2.1 and 8.2.2, which we will call the tdf or Tree Definition Formalism.
Next we will define a formalism for instances of these definitions in Section 8.2.3, which
we will call the Tree Instance Formalism or tif. We then define a formalism that con-
structs these instances according to their specification in Section 8.2.4 named the Tree
Construction Formalism or tcf. And lastly we will explain how we expect to integrate
these formalisms into a parser in Section 8.3.

Figure 8.1 shows how these three formalisms are expected to interact, with a grammar
specification containing many tcf models, a tdf model being specified parallel to this,
and the output of the parser being a tif model. Removing the parser from the picture,
Figure 8.2 shows a more basic overview of the interactions between the formalisms.

We note that in order to reduce the specificity and allow re-use, the definitions here
will be usable without the overarching Weave framework. For example, the implemen-
tation of leaf nodes (terminal nodes) is left up to the implementation (as will be noted).
Additionally, there will be no specific definitions for embedding parse trees from one parser
into those of another, as this lies outside the scope of parse trees themselves. Instead,
we will introduce extensions to the structures introduced here in Chapter 11 for those
concepts specific to our use-case.

validate withMtcfGrammar
Specification

◦ 7→ ◦
Parsing

specified by

Mtiftext

input output

co
nfo

rm
s to

Mtdf

conforms to

Figure 8.1: Graphical overview of the intended interactions between our parse tree for-
malisms, grammar specifications and generated parsers.
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validates with defines

Figure 8.2: Reduced overview of the interactions between tdf, tif, and tcf.

8.2.1 Tree Definition: Abstract Syntax
Figures 8.3 and 8.4 show an overview of the abstract syntax of our parse tree definition

formalism, which we will call tdf (Tree Definition Formalism). The base interface is
NodeType, which is the base type for all node kinds. NodeType and the its basic derived
types are visualized in Figure 8.3. Every node type has a ‘name’ which should be unique
in the context of a language definition.

«interface»
NodeType

name: String {id}

* /parents {union}*

«interface»
ExtendableNode

«interface»
NodeWithChildren

NodeChild

name: String

children *

1

*

{readOnly}
/parentChildren

*

ConcreteNodeDefinition

*

{subsets parents}
extends

*

InterfaceNodeDefinition

*
{subsets parents}

extends *

«singleton»
TokenType

name = "tok"

This node type implicitly
always exists to reference
to in tree definitions.

«interface»
NodeTypeReference
. . .

type 1

Model
nodes

*

Figure 8.3: Class diagram showing the abstract syntax of the base building blocks of parse
tree definitions.

TokenType is a node type with the name tok that implicitly always exists and has no
children, instead realizations of this node type have a ‘value’ that in general represents
parts of the input of the parser. For example the identifier ‘x’ in Figure 5.4 is a token
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of type ‘ID’ with value "x" and could serve as a realization of TokenType. In the case of
a scannerless parser, TokenType could represent a sequence of characters from the input
stream instead. It could even represent a “plain string”, meaning only the text without
any metadata attached by a lexer or parser, for example if loaded from a pre-defined tif
model (see Section 8.2.3) from disk or memory, or constructed by hand.

ConcreteNodeDefinition and InterfaceNodeDefinition both allow language designers to
define their own shapes of parse trees. ‘Concrete’ nodes define the shape a node must
conform to, and while ‘interface’ nodes do this as well, conceptually they serve a different
kind of construct.

The idea behind ‘interface’ nodes is that they cannot be realized themselves (like
interfaces in many programming languages) and instead define a format that other nodes
need to conform to. This can optionally include defining some children that are required.
Take for example the grammar of Lark grammars [31], [32], which at its root allows the
following constructs: parser rules, token definitions, ignore statements, import statements,
override statements, and declare statements. If we were to model this in tdf, each of
those constructs would have their own node definition, but the root node would not need
to have knowledge of each different kind of construct. This is where ‘interface’ nodes
would come in: we would define an ‘interface’ node named RootElement, which the node
definition for each root construct would “extend” or “inherit” from. The root node then
would only need to have a single child: a list of RootElement nodes. We could even go
further and define an ‘interface’ node named RootStatement that “extends” RootElement,
which the four statements node definitions would instead inherit from.

The existence of the ExtendableNode interface is to facilitate the ‘extends’ relationship
for ‘concrete’ nodes, which can extend either other ‘concrete’ nodes or ‘interface’ nodes,
but not say for example TokenType. The NodeWithChildren interface on the other hand
defines that a node type can have children, which are instances of NodeChild, are identified
through a ‘name’ attribute and have a ‘type’ relation to a NodeTypeReference.

We note that there are two ‘extends’ relations in Figure 8.3, both are annotated as
“{subsets parents}”, which reference the derived union ‘parents’ relationship on NodeType.
This is UML syntax that indicates that each instance of the ‘extends’ relationship also
causes an instance of the ‘parents’ relationship to exist from and to the same source and
target respectively of the ‘extends’ relationship [25] (i.e. they are subsets).

We also note that there exists the derived relationship ‘parentChildren’ from Node-
WithChildren to NodeChild, for which the implementation is given in OCL in Listing 8.1, as
well as the implementation of the ‘isEquivalent’ operation used for constraint validation
further along in Listing 8.2.

The NodeTypeReference is itself an interface as well, allowing for different structures
to be contained in a node. In our implementation we decided to go with the following
kinds:

• BaseTypeReference requires there to be exactly one child of the referenced type under
its given name.
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−− Collect all defined children for a NodeWithChildren
context NodeWithChildren::parentChildren : Set(NodeChild)
derive: self.parents.children−>flatten()−>union(self.parents.parentChildren−>flatten())

−− Equivalency for BaseTypeReference
context BaseTypeReference::isEquivalent(other : NodeTypeReference) : Boolean
body: other.oclIsTypeOf(BaseTypeReference) and self.type = other.type

−− Equivalency for OptionalTypeReference
context OptionalTypeReference::isEquivalent(other : NodeTypeReference) : Boolean
body: other.oclIsTypeOf(OptionalTypeReference) and self.type = other.type

−− Equivalency for ListTypeReference
context ListTypeReference::isEquivalent(other : NodeTypeReference) : Boolean
body: other.oclIsTypeOf(ListTypeReference) and self.type = other.type

Listing 8.1: Definitions for the abstract syntax of tdf defined in OCL [24].

• OptionalTypeReference requires there to be either one child of the referenced type,
or no child at all, under its given name.

• ListTypeReference requires there to be a list of children of the referenced type under
its given name. The list can have zero, one, or more children in it.

Figure 8.4 shows an overview their definition in terms of their abstract syntax. We note
that it should be possible to add more kinds of NodeTypeReference, but for simplicity we
decided to only go for those that directly translate to patterns in Extended Backus-Naur
Form grammar definitions (repetition and optionality).

«interface»
NodeTypeReference

. . .

isEquivalent(o: NodeTypeReference): Boolean {query}
isAssignableFrom(o: NodeTypeReference): Boolean {query}

NamedTypeReference

name: String

type 1

OptionalTypeReferenceBaseTypeReference ListTypeReference

«interface»
NodeType

. . .

isAssignableFrom(o: NodeType): Boolean {query}
isSubtypeOf(o: NodeType): Boolean {query}

type 1

Figure 8.4: Class diagram showing the implementations of the NodeTypeReference inter-
face.



8.2. IMPLEMENTATION 38

Next, we have some constraints that any valid tdf model should conform to in List-
ing 8.2. First, there mustn’t be any loops in the node type hierarchy, i.e. a node mustn’t
be its own ancestor. Second, children must have a unique name, both within a single
node definition, and compared with all ancestors. And if a node re-declares a child with
the same name, the definition must be “compatible” (for now this is interpreted as having
the exact same type, but in the future this could for example be further refined to allow
sub-types to be considered compatible).

Implementation note We note that the theoretical implementation in Listing 8.2
might be okay with a simple closure algorithm for detecting loops in the type hierarchy,
but recommend an algorithm that finds strongly connected components (with vertices
node types, and edges the “parents” relation). The advantage of using strongly connected
components is that, unlike the closure algorithm or topological sort (which does not pro-
duce a sort if there is a loop) and unlike a depth-first or breath-first search (which only
return parts of the loop), the resulting strongly connected components with more than
one element give all type loops and gives all types involved in each loop. The only type
loop not discovered using this sort of algorithm are self-loops, where a type is defined as
extending itself, a simple check should suffice to cover this case.

−− Ensure there are no cycles in the node type hierarchy.
−− Note that the parents association only does direct ancestors
context NodeType
inv noCycles:

self.parents−>closure(parents)−>excludes(self)

−− 1. Ensure that no two childs have the same name
−− 2. Ensure that no child shadows a child in a parent
context NodeWithChildren
inv noDuplicateNames:

self.children−>forAll(c1, c2 : NodeChild |
c1 <> c2 implies c1.name <> c2.name)

inv noShadowChildren:
self.children−>forAll(c1 : NodeChild |

self.parentChildren−>forAll(c2 : NodeChild |
c1.name = c2.name implies c1.type.isEquivalent(c2.type))

Listing 8.2: Constraints for the abstract syntax of tdf defined in OCL [24].

Lastly, we have some operations that support the typing system:

• In Listing 8.3 we define some operations ‘isAssignableFrom’ on ‘NodeType’ and
derivatives, and on ‘NodeTypeReference’ and derivatives. This operation defines a
relation “X isAssignableFrom Y” that holds if a value of type Y can be given where
one of type X is expected.
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• In Listing 8.4 we define the operation ‘isSubtypeOf’ on ‘NodeType’ and derivatives.
This operation checks whether the given ‘other’ type is an ancestor in the type
hierarchy, and is for example used by the ‘isAssignableFrom’ operation mentioned
above, and the ‘type intersection’ algorithm in the next item.

• In Listing 8.5 we define an algorithm to get the ‘type intersection’ as the most
specific common ancestors of a set of given types. This algorithm is used to deduce
the type of construction operations as we will see in Sections 8.2.4 and 8.2.5.

−− Assignability for NodeType
context NodeType::isAssignableFrom(other : NodeType) : Boolean
body: other.isSubtypeOf(self)

−− Assignability for TokenType
context TokenType::isAssignableFrom(other : NodeType) : Boolean
body: other.oclIsTypeOf(TokenType)

−− Assignability for BaseTypeReference
context BaseTypeReference::isAssignableFrom(other : NodeTypeReference) : Boolean
body: other.oclIsTypeOf(BaseTypeReference) and self.type.isAssignableFrom(other.type)

−− Assignability for OptionalTypeReference
context OptionalTypeReference::isAssignableFrom(other : NodeTypeReference) : Boolean
body: (other.oclIsTypeOf(OptionalTypeReference) or other.oclIsTypeOf(BaseTypeReference))

and self.type.isAssignableFrom(other.type)

−− Assignability for ListTypeReference
context ListTypeReference::isAssignableFrom(other : NodeTypeReference) : Boolean
body: other.oclIsTypeOf(ListTypeReference) and self.type.isAssignableFrom(other.type)

Listing 8.3: Specification of assignability operations of tdf defined in OCL [24].
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−− Subtyping for NodeType
context NodeType::isSubtypeOf(other : NodeType) : Boolean
body: False

−− Subtyping for ConcreteNodeDefinition
context ConcreteNodeDefinition::isSubtypeOf(other : NodeType) : Boolean
body: self = other or self.extends−>exists(parent | parent.isSubtypeOf(other))

−− Subtyping for InterfaceNodeDefinition
context InterfaceNodeDefinition::isSubtypeOf(other : NodeType) : Boolean
body: self = other or self.extends−>exists(parent | parent.isSubtypeOf(other))

Listing 8.4: Specification of the subtyping operations of tdf defined in OCL [24].

algorithm typeIntersection
input types: Set(NodeType)
output intersection: Set(NodeType)
require: types.notEmpty()

−− 1. Collect all ancestors as subgraphs of the type hierarchy.
for each t: NodeType in types do
At: Set(NodeType) = all ancestors of t

end

−− 2. Get the intersection of the ancestors, giving us the shared ancestors.
−− This gives us a new subgraph of the type hierarchy.
I: Set(NodeType) =

⋂
t
St

−− 3. Get all types that do not have child types in the shared ancestors set.
−− Equivalent to getting the vertices in our subgraph with no incoming edges.
for each a: NodeType in I do

if not exists b: NodeType in I
where a <> b and b.isSubtypeOf(a) then

intersection.put(a)
end

end

Listing 8.5: Algorithm used for getting the most specific common ancestors of some nodes.
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The tdf formalism is very similar to the UML class diagrams formalism [25], but
works with a simpler definition that does not map completely on class diagrams. Later
on we have an example tdf model instance (Figure 8.7), and we show how this would
map to UML class diagrams in Figure 8.8. Table 8.4 shows a comparison of tdf concepts
with class diagram concepts. A non-exhaustive list of things that are different to or are
missing from tdf compared to class diagrams is:

• Multiplicity of properties is limited to either one, one or zero, or zero or more.

• Constraints cannot be specified.

• Nodes do not have any behavior such as operations or signals attached to them.
They are a pure data storage formalism.

• The only supported primitive type is String (TokenType represents a string from the
input).

Class Diagrams tdf

Classifier NodeType

Class Definition ConcreteNodeDefinition

Interface Definition InterfaceNodeDefinition

Class Generalization and Interface Realization ConcreteNodeDefinition extends relation

Interface Generalization InterfaceNodeDefinition extends relation

Class / Interface Properties NodeWithChildren children association

String Primitive TokenType

Property Multiplicity 1 BaseTypeReference

Property Multiplicity 0..1 OptionalTypeReference

Property Multiplicity 0..* ListTypeReference

Table 8.4: Relation between the class diagrams formalism and the tdf formalism.

8.2.2 Tree Definition: Concrete Syntax
Having defined the abstract syntax and its intended meaning above, we’ll now define

a visual and a textual concrete syntax for tdf. The goal for the visual syntax is to be
usable in this document, while the textual syntax will be used for implementations.

Figures 8.5 and 8.6 show a fairly complete overview of the both the visual and textual
syntax with the abstract syntax being shown centrally. The concrete visual syntax is
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shown through «syntax» associations under the abstract syntax, and the concrete tex-
tual syntax through a note above. In each image, extra information such as surrounding
type definitions are grayed out to not distract from what each image is supposed to convey.

• The node type is placed first in both syntaxes, with node being used for instances of
ConcreteNodeDefinition, and interface for instances of InterfaceNodeDefinition. For
‘concrete’ instances the node specifier can be omitted in the textual syntax.

• Next is the name of the type definition.

• The “children” relation is shown in the textual syntax with parentheses surrounding
them and being separated by commas. In the visual syntax this is done by putting
them all in a ‘box’, each relation taking up a line.

• For each child relation, the following holds:

– The type of a node is given after the name of a node, and is separated from it
through a colon ‘:’.

– Regular or ‘base’ “always one child” children just have the node type.

– Optional children have a question mark ‘?’ prepended to their type.

– List children have square brackets ‘[]’ appended to their type.

• The “extends” relations in the textual syntax are denoted by putting a colon ‘:’ after
the children definition, and a list of the ‘extended’ types separated by commas.

• In the visual syntax, the “extends” relations can be shown by either using UML
generalization associations ( ) such as on the left side, or by putting the ex-
tended node type(s) below the node name such as on the right side. Both versions
are equivalent and can be used as is felt appropriate (for example, to reduce visual
clutter or emphasis a relationship).

Because the tdf formalism is very similar to the UML class diagrams formalism [25],
we chose to keep the visual syntax similar as well. This way, it should help the reader
more easily understand the diagrams in this document. The textual syntax on the other
hand only slightly resembles Python function and class definitions and Java record type
definitions, but is otherwise not based off any existing language or syntax. In Section 8.4,
Figure 8.27 we give a grammar specification for the textual syntax.
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: ConcreteNodeDefinition

name = "ConcreteNode"

: NodeChild

name = "base"

: BaseTypeReferencetype

: NodeChild

name = "optional"

: OptionalTypeReferencetype

children

children

: NodeType

name = "SomeType"

type

Can refer to any node
type extending NodeType:
ConcreteNodeDefinition,
InterfaceNodeDefinition,
TokenType, or any type
added in the future.

: TokenType

name = "tok"

type

: ExtendableNode

name = "SomeNode"

extends

Can refer to any node
type extending
ExtendableNode.

Textual Concrete Syntax
ConcreteNode(base: SomeType, optional: ?tok): SomeNode

node
ConcreteNode

SomeNode

base: SomeType
optional: ?tok

«syntax»

node
ConcreteNode

base: SomeType
optional: ?tok

«syntax»

unknown
SomeNode
. . .

«syntax»«syntax»

OR

Visual Concrete Syntax

Figure 8.5: Showcase of the visual and textual concrete syntax of some an example Con-
creteNodeDefinition named ConcreteNode and its object diagram representation.
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: InterfaceNodeDefinition

name = "InterfaceNode"

: NodeChild

name = "list"

: ListTypeReferencetype

children : TokenType

name = "tok"

type

: InterfaceNodeDefinition

name = "SomeInterface"

extends

Textual Concrete Syntax
interface InterfaceNode(list: tok[]): SomeInterface

interface
InterfaceNode
SomeInterface

list: tok[]

«syntax»

interface
InterfaceNode

list: tok[]

«syntax»

interface
SomeInterface
. . .

«syntax»«syntax»

OR

Visual Concrete Syntax

Figure 8.6: Showcase of the visual and textual concrete syntax of some an example Inter-
faceNodeDefinition named InterfaceNode and its object diagram representation.
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Example
To further show this syntax, we show an example parse tree definition using tdf

based on the grammar defined in Listing 5.1. Listing 8.6 shows how this would be defined
using the textual syntax, while Figure 8.7 shows the same definition using the visual
syntax. Note that the Int node has its value as a str type, indicating that it doesn’t
get parsed to an actual value but just represents a part of the input. Note as well that
while Addition has two children lhs and rhs (respectively left- and right-hand side), and
Multiplication instead has one child operands. Using a list like this allows rolling up
several operations into a single node as opposed to requiring a chain of nodes of the same
type.

Assignment(lhs: Id, value: Operation)

interface Operation ()
Addition(lhs: Operation , rhs: Operation ): Operation
Multiplication(operands: Operation []): Operation

interface Atom (): Operation
Id(name: tok): Atom
Int(value: tok): Atom

Listing 8.6: Example textual parse tree definition for the language defined in Listing 5.1
using the tdf formalism.

interface
Operation

node
Assignment

lhs: Id
value: Operation

interface
Atom

node
Addition

lhs: Operation
rhs: Operation

node
Multiplication

operands: Operation[]

node
Id

name: tok

node
Int

value: tok

Figure 8.7: Example visual parse tree definition for the language defined in Listing 5.1
using the tdf formalism.
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«interface»
Operation Assignment

value 1

«interface»
Atom

Addition

lhs 1 rhs 1

Multiplication

operands

*

Id Int

lhs 1

«builtin»
str

. . .

name 1 value 1

Figure 8.8: Figure 8.7 turned into an equivalent class diagram.

8.2.3 Tree Instances
As we mentioned in the previous section, tdf looks a lot like the UML class diagrams

formalism, and indeed we will continue this parallel with our Tree Instance Formalism
(tif), are very similar to the UML object diagrams formalism. Due to the simplicity of
this formalism, we will keep this section short.

Figure 8.9 and Listing 8.7 show the abstract syntax and constraints, with NodeIn-
stance instances representing a node that’s been constructed (ConcreteInstance) or parser
input (TokenInstance). Instances of ConcreteInstance themselves can have children that
have NodeInstances themselves, the types BaseValue, OptionalValue and ListValue are the
realizations of the BaseTypeReference, OptionalTypeReference and ListTypeReference types
from tdf respectively (not pictured).

We note that we leave the implementation of TokenInstance up to the parser, as the
scope of our parse tree formalisms is limited on the construction of parse trees and its
structure, but not on the leaf nodes, i.e. the terminals.

In Figure 8.10 we see the same parse tree as in Figure 5.4 for the string x = 10
+ y * 5 being represented visually, but making use of the tdf model in Listing 8.6
and Figure 8.7. The same tree is also represented textually in Listing 8.8. We say that
both the textual and visual trees conform to the tdf parse tree definition in Listing 8.6
(textual) or Figure 8.7 (visual).

Not shown in in our examples is the syntax for an optional child. In the case of there
being a value, its syntax is the same as a mandatory child. If there is however no value,
the child assignment is omitted (textual) or the association edge is left out (visual).

Just as for tdf, Figure 8.28 in Section 8.4 contains a grammar specification for the
concrete textual syntax of tif.
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«interface»
NodeValue

NamedNodeValue

name: String

value

1

«interface»
NodeInstance

/children {union}

*

OptionalValueBaseValue ListValue

«interface»
NodeInstance

ConcreteInstance

type: String

TokenInstance
. . .

{subsets children}
value 0..1{subsets children} value

1

{subsets children,
values ordered}

*

children*

«interface»
NodeType
. . .

instances

model

0..1

«singleton»
TokenType
. . .

{redefines model}

1

ConcreteNodeDefinition
. . .

{redefines model}

0..1

From tdf

Figure 8.9: Abstract syntax definition for tif. Shaded and enclosed in a dashed region
are types from tdf.

−− Ensure there are no cycles, and children contains no duplicate names.
context ConcreteInstance
inv noCycles:

self.children.children−>flatten()
−>selectByKind(ConcreteInstance)
−>closure(c: ConcreteInstance | c.children.children−>flatten()

−>selectByKind(ConcreteInstance))
−>excludes(self)

inv noDuplicateNames:
self.children−>forAll(c1, c2 : NodeValue |

c1 <> c2 implies c1.name <> c2.name)

Listing 8.7: Constraints for the abstract syntax of tif defined in OCL [24].
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Assignment

Id

name = "x"

lhs

Addition

value

Int

value = "10"

lhs

Multiplication

rhs

Id

name = "y"

operands[1]

Int

value = "5"

operands[2]

node
Assignment

lhs: Id
value: Operation

«conformsTo» ConcreteInstance
. . .

«instanceOf»

NamedNodeValue

name = "value"

«instanceOf»

Figure 8.10: Example visual parse tree representation for the parse tree in Figure 5.4 with
the parse tree definition from Figure 8.7, showing the relation to tdf and the abstract
syntax of tif. The original text is x = 10 + y * 5.

Assignment(
lhs = Id(name = "x"),
value = Addition(

lhs = Int(value = "10"),
rhs = Multiplication(operands = [

Id(name = "y"),
Int(value = "5")

])
)

)

Listing 8.8: Example textual parse tree representation for the parse tree in Figure 5.4
with the parse tree definition from Figure 8.7. The original text is x = 10 + y * 5.
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Graph Representation
An alternative representation for tif models can be done through labeled graphs, the

purpose of this representation is solely for representing operations in the tcf formalism
in the next section. Figures 8.11 and 8.12 show how these would look like. Note that in
Figure 8.12b OptionalValue can either have an outgoing edge labeled ‘node’ or no outgoing
edge to indicate the presence or absence of a ‘value’, and in Figure 8.12c ListValue is
represented as a repeating data structure, with the base case being a node without value.
This repeating nature is similar to a linked list data structure, and can be envisioned
similar to the way users of Prolog or Haskell work with lists.

Also note that there are different shapes for the nodes in the graph, these are used
solely as a quick indicator of what sort of data it represents, and what outgoing edges can
be expected from it. These shapes are: NodeValue , NodeInstance , ListValue list bits ,
or generic nodes , as well as nodes with text in them.

"Some Text"

(a) TokenInstance

SomeName

child1 = . . .
child2 = . . .

SomeName

‘type’ ‘children’

child1 child2

(b) ConcreteInstance

Figure 8.11: Graph based representations for node instances.

‘node’

(a) BaseValue

‘node’ or

(b) OptionalValue

‘list’

‘head’ ‘tail’ or
(base)

(c) ListValue

Figure 8.12: Graph based representations for node values. Note that ListValue is repre-
sented as a repeating structure with the head being the nth element (at depth n) and the
tail holding all next elements, and the base case being a node with no outward edges.
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8.2.4 Tree Construction
Having now defined a way to define parse tree structures with tdf in Sections 8.2.1

and 8.2.2, and a way to represent instances of parse trees with tif in Section 8.2.3, we will
now look at constructing instances of tif models with the Tree Construction Formalism
(tcf).

A tcf model defines a mapping from a collection of tif NamedNodeValues to a Node-
Value, these mappings may take any, all, or no parts of the input model to construct the
output model. The idea then is for a parser making use of our formalisms to not have a
singular tcf model for the entire parse process, but to have one for each non-terminal,
for each top-level choice in a non-terminal, or maybe at some other level, depending on
the parser.

tcf focuses solely on the construction of nodes through transformation at the end
of a successful match. As such, there are some gaps that need to be filled in by any
parser making use of it, such as when a production contains Extended Backus-Naur Form
(eBNF) concepts. For example, 〈rule〉* would need to aggregate the values returned by
each 〈rule〉 invocation into a ListValue. In Section 8.3 we explain how this should be done.

Figure 8.13 shows the abstract syntax of the base interface for all possible operations.
Note that the makeBuilder operation defined in ConstructionOperation creates instances
of TreeBuilder objects, we will describe the behaviour of these for each realization of
ConstructionOperation in the next section. Figure 8.14 shows the realizations for operations
that work on plain values or nodes, and Figure 8.15 shows the realizations for operations
that operate on lists.

ConstructionContext

Provided by the parser
after successfully completing
a non-terminal rule.

NamedNodeValue

name: String

«interface»
NodeValue

value1

inputs

*

From tif

NamedTypeReference

name: String
DefinitionContext

inputs

*

From tdf

Provided by the parser
based on the parsing rule
specification.

«interface»
TreeBuilder

build(context: ConstructionContext): NodeValue

«use»

«use»

«interface»
ConstructionOperation

makeBuilder(context: DefinitionContext): TreeBuilder

«use»«use»

«create»

«conformsTo»

Figure 8.13: The base abstract syntax for the ConstructionContext of tcf.
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«interface»
ConstructionOperation

ContextAccessOperation

name: String

NodeAccessOperation

child: String

node 1

NodeConstructOperation

name: String

NodeConstructChild

child: String

children *

value 1

Figure 8.14: Abstract syntax for operations that access or make nodes in tcf.

«interface»
ConstructionOperation

ListConcatOperation

parts
{ordered}

2..*

ListConstructOperation

parts
{ordered}

*

Figure 8.15: Abstract syntax for operations dedicated to lists in tcf.

8.2.5 Tree Construction: Operations
We will explain the defined operations in this section based on:

• Prose explaining the operation.

• The textual concrete syntax.

• In-place graph based transformations, such as used by Van Tendeloo et al. in [38]:

– Solid black ‘edge’ : matched vertices and edges.

– Thick solid green ‘edge’ : added vertices and edges.

– Dashed blue ‘edge’ : removed vertices and edges.

– Red dotted ‘edge’ : negative matched vertices and edges (if matched, the trans-
formation fails).

• Execution schedules for the graph transformations, given using the MoTif (Modular
Timed graph transformation) language by Syriani et al. [35].

The starting state of the graph transformation for any given tcf model will conform to
the shape as given in Figure 8.16a, and the expected end shape is given in Figure 8.16b.
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Note that the only difference between the expected start and end shapes is the presence
of a ‘value’ edge on the vertex pointed to by ‘current’. I.e. the “result” will be stored
under this ‘value’ edge.

‘context’ ‘current’

input1

. . .

inputN

(a) Start graph shape.

‘context’ ‘current’

input1

. . .

inputN ‘value’

(b) Expected end graph shape.

Figure 8.16: Graph based representation of the ConstructionContext, and its expected
start and end shape.

For the textual concrete syntax, the base grammar rule 〈operation〉 is defined in List-
ing 8.9. This rule serves as the start symbol for any tcf model defined textually. As with
tdf and tif, the complete grammar specification for tcf can be found in Section 8.4
Figure 8.28.

⟨operation⟩ ::=-- � ⟨context access⟩� ⟨node access⟩ �� ⟨node construct⟩ �� ⟨list construct⟩ �� ⟨list concat⟩ �

� -�

Listing 8.9: Root grammar for the textual concrete syntax of tcf.

ContextAccessOperation
Shown in Figure 8.17. Takes a name/value from the definition/construction context,

i.e. the inputs of the rule, or the outputs of the child rules.
It has one parameter: the name of the value to get. If there exists a definition in the

context with the given name, then the type of this operation is the type in the definition
context, and the value is taken from the construction context. Otherwise, this operation
is invalid.

Represented graphically, this operation can be described as adding a ‘value’ edge to
the given name under the context (see Figure 8.17b). The execution schedule is given in
Figure 8.17c.

The textual concrete syntax is given in Listing 8.10.

⟨context access⟩ ::=-- ID -�

Listing 8.10: Textual concrete syntax for ContextAccessOperation.
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v1: ContextAccessOperation

name = ident

(a) Object Diagram

‘context’ ‘current’

ident
‘va

lue
’

(b) Context access

(b) Context access

(c) Execution schedule

Figure 8.17: Graph based representation of the ContextAccessOperation and accompanying
execution schedule.

NodeAccessOperation
Shown in Figure 8.18. Accesses a name/value from a sub-operation, e.g. from a

ContextAccessOperation.
It has two parameters: the sub-operation node, and the name of the child to access. If

the type of the sub-operation is a BaseTypeReference referencing to a NodeWithChildren,
and the type has a child named by name, then the type of this operation is the type of
that child, and the value is taken from the sub-operation. Otherwise, this operation is
invalid.

Represented graphically, this operation can be described as moving the ‘value’ edge
to a child name (see Figure 8.18b). The execution schedule is given in Figure 8.18c.

The textual concrete syntax is given in Listing 8.11.

v1: NodeAccessOperation

child = ident

v2: ConstructionOperation

node

(a) Object Diagram

‘current’

‘value’

‘node’

‘children’

ident

‘value’

(b) Node access

node

(b) Node access

(c) Execution schedule

Figure 8.18: Graph based representation of the NodeAccessOperation and accompanying
execution schedule.

⟨context access⟩ ::=-- ⟨operation⟩ ‘.’ ID -�
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Listing 8.11: Textual concrete syntax for NodeAccessOperation.

NodeConstructOperation
Shown in Figure 8.19. Creates a new ConcreteInstance.
It has two parameters: the type of the node name, and the children to put under it

as sub-operations qualified by child names. The following must hold:

• The type referenced by name exists.

• There are no children given that are not defined in the type (i.e. no excess chil-
dren).

• For every child in the type not given in children the child type is an OptionalType-
Reference.

• For every child in children, the type of child in the type definition must be
“assignable from” the type of the sub-operation qualified by child (“assignable from”
is specified in Listing 8.3).

If all these hold, then the type of this operation is a BaseTypeReference with the referenced
type given by name, and the value will be a newly constructed ConcreteInstance of the given
type with the given children set. Otherwise, this operation is invalid.

This operation can be represented graphically as a multi-phase operation with the
execution schedule given in Figure 8.19f:

• Setup the resulting node (Figure 8.19b).

• For each child in the type, either run Figure 8.19g if specified in children or Fig-
ure 8.19h if not.

• Put the resulting node as the ‘value’ (Figure 8.19e).

Note that the execution schedule in Figure 8.19f is generated based on operation specifi-
cation, and should therefore be considered as a “template” rather than a fixed unit.

The textual concrete syntax is given in Listing 8.12. Note that the second production
in 〈node construct child〉 is a shorthand for a ContextAccessOperation with ID assigned to
ID.

⟨node construct⟩ ::=-- ID ‘(’ �� ‘,’ �� ⟨node construct child⟩ �� �� ‘)’ -�

⟨node construct child⟩ ::=-- � ID ‘=’ ⟨operation⟩� ID �� -�

Listing 8.12: Textual concrete syntax for NodeConstructOperation.
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v1: NodeConstructOperation

name = Type

vN: NodeConstructChild

child = name

children.N
. . .

(a) Object Diagram

‘current’ ‘current’

‘parent’

‘result’

‘node’

Type

‘type’

‘children’

‘ch
ild

re
n’

(b) Setup

‘current’

‘children’ ‘value’

name

(c) Child value

‘current’

‘children’

name

(d) Child fallback

‘current’ ‘current’

‘parent’

‘result’‘value’

(e) Finish

(b) Setup

(g/h) Child value 1

(g/h) Child value N

(e) Finish

(f) Execution schedule

children.n

(c) Child value

(g) Child execution schedule

(d) Child fallback

(h) Missing child execution schedule

Figure 8.19: Graph based representation of the phases of a NodeConstructOperation and
accompanying execution schedules.
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ListConstructOperation
Shown in Figure 8.20. Creates a new ListValue from a list of BaseValues.
It has one parameter: the parts that make up the list as a list of sub-operations. For

it to be valid, the type of each sub-operation must be a BaseTypeReference, and there
must be a unique overlapping type for the referenced types, i.e. the type intersection
of the referenced types for each part must be exactly one type. To calculate this type
intersection, we use the ‘typeIntersection’ algorithm defined in Section 8.2.1 Listing 8.5.

The type intersection is required in order to assign a type to the expression, and reduce
complexity that may be introduced if more than one most specific shared supertype exists.
Future improvements may relax this restriction or change typing to remove this issue
completely.

The type of this operation is a ListTypeReference with the referenced type the unique
most specific shared supertype of the sub-operations.

This operation can be represented graphically as a multi-phase operation with the
execution schedule given in Figure 8.20e:

• Setup the resulting node (Figure 8.20b).

• For each element in parts, run the sub-operation then append the value (Fig-
ures 8.20c and 8.20f)

• Put the resulting node as the ‘value’ (Figure 8.20d).

Note that the execution schedule in Figure 8.20f is generated based on operation specifi-
cation, and should therefore be considered as a “template” rather than a fixed unit.

The textual concrete syntax is given in Listing 8.13.

⟨list construct⟩ ::=-- ‘[’ �� ‘,’ �� ⟨operation⟩ �� �� ‘]’ -�

Listing 8.13: Textual concrete syntax for ListConstructOperation.
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v1: ListConstructOperation

vN: ConstructionOperation

parts.N
. . .

(a) Object Diagram

‘current’ ‘current’

‘parent’

‘result’

‘list’

‘append’

(b) Setup

‘current’

‘a
pp

en
d’

‘tail’

‘a
pp

en
d’

‘value’

‘node’
‘head’

(c) Append value

‘current’ ‘current’

‘parent’

‘result’‘value’

(d) Finish

(b) Setup

(f) Append values

(d) Finish

(e) Execution schedule root

parts.1

(c) Append value

parts.N

(c) Append value

(f) Add values execution schedule

Figure 8.20: Graph based representation of the phases of a ListConstructOperation and
accompanying execution schedules.

ListConcatOperation
Shown in Figure 8.21. Creates a new ListValue from a list of ListValues.
It has one parameter: the parts that make up the list as a list of sub-operations. For

it to be valid, the type of each sub-operation must be a ListTypeReference, and there must
be a unique overlapping type for the referenced types, i.e. the type intersection of the
referenced types for each part must be exactly one type (using the same type intersection
algorithm from Listing 8.5 as used by ListConstructOperation above).

The type of this operation is a ListTypeReference with the referenced type the unique
most specific shared supertype of the sub-operations.

This operation can be represented graphically as a multi-phase operation with the
execution schedule given in Figure 8.21g:

• Setup the resulting node (Figure 8.21b).

• For each element in parts, run the sub-operation then append the list to the queue
(Figures 8.21c and 8.21h)
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• For each list in the queue, add the list’s values to the resulting list then go to the
next list (Figures 8.21d and 8.21e).

• Put the resulting node as the ‘value’ (Figure 8.21f).

Note that the execution schedule in Figure 8.21h is generated based on operation specifi-
cation, and should therefore be considered as a “template” rather than a fixed unit.

The textual concrete syntax is given in Listing 8.14.

⟨list concat⟩ ::=-- ⟨operation⟩ ‘..’
� ‘..’ �� ⟨operation⟩ � -�

Listing 8.14: Textual concrete syntax for ListConcatOperation.
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v1: ListConcatOperation

vN: ConstructionOperation

parts.N
. . .

(a) Object Diagram

‘current’ ‘current’

‘parent’

‘re
su

lt’

‘list’

‘a
pp

en
d’

‘next’‘end’

(b) Setup

‘current’

‘value’

‘list’

‘end’

‘list’

‘ta
il’

‘next’

‘end’

(c) Add list

‘current’

‘next’

‘a
pp

en
d’ ‘tail’

‘head’ ‘h
ea
d’‘tail’
‘tail’

‘a
pp

en
d’

‘tail’

(d) Append item

‘current’

‘next’

‘next’

‘next’‘end’

(e) Next list

‘current’ ‘current’

‘parent’

‘result’‘value’

(f) Finish

(b) Setup

(h) Add lists

*(d) Append item

(e) Next list

(f) Finish

(g) Execution schedule root

parts.1

(c) Add list

parts.N

(c) Add list

(h) Add lists execution schedule

Figure 8.21: Graph based representation of the phases of a ListConcatOperation and ac-
companying execution schedules.
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8.3 Parser Integration
In this section we will describe how a parser implementation should use the tdf, tif

and tcf formalisms introduced in the previous sections. As we mentioned in Section 8.2.4,
the idea of tcf models is they are specified at some level of a non-terminal specification.
As such, we will start by looking at how these two are connected by putting tcf models
next to Extended Backus-Naur Form (eBNF) non-terminal specifications. Note that we
will use a postfix ‘?’ as the optional/option rule, a postfix ‘*’ as the zero or more rep-
etitions rule, a postfix ‘+’ as the one or more repetitions rule, and an infix ‘◦’ operator
to denote an optional separator for repetitions. See Section 8.3.1 for the equivalent BNF
forms for each of these operators.

〈rule1〉 → . . .[SomeType]

〈rule2〉 → 〈rule1〉

value

[SomeType] {value}

Annotates the type of
the rule, in this case 〈rule1〉
has the type SomeType
(from NodeType.name).

Annotates the name
given to the value of
this rule invocation,
being ‘value’ here.

Annotates the tcf model
used to construct
the value of this node.

Symbol Table
〈rule2〉.1

value: SomeType

Shows the symbol table
for 〈rule2〉 alternative 1.
formatted as
‘name: type’ pairs.

Figure 8.22: Example showing a high-level overview of a ContextAccessOperation.

The first example we will look at is Figure 8.22, in which 〈rule2 〉 takes the result of
〈rule1 〉 and returns it instead. The type of 〈rule1 〉 is given, and the definition is omitted.
It also shows the concrete syntax we will use for the rest of this section:

• The ‘type’ of a non-terminal is put to the left of the non-terminal between brackets.
This defines the expected result of the non-terminal and can be used to get the type
of a non-terminal on the right-hand side of a non-terminal definition without having
to evaluate the tcf model itself.

• The tcf model is put to the right of each production rule between braces, and
defines how the right-hand side gets transformed into a tif model.

• Below the 〈rule1 〉 invocation in the right-hand side of 〈rule2 〉 we put the associated
‘name’ for the result of this invocation. Implementations may chose their own syntax
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for this name assigning (or make it automatically deduced for example), and it has
been put here like this to avoid introducing more grammars.

Note that the tcf model for 〈rule2 〉 uses a single ContextAccessOperation, which
receives its context from the parser itself, and accesses the name ‘value’ from it.

〈rule1〉 → . . .[SomeType]

〈rule2〉 → 〈rule1〉

value

[tok?] {value.token}

(a) The grammar and tcf specification.

node
SomeType

token: ?tok

(b) Node definition for SomeType.

Symbol Table
〈rule2〉.1

value: SomeType

(c) The symbol table.

Figure 8.23: Example showing a high-level overview of a NodeAccessOperation.

The next example is Figure 8.23, which is very similar to the previous one except
using a NodeAccessOperation to access the value of the ‘token’ field on the context value
of ‘value’. Note that the expected type of 〈rule2 〉 is an optional value, but the type of
value returned by the tcf is a ‘base’ value: this is not an issue because a ‘base’ value
can be implicitly converted to an ‘optional’ value (i.e. optional values are assignable from
base values, see Listing 8.3).

〈rule1〉 → . . .[OtherType]

〈rule2〉 → 〈rule1〉 ? TOK *

value tokens

[SomeType] {SomeType(tokens, other = value)}

(a) The grammar and tcf specification.

node
SomeType

tokens: tok[]
other: OtherType?

(b) Node definition for SomeType.

Symbol Table
〈rule2〉.1

value: SomeType?
tokens: tok[]

(c) The symbol table.

Figure 8.24: Example showing a high-level overview of a NodeConstructOperation.

The example in Figure 8.24 is slightly more complex because it involves a NodeCon-
structOperation, as well as an ‘optional’ and a ‘repetition’ operator in the grammar. The
‘optional’ operator turns the value from 〈rule1 〉 from a ‘base’ type to an ‘optional’ type,
while the ‘repetition’ operator makes the ‘tokens’ value a list of tokens. See also the
symbol table in Figure 8.24c, and the conversion table in Table 8.5. Note as well that
this example uses the shorthand notation for assigning the child tokens for SomeType to
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the value of tokens from the symbol table. This shorthand can only be used for Contex-
tAccessOperations.

Grammar operation

Type of 〈rule〉 〈rule〉? 〈rule〉* 〈rule〉+

B O L L

O O * *

L * * *

B: BaseTypeReference

O: OptionalTypeReference

L: ListTypeReference

*: Undefined/error

Table 8.5: Table showing suggested type conversions for parsers using our parse tree
formalisms.

Note that the conversion table in Table 8.5 leaves some combinations as ‘undefined/er-
ror’, the reason for this is an inability to combine types (i.e. a list of lists, or a list of
optional values, or an optional list). For example, a type reference ‘Foo[][]’ is not valid
but can be implemented through an intermediate node ‘Bar(foos: Foo[])’, the type
reference becoming ‘Bar[]’. Future work might involve changing the type system to allow
for more flexibility, though as it is right now it can be worked around with intermediate
node types as mentioned, which might arguably better reflect the intention of a lan-
guage designer by somebody reading the definition, if the designer accurately describes
the meaning of the intermediate node type.

〈rule〉 → TOK ‘:’ TOK

lhs rhs

[tok[]] {[lhs, rhs]}

(a) The grammar and tcf specification.

Symbol Table
〈rule〉.1

lhs: tok
rhs: tok

(b) The symbol table.

Figure 8.25: Example showing a high-level overview of a ListConstructOperation.

Figure 8.25 shows another simple example, this time with a ListConstructOperation.
Not much else can be said about this example.

In Figure 8.26 we have a rule 〈list〉 that has two alternatives. The first alternative
makes use of the ListConcatOperation to recursively build a list of tokens separated by
commas, the second alternative is a base case which makes a single-element list. Note
here that the type definition for 〈list〉 is attached to the rule once: if we would be able to
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〈list〉 → 〈list〉 ‘,’ TOK

lhs rhs

[tok[]] {lhs .. [rhs]}

→ TOK

token

{[token]}

(a) The grammar and tcf specification.

Symbol Table
〈rule〉.1

lhs: tok[]
rhs: tok

Symbol Table
〈rule〉.2

token: tok

(b) The symbol tables.

Figure 8.26: Example showing a high-level overview of a ListConcatOperation.

define the type multiple times, this might allow the type to be different for each alternative.
Of course, because this is in the domain of the parser it is up to the implementation to
decide on what it allows, as this section is only meant as a guideline, however in this
document and in our implementation we will keep this limitation as such.

Given all these example cases, the following is a general overview of the requirements
for implementing the tdf, tif and tcf formalisms into a parser:

1. Annotating non-terminals with expected type specifications from tdf.

Alternatively, an implementation may chose to derive the type of a non-terminal
through the tcf models attached to its productions.

2. Annotating production rules with tcf models.

3. Adding or augmenting the ‘symbol’ information for elements in production rules to
include ‘type’ information from tdf.

4. Adding a validation step verifying the validity of each tcf model using the symbol
information and expected types.

5. Replacing tree construction to use tcf models.

6. Making an implementation of TokenInstance.

For a parser with lexical analysis phase, this would generally include a ‘type’ and
‘value’ field, one for the sort of token, and another for the text matched, respectively.

7. Generating instances of TokenInstance for any terminals encountered.

We note that an implementation may chose to generate code based on the given
grammar, tdf, and tcf specifications that then needs to be compiled or interpreted, or
generate runtime instances of constructs that handle the required semantics, or possibly
something else. Which form used (generate code, runtime instances, etc.) may depend
on the requirements of the tool using the formalisms.
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For our implementation we used the grammar used by the Lark Python library, and
modified it according to the above steps (see Chapter 16), as well as using the Lark parser
itself as a backend for parsing languages (see Chapters 9 and 17).

8.3.1 Extended Backus-Naur Forms
Extended Backus-Naur Form is not a single syntax, but a family of syntaxes extending

on the core BNF syntax. Each eBNF syntax may have its own way of writing common
concepts such as optional elements, grouping, and repetition [43]. We will show the
equivalency for each eBNF syntax concept used in Section 8.3 to its respective BNF:

Optional The postfix optional operator ‘?’, indicating zero or one instance of its operand,
used as

〈rule〉 → TOK ?

value

[tok?] {value}

is equivalent to

〈rule〉 → TOK

value

[tok?] {value}

→ ϵ {-}

Star repetition The postfix repetition operator ‘*’, indicating zero or more instances
of its operand, used as

〈rule〉 → TOK *

values

[tok[]] {values}

is equivalent to

〈rule〉 → ϵ[tok[]] {[]}

→ 〈rule〉 TOK

front end

{front .. [end]}

Dot-star repetition The postfix repetition operator ‘*’ combined with the infix seper-
ator operator ‘◦’, indicating zero or more instances of its second operand, separated by
its first operand, used as

〈rule〉 → SEP ◦ TOK *

values

[tok[]] {values}

is equivalent to
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〈rule〉 → ϵ[tok[]] {[]}

→ TOK 〈rule more〉

head tail

{[head] .. tail}

→〈rule more〉 ϵ[tok[]] {[]}

→ SEP TOK 〈rule more〉

head tail

{[head] .. tail}

Plus repetition The postfix repetition operator ‘+’, indicating one or more instances
of its operand, used as

〈rule〉 → TOK +

values

[tok[]] {values}

is equivalent to

〈rule〉 → TOK

value

[tok[]] {[value]}

→ 〈rule〉 TOK

front end

{front .. [end]}

Dot-plus repetition The postfix repetition operator ‘+’ combined with the infix seper-
ator operator ‘◦’, indicating one or more instances of its second operand, separated by its
first operand, used as

〈rule〉 → SEP ◦ TOK +

values

[tok[]] {values}

is equivalent to

〈rule〉 → TOK

value

[tok[]] {[value]}

→ TOK SEP 〈rule〉

head tail

{[head] .. tail}

8.3.2 Note
As it stands, there is no guidance on how to handle grouping such as encountered in

many eBNF syntaxes. The lack of guidance is due to the fact that a grouping is effec-
tively equivalent to defining an anonymous non-terminal production rule [43], introducing
possible branching points within the production rule that are non-trivial (branching on
a single terminal or non-terminal are considered trivial). Thus, due to the complexity of
these possibly non-trivial branches, we have left this open as future work.
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8.4 Grammars

We show the grammar for tdf defined using a tdf model (Listing 8.15) and an an-
notated grammar specification as shown in Section 8.3 (Figure 8.27). Likewise, we do the
same for tif in Listing 8.16 and Figure 8.28, and for tcf in Listing 8.17 and Figure 8.29.

interface DefinitionElement ()

interface NodeDefinition(name: tok): DefinitionElement
ConcreteDefinition(children: NodeChild[],

super_types: tok []): NodeDefinition
InterfaceDefinition(children: NodeChild[],

super_types: tok []): NodeDefinition

NodeChild(name: tok , type: TypeReference)

interface TypeReference ()
BaseTypeReference(name: str)
OptionalTypeReference(name: str)
ListTypeReference(name: str)

Listing 8.15: Simple tdf model describing the parse trees for tdf itself.
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→〈start〉 〈element〉 *

elements

[DefinitionElement[]] {elements}

→〈element〉 〈node definition〉

definition

[DefinitionElement] {definition}

→〈node definition〉 〈concrete definition〉

definition

[NodeDefinition] {definition}

→ 〈interface definition〉

definition

{definition}

→〈interface definition〉 ‘interface’ ID ‘(’ ‘,’ ◦ 〈node child〉 * ‘)’ 〈parents〉
name children parents

[InterfaceDefinition]

{InterfaceDefinition(name, children, super_types = parents)}

→〈concrete definition〉 ‘node’ ? ID ‘(’ ‘,’ ◦ 〈node child〉 * ‘)’ 〈parents〉
name children parents

[ConcreteDefinition]

{ConcreteDefinition(name, children, super_types = parents)}

→〈node child〉 ID ‘:’ 〈type reference〉
name type

[NodeChild] {NodeChild(name, type)}

→〈type reference〉 ID

type

[TypeReference] {BaseTypeReference(name = type)}

→ ID ‘?’

type

{OptionalTypeReference(name = type)}

→ ID ‘[]’

child

{ListTypeReference(name = type)}

→〈parents〉 ‘:’ ‘,’ ◦ ID *

parents

[tok[]] {parents}

→ ϵ {[]}

Figure 8.27: Grammar specification for the concrete textual syntax of tdf annotated
with tcf models and expected types. The start symbol is 〈start〉.

interface NodeInstance
ConcreteInstance(type: tok , children: NodeValue []): NodeInstance
TokenInstance(value: tok): NodeInstance

interface NodeValue(name: tok)
BaseValue(value: NodeInstance ): NodeValue
-- OptionalValue cannot be represented directly
-- -> either there is a value , which gets parsed as a BaseValue ,
-- or there is none and it doesn ’t get parsed
ListValue(values: NodeInstance []): NodeValue

Listing 8.16: tdf model describing the parse trees for tif.
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→〈node〉 ID ‘(’ ‘,’ ◦ 〈node value〉 * ‘)’

type values

[NodeInstance] {ConcreteInstance(type, children = values)}

→ TOK

value

{TokenInstance(value)}

→〈node value〉 ID ‘=’ 〈node〉
name value

[NodeAccess] {BaseValue(name = base, value)}

→ ID ‘=’ ‘[’ ‘,’ ◦ 〈node〉 * ‘]’
name values

{ListValue(name = base, values)}

Figure 8.28: Grammar specification for the concrete textual syntax of tif annotated with
tcf models and expected types. The start symbol is 〈node〉.

interface Operation
ContextAccess(name: tok): Operation
NodeAccess(base: Operation , name: tok): Operation
NodeConstruct(type: tok , children: NodeConstructChild []): Operation
ListConstruct(elements: Operation []): Operation
ListConcat(lists: Operation []): Operation

NodeConstructChild(name: tok , value: Operation)

Listing 8.17: tdf model describing the parse trees for tcf.
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→〈operation〉 〈context access〉

operation

[Operation] {operation}

→ 〈node access〉

operation

{operation}

→ 〈node construct〉

operation

{operation}

→ 〈list construct〉

operation

{operation}

→ 〈list concat〉

operation

{operation}

→〈context access〉 ID
name

[ContextAccess] {ContextAccess(name)}

→〈node access〉 〈operation〉 ‘.’ ID

base name

[NodeAccess] {NodeAccess(base, name)}

→〈node construct〉 ID ‘(’ ‘,’ ◦ 〈node construct child〉 * ‘)’

type children

[NodeConstruct]

{NodeConstruct(type, children)}

→〈node construct child〉 ID ‘=’ 〈operation〉
name value

[NodeConstructChild] {NodeConstructChild(name, value)}

→ ID
name

{NodeConstructChild(name, value = ContextAccess(name))}

→〈list construct〉 ‘[’ ‘,’ ◦ 〈operation〉 * ‘]’

elements

[ListConstruct] {ListConstruct(elements)}

→〈list concat〉 〈operation〉 ‘..’ ‘..’ ◦ 〈operation〉 +

head tail

[ListConcat] {ListConcat(lists = [head] .. tail)}

Figure 8.29: Grammar specification for the concrete textual syntax of tcf annotated
with tcf models and expected types. The start symbol is 〈operation〉.
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8.5 Considered Variations
We make no claim that the design of our parse tree formalisms is perfect, and in this

section we will briefly go over some alternatives that we considered but decided not to
add, together with the reasoning for why.

Array vs. List We originally called what we now call the ListTypeReference type the
“ArrayTypeReference” type. The naming was changed because of the semantics behind
the words list and array: an array in programming is generally considered to be a fixed
size ordered collection of items in a continuous area of memory, while a list is generally
considered to be dynamic in size instead using pointers referencing to the next (and pre-
vious) elements. Additionally, for non-programmers the word ‘array’ may not necessarily
evoke the necessary mental model, while ‘list’ may do. And as for the data contained
within, the order of elements is important, rather than the position they are in, which we
consider another argument for using ‘list’ over ‘array’.

Tuple Types We considered adding a TupleTypeReference (extending TypeReference)
to tdf (and related types in tif and tcf), which would contain a fixed format of nodes.
However, we decided not to because these tuples would be semantically identical to a
concrete node definition, with the exception of children being unnamed, and the added
disadvantage that they do not convey their meaning well. Instead a concrete node defini-
tion should be used.

Mapping Types A MappingTypeReference extending TypeReference was considered, pa-
rameterized with a single type. This type would allow a sort of “map” or “dictionary” to
be stored in a node, keyed by a token and values constrained by the specified type. How-
ever, it was decided against because it could lead to hidden problems and raised questions
about how it should be implemented. For example, would a token as key use its unique
instance/address, or its value, or a combination of type and value? A problem would
be that entries may accidentally be replaced, being removed from the parse tree even
though they may influence the semantics of a parsed model. For example, a duplicate
name definition (Foo(a: tok, a: Bar)) could be hidden if stored using this method.

Type Unions Type unions as considered would be similar to “union” types as found
in C/C++, that is: the value contained by instances of the type can be one of the types
defined within the union type. We decided not to add this feature as interface types are
a better candidate to fulfill most use cases of union types, with the added bonus of more
easily extending possible values.
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Abstract Types While not really considered, it is worthwhile to mention these. The
interface types we have defined are similar to interface non-terminals as defined in Monti-
Core [15]. From this stems the comparison with “abstract” types, as MontiCore includes
abstract non-terminals, which are similar to interface non-terminals but allow defining
methods on the base non-terminal. This seems to stem from the fact that MontiCore
runs on the Java Virtual Machine, which has not allowed defining methods with imple-
mentations on interface types until Java 8 introduced “default” methods.

List Cardinality Cardinality specifications on lists like they are found on UML class
diagrams were considered. However, due to the simple nature of parse trees, and the
existing ability to have a cardinality of 1 or 0..1 with base and optional type references
respectively, we decided not to add this feature.

Combinable Type References As we mentioned in Section 8.3, it’s not possible to
combine type references to achieve a list of lists, or a list of optionals, or an optional list.
While this limitation is a result of the abstract syntax of tdf, it also does not pose a
significant problem as workarounds improve verbosity, which makes it easier for readers
of tdf models to understand the intended meaning.



CHAPTER 9

Parsers and Languages

Part of the Weave framework and our eventual goal is combining the operation of
multiple parsers on a single source text. Figure 9.1 highlights the relevant parts, showing
that the orchestrator has a heterogeneous collection of parsers and parser generators (see
Chapter 5) that it interacts with, and that in turn also interact with the orchestrator
themselves. A parser or parser generator is required to implement a common interface in
order for Weave to be able to communicate with it.

The following are required operations for parsers :

• A ‘parse’ operation: the essence of a parser. This operation should work on strings
in memory to allow the framework to handle embedded models (see Chapter 11).

• Error reporting functionality: the parser should be able to signal errors to the
framework so that it can handle and display them. The parser itself should refrain
from outputting errors to the console.

• A way to report “islands” (see Chapter 4) in its grammar to aid in the detection
of language boundaries (see Section 11.3 in Chapter 11 for why this is necessary).
These islands may be constructs at the lexical level such as “string literals”, block
comments, etc., or at the syntactical level such as block delimiters, etc., or may be
further embedded models.

Other than the above, no requirements are put on parsers making use of our framework:
a parser can decide itself to make use of the framework, or not use it at all. Figure 9.2
shows the required interface as a UML class diagram.

As shown in Figure 9.1, a parser may require a “wrapper” to implement the required
interface, for example if it is an executable, “black box” (Chapter 3), or any other existing
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Weave Orchestrator Parsers &
Generators

Languages Grammars tdf Models

Wrapper

Parser

Parser Parser
Generator

Parser

«use»«use»

text Mtif

input output

Grammar
Mtcf

∋

«use»

Figure 9.1: Focused view of Figure 7.1, highlighting the relevant parts of the Weave
framework for this chapter.

implementation not written with the Weave framework in mind. The following are some
things that may be incompatible with the interface that a wrapper might ‘fix’:

• The parser does not support reading from strings in memory (e.g. it requires a file
on disk). Possible solution: The wrapper makes a temporary file for the parser
to read.

• The parser has no pluggable error reporting facilities and would instead output to
standard output/error. Possible solution: The wrapper captures the output and
parses it to convert it into the expected format.

• The parser has no grammar specification available. Possible solution: The author
of the wrapper manually specifies possible islands.

• The grammar is in an unsupported format or uses unconventional constructs (e.g.
indentation awareness). Possible solution: The author manually or programmat-
ically converts the grammar to a compatible format.

A parser generator can likewise implement the parser interface, and pass the required
operations on to the generated parser. In a sense, this works in a similar way to a parser
wrapper. Allowing parser generators to be invoked allows for Weave to generate new
parsers on the fly as necessary. In Chapter 17 we will look into how we use Lark as a
parser generator.
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«interface»
ParserSpecification

tdf_model: Model [0..1]

parse(context: ParseContext): ParseResult | Errors

«interface»
NodeValue
. . .

«create»

From tif

Model
. . .

«use»

From tdf

ParseContext

weave: Weave

text: String

source: Source

end_markers: String [*][1..*]

«use»

ParseResult

marker_index: Integer

«create»

tree1

Figure 9.2: Class diagram showing the common parser interface required by the Weave
framework, named ParserSpecification.

Figure 9.3 shows the abstract syntax for two parser implementations we use in Weave:
a black box parser that provides the basis for calling non-compatible parsers, and a parser
generator making using of a grammar and tdf specification to generate a parser on the
fly. An example sequence diagram showing how the parser generator works is shown in
Figure 9.4. How these parsers can work together to parse hybrid languages will be shown
in Chapter 11.

«interface»
ParserSpecification
. . .

WeaveParserGenerator

grammar: GrammarSpecification

tdf_model: Model {redefines tdf_model}
backend: ParsingBackend

generate(context: ParseContext): WeaveParser | Errors

«abstract»
BlackBoxParser

. . .

call(context: ParseContext): WeaveParser | Errors
. . .

«interface»
ParsingBackend

generate(grammar: GrammarSpecification,
tdf_model: Model): WeaveParser | Errors

«use»

«interface»
WeaveParser

parse(context: ParseContext): ParseResult | Errors

«create»

«use»

Figure 9.3: Class diagrams of possible implementations of ParserSpecification.
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: WeaveParserGenerator backend: ParsingBackend

parse(context)

generate(context)

generate(grammar, tdf_model)

parser: WeaveParser
«create»

return parser

parse(context)

return result

«destroy»
return result

Figure 9.4: Sequence diagram describing the operation of the built-in WeaveParserGener-
ator parser specification.

We consider parser specifications to be a separate entity to languages. As mentioned
in Chapter 6, a language is generally made up of abstract syntax, visual and/or textual
concrete syntax, and semantics. For this reason, we separate the concepts of language
and parser specification into different classes as can be seen in Figure 9.5, but without
including the concrete syntax or semantics, as this lies outside our scope.

Language

name: String

dialect: String

«interface»
ParserSpecification
. . .

parser

1

Figure 9.5: Abstract syntax of languages.

Aside from a name, a language is also identified by a dialect: some languages have
multiple dialects, variations or versions [20], [28] that each require a separate parser
specification, even though they are otherwise virtually identical. Thus, allowing to identify
which dialect a language allows for the appropriate handling of its specific features.

We do not propose any specific format for naming languages and their dialects. How-
ever, for the purposes of implementing a proof of concept, we will use a simple syntax for
specifying a language and dialect: ‘〈language〉:〈dialect〉’.



CHAPTER 10

Tracing

In important part of transforming text into a model, and then validating, interpreting
and/or executing that model is tracing. Depending on the context, a ‘trace’ may refer
to different things. For example, when executing a finite state automaton, an execution
trace could capture the states and transitions taken. For our use case, we specifically look
at source traces instead.

A source trace can be seen as a sort of path from an object that is being inspected to
the source of the object, and allows for debugging of a program or model in case of some
unexpected or unwanted behaviour. This path may be a straight line from the object to
some position in a text file, or may be more indirect, containing intermediate versions
that were used to get to the eventual object. Examples of these steps may be:

• Preprocessor operation (on text, tokens, or parse trees) such as file inclusion, macro
expansion, etc.

• Lexing: turning text into tokens.

• Parsing: turning tokens or text into parse trees.

• Model generation from parse trees.

• Model optimization: adding, removing, or replacing parts of a model for perfor-
mance.

• Model transformation: transforming a model from one formalism to another, e.g.
to petri nets for formal validation, or as part of model execution.

• Binary code generation: turning a model into assembly code, or virtual machine
instructions (e.g. Java).
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• Just-in-time compilation of virtual machine instructions to assembly code (e.g. Java
Virtual Machine).

Our scope is limited to the second, third, and fourth items in this list, i.e. the steps
involved in going from a string and turning it into a model. The first item (a preprocessor)
will not be implemented in our work, however we will keep it in mind as it may exist
in derivative or future work. Additionally, we will propose a ‘sort of’ preprocessor as
future work at the end of this document (see Section 19.1 in the conclusion), which
will perform processing on embedded text fragments (see Chapter 11) in order to ‘fix’
embedded language fragments that would otherwise not parse (e.g. with indentation
aware languages).

We note that when tracing where an object came from, there are different ways of
looking at this. For example, when calling a function ‘foo’ with a local variable ‘bar’ as
parameter:

• foo is declared at some location A.

• The conceptual “function call” to foo is at some other location B.

• bar is declared at some location C close to B.

• The “reference” to bar as a parameter to the function call is at some other location
D (even closer to B).

• Additionally, foo may also be defined (as opposed to declared) at some location E
that may not be the same as A.

In our case when it comes to references, we will always work with the location where the
referencing occurs, and not the location of what is referenced, as this would fall under the
semantic domain.

TraceLocation

source: Location
position: Integer

line: Integer

column: Integer

(a) Start position.

TraceRange

source: Location
start_position: Integer

end_position: Integer

start_line: Integer

start_column: Integer

end_line: Integer

end_column: Integer

(b) Text region.

TraceCollection

ranges: TraceRange [1..*]

(c) Collection of regions.

Figure 10.1: Representation of different kinds of tracing location sorts for referencing a
location in a source text.

The most basic information that is relevant to tracing for us then is:

• what file (or location, or buffer, etc.) is the source text located in/at; and
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• at what position in the source text is the token/parse tree/model element defined
at: raw character position, and/or line and column.

Additionally, the position in the source text may be either:

• where the token/parse tree/model element starts (Figure 10.1a);

• a region defining the start and end (Figure 10.1b); or

• in some more exotic cases, a collection of regions (Figure 10.1c).

We note that in the last case, these regions may not necessarily be in a single source text,
but could be spread out over multiple. For example, a partial class (a way to split large
class definitions) in C# may be defined spread out over multiple files.

«interface»
TraceElement

find_base(): BaseTraceElement[0..1] {query}

«interface»
BaseTraceElement

TraceLocation

source: Location
position: Integer

line: Integer

column: Integer

TraceRange

end_position: Integer

end_line: Integer

end_column: Integer

TraceCollection
ranges

1..*

name: String

links

0..1

Figure 10.2: Abstract syntax for tracing elements.

Simplifying/unifying the elements in Figure 10.1, and adding a TraceElement interface
gives us Figure 10.2. In it, the most basic elements all implement the BaseTraceElement
interface, and objects that may be traceable can implement the TraceElement interface.
Example constructs that could implement this interface seen so far are:

• NodeType (see Figure 8.3 on page 35) instances, as created by parsing a tdf speci-
fication;

• NodeInstance or TokenInstance (see Figure 8.9 on page 47) instances, created through
parsing or tcf models;

• ConstructionOperation (see Figure 8.13 on page 50) instances, specified as part of
grammar specifications;

Additionally, this may also be used for grammar specifications themselves, as for model
instances created based on tif models, which can either inherit the trace links or reference
the tif model elements themselves if they are a TraceElement.



CHAPTER 11

Multi-Language Parsing

As was explained in Section 6.1, “hybrid languages” are languages which combine
abstract syntax, concrete syntax, semantics, etc. in order to model complex systems
using the most appropriate formalism. For the Weave framework, the focus lies on the
parsing of text files defined in several separate languages, thus we will only look at the
composition of the textual concrete syntax of formalisms in this chapter.

A model that is described using textual syntax in a hybrid language has:

• a root language, which is the base language of the entire document;

• some fragments, non-overlapping continuous pieces of text in the document that are
in a different language than the base language; and

• optionally, nested fragments contained within other fragments, if the language of
the fragment allows it.

The non-overlapping constraint is put in place in order to exactly define which charac-
ter is part of which fragment, i.e. there can be no shared ownership. The same is true for
hybrid visual syntaxes: each element has a specific formalism that describes its meaning.
Figure 11.1 shows an example excerpt from a DFA hybrid with actions on transitions
using some neutral action language illustrates this ownership relationship further

. . . transition from A to B on x do report ( "x" ) ; . . .

DFA DFAaction language

Figure 11.1: Example DFA hybrid model with an action language fragment.
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In order to parse these sorts of languages, we need a multi-language parser : a parser
that can switch to parsing a different language on the fly. The way we achieve this is by
building a parser that defers the parsing to different sub-parsers, performing translation of
input and output in order to make this switching as transparent as possible to the involved
parsers. The goal is: a parser should be unaware that it is parsing inside a fragment, and
should only be concerned with switching if it itself allows fragments contained within
its syntax, without having to concern itself with the switching back at the end of the
fragment. Figure 11.2 gives a high-level operational diagram for language switching as
defined here.

: Weave parser1: ParserSpecification parser2: . . . parser3: . . .

Parse

Parse

Switch language

Parse

Parse done

Resume language

Switch language

Parse

Parse done

Resume language

Parse done
Parsed

Figure 11.2: High-level overview of how language switching should work in a multi-
language parser.

With all of the above said, if we were to look at the structure of a textual hybrid model,
without considering semantics or references, we would end up with a tree structure. The
root of this tree would be the root model parsed in the root language, and each branch
would represent a fragment that can recursively have branches for nested fragments. While
this tree structure is not directly accessible, it does serve as a good mental model in order
to envision the structure.

In Section 11.1 we will look at how fragments can be turned from text into being part
of the resulting parse tree. Next, in Section 11.2 we will explore the concrete syntax for
switching to a different formalism, and some issues related to switching. In Section 11.3
we list some non-trivial issues with multi-language parsing in general, and in Section 11.4
we go over some instances of parsing that are similar to multi-language parsing. Finally,
in Section 11.5 we take a brief look at dynamic multi-language parsing. Later on in
Chapter 17 we will look at how we implemented this.
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11.1 Parsing
As seen in Chapter 5, in order to turn a text document into something analyzable and

executable by a computer, several steps need to be done. We will focus on the first two,
lexing and parsing, as this will provide a minimal data structure usable by a computer:
the parse tree.

We know that the model is given as a text document, and the goal is to incorporate
the parse result of each fragment into the eventual parse tree. This gives us two questions:

1. How do we store fragments in the parse tree?

2. Where do we handle the parsing of fragments?

The answer to the first question could be to directly store the tree of the fragment
as a child of the containing branch, or to provide a specialized ‘terminal’ type containing
the tree as its value, rather than a string directly. In our case, we use the tdf language
defined in Chapter 8. We’ll use the fact that it’s easy to extend to introduce a new
node type: EmbedType (see Figure 11.3a). In order to support this new node type, a
new instance type is also introduced: EmbedInstance (see Figure 11.3b). No additions are
required to the concrete syntaxes of tdf or tif. For tcf, no changes are necessary.

«interface»
NodeType

name: String {id}

From tdf

«singleton»
EmbedType

name = "embed"

tdf extension

(a) tdf extension.

«interface»
NodeInstance

«interface»
NodeValue

EmbedInstance

value 1

From tif

«singleton»
EmbedType
. . .

{redefines model}

1

Model
tdf_model

0..1

Language
. . .

language 1
From tdf

From tdf extension
tif extension

(b) tif extension.

Figure 11.3: Extensions to the tdf and tif languages in order to support embedded
fragments.

The second question is more complicated: the obvious answer is to handle fragments
in the lexer, as it directly works on the input text, turning it into tokens. On the other
hand, the specification of where an embed may happen is done in on the syntactical level,
i.e. is handled by the parser.

Thus, on the one hand we have the lexer that should decide on the switching of
languages, and on the other we have the parser that knows when these switches should
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happen. This creates a requirement for the parser to communicate back to the lexer about
its state, as well as the possible requirement for the lexer to be able to backtrack: if the
parser has to backtrack, and figures a language switch should happen at a point the lexer
already passed, the lexer may need to discard these tokens and instead attempt switching
languages.

In order to avoid this difficult situation, we instead propose a more verbose syntax
that allows the lexer to determine if it should initiate a language switch. This would allow
a, be it limited, multi-language parser to be written, and could serve as a stepping stone
for a more powerful implementation. We will explain the requirements for this syntax in
the next section.

A question may be: why not combine grammars of the languages directly, thereby
removing the need for language switching and having multiple lexers and parsers? While
this would be nice, it has the following issues:

• Each language has its own definitions of non-terminals, which may conflict with
each other [34].

• Combining large grammars together would create large amounts of states a parser
may be in, possibly heavily increasing memory usage. This may become a bigger
issue if languages may be recursively embedding or have many possible embedded
languages.

• Some languages are indentation sensitive, while others are not (see [28], [34] and
Section 11.3). Combining these is non-trivial.

• Likewise, a grammar may be parsable by an LL parser, an LR parser, LALR, SLR,
etc., or it may be ambiguous, contain left recursion or right recursion, be a Context-
Free Grammar (CFG) or a Parsing Expression Grammar (PEG), etc. [28]. All these
different points of variability combined may mean that there may be no one parser
that can parse all those languages together.

• The list of languages that can be parsed would be fixed at the start of parsing. This
limits one of our goals of being able to dynamically define and parse languages in a
single file.

11.2 Concrete Syntax
As we mentioned, we would like language switching to be as seamless as possible. A

(partial) example of a seamless multi-language text model was given at the beginning of
this chapter (see Figure 11.1): the neutral action language code on a DFA transition is
a direct part of the DFA text. However, this requires possibly complicated interactions
between the parser and the lexer.



11.2. CONCRETE SYNTAX 83

Instead, we require the syntax to be slightly more verbose by requiring a terminal at
the start of a fragment. When the lexer then produces a token of such a terminal, it then
knows a language switch needs to happen after the token. A caveat to this method is
unfortunately the inability to use this token for anything else anymore: its sole purpose
is turned into being a marker or sentinel, guarding the start of the fragment.

This solves the issue of finding the start of fragments, but there is another issue:
knowing where a fragment ends. For example, say the neutral action language also allows
function calls with no parameters to omit the parentheses, the example in Figure 11.1
could be erroneously parsed such that report is considered part of the fragment, and the
parameters are not. This would subsequently result in a syntax error in the DFA parser,
as it does not know what to do with the tokens that were supposed to be part of the
action language fragment.

Likewise, a parser may accidentally try to consume more input than is intended. This
can be the case for any parser that is not designed to ignore trailing input it does not
recognize. For example, in our implementation we use the Lark parser as a parsing backend
(see Chapter 17), which supports “interactive” parsing that allows us to feed it a fake End
Of File (EOF) token on unexpected input, but this requires a specific parser configuration
and is not the intended use of the mode.

We solve these issues in the same way: we will require that a fragment be followed
by a terminal. This will then allow the framework to determine where to cut the input
to the fragment parser, and combined with the start terminal serve as a visual separator
between fragments and the text they are contained in. See Figure 11.4 for how this would
look with the example from Figure 11.1.

. . . transition from A to B on x do { report ( "x" ) } ; . . .

DFA DFAaction language

start sentinel end sentinel

Figure 11.4: Modified version of Figure 11.1 with start and end sentinels around the
action language fragment.

We note that the terminal used as end sentinel can be used for other purposes in
the grammar, as opposed to the terminal used as start sentinel, which can only serve a
single purpose. However, in practice it may end up being unusable anyway as a matching
style will be preferred between the start and end sentinels. For example, using an open
parentheses to indicate the start, it would be logical to use close parentheses to indicate
the end.

11.2.1 Selecting a Language
While the above syntax is fine for fragments where we know which language to expect,

we would also like to be able to specify which language the fragment is in as part of the
textual model. This allows for a more generic way of composing languages in models,



11.3. NON-TRIVIAL ISSUES 84

or adding support for a embedding a formalism without having to modify or extend the
base language. The combined semantics and abstract syntax of such generically composed
models may be more complicated, but this is out of scope for this document, as we only
focus on the composing of the concrete syntax.

We propose a small extension to the above syntax with sentinels to include a “lan-
guage identifier” that indicates the language of the fragment, and an additional sentinel
separating this identifier from the actual language. An example of how this could look is
shown in Figure 11.5.

. . . transition from A to B on x do { action_language | report ( "x" ) } ; . . .

DFA DFAaction languagelanguage selection

start sentinel separating sentinel end sentinel

Figure 11.5: Modified version of Figure 11.4 with the ability to select which language
appears in the fragment.

We note that the language selection syntax is dictated by Weave, in order to have a
unified format. This gives the additional benefit of not having to worry about the format,
and allowing it to be updated in the future without having to update every language using
it (though care should be taken to not introduce breaking changes).

11.3 Non-trivial Issues
Aside from the issues with parsing fragments mentioned above, there are some other

issues that can appear. In this section, we will give an overview of some possible issues
we see, and some possible solutions to them.

11.3.1 Early End Sentinels
As the end sentinel is used to determine the end of a fragment in the above strategy,

the risk exists that a fragment may contain the same pattern as the sentinel, causing
premature ending of the fragment and syntax errors. Figure 11.6 shows a modified version
of Figure 11.4, where the DFA syntax was changed to use parentheses instead of braces.
Another possibility is the end sentinel appearing inside a string literal in the fragment,
such as in Figure 11.7.

While for the human reader it is obvious that the second closing parenthesis should be
the end of the fragment, the parser requires knowledge of the language and an appropriate
algorithm to know the first one is still part of the fragment. We propose two possible
solutions to this problem.

The first solution requires that we can modify the grammar specification of the frag-
ment language: given the fragment grammar G = (V,Σ, R, S) and the end sentinel e,



11.3. NON-TRIVIAL ISSUES 85

. . . transition from A to B on x do ( report ( "x" ) ) ; . . .

sentinel start

mismatched end expected end

Figure 11.6: Modified version of Figure 11.4, but with the end sentinel appearing inside
a string literal.

. . . transition from A to B on x do { report ( "}" ) } ; . . .

sentinel start

mismatched end expected end

Figure 11.7: Modified version of Figure 11.4, but with the sentinels declared using paren-
theses instead of braces.

introduce a new grammar G′ = (V ∪ {S ′},Σ ∪ {e}, R ∪ {S ′ → S e}, S ′), and use this
grammar to parse the fragment instead. Upon reaching a state where the parser can
accept, stop parsing and return to the previous language.

Unfortunately, this solution has the drawback that we need to be able to modify the
grammar, and as such is not usable for parsers where we do not have that option (i.e. black
box parsers). Additionally, it increases the amount of cases that white box parsers need
to handle, as well as needing to have a parser for embedded parsing and non-embedded
(root) parsing.

The second solution is to use an island parser (see Chapter 4) as a light-weight scan-
ner. The grammar for this island parser would be generated automatically based on the
information available on the fragment language.

A basic implementation for example would use information about grouping separators
(i.e. tokens that always appear in pairs to group some content) in the language, as well
as terminals that may (partially) match the end sentinel, or that may contain the end
sentinel. See Figure 11.8 for an example of how such an island grammar may look like.
Note the added WATER terminal, which matches anything (dot) as a last resort in case
no other terminals match.

→〈start〉 〈fragment〉 * ‘}’

→〈fragment〉 ‘(’ 〈fragment〉 * ‘)’

(a) Non-terminal specifications.

::=STRING ‘"’ ( ‘\"’ | ‘\\’ | [ˆ ‘"’ ‘\n’ ] ) * ‘"’ (ignored)

::=WATER . (ignored)

(b) Terminal specifications.

Figure 11.8: Example island grammar specification for a neutral action language.
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11.3.2 Indentation Sensitive Languages
Some languages (for example Python [36]) use the indentation at the start of a line as

a sort of delimiter to indicate the start and end of code blocks [28], [34], or have otherwise
specific layout constraints applied to them based on the indentation [11].

In order to parse these sorts of languages as a fragment, care needs to be taken
when switching to one. As most languages implicitly assume the first line is always at
indentation level zero (not indented at all), these parsers would either need to be able
to receive information on the current indentation level before switching, or the fragment
text would need to be transformed internally before being passed along to the fragment
parser.

While the first option would be preferable as it requires less steps to parse, it is
incompatible with black box parsers, as these would generally not support the passing of
this information to them.

11.3.3 Cross-Fragment References
As part of hybrid languages, links need to be able to be made from fragments in one

formalism to fragments in another formalism. While for visual concrete syntaxes this is
more easily done by physically drawing a link between elements from different formalisms,
in the textual world this is less straightforward.

For starters, in order to create a link between two elements in text, those elements
would need to either be right next to each other, with a “linking” operator between the
two. Or, one or both elements would need to have a name, i.e. an identifier, to reference
by.

The first case can be unwieldy and difficult to manage in hyper-connected graphs, and
doesn’t allow linking to a sub-element of a defined element. Thus the second case is a
more appealing alternative. However, in order to be able to reference an element from one
formalism in another, the grammars need to be compatible with regards to the format
of identifiers. For example, one formalism may declare identifiers to support all Unicode
letters [37], while the other may limit it to alpha-numeric characters. Referencing an
element from the former in the latter may thus be severely limited or impossible.

A possible solution to this could be the introduction of a mini-language that only
serves as a way to reference otherwise unreferencable elements. This however would also
require additional effort in order to properly support in the language.

11.4 Similar Techniques
In this section we will describe some techniques for parsing that involve multiple

formalisms, but are fundamentally different from multi-language parsing such as we define
it.



11.4. SIMILAR TECHNIQUES 87

PHP The PHP (PHP: Hypertext Preprocessor) language is a widely used programming
language for developing websites, and for the construction of web pages. A common
pattern is to write HTML pages with fragments of PHP interspersed to dynamically create
page content when a web client requests a page from a server. In essence, this is the
combination of HTML and PHP, where the combined pieces form the semantics of a web
document (i.e. the structure of the page).

However, as the name for PHP implies, this is done through a pre-processor, which
only looks for fragments of PHP code. Text outside of fragments is sent verbatim to the
client, while text inside the fragments is parsed, and output is only sent to the client
through echo and print expressions (and similar).

This means that for a web server using PHP, the server only cares about the parsing
of PHP, while the client is concerned with the parsing of the output of the preprocessor,
usually in HTML. Thus in effect, this is a two-step parsing process (not considering CSS
or JavaScript embedded in the HTML), performed on different machines.

C Preprocessor Similar to the PHP preprocessor, the C language (and by extension
C++) contains a preprocessing step that is run before lexer is run. This preprocessor has
more limited functionality than found in PHP, and instead works on string replacement.
Additionally, it is considered part of the programming language itself, and as such may
be considered to not be a hybrid language.

HTML The HTML (HyperText Markup Language) language, being derived from XML
(Exstensible Markup Language), is a markup language, meaning it controls the struc-
ture, formatting, and relationships between elements defined in it. HTML parsers are
highly specialized and optimized, written to be both fast but also extremely forgiving for
syntactical errors.

Two special elements, <script> and <style>, have a special meaning whereby they
hold JavaScript and CSS fragments respectively. For scripts, the parsing of its content
happens as they are encountered in the source document (specifically, upon parsing the
</script> close tag, the script is evaluated). Thus, for example, the parsing of a docu-
ment may be halted for as long the script is running. Alternatively, a <script> element
may define an external resource as the script to be parsed, which can be specified to run
synchronously, asynchronously, or deferred up until the point the rest of the document
has been parsed

For style elements, a similar mechanism is run for the parsing of its contents. External
styles are loaded through a separate mechanism (a <link> element), but this does not
block parsing of the document.

Given all this, HTML has a similar mechanism for multi-language parsing, but lacks
a mechanism for dynamically selecting a language to parse, as well as no facilities to
dynamically create new languages.
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Templating Languages Templating languages are similar to PHP and preprocessors,
as they parse a language that gets transformed to some other language that then gets
parsed by some other parser. They may be a simple “transform to text” language, or they
may be built on top of the expected output language, having their syntax conform to a
modified version (for example, based on HTML with extra syntax).

Language Injection A feature provided in IDEs developed by JetBrains is the ability
to “inject a language or reference”. This feature allows marking a text element in a source
file as containing a different language and is used solely for providing the assistive features
of the IDE in a string that would otherwise not benefit from them.

This method works by transforming the text content, removing any character escapes,
and then running it through a separate parser. As such, there is no connection between
the parsing of the outer language and the contained fragments.

11.5 Dynamic Multi-Language Parsing
What we call dynamic multi-language parsing is an extension to the multi-language

parsing concept, and is one of the goals of this project. Conceptually, the dynamic
(see Chapter 2) part indicates the ability to, at run-time, add languages to the list of
languages that can be parsed by the multi-language parser. This means that for example,
a language engineer could write the definition of a language, and within the same file then
start using that definition to parse a fragment of the language. We will look further into
how we implement this in Section 17.2, but we note some difficulties that are associated
with dynamic multi-language parsing.

The biggest issue lies in the fact that, in order to create a parser from a specification,
the specification needs to be parsed and accessible. This means that the specification
always needs to happen before the usage, similar to how some programming languages
(such as C and Java) require variables to be declared before they can be referred to.
It also means that we need to keep track of parsed fragments in parallel to the parse
tree of the fragment we are currently parsing, as the parse tree may be fragmented and
incomplete while the parser decides what action to take. Additionally, it requires the
parser to evaluate the semantics of a sub-tree, even if it was given by a different parser,
which increases complexity of the parser.
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CHAPTER 12

Overview

In this part we will take a rough look at the implementation of the Weave framework
using the models given in Part II. Our implementation itself uses Python 3.10 as a pro-
gramming language, and makes use of the Lark parsing library in order to handle basic
functionality of parsing languages. Specification of parsers is done through the use of a
Weave grammar language, which has its semantics implemented as code.

Chapter 13 gives information on some basic constructs and types used in the imple-
mentation, that do not do much on their own, but are to be used by other parts of our
implementation. Following that, Chapter 14 gives details on how tracing information is
saved, and how it is used to give feedback to a language engineer.

Chapter 15 details information on the parse tree formalisms tdf, tif, and tcf, in-
cluding errors that may be returned during semantic analysis of invalid models. Next,
in Chapter 16 we provide details on the Weave grammar language such as the syntax,
and for defining a language as being a hybrid language (i.e. can contain other fragments).
This is then followed by an explanation of the implementation of the Lark backend, and
how the Lark library is used in order to achieve dynamic multi-language parsing. Lastly,
we provide an overview of the bootstrapping process in Chapter 18, where we recursively
define the grammars and tree models for the formalisms introduced using themselves.



CHAPTER 13

Supporting Types

In this chapter we will look at some supporting types that are used by the implemen-
tation, but do not fit under any of the other chapters.

The Weave framework extensively makes use of a generic Result type, which can
either hold a ‘success’ value, or an ‘error’ value. The type is modeled after the Result
type found in the Rust programming language as an enum type (see Listing 13.1). The
goal of this type is to limit the amount of exception handling code, as well as allowing to
return multiple errors at once. Generally, results are typed as:

Result[T, List[ModelError]]

enum Result <R, E> {
Ok(T),
Err(E),

}

Listing 13.1: Definition of the Rust Result type.

The ModelError type is used as a base type for all Weave errors, and provides
the ability to assign a TraceElement (see Chapter 10) to it in order to point at what
the error specifically relates to. It additionally provides the facilities to report the error
to a MessageReporter, which can report the error to the user. Right now, the only
reporter implementation outputs to the console, but it should be possible to output to for
example an IDE through the implementation of a Language Server [17]. See Table 13.1
for a list of direct subtypes for ModelError. Subtypes of ModelDefinitionError and
ModelConstructionError are listed in the sections detailing the implementation of parse
trees.
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ModelError Subtype Description

CustomError Used in the absence of a specific subtype

InternalError Returned if an unexpected internal failure occurred

NoImplementation Indicates a specific feature has not yet been implemented

UnexpectedToken Returned if an unexpected token was encountered

UnexpectedCharacter Returned if an unexpected character was encountered

UnexpectedEndOfFile Returned if the end of the file is reached prematurely

UnexpectedEndOfFragment Returned if the end of a fragment is reached prematurely

ModelDefinitionError Subtypes returned for errors in tdf models, see Table 15.1

ModelConstructionError Subtypes returned for errors in tcf models, see Table 15.2

Table 13.1: List of direct subtypes of ModelError.

The TracePrinter class is an implementation of MessageReporter and reports mes-
sages to the console (see Listing 13.2 for an example). Its job is to give a human-readable
report that allows for easily determining what went wrong. For example, if a syntax error
is encountered, or an invalid reference is found, it should display information on what
went wrong, where it went wrong, and why it went wrong. That means it should include
the file, the location in the file, a description of the message, and a preview of the text
where it went wrong.

As we have three types of BaseTraceElement (see Chapter 10), and it may be possible
there is either no base trace element (rarely), or no trace element at all, there are five
specific cases of printing. While only those with a base trace element can provide useful
information on where the problem is, the other cases only happen during development on
Weave itself and are thus not a problem. See Listing 13.3 for its interface.

grammars/tdf.weave :5:50 error:
Incompatible type: expected Element , got Element []

| elements=element* {TreeDefinitionFormalism(elements )}
^~~~~~~~

Listing 13.2: Example output from TracePrinter to the console.
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enum MessageKind {
Note
Warning
Error

}

class TracePrinter implements MessageReporter {
report(message: String , kind: MessageKind ,

source: TraceElement [0..1])

print_no_source(message: String , kind: MessageKind)

print_not_base(message: String , kind: MessageKind ,
source: TraceElement)

print_source_location(message: String , kind: MessageKind ,
source: TraceSourceLocation)

print_source_range(message: String , kind: MessageKind ,
source: TraceSourceRange)

print_source_collection(message: String , kind: MessageKind ,
source: TraceSourceCollection)

}

Listing 13.3: Class definition for the TracePrinter class, in pseudo-code.



CHAPTER 14

Tracing

In this chapter we will look at implementation notes for tracing elements as defined in
Chapter 10. The structure of the implementation is almost exactly as given in Figure 10.2,
with the only differences being:

• TraceLocation is named TraceSourceLocation

• TraceRange is named TraceSourceRange

• TraceCollection is named TraceSourceCollection

• Location is named SourceURL

Functionally these classes do not have much to them, only a find_base operation that
returns themselves, as they are already a base trace element.

However, the SourceURL type implements a way of identifying the location of a file/-
document/textual model/etc. As the name suggests it is based on URLs (Uniform Re-
source Locators), which use a ‘scheme’ (usually file), ‘network location’ (not set for local
files), ‘path’ (the location of the file), and a ‘query’ and ‘fragment’ which we don’t use.

While a SourceURL is referenced to by TraceSourceLocation, it also provides the
facilities to create instances of TraceSourceLocation and TraceSourceRange as a helper
function, which should be the main method of creating them.

A subclass of SourceURL exists named MappedSourceURL, its purpose is to translate
source locations such as encountered during parsing of fragments, which see a substring
of the original document text as input. The actual translation of positions is performed
by a ‘mapping function’, and these can be chained together in order to properly support
nested fragments.
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14.1 Source Resolvers
A concept used in the implementation but not discussed in the model overview is the

‘source resolver’. It has two purposes relating to tracing, and specifically to SourceURL
instances:

1. returning a human-readable representation of the URL; and

2. getting the contents of the a URL for use by a TracePrinter (see Chapter 13), to
allow it to print the source text.

A SourceResolver is given as an abstract class with the following implementations:

• EmptySourceResolver: does not resolve sources or format URLs.

• FilesystemSourceResolver: resolves source URLs with the ‘file’ scheme, and
attempts to format the location to a relative location (relative to the current working
directory).

• BootstrapResolver: resolves source URLs with the ‘weave-bootstrap’ scheme, a
special scheme to reference the grammars and models used during bootstrapping
(see Chapter 18).

• ChainedSourceResolver: uses several sub-resolvers to satisfy source retrieval or
formatting requests. Order of use depends on the order that sub-resolvers were
specified.

The goal of source resolvers is to support using Weave inside software such as a
Language Server with the Language Server Protocol [17], which may run in an isolated
container so that direct file access is impossible. A special scheme such as for example
‘language-client’ may be used to identify files made accessible by the Language Client.

We note that using URLs for sources is very powerful but also potential dangerous.
We provide no implementation for retrieving sources over the network, using a non-empty
network location, as it is both out of scope for this project and a bad idea in general.



CHAPTER 15

Parse Trees

In Chapter 8 we described our vision for parse trees, defining formalisms for defining
the shape (tdf, see Section 8.2.1), the representation of instances (tif, see Section 8.2.3),
and the construction of trees from parts (tcf, see Section 8.2.4). Additionally in Sec-
tion 8.3 we provided how these formalisms should be used in conjunction, and in Sec-
tion 8.4 we gave a specification on how to parse each of them, including a definition of the
tdf models for each formalism, and tcf models for each grammar production, as would
be used by an actual parser using our parse tree formalisms. As such, not much needed
to be left to the imagination for the actual implementation.

We will mention some of the important parts of the implementation, without going
into too much detail, in the following sections. Note that the extensions to tdf and tif
in Section 11.1 are simple in nature and do not require any special consideration, they
are equivalent to the TokenType and TokenInstance types.

15.1 Tree Definition
No major differences exist between the implementation and the abstract syntax as

given in Section 8.2.1. The only differences are an absence of the types NodeChild and
NamedTypeReference, which were only defined in the abstract syntax due to UML not
supporting mapping types directly. In our implementation, these are implemented using
Python dictionary objects, where the key is the name, and the value is the type.

As was noted in Section 8.2.1, the detection of cycles in in the type hierarchy is done
through finding strongly connected components. Specifically, Tarjan’s algorithm is used
in a re-usable manner through a generic ‘graph-like’ type that only requires information
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on vertices and their successors, without needing to know how these are stored. Using
strongly connected components allows us to find loops in the type hierarchy, while also
letting us know where these loops are, that is: which types are involved in the loop.

Weave further provides alternative versions of the NodeTypeReference classes by
way of the parallel UnresolvedReference class and subclasses. The goal of these classes
is to provide a way to reference a type by name, rather than by direct link. This may be
useful in the case of parsing a grammar specification before knowing the tdf model for
the grammar, and can be resolved to a proper type at a later type, or if the referenced
type does not exist, can be annotated as being in error.

ModelDefinitionError Subtype Description

InheritanceLoop Indicates there is a cycle in the inheritance hierarchy

DuplicateType Indicates a type name was used more than once

DuplicateChild Indicates a type has two or more children with the same
name

ShadowedChild Indicates a type redeclares a child from a parent

UnknownType Indicates a reference to an undefined node type

InterfaceCannotExtend Indicates an interface parent types list containing a non-
interface type

ConcreteCannotExtend Indicates an interface parent types list containing a non-
extendable type

Table 15.1: List of direct subtypes of ModelDefinitionError.

15.2 Tree Instance
In the specification for tif, no implementation was given for TokenInstance, as this

lies outside the scope of the formalisms themselves. For Weave, we used a simple imple-
mentation with two fields: the type of the token, and the value (text) of the token. See
also Figure 15.1 for the abstract syntax.

TokenInstance

type: String

value: String

Figure 15.1: Abstract syntax of the implementation of the TokenInstance type for our
implementation of tif in Weave.
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15.3 Tree Construction
No special differences exist between the implementation and the definition given in

Sections 8.2.4 and 8.2.5. However, we note that the implementation of these operations
was done as code in Python, rather than using a graph transformation library and exe-
cution schedule such as provided. Instead, the graph transformations and schedules were
translated to Python manually.

In order to ensure the operations in tcf work properly, unit tests were added in order
to validate them. One special case which was not accounted for in the specification is
returning an empty list as node value, which would given the ‘typeIntersection’ algorithm
in Listing 8.5 fail, as the intersection of the empty set returns the empty set. This would
result in an error that the types cannot be unified, and is worked around through a special
type EmptyListType that is assignable to any list type.
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ModelConstructionError Subtype Description

IncompatibleType Returned when an expression is being assigned or re-
turned that is not assignable to the expected type

ExpectedValueSort Returned when the inferred value type of an expression
is not valid to use in a context, such as attempting to
use a list concatenation with non-list value types

TypeNotInstantiable Indicates a type in a NodeConstructOperation is not
instantiable, i.e. not a concrete type

ValueNotFound Indicates the name referenced in a ContextAccessOper-
ation is not found in the definition context

TypeNotFound Indicates a referenced type does not exist in the tdf
model

ChildNotFound Returned when trying to access a child that does not
exist in a NodeAccessOperation

ExcessChild Indicates excess children are being assigned in a Node-
ConstructOperation

MissingChild Indicates a child that is not optional is not being as-
signed in a NodeConstructOperation

DuplicateChild Indicates a child being assigned to more than once in
a NodeConstructOperation

CannotUnifyTypes Returned when the ‘typeIntersection’ algorithm re-
turns an empty set, meaning there is no common an-
cestry of types

AmbiguousTypeIntersection Returned when the ‘typeIntersection’ algorithm re-
turns more than one type, meaning the type of a list
expression may be interpreted in more than one way

Table 15.2: List of direct subtypes of ModelConstructionError.



CHAPTER 16

Grammar Specification

As part of being able to define languages that can be used for multi-language parsing,
we also needed to be able to describe the languages themselves. Specifically, it is necessary
to have as much information regarding the parsing of a language in the same place as
possible, that is:

• The terminals and how they should be matched, or whether or not they should be
discarded (such as for comments and whitespace).

• The non-terminals and their productions.

• Type information on non-terminals using tdf models as annotations.

• Construction operations of the parse tree using tcf models as annotations to pro-
ductions.

• The specification of where fragments can happen, and what they look like. Also
includes ‘internal’ fragments or islands, such as strings or blocks surrounded by
delimiters.

• Information on special processing, such as for indentation sensitive languages.

To this end we developed a separate grammar specification language, which we call the
Weave grammar language, which we based initially on the Lark grammar language [31],
but with the addition of tdf and tcf models in the grammar now very closely resembles
the PEG grammar language used by Python [29].

Listing 16.1 shows an example grammar specification for a Causal Block Diagram
language, with the accompanying tdf model given in Listing 16.2. It shows the following
syntax features:
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• Non-terminals are defined using a name, followed by a tdf fragment surrounded by
square brackets to indicate the type.

• Non-terminal productions can contain inline token strings, and can assign ‘names’
or ‘aliases’ to each part in the production (separated by spaces).

• Non-terminal parts can have eBNF syntax elements. Shown is the Kleene star
operation ‘*’. Other operators supported are the ‘+’ and ‘?’ operators as shown in
Section 8.3.1, as well as the separator operator ‘◦’, written using a ‘.’

• Terminals are specified using either strings (" . . . ") or regular expressions (/ . . . /).

• Terminals can be marked as ‘ignored’ using a concept called a directive, which will
make the lexer output still output the token, but the parser will ignore the token
when encountered. This is usually used to allow a cleaner grammar, such as allowing
a optional spaces between operators without having to explicitly put them in the
grammar.

• ‘Internal’ fragments are specified using the fragment directive, which specifies that
an opening curly brace must at some point be followed by a closing curly brace.

• On line 19, the specification of an fragment embedding is given, which allows recur-
sively embedding CBD models. See Section 16.1 for more information on this.

A complete overview of the syntax definition of Weave is given in Listing A.1, spec-
ified using the Weave grammar language itself. The accompanying tdf model is given
in Listing A.2.
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1 start[CausalBlockDiagram] :
2 | elements=element* {CausalBlockDiagram(elements)}
3
4 element[Element] :
5 | "block" name=ID ":" type=ID ";" {BlockInstance(name, type)}
6 | "constant" name=ID "=" value=NUMBER ";"
7 {ConstantBlock(name, value)}
8 | "inport" name=ID ";" {InPort(name)}
9 | "outport" name=ID ";" {OutPort(name)}

10 | "connect" from=port_ref "to" to=port_ref ";" {Link(from, to)}
11 | "composite" name=ID contents=cbd_embed
12 {CompositeDefinition(name, contents)}
13
14 port_ref[PortReference] :
15 | block=ID "." port=ID {PortReference(block, port)}
16 | block=ID {PortReference(block)}
17
18 cbd_embed[embed] :
19 | "{" @embed("cbd") "}" {embed}
20
21
22 NUMBER : /[+-]?([0-9]+(\.[0-9]*)?|\.[0-9]+)/
23 ID : /[\_a-zA-Z][\_a-zA-Z0-9]*/
24 WS : /[␣\t\r\n]+/
25 COMMENT : /\s*\/\/[\^{}\n]*/
26
27 @ignore(WS, COMMENT)
28
29 @fragment("{", "}")

Listing 16.1: Example Weave grammar specification for a Causal Block Diagram lan-
guage.
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CausalBlockDiagram(elements: Element [])

interface Element ()

CompositeDefinition(name: tok , contents: embed): Element

interface Block(name: tok): Element
ConstantBlock(value: tok): Block
BlockInstance(type: tok): Block

interface Port(name: tok): Element
InPort (): Port
OutPort (): Port

Link(from: PortReference , to: PortReference ): Element
PortReference(block: tok , port: tok?)

Listing 16.2: Example tdf model for a Causal Block Diagram language.
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16.1 Embed Specifications
Specifications of language embed fragments use the same syntax as non-terminals, but

use @embed directives in order to define them as an embedding point in the language. An
embed definition can effectively consist of five different elements:

• Terminals or terminal specifications

• A @embed directive with parameters, specifying which language and optionally which
start symbol (if supported) to use for parsing the fragment.

• A @embed.select directive, which gets parsed by Weave in order to decide which
language an embed should be. Incompatible with the previously mentioned direc-
tive.

• A @embed directive without parameters, required with the previous directive, and
specifies where the fragment should appear syntactically.

• A @embed.options directive that can pass options along to the parser, or be used
to declare properties about the fragment.

When using a @embed.select directive, the @embed directive without parameters must
appear after it. This is because the parser needs information on which language to parse
before it can parse it.

We note that the @embed.options directive is unsupported in our implementation,
but that the eventual goal is to allow it to specify behavior for the parser. For example, it
may be necessary for indentation to be removed from a fragment, but the parser handles it
incorrectly or not at all due to an improper or missing definition in the grammar. Another
example would be to allow putting a name on a fragment, in order to allow referencing it
from other locations.

In our current implementation, embed specifications are limited to two forms:

PRE_TOKEN @embed(name, rule) POST_TOKEN

and

PRE_TOKEN @embed.select MID_TOKEN @embed POST_TOKEN

This reflects our notes on the syntax of multi-language parsing in Section 11.2, and is
used as a proof-of-concept implementation.

Note that on lines 74 and 77 of the grammar specification of Weave (see Listing A.1)
we make use of embedding specifications, which means that the grammar language itself
makes use embedded fragments, and is thus a hybrid language.
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16.2 Indentation Sensitive Languages

The grammar specification exposes support specific for the Lark parsing backend in
order enable processing for indentation sensitive languages that are similar to Python
with regards to how these are handled. Specifically, it can output INDENT and DEDENT
tokens based on whitespace, and supports suspending this process between tokens (such
as between parentheses, curly braces, square brackets, etc.).

Support for this feature is enabled by way of a @indent_aware directive, which defines
the indentation and dedendation tokens, and which token is processed in order to generate
them. Additionally a @indent_aware.suspend directive can specify a suspension of this
process.

While it is not a good idea to have parser-specific options in a grammar specification
language that should be unaware of the parsing backend. This specific feature should
be easy to implement in other backends as well however, as it only necessitates a step
between lexing and parsing in order to support it. In the case of a scannerless parser,
support would probably be best done by using a parser that supports layout sensitive
parsing (see the paper by Erdweg et al. on Layout-sensitive Generalized Parsing [11]).

We note that this is new software which has not yet had much time to mature, and
as such these sorts of things should not be taken as a statement of “this is how it should
be done and always will be done, because it is the correct way.”



CHAPTER 17

Lark Implementation

As was mentioned a few times throughout the document, we chose to make an imple-
mentation of Weave using the Lark Python library [31] as a backend to handle parsing.
Lark was chosen for its ability to support dynamic loading of parsers and wide range of
language constructs [28], though other backends are also able to be added.

Figure 17.1 shows an overview of the different phases in going from a Weave grammar
specification file to a parser that conforms to the WeaveParser interface (see Chapter 9).
Note that in this process a new source text is generated from an original source text,
which is then in turn handled by the Lark library. That is, Weave provides a front-end
interface for generating parsers that can perform multi-language parsing using the Lark
library.

Lark provides three main options to manipulate the parsing process:

• Setting a ‘postlex’ step, which puts an extra processor between the lexer and the
parser. This processor can take tokens and discard them, create new tokens from
them, or simply pass them on, but it cannot modify the lexer state.

• Setting a ‘transformer’, which runs upon successful completion of a non-terminal
production, but is only supported on its LALR parser.

• Providing replacement implementations for its lexer and parser classes, giving com-
plete control over their operations by subtyping them (or providing a complete
different implementation). This is however fairly new and not well documented,
and may be subject to change in the future.

Additionally, it’s possible to run a transformer on a parse tree after parsing succeeds
using the same transformer type, replacing the tree in-place, but this is less efficient. Other
interfaces for going over the parse tree are so called ‘visitors’ which do not change the
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Weave Grammar Parser

Weave Analyzer and Generator

Grammar Printer for Lark

Lark Grammar Reader

Weave Wrapper

character stream (Weave language)

tif model

Weave grammar specification

character stream (Lark language)

Lark parser

Weave compatible parser

Figure 17.1: Diagram of the overall phases in generating a parser specified with the
Weave grammar language, using the Lark backend.

tree, and ‘interpreters’ which does not change or recursively traverse the tree. Figure 17.2
provides an overview of these options as used by our implementation.

We use a postlex step on languages which are indentation sensitive, as this requires us
inserting new tokens into the token stream, as well as track the current indentation level.
As for the transformer in the parser, we do not use it at the moment as our tree building
is done using an interpreter, which has different operating semantics, but this could be
changed for more efficiency when parsing bigger models.

The addition of a ‘lexer hooks’ to the lexer in Figure 17.2 is done by providing a
subtyped lexer implementation. Its goal is to work as a more powerful postlex step that
can change the lexer state as well as insert or withhold tokens, which is necessary in order
to handle embedded language fragments (see Section 11.2 and the next section).
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token stream

Lark Lexer Lark Parser

Postlex

Lexer hooks Transformer(not used)

text lark tree tif tree
tree builder

tcf models

Interpreter

Figure 17.2: Diagram detailing the Lark parser architecture as we used it.

17.1 Multi-Language Parsing
As was explained previously in Section 11.2, it’s not easy to communicate from the

parser to the lexer that it should switch languages (backtracking may happen), and the
lexer is where a language switch should be performed as it is the one with direct access
to the source text.

Thus, in order to be able to provide a working proof of concept that allows multi-
language parsing, the syntax was restricted to two specific variants, as seen in Figures 11.4
and 11.5 in Section 11.2, and more recently in Section 16.1.

To this end, for every language embed location specification we add a lexer hook for the
PRE_TOKEN, that when encountered performs the necessary setup for switching language,
such as described in a high-level overview in Figure 11.2.

Relevant operations are:

1. Detecting the language (if applicable).

2. Finding the fragment end using an island parsing algorithm.

3. Constructing a new character stream.

4. Transforming the character stream (removal of indentation, text transformations,
etc.).

5. Initiating a new parse and waiting for the result.

6. Inserting the result in the token stream as a single token-like, with its value being
the parse result.

We note that the transformation step is not implemented, but would potentially be nice
to have.

The island parsing algorithm uses a grammar such as seen in Figure 11.8, making use
of information available on the grammar of the fragment such as internal fragments and
further embeds, as well as tokens that may contain the end fragment identifier. Due to the
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limited possible shapes (only standalone tokens that are ignored, and tokens that occur
in pairs), the implementation is done through a simple scanner algorithm that performs
the same job. A future implementation may instead chose to use an actual parser for
islands, that can then recursively handle nested fragments, when more generic shapes of
embedding are allowed.

17.2 Dynamic Multi-Language Parsing
As we noted earlier in Section 11.5, in order to create a parser from a specification,

we need to have the specification available. Generally, this happens by specifying and
parsing the grammar beforehand in a separate file.

As our implementation completes parsing of a fragment before it continues parsing the
rest of the document, we have the parse tree for it available. Unfortunately, this parse
tree lacks any of the surrounding context, as it is supposed to be embedded in the parse
tree of the parent fragment. Thus, proper semantic evaluation is currently not possible,
meaning you can’t for example conditionally define the grammar.

However, as a proof of context, we added a mini language that can be used to define
a language, that can then be used to parse later on. See Listing A.7 for the grammar
definition, and Listing A.8 for the tree model specification. See also Listing B.10 for an
example where this sort of dynamic language definition is used as a proof of context.
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Bootstrapping

During the initialization of Weave, we perform a ‘bootstrapping’ operation of the lan-
guages that are used for the definition of languages themselves, i.e. the ‘meta’ languages.
Specifically, the following languages are required in order to define a language:

• Weave grammar language, which is used to specify the grammar of a language.

• tdf for specifying the structure of parse trees. Also used by the grammar language
for typing non-terminal rules.

• tcf for specifying construction rules of parse trees, used by the grammar language.

As a part of dogfooding our implementation, we specified the above languages using
themselves. I.e. tcf is specified using a tdf model and Weave grammar, which in turn
contains tcf models. Unfortunately, we currently have no way of storing a parsed tdf
model or Weave grammar to disk, and as such need to have a different way of getting a
basic version of these. To this end, we first attempt to build a parser for these languages
using a different mechanism, and then use those parsers to load and build the effective
grammars and tree models.

We start off with two models not defined using themselves: the tdf model of tdf
is defined using Python code, and a Lark grammar specification for the Weave grammar
is loaded and turned into a parser for Weave models. Bootstrapping then happens in
several steps. We’ll use T for tdf models, G for Weave grammar specifications, and P
for parsers. A subscript indicates the formalism, while a superscript annotates how they
were made or what they are used for.

1. The base tdf model is instantiated through code, we’ll call this T code
tdf .

2. A Lark parser is created that can parse Weave grammars, which we’ll call P lark
weave.
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3. The Weave, tdf and tcf grammars are parsed using P lark
weave. We’ll call these

grammars Glark
weave, Glark

tdf and Glark
tcf respectively.

4. Using T code
tdf and Glark

tdf , we create a Weave parser for tdf P boot
tdf .

5. Using P boot
tdf we load the tdf models for Weave and tcf, named T boot

weave and T boot
tcf

respectively.

6. We create a parser for tcf: P boot
tcf using T code

tcf and Glark
tcf .

7. We create a parser for Weave: P boot
weave using T boot

weave and Glark
weave. This parser depends

on P boot
tdf and P boot

tcf using multi-language parsing.

• At this point we have tdf model and Weave grammar for Weave, tdf and tcf,
as well as parsers, which we can then use to load the effective tree models, grammars,
and parsers.

8. Using P boot
weave and P boot

tdf we load Gtdf and Ttdf respectively, which we combine into
Ptdf .

9. Using P boot
weave and P boot

tdf we load Gtcf and Ttcf respectively, which we combine into
Ptcf .

10. Using P boot
weave and P boot

tdf we load Gweave and Tweave respectively, which we combine
into Pweave.

See also Figure 18.1 for a schematic overview of this process.
Note that the creation of a parser from a tdf model and Weave grammar specification

is covered in Chapter 17.
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Part IV

End



CHAPTER 19

Conclusions

We introduced a reusable and extendable set of formalisms for the definition and
construction of parse trees that are defined in a language-agnostic way: the Tree Definition
Formalism (tdf) for defining their shape, the Tree Instance Formalism (tif) for instances
of parse trees, and the Tree Construction Formalism (tcf) for building instances of parse
trees.

We also introduced concepts and procedures for the handling of hybrid textual models
using multi-language parsing through the use of multiple distinct parsers, and a way to
handle the switching between parsers during parsing.

As an example implementation we produced the Weave framework, that uses the
Python Lark library to handle parsing, while extending this library in order to add the
functionality for multi-language parsing, and a proof-of-concept implementation for dy-
namic multi-language parsing. This framework also includes a formalism for defining
grammars that parse hybrid languages, which we named the Weave grammar language.

19.1 Future Work
As mentioned in the introduction, Weave is only a first step into having a language

workbench or IDE for the development of domain specific languages. Further work will
involve using Weave as a library for the parsing of hybrid models, which can then also
be used as a Language Server for the Language Server Protocol [17].

Further work can also focus on refining the tdf and tcf formalisms, such as introduc-
ing the Liskov substitution principle, and using type unification instead of type inference



on expressions. Additionally, instructions for the handling of types inside eBNF groupings
could be developed, and a DSL for converting a tif model into abstract syntax instances.

With regards to parsing, a system for pre-processing fragment text may also be ben-
eficial. This would be run after the fragment text has been extracted, but before it is
sent to the fragment parser. Use cases for this could be the removal of indentation for
fragments that are indentation sensitive, other sorts of string transformations that may
be necessary to make an embedded model parse (in case the language wasn’t explicitly
designed to support being embedded).

Furthermore, relaxing the syntax for language fragments or finding a different mech-
anism for initiating a language switch can use further research, as these are only at the
proof-of-concept stage.

Other possible future additions to Weave is more parsing backends, such as using
PLY or ANTLR4, and a formalism for augmenting existing grammars such as extending
the grammar like in MontiCore [15], [30], or redeclaring or replacing parts of the grammar
like in Modelica [19].
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APPENDIX A

Grammars and Models

1 start[WeaveGrammar] :
2 | _NL* elements=element* {WeaveGrammar(elements)}
3
4 element[Element] :
5 | element=directive_element _NL* {element}
6 | element=terminal _NL* {element}
7 | element=non_terminal _NL* {element}
8
9 terminal[TerminalSpecification] :

10 | name=NAME ":" pattern=literal _NL {TerminalSpecification(name, pattern)}
11
12 literal[tok] :
13 | REGEXP {REGEXP}
14 | STRING {STRING}
15
16 non_terminal[NonTerminalSpecification] :
17 | name=NAME type=tdf_specification ":" _NL alternatives=root_alternatives {

NonTerminalSpecification(name, type, alternatives)}
18
19 root_alternatives[Alternative[]] :
20 | alternatives=root_alternative+ {alternatives}
21
22 root_alternative[Alternative] :
23 | "|" parts=expr* builder=tcf_specification _NL {Alternative(parts, builder)}
24
25 // Expressions



26 expr[Expression] :
27 | expr=atom_expr {expr}
28 | expr=opt_expr {expr}
29 | expr=star_expr {expr}
30 | expr=plus_expr {expr}
31 | expr=directive_expr {expr}
32
33 atom_expr[Expression] :
34 | alias=NAME "=" base=atom {AtomExpression(alias, base)}
35 | base=atom {AtomExpression(base)}
36
37 opt_expr[Expression] :
38 | alias=NAME "=" base=atom "?" {OptionalExpression(alias, base)}
39 | base=atom "?" {OptionalExpression(base)}
40
41 star_expr[Expression] :
42 | alias=NAME "=" base=atom "*" {RepeatStarExpression(alias, base)}
43 | base=atom "*" {RepeatStarExpression(base)}
44 | alias=NAME "=" separator=atom "." base=atom "*" {RepeatDotStarExpression(

alias, base, separator)}
45 | separator=atom "." base=atom "*" {RepeatDotStarExpression(base, separator)}
46
47 plus_expr[Expression] :
48 | alias=NAME "=" base=atom "+" {RepeatPlusExpression(alias, base)}
49 | base=atom "+" {RepeatPlusExpression(base)}
50 | alias=NAME "=" separator=atom "." base=atom "+" {RepeatDotPlusExpression(

alias, base, separator)}
51 | separator=atom "." base=atom "+" {RepeatDotPlusExpression(base, separator)}
52
53 atom[Atom] :
54 | name=NAME {NameAtom(name)}
55 | pattern=REGEXP {LiteralAtom(pattern)}
56 | pattern=STRING {LiteralAtom(pattern)}
57
58 directive_expr[DirectiveExpression] :
59 | directive {DirectiveExpression(directive)}
60
61
62 // Embedded elements
63 tdf_specification[embed] :
64 | "[" @embed("tdf", "type_reference") "]" {embed}
65
66 tcf_specification[embed] :
67 | "{" @embed("tcf") "}" {embed}
68



69
70 // Directives
71 directive_element[RootDirective] :
72 | directive _NL {RootDirective(directive)}
73
74 directive[Directive] :
75 | "@" name=NAME {DirectiveBase(name)}
76 | base=directive "." derived=NAME {DirectiveDerived(base, derived)}
77 | base=directive "(" params=",".directive_param* ")" {DirectiveParams(base,

params)}
78
79 directive_param[tok] :
80 | NAME {NAME}
81 | STRING {STRING}
82
83
84 // Terminals
85 NAME : /[_a-zA-Z][_a-zA-Z0-9]*/
86 STRING : /"(\\"|\\\\|[^"\n])*?"i?/
87 REGEXP : /\/(?!\/)(\\\/|\\\\|[^\/])*?\/[imslux]*/
88 _NL : /(\r?\n)+\s*/
89 WS : /[␣\t]+/
90 COMMENT : /((?!\n)\s)*\/\/[^\n]*/
91
92 @ignore(WS, COMMENT)
93
94 @fragment("(", ")")
95 @fragment("[", "]")
96 @fragment("{", "}")

Listing A.1: Weave grammar specification, in Weave.



1 WeaveGrammar(elements: Element [])
2
3 interface Element ()
4
5 TerminalSpecification(name: tok , pattern: tok): Element
6
7 NonTerminalSpecification(name: tok , type: embed , alternatives:

Alternative []): Element
8
9 Alternative(parts: Expression [], builder: embed)

10
11 // Expressions
12 interface Expression ()
13
14 OptionalExpression(alias: tok?, base: Atom): Expression
15
16 RepeatStarExpression(alias: tok?, base: Atom): Expression
17 RepeatDotStarExpression(alias: tok?, base: Atom , separator: Atom):

Expression
18
19 RepeatPlusExpression(alias: tok?, base: Atom): Expression
20 RepeatDotPlusExpression(alias: tok?, base: Atom , separator: Atom):

Expression
21
22 AtomExpression(alias: tok?, base: Atom): Expression
23
24 // Atoms
25 interface Atom()
26 NameAtom(name: tok): Atom
27 LiteralAtom(pattern: tok): Atom
28
29 RootDirective(directive: Directive): Element
30
31 // Directives
32 interface Directive ()
33 DirectiveExpression(directive: Directive): Expression
34
35 DirectiveBase(name: tok): Directive
36 DirectiveDerived(base: Directive , derived: tok): Directive
37 DirectiveParams(base: Directive , params: tok[]): Directive

Listing A.2: tdf model for Weave.



1 start[TreeDefinitionFormalism] :
2 | elements=element* {TreeDefinitionFormalism(elements)}
3
4 element[Element] :
5 | interface_definition {interface_definition}
6 | concrete_definition {concrete_definition}
7
8 interface_definition[InterfaceDefinition] :
9 | "interface" name=ID "(" children=",".node_child* ")" parents {

InterfaceDefinition(name, children, super_types=parents)}
10
11 concrete_definition[ConcreteDefinition] :
12 | "node"? name=ID "(" children=",".node_child* ")" parents {ConcreteDefinition

(name, children, super_types=parents)
13
14 node_child[NodeChild] :
15 | name=ID ":" type=type_reference {NodeChild(name, type)}
16
17 type_reference[TypeReference] :
18 | type=ID {BaseTypeReference(type)}
19 | type=ID "?" {OptionalTypeReference(type)}
20 | type=ID "[" "]" {ListTypeReference(type)}
21
22 parents[tok[]] :
23 | {[]}
24 | ":" parents=",".ID+ {parents}
25
26
27 ID : /[_a-zA-Z][_a-zA-Z0-9]*/
28 WS : /[␣\t\r\n]+/
29 COMMENT : /\s*\/\/[^\n]*/
30
31 @ignore(WS, COMMENT)
32
33 @fragment("[", "]")
34 @fragment("(", ")")

Listing A.3: tdf grammar specification, in Weave.



1 TreeDefinitionFormalism(elements: Element [])
2
3 interface Element ()
4
5 interface NodeDefinition(name: tok): Element
6 InterfaceDefinition(children: NodeChild[], super_types: tok[]):

NodeDefinition
7 ConcreteDefinition(children: NodeChild[], super_types: tok[]):

NodeDefinition
8
9 NodeChild(name: tok , type: TypeReference)

10
11 interface TypeReference ()
12 BaseTypeReference(type: tok): TypeReference
13 OptionalTypeReference(type: tok): TypeReference
14 ListTypeReference(type: tok): TypeReference

Listing A.4: tdf model for tdf.

1 start[Operation] :
2 | operation {operation}
3
4 operation[Operation] :
5 | operation=context_access {operation}
6 | operation=node_access {operation}
7 | operation=node_construct {operation}
8 | operation=list_construct {operation}
9 | operation=list_concat {operation}

10
11 context_access[ContextAccess] :
12 | name=ID {ContextAccess(name)}
13
14 node_access[NodeAccess] :
15 | base=node_access_base "." name=ID {NodeAccess(base, name)}
16
17 node_access_base[Operation] :
18 | base=context_access {base}
19 | base=node_access {base}
20 | base=node_construct {base}
21
22 node_construct[NodeConstruct] :
23 | id=ID "(" children=",".node_construct_child* ")" {NodeConstruct(type=id,

children)}
24
25 node_construct_child[NodeConstructChild] :



26 | name=ID "=" value=operation {NodeConstructChild(name, value)}
27 | name=ID {NodeConstructChild(name, value=ContextAccess(name))}
28
29 list_construct[ListConstruct] :
30 | "[" elements=",".list_construct_element* "]" {ListConstruct(elements)}
31
32 list_construct_element[Operation] :
33 | element=context_access {element}
34 | element=node_access {element}
35 | element=node_construct {element}
36
37 list_concat[ListConcat] :
38 | head=list_concat_element ".." tail="..".list_concat_element+ {ListConcat(

lists=[head] .. tail)}
39
40 list_concat_element[Operation] :
41 | element=context_access {element}
42 | element=node_access {element}
43 | element=list_construct {element}
44
45
46 ID : /[_a-zA-Z][_a-zA-Z0-9]*/
47 WS : /[␣\t]+/
48 COMMENT : /\s*\/\/[^\n]*/
49
50 @ignore(WS, COMMENT)
51
52 @fragment("[", "]")
53 @fragment("(", ")")

Listing A.5: tcf grammar specification, in Weave.

1 interface Operation ()
2 node ContextAccess(name: tok): Operation
3 node NodeAccess(base: Operation , name: tok): Operation
4 node NodeConstruct(type: tok , children: NodeConstructChild []):
5 Operation
6 node ListConstruct(elements: Operation []): Operation
7 node ListConcat(lists: Operation []): Operation
8
9 node NodeConstructChild(name: tok , value: Operation)

Listing A.6: tdf model for tcf.

1 start[LanguageDefinition] :



2 | _NL* name backend tree_model grammar {LanguageDefinition(name, backend,
tree_model, grammar)}

3
4 name[tok] :
5 | "name" "=" name=ID _NL+ {name}
6
7 backend[tok] :
8 | "backend" "=" backend=ID _NL+ {backend}
9

10 tree_model[embed] :
11 | "tree" "model" "=" language_embed _NL+ {language_embed}
12
13 grammar[embed] :
14 | "grammar" "=" language_embed _NL+ {language_embed}
15
16
17 // Embedded elements
18 language_embed[embed] :
19 | ">" @embed.select "{" @embed "}" {embed}
20
21
22 ID : /[a-zA-Z_0-9]+(:[a-zA-Z_0-9]+)?/
23 _NL : /(\r?\n)+\s*/
24 WS : /[␣\t]+/
25 COMMENT : /((?!\n)\s)*\/\/[^\n]*/
26
27 @ignore(WS, COMMENT)
28
29 @fragment("{", "}") // Should not be necessary

Listing A.7: Grammar specification for the language_define mini-language, used for
dynamic language specifications. Written in Weave.

1 TreeDefinitionFormalism(elements: Element [])
2
3 interface Element ()
4
5 interface NodeDefinition(name: tok): Element
6 InterfaceDefinition(children: NodeChild[], super_types: tok[]):

NodeDefinition
7 ConcreteDefinition(children: NodeChild[], super_types: tok[]):

NodeDefinition
8
9 NodeChild(name: tok , type: TypeReference)

10



11 interface TypeReference ()
12 BaseTypeReference(type: tok): TypeReference
13 OptionalTypeReference(type: tok): TypeReference
14 ListTypeReference(type: tok): TypeReference

Listing A.8: tdf model for the language_define language.



APPENDIX B

Example Models

1 start[Graph] :
2 | elements=element* {Graph(elements)}
3
4 element[Element] :
5 | name=ID "=" model_embed {Vertex(name, value=model_embed)}
6 | "connect" from=ID "to" to=ID {Edge(from, to)}
7
8 model_embed[embed] :
9 | ">" @embed.select "{" @embed "}" {embed}

10
11
12 ID : /[_a-zA-Z][_a-zA-Z0-9]*/
13 WS : /[␣\t\r\n]+/
14 COMMENT : /\s*\/\/[^\n]*/
15
16 @ignore(WS, COMMENT)
17
18 @fragment("{", "}")

Listing B.1: Weave grammar specification for the example graph (Directed Graph)
language.



1 Graph(elements: Element [])
2
3 interface Element ()
4
5 Vertex(name: tok , value: embed): Element
6
7 Edge(from: tok , to: tok): Element

Listing B.2: tdf model for the example graph (Directed Graph) language.

1 start[TimedFiniteStateAutomaton] :
2 | elements=element* {TimedFiniteStateAutomaton(elements)}
3
4 element[Element] :
5 | initial="initial"? final="final"? "state" name=ID state_type? state_entry?

state_exit? ";" {State(name, initial, final, state_type, enter_action=
state_entry, exit_action=state_exit)}

6 | "transition" "from" from=ID "to" to=ID trigger=transition_trigger? action=
transition_run? ";" {Transition(from, to, trigger, action)}

7 | name=ID "=" model_embed {EmbededDefinition(name, value=model_embed)}
8
9 state_type[tok] :

10 | ":" type=ID {type}
11
12 state_entry[embed] :
13 | "on" "entry" statements_embed {statements_embed}
14
15 state_exit[embed] :
16 | "on" "exit" statements_embed {statements_embed}
17
18 transition_trigger[Trigger] :
19 | "on" event=ID {EventTrigger(event)}
20 | "after" time=NUMBER {TimeoutTrigger(time)}
21 | "when" condition=condition_embed {ConditionTrigger(condition)}
22
23 transition_run[embed] :
24 | "do" statements_embed {statements_embed}
25
26
27 // Embeds
28 condition_embed[embed] :
29 | "[" @embed("alc", "expression") "]" {embed}
30
31 statements_embed[embed] :
32 | "{" @embed("alc", "block") "}" {embed}



33
34 model_embed[embed] :
35 | ">" @embed.select "{" @embed "}" {embed}
36
37
38 // Tokens
39 NUMBER : /[+-]?([0-9]+(\.[0-9]*)?|\.[0-9]+)/
40 ID : /[_a-zA-Z][_a-zA-Z0-9]*/
41 WS : /[␣\t\r\n]+/
42 COMMENT : /\s*\/\/[^\n]*/
43
44 @ignore(WS, COMMENT)
45
46 @fragment("[", "]")
47 @fragment("{", "}")

Listing B.3: Weave grammar specification for the example tfsa (Timed Finite State
Automaton) language.

1 TimedFiniteStateAutomaton(elements: Element [])
2
3 interface Element ()
4
5 State(name: tok , initial: tok?, final: tok?, state_type: tok?,

enter_action: embed?, exit_action: embed?): Element
6
7 Transition(from: tok , to: tok , trigger: Trigger?, action: embed?):

Element
8
9 interface Trigger ()

10 EventTrigger(event: tok): Trigger
11 TimeoutTrigger(time: tok): Trigger
12 ConditionTrigger(condition: embed): Trigger
13
14 EmbededDefinition(name: tok , value: embed): Element

Listing B.4: tdf model for the example tfsa (Timed Finite State Automaton) language.



1 start[CausalBlockDiagram] :
2 | elements=element* {CausalBlockDiagram(elements)}
3
4 element[Element] :
5 | "block" name=ID ":" type=ID ";" {BlockInstance(name, type)}
6 | "constant" name=ID "=" value=NUMBER ";" {ConstantBlock(name, value)}
7 | "inport" name=ID ";" {InPort(name)}
8 | "outport" name=ID ";" {OutPort(name)}
9 | "connect" from=port_ref "to" to=port_ref ";" {Link(from, to)}

10 | "composite" name=ID contents=cbd_embed {CompositeDefinition(name, contents)}
11 | "tfsa" name=ID embed=tfsa_embed {EmbedBlockDefinition(name, embed)}
12
13 port_ref[PortReference] :
14 | block=ID "." port=ID {PortReference(block, port)}
15 | block=ID {PortReference(block)}
16
17 cbd_embed[embed] :
18 | "{" @embed("cbd:tfsa") "}" {embed}
19
20 tfsa_embed[embed] :
21 | "(" @embed("tfsa:alc") ")" {embed}
22
23
24 NUMBER : /[+-]?([0-9]+(\.[0-9]*)?|\.[0-9]+)/
25 ID : /[_a-zA-Z][_a-zA-Z0-9]*/
26 WS : /[␣\t\r\n]+/
27 COMMENT : /\s*\/\/[^\n]*/
28
29 @ignore(WS, COMMENT)

Listing B.5: Weave grammar specification for the example cbd (Causal Block Diagrams)
language.

1 CausalBlockDiagram(elements: Element [])
2
3 interface Element ()
4
5 CompositeDefinition(name: tok , contents: embed): Element
6 EmbedBlockDefinition(name: tok , embed: embed): Element
7
8 interface Block(name: tok): Element
9 ParameterBlock (): Block

10 ConstantBlock(value: tok): Block
11 BlockInstance(type: tok): Block
12



13 interface Port(name: tok): Element
14 InPort (): Port
15 OutPort (): Port
16
17 Link(from: PortReference , to: PortReference): Element
18 PortReference(block: tok , port: tok?)

Listing B.6: tdf model for the example cbd (Causal Block Diagrams) language.

1 start[Unit] :
2 | elements=element* {Unit(elements)}
3
4 element[Element] :
5 | include _NL* {include}
6 | definition _NL* {definition}
7 | function _NL* {function}
8
9 include[Include] :

10 | "include" from=STRVALUE _NL {Include(from)}
11
12 function[Function] :
13 | pre=function_prefix ":" block {FunctionDef(type=pre.type, name=pre.name,

params=pre.params, block)}
14 | pre=function_prefix "=" "?" referenced=ANYTHING _NL {FunctionRef(type=pre.

type, name=pre.name, params=pre.params, referenced)}
15
16 function_prefix[FunctionPrefix] :
17 | type=function_type "mutable"? "function" name=ID "(" params=",".

function_parameter* ")" {FunctionPrefix(type, name, params)}
18
19 function_type[tok] :
20 | type_spec {type_spec}
21 | type="Void" {type}
22
23 function_parameter[FunctionParameter] :
24 | name=ID ":" type_spec {FunctionParameter(name, type=type_spec)}
25
26 type_spec[tok] :
27 | type="Integer" {type}
28 | type="Float" {type}
29 | type="Boolean" {type}
30 | type="String" {type}
31 | type="Type" {type}
32 | type="Action" {type}
33 | type="Element" {type}



34
35 block[Block] :
36 | _NL INDENT statements DEDENT {Block(statements)}
37
38 statements[Statement[]] :
39 | statements=statement+ {statements}
40
41 statement[Statement] :
42 | definition _NL* {definition}
43 | assignment _NL+ {assignment}
44 | return _NL+ {return}
45 | function_call _NL+ {function_call}
46 | if_statement _NL* {if_statement}
47 | while_statement _NL* {while_statement}
48 | continue _NL+ {continue}
49 | break _NL+ {break}
50
51 definition[Definition] :
52 | type=type_spec name=ID _NL {Definition(type, name)}
53 | type=type_spec name=ID "=" value=atomvalue _NL {Definition(type, name, value

)}
54
55 assignment[Assignment] :
56 | lhs=lvalue "=" rhs=expression {Assignment(lhs, rhs)}
57
58 return[Return] :
59 | "return" expression? "!" {Return(expression)}
60
61 function_call[FunctionCall] :
62 | function=rvalue "(" params=",".expression* ")" {FunctionCall(function,

params)}
63
64 if_statement[IfElse] :
65 | "if" expression ":" block elif=elif_statement {IfElse(if_block=IfBlock(

expression, block), alt_blocks=elif.elifs, else_block=elif.else)}
66 | "if" expression ":" block else=else_statement? {IfElse(if_block=IfBlock(

expression, block), alt_blocks=[], else_block=else)}
67
68 elif_statement[IfElseTail] :
69 | "elif" expression ":" block tail=elif_statement {IfElseTail(elifs=[IfBlock(

expression, block)] .. tail.elifs, else=tail.else)}
70 | "elif" expression ":" block else=else_statement? {IfElseTail(elifs=[IfBlock(

expression, block)], else)}
71
72 else_statement[Block] :



73 | "else" ":" block {block}
74
75 while_statement[While] :
76 | "while" expression ":" block {While(expression, block)}
77
78 continue[Continue] :
79 | "continue" "!" {Continue()}
80
81 break[Break] :
82 | "break" "!" {Break()}
83
84 lvalue[LValue] :
85 | name=ID {Name(name)}
86
87 rvalue[RValue] :
88 | base=rvalue "[" expression "]" {Index(base, expression)}
89 | name=ID {Name(name)}
90
91 expression[Expression] :
92 | binary_operation {binary_operation}
93
94 binary_operation[Expression] :
95 | disjunction {disjunction}
96
97 disjunction[Expression] :
98 | disjunction "or" conjunction {Disjunction(lhs=disjunction, rhs=conjunction)}
99 | conjunction {conjunction}

100
101 conjunction[Expression] :
102 | conjunction "and" comparison {Conjunction(lhs=conjunction, rhs=comparison)}
103 | comparison {comparison}
104
105 comparison[Expression] :
106 | comparison "==" relation {Equals(lhs=comparison, rhs=relation)}
107 | comparison "!=" relation {NotEquals(lhs=comparison, rhs=relation)}
108 | relation {relation}
109
110 relation[Expression] :
111 | relation "<" sum {LessThan(lhs=relation, rhs=sum)}
112 | relation ">" sum {GreaterThan(lhs=relation, rhs=sum)}
113 | relation "<=" sum {LessThanEquals(lhs=relation, rhs=sum)}
114 | relation ">=" sum {GreaterThanEquals(lhs=relation, rhs=sum)}
115 | sum {sum}
116
117 sum[Expression] :



118 | sum "+" term {Plus(lhs=sum, rhs=term)}
119 | sum "-" term {Minus(lhs=sum, rhs=term)}
120 | term {term}
121
122 term[Expression] :
123 | term "*" factor {Times(lhs=term, rhs=factor)}
124 | term "/" factor {Divide(lhs=term, rhs=factor)}
125 | factor {factor}
126
127 factor[Expression] :
128 | "not" primary {LogicalNot(expression=primary)}
129 | "-" primary {InvertSign(expression=primary)}
130 | "+" primary {KeepSign(expression=primary)}
131 | primary {primary}
132
133 primary[Expression] :
134 | "(" expression ")" {expression}
135 | rvalue {rvalue}
136 | function_call {function_call}
137 | atomvalue {atomvalue}
138
139 atomvalue[AtomValue] :
140 | string {string}
141 | value=DEC_NUMBER {Integer(value)}
142 | value=FLOAT_NUMBER {Float(value)}
143 | value="True" {Boolean(value)}
144 | value="False" {Boolean(value)}
145 | value=type_spec {TypeSpec(value)}
146 | action_name {action_name}
147 | deref {deref}
148
149 string[String] :
150 | value=STRVALUE {String(value)}
151 | value=LONG_STRVALUE {String(value)}
152
153 // IF_NODE | WHILE_NODE | ASSIGN_NODE | CALL_NODE | BREAK_NODE | CONTINUE_NODE |

RETURN_NODE | RESOLVE_NODE
154 // | ACCESS_NODE | CONSTANT_NODE | GLOBAL_NODE | DECLARE_NODE | INPUT_NODE |

OUTPUT_NODE | NONE_NODE
155 action_name[ActionName] :
156 | value="!if" {ActionName(value)}
157 | value="!while" {ActionName(value)}
158 | value="!assign" {ActionName(value)}
159 | value="!call" {ActionName(value)}
160 | value="!break" {ActionName(value)}



161 | value="!continue" {ActionName(value)}
162 | value="!return" {ActionName(value)}
163 | value="!resolve" {ActionName(value)}
164 | value="!access" {ActionName(value)}
165 | value="!constant" {ActionName(value)}
166 | value="!global" {ActionName(value)}
167 | value="!declare" {ActionName(value)}
168 | value="!input" {ActionName(value)}
169 | value="!output" {ActionName(value)}
170 | value="!none" {ActionName(value)}
171
172 deref[Dereference] :
173 | "?" name=ANYTHING? {Dereference(name)}
174
175
176 // Terminals
177 ID : /[_a-zA-Z][_a-zA-Z0-9.]*/
178 ANYTHING : /[_a-zA-Z0-9.]+/
179 _NL : /(\r?\n\s*|\/\/[^\n]*\n\s*)+/
180 WS : /[␣\t]+/
181 COMMENT : /((?!\n)\s)*\/\/[^\n]*/
182 DEC_NUMBER : /[+-]?(0|[1-9]\d*[lL]?)/
183 FLOAT_NUMBER : /[+-]?((\d+\.\d*|\.\d+)([eE][-+]?\d+)?|\d+[eE][-+]?\d+)/
184 STRVALUE : /u?r?("(?!"").*?(?<!\\)(\\\\)*?"|’(?!’’).*?(?<!\\)(\\\\)*?’)/
185 LONG_STRVALUE : /(?s)u?r?(""".*?(?<!\\)(\\\\)*?"""|’’’.*?(?<!\\)(\\\\)*?’’’)/
186
187 @ignore(WS, COMMENT)
188
189 @fragment("(", ")")
190 @fragment("[", "]")
191
192 @indent_aware(INDENT, DEDENT, _NL)
193 @indent_aware.suspend("(", ")")
194 @indent_aware.suspend("[", "]")

Listing B.7: Weave grammar specification for the example alc (ActionLanguage)
language.

1 Unit(elements: Element [])
2
3 interface Element ()
4
5 Include(from: tok): Element
6
7 interface Function(type: tok , name: tok , params: FunctionParameter



[]): Element
8 FunctionParameter(name: tok , type: tok)
9 FunctionDef(block: Block): Function

10 FunctionRef(referenced: tok): Function
11 FunctionPrefix(type: tok , name: tok , params: FunctionParameter [])
12
13 Block(statements: Statement []): Element
14
15 interface Statement ()
16
17 Definition(type: tok , name: tok , value: AtomValue ?): Statement ,

Element
18
19 Assignment(lhs: LValue , rhs: Expression): Statement
20
21 Return(expression: Expression ?): Statement
22
23 FunctionCall(function: RValue , params: Expression []): Statement ,

Expression
24
25 IfElse(if_block: IfBlock , alt_blocks: IfBlock[], else_block: Block

?): Statement
26 IfBlock(expression: Expression , block: Block)
27 IfElseTail(elifs: IfBlock[], else: Block?)
28
29 While(expression: Expression , block: Block): Statement
30
31 Continue (): Statement
32 Break(): Statement
33
34 interface Expression ()
35 BinaryExpression(lhs: Expression , rhs: Expression): Expression
36 Disjunction (): BinaryExpression
37 Conjunction (): BinaryExpression
38 Equals (): BinaryExpression
39 NotEquals (): BinaryExpression
40 LessThan (): BinaryExpression
41 GreaterThan (): BinaryExpression
42 LessThanEquals (): BinaryExpression
43 GreaterThanEquals (): BinaryExpression
44 Plus(): BinaryExpression
45 Minus(): BinaryExpression
46 Times(): BinaryExpression
47 Divide (): BinaryExpression
48 LogicalNot(expression: Expression): Expression



49 InvertSign(expression: Expression): Expression
50 KeepSign(expression: Expression): Expression
51
52 interface AtomValue (): Expression
53 String(value: tok): AtomValue
54 Integer(value: tok): AtomValue
55 Float(value: tok): AtomValue
56 Boolean(value: tok): AtomValue
57 TypeSpec(value: tok): AtomValue
58 ActionName(value: tok): AtomValue
59 Dereference(name: tok?): AtomValue
60
61 interface LValue ()
62 interface RValue (): Expression
63
64 Name(name: tok): LValue , RValue
65 Index(base: RValue , expression: Expression): RValue

Listing B.8: tdf model for the example alc (ActionLanguage) language.

1 // Root language: graph language
2
3 // Selection of the block non -terminal
4 values = >alc#block{
5 Float h = 10.0
6 Float v = 0.0
7 Float EPS = 0.01 // Epsilon
8 }
9

10 automaton = >tfsa{
11 // Define a state behaviour
12 // Select "cbd" language here explicitly , transition actions are

implicit
13 FallGravity = >cbd{
14 // CBD fragment , operationally unaware of outer level
15 parameter h_0;
16 parameter v_0;
17 constant g = 9.81;
18
19 block v: Integrator;
20 block h: Integrator;
21 block neg_g: Negator;
22
23 connect g to neg_g;
24



25 // dv/dt = -g
26 connect neg_g to v;
27 connect v_0 to v.IC;
28
29 // dh/dt = v
30 connect v to h;
31 connect h_0 to h.IC;
32 }
33
34 initial state start;
35
36 state fallGravity: FallGravity; // Uses FallGravity
37
38 final state stopped;
39
40 transition from start to fallGravity do {
41 // ActionLanguage fragment
42 // Initialize fallGravity internal CBD
43 target.v_0 = parent.values.v
44 target.h_0 = parent.values.h
45 };
46
47 transition from fallGravity to fallGravity
48 when [fallGravity.h < 0]
49 do {
50 // ActionLanguage fragment
51 target.v_0 = -0.8 * from.v
52 target.h_0 = from.h
53 };
54
55 // When the input v_0 is less than EPS , stop
56 transition from fallGravity to stopped
57 when [abs(fallGravity.v_0) - EPS < 0]
58 do {
59 // ActionLanguage fragment
60 // Return values back to upper level
61 parent.values.v = 0
62 parent.values.h = from.h
63 };
64 }

Listing B.9: Example complex model combining a graph, CBD, ActionLanguage and
TFSA formalism.

1 language = >language_define{



2 name = tfsa
3 backend = lark
4 tree model = >tdf{
5 TimedFiniteStateAutomaton(elements: Element [])
6
7 interface Element ()
8
9 State(name: tok): Element

10
11 Transition(from: tok , to: tok , trigger: Trigger ?): Element
12
13 interface Trigger ()
14 EventTrigger(event: tok): Trigger
15 TimeoutTrigger(time: tok): Trigger
16 }
17 grammar = >weave{
18 start[TimedFiniteStateAutomaton] :
19 | elements=element* {TimedFiniteStateAutomaton(elements)}
20
21 element[Element] :
22 | "state" name=ID ";" {State(name)}
23 | "transition" "from" from=ID "to" to=ID trigger=

transition_trigger? ";" {Transition(from , to, trigger)}
24
25 transition_trigger[Trigger] :
26 | "on" event=ID {EventTrigger(event)}
27 | "after" time=NUMBER {TimeoutTrigger(time)}
28
29
30 NUMBER : /[+ -]?([0 -9]+(\.[0 -9]*) ?|\.[0 -9]+)/
31 ID : /[_a-zA -Z][_a-zA-Z0 -9]*/
32 WS : /[ \t\r\n]+/
33 COMMENT : /\s*\/\/[^\n]*/
34
35 @ignore(WS, COMMENT)
36 }
37 }
38
39 some_tfsa = >tfsa{
40 state neutral;
41 state down;
42 state up;
43 state emergency;
44
45 transition from initial to neutral;



46 transition from neutral to down on d;
47 transition from down to neutral on n;
48 transition from neutral to up on u;
49 transition from up to neutral on n;
50 transition from up to emergency on e;
51 transition from emergency to neutral after 1;
52 }

Listing B.10: Example model that parses using dynamic multi-language parsing.
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Abstract
Creating a textual Domain Specific Language requires both writing a parser

and editing assistance services. Both of these are no trivial task and require
careful selection of the tools used for designing the language. Existing tools
for creating these languages offer good support for these, but are limited to
supporting a single language only in a source document. We define a variability
model to classify languages and evaluate support for them by different parsing
technologies, and use this model as part of a comparison of multiple technologies
for editing and parsing textual languages.
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Glossary
abstract syntax A representation of the internal structure of programs or

models based on graphs or trees [77], [86].

Abstract Syntax Tree A tree representation of a source document after pars-
ing. The result of performing semantic analysis on a parse tree. See
Section 2.2.

Application Programming Interface A type of software interface that pro-
vides services to other software.

big endian Ordering method that puts the most significant byte of a word first
when serializing the word (to storage, to the network, etc.).

chart parser A parser using the dynamic programming method, which stores
partial results in a ‘chart’ structure, which allows them to be reused.

concrete syntax (textual) strings of characters that represent the abstract
syntax of a model or program; (visual) a graphical representation of the
abstract syntax of a model or program [77], [86].

Context-Free Grammar A formal grammar with production rules of the
form A → α with A a non-terminal and α a string of terminals and/or
non-terminals. The production rules operate on non-terminals without
context. See Section 2.2.1.

context-free language A language which is generated by a Context-Free Gram-
mar, and can be recognized by a non-deterministic pushdown automaton.
See Section 2.2.1.

Domain Specific Language A language that is specialized to be used in a
specific application domain, such as when modelling or programming. The
opposite is a General-Purpose Language (GPL), which is usable in a broad
domain, and often lacks specialized features.

dynamic programming A programming method that simplifies a compli-
cated problem by recursively breaking it down into simpler sub-problems.

Integrated Development Environment A software application for using pro-
gramming or domain specific languages that provides the user with facil-
ities to aid in usage and development. Facilities include assisted editing
and build automation.

Language Server Protocol A protocol for communication between an editor
or IDE (client) and a language server which provides language features to
the client. See Section 2.4.
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language workbench Collection of tools used to develop languages. See Sec-
tion 2.2.2.

little endian Ordering method that puts the least significant byte of a word
first when serializing the word (to storage, to the network, etc.).

metamodel A model for the abstract syntax of a modelling language. Also
known as a Linguistic Type Model (LTM) [58], [86].

model An abstraction of a system that only contains those properties which
are relevant for making predictions or inferences [58], [86].

operational semantics Specification of the semantics of a model as defined by
a description of how the model operates, such as on an abstract machine
or in a programming language [17], [77].

parse tree A tree representation of a source document right after parsing,
without any extra semantic information. Related to Abstract Syntax Tree.

parser generator Tool used to create parsers from a grammar specification.
See Section 2.2.2.

Parsing Expression Grammar A grammar specification formalism such as
Context-Free Grammars, but which does not support ambiguous gram-
mars, and supports some languages which are not context-free. See Sec-
tion 2.2.1.

projectional editor A text editor which works by editing the abstract syntax
directly instead of requiring parsing a text with a grammar. Results of
edits are “projected” onto concrete textual syntax.

translational semantics Specification of the semantics of a model as defined
by the translation of the model from one formalism to another [86].

Unicode A standard for encoding, displaying and handling text and characters
in various scripts from around the world. See Section 2.1.

Acronyms
API Application Programming Interface.

ASCII American Standard Code for Information Interchange.

AST Abstract Syntax Tree.

CFG Context-Free Grammar.
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DSL Domain Specific Language.

IDE Integrated Development Environment.

LSP Language Server Protocol.

PEG Parsing Expression Grammar.

UTF Unicode Transformation Format.
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1 Introduction
The creation of a new language is no easy feat and requires not only the

definition of a syntax, but also the internal representation and associated se-
mantics. Additionally the aspect of user experience (UX) needs to be considered:
for large or complicated languages some form of editing assistance is a must. For
textual languages, this assistance includes things such as syntax highlighting,
completion, refactoring, diagnostics, and more. Language workbenches allow
designing Domain Specific Languages (DSLs) and provide the facilities to easily
add editing assistance features. Integrated Development Environments (IDEs)
also provide these facilities, but instead provide an abstract Application Pro-
gramming Interface (API) which leaves implementing the actual logic to the
programmer instead. Efforts exist to provide a standardized API for this, such
as the Language Server Protocol for features related directly to editing, and the
Debug Adapter Protocol for the debugging of languages.

The aim of this study is to review several tools such as language workbenches,
Integrated Development Environment (IDE), editors, and software libraries to
compare them with the end goal of producing a library or framework that (1)
allows parsing multiple languages in a single document and (2) supports these
languages to be defined and used immediately afterwards in the same document.

We start by providing some background information in Section 2, followed
by Section 3 where we define a language variability model for comparing various
languages, which can also double as a way to evaluate support for various forms
of languages by parser generators and language workbenches. Finally, we build
up a set of criteria partially based on our new concept and variability model,
and use that to compare some tools for the creation and/or design of languages
in Section 6.

2 Background

2.1 Unicode
Unicode is a standard that defines how to encode, display and handle text

and characters in various scripts maintained by the Unicode Consortium [92].
The goal of the Unicode standard is to be a universal standard which supersedes
other encoding schemes.

The most basic part of Unicode are characters, which are defined by their
unique meaning or semantics. Each character is mapped to a unique human
readable name and also to a unique code point. Hence if one knows either the
character, the name of the character, or the code point of the character, all
others are also known.

Each character is also assigned a glyph, which defines how a character should
be displayed. The actual look of a character however depends on the used font,
and multiple characters may be combined into a single glyph to form ligatures
as defined by the font. Furthermore, depending on the language, the direction
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of text can be from left to right such as in English, or from right to left such as
in Arabic or Hebrew.

A code point is an integer value ranging from 0 through 1, 114, 111 (hexadec-
imal value 0x10FFFF) [92]. When referencing a Unicode character, the notation
U+232C is used to represent the code point with value 0x232C (decimal value
9, 004).

The Unicode standard defines a collection of encoding schemes called the
Unicode Transformation Format (UTF), which define UTF-8, UTF-16, and UTF-
32 [92]. These encoding schemes differ in their ‘word size’, which is the unit of
operation.

• UTF-8 has a word size of 8 bits. It is known as a ‘variable-width encoding’
because the amount of bytes used to represent a code point depends on
the value of the code point, Table 1 shows how this is implemented for
UTF-8.

• UTF-16 has a word size of 16 bits, and like UTF-8 is a variable-width
encoding. It represents code points from U+0000 to U+D7FF and from
U+E000 to U+FFFF as their exact numeric value (values from U+D800 to
U+DFFF are reserved, should not encode, and should be treated as errors
if encountered). Code points from U+010000 to U+10FFFF are encoded
using an algorithm as defined in Listing 1, which first subtracts 0x10000
from the code point and then splits it up between two words.

• UTF-32 is a fixed-width encoding with a word size of 32 bits. A code point
encoded with UTF-32 has the exact same numerical value assigned to it
as the numerical value of the code point itself.

For compatibility reasons, the first 256 code points in Unicode are based on
the extended ASCII character set (ISO/IEC 8859-1). Because of this, the first
127 code points encode exactly the same as the original ASCII 7-bit encoding,
which allows files encoded that way to be read by UTF-8 [92].

When encoding with UTF-16 or UTF-32, special care needs to be taken
when writing these encoded strings to the network or non-volatile storage. For
example, when writing a 16-bit number 0x36A9, we need to write two individual
bytes, 0x36 (00110110) and 0xA9 (10101001). We can chose to write them in
two different ways: 0x36 0xA9 or 0xA9 0x36. We call the first big endian (BE)
because it puts the most significant byte (the byte which contributes the most
value to a number) first. Similarly we call the second little endian (LE) because
it puts the least significant byte first. The same concept applies for 32-bit
numbers and higher. We call the ordering of multi-byte words the endianness.

Because of this, UTF-16 and UTF-32 both have three flavors: UTF-16, UTF-
16BE, UTF-16LE, and UTF-32, UTF-32BE, UTF-32LE. In case no endianness is
specified in an encoding, either a special Byte Order Mark (BOM) needs to be
present, or the encoding is assumed to be big endian [92].

Table 2 shows two code points with example glyphs for both, as well as their
name and encoding as a sequence of bytes.

8



1st byte 2nd byte 3rd byte 4th byte Free bits Highest Code Point

0xxxxxxx 7 U+007F (127)

110xxxxx 10xxxxxx 11 U+07FF (2, 047)

1110xxxx 10xxxxxx 10xxxxxx 16 U+FFFF (65, 535)

11110xxx 10xxxxxx 10xxxxxx 10xxxxxx 21 U+10FFFF (1, 114, 111)

Table 1: Binary representation of how UTF-8 encodes code points. Each x
represents a single bit of the encoded code point. Code points are encoded using
the shortest representation, as such U+003D is only representable as 00111101
and U+232C as 11100010 10001100 10101100 [92].
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U’ = yyyyyyyyyyxxxxxxxxxx // U - 0x10000
W1 = 110110 yyyyyyyyyy // 0xD800 + yyyyyyyyyy
W1 = 110111 xxxxxxxxxx // 0xDC00 + xxxxxxxxxx

Listing 1: Algorithm for encoding of a code point U into UTF-16 if U is between
U+010000 and U+10FFFF, which turns into two words W1 and W2 [92].

Name Equals Sign Hundred Points Symbol

Example
Glyph

Code point U+003D U+1F4AF

E
nc

od
in

g

UTF-8 0x3D 0xF0 0x9F 0x92 0xAF

UTF-16LE 0x3D 0x00 0x3D 0xD8 0xAF 0xDC

UTF-16BE 0x00 0x3D 0xD8 0x3D 0xDC 0xAF

UTF-32LE 0x3D 0x00 0x00 0x00 0xAF 0xF4 0x01 0x00

UTF-32BE 0x00 0x00 0x00 0x3D 0x00 0x01 0xF4 0xAF

Table 2: Comparison of the symbols Equals Sign and Hundred Points Symbol and
their hexadecimal representation for different Unicode encoding schemes. Note
that Equals Sign is on the Basic Multilingual Plane (BMP), while Hundred Points
Symbol is on the Supplementary Multilingual Plane (SMP), which requires more
bytes to represent code points in UTF-8 and UTF-16 encoding schemes.

2.2 Parser Architecture
A parser is a program that transforms a string of characters into a parse tree,

which can then be processed such as for compilation, translation, or diagnostics.
Usually this process is split up into two phases: a lexing phase and a parsing
phase. In Figure 1 an overview of this process can be seen.

During the lexing phase (also called lexical analysis), a source string is an-
alyzed and turned into a stream of tokens. This translation of text to tokens
is called tokenization, and is generally defined by a collection of Regular Ex-
pressions mapped to a ‘token type’. Until the end of the input is reached, the
lexer takes the current position in the input and attempts to get a match with
each Regular Expression taking the ‘best’ match (first, longest, etc.), and then
emits this token and progressing the input position to after the match. If no
match is made with any defined Regular Expression, a lexical error is produced.
Implementations can decide to perform lexical analysis with more advanced
algorithms when required for their syntax.

The parsing phase (also called syntactic analysis) takes the token stream
from the lexing phase and turns them into a parse tree. This translation is
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usually specified as a Context-Free Grammar (CFG) (see Section 2.2.1), with
the implementation able to choose which algorithm they use. For performance
reasons, most algorithms support only a subset of all CFGs. Additionally, while
for most parsers there only exists communication from the lexer to the parser,
a lot of programming languages also allow communication from the parser back
to the lexer. For example, the parser could tell the lexer to change the allowed
token types based on its current state. The implication for this could be that
the language is no longer context-free, but it still manages to use a parser based
on context-free grammars for performance.

Source
String

Lexical Analysis
Lexer

Regular Expressions

Token
Stream

Syntatic Analysis
Parser

Context-Free Grammars

Parse
Tree

Parser feedback

Figure 1: Overview of a parser architecture as it is usually implemented, with a
lexing step (scanner/tokenizer) before the actual parsing. Usually there exists
a mechanism for the parser to interact with the lexer, for example to change its
state.

Some parsers omit the first phase, we call these parsers “scannerless”. The
parsing phase in this case operates on the plain source string instead, with the
terminal symbols being either characters or the raw bytes instead of tokens. An
overview of this process can be seen in Figure 2.

Source
String

Parse
Tree

Syntatic Analysis
Parser

Context-Free Grammars

Figure 2: Overview of a parser architecture without lexing step.

2.2.1 Grammar classifications

Languages can be divided into several categories and subcategories, in [15],
[16] Chomsky defined a hierarchy of four grammar types, with Type-0 giving
the most freedom and Type-3 being the most restricted.

The following is an overview of the four grammar types, with production
rules where:
a is a terminal;
A,B are non-terminals;
α, β a possibly empty string of terminals and/or non-terminals; and
γ a non-empty string of terminals and/or non-terminals.

Type-0 Recursively enumerable languages, recognizing a language in this type
requires a Turing machine. Grammars for these languages have produc-
tions of the form γ → α.
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Type-1 Context-sensitive languages, which can be recognized by linear-
bounded non-deterministic Turing machines. Grammars for these lan-
guages have productions of the form αAβ → αγβ and are called “context-
sensitive” due to the production rule requiring context α and β to trans-
form a non-terminal A.

Type-2 context-free languages, which can be recognized by non-deterministic
pushdown automata. Grammars for these languages have productions of
the form A → α and are called “context-free” because the production does
not require a context to transform a non-terminal A.

Type-3 Regular languages, which can be recognized by finite-state machine.
Grammars for these languages have productions of the form A → a and
A → aB.

We focus on type-2 grammars, which are expressed with Context-Free Gram-
mars. Additionally we look at the Parsing Expression Grammar (PEG) formal-
ism, which is similar but does not describe the same set of languages. For
example, while Listing 2 shows a PEG grammar for the context-free language
{anbn : n ≥ 1}, Listing 4 shows a PEG grammar for the context-sensitive lan-
guage {anbncn : n ≥ 1}. Note that PEGs use an ordered choice whereas CFGs
use an unordered choice, and that PEGs include positive (&) and negative (!)
look-ahead predicates.

⟨S ⟩ ::= ‘a’ ⟨S ⟩? ‘b’

Listing 2: Parsing Expression Grammar for the context-free language
{anbn : n ≥ 1}.

Cursor State
|aabb <S> ::= * ‘a’ <S>? ‘b’ (start)
a|abb <S> ::= ‘a’ * <S>? ‘b’ (progress)
a|abb <S> ::= * ‘a’ <S>? ‘b’ (check <S>)
aa|bb <S> ::= ‘a’ * <S>? ‘b’ (progress)
aa|bb <S> ::= * ‘a’ <S>? ‘b’ (check <S>)
aa|bb <S> ::= ‘a’ <S>? * ‘b’ (fail , return , progress)
aab|b <S> ::= ‘a’ <S>? ‘b’ * (progress)
aab|b <S> ::= ‘a’ <S>? * ‘b’ (return , progress)
aabb| <S> ::= ‘a’ <S>? ‘b’ * (progress , complete)

Listing 3: Example parse of the string ‘aabb’ for the context-free language
{anbn : n ≥ 1} by a PEG parser using the grammar in Listing 2. ‘|’ indicates
the current input position, and ‘*’ indicates the current position in a state.

⟨S ⟩ ::= &(⟨A⟩ ‘c’) ‘a’+ ⟨B⟩ !.

⟨A⟩ ::= ‘a’ ⟨A⟩? ‘b’
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⟨B⟩ ::= ‘b’ ⟨B⟩? ‘c’

Listing 4: Parsing Expression Grammar for the context-sensitive language
{anbncn : n ≥ 1}.

Cursor State
|aabbcc <S> ::= * &(<A> ‘c’) ‘a’+ <B> !. (start)
|aabbcc <S> ::= &(* <A> ‘c’) ‘a’+ <B> !. (progress)
|aabbcc <A> ::= * ‘a’ <A>? ‘b’ (check <A>)
a|abbcc <A> ::= ‘a’ * <A>? ‘b’ (progress)
a|abbcc <A> ::= * ‘a’ <A>? ‘b’ (check <A>)
aa|bbcc <A> ::= ‘a’ * <A>? ‘b’ (progress)
aa|bbcc <A> ::= * ‘a’ <A>? ‘b’ (check <A>)
aa|bbcc <A> ::= ‘a’ <A>? * ‘b’ (fail , return ,

progress)
aab|bcc <A> ::= ‘a’ <A>? ‘b’ * (progress)
aab|bcc <A> ::= ‘a’ <A>? * ‘b’ (return ,

progress)
aabb|cc <A> ::= ‘a’ <A>? ‘b’ * (progress)
aabb|cc <S> ::= &(<A> * ‘c’) ‘a’+ <B> !. (return ,

progress)
aabbc|c <S> ::= &(<A> ‘c’ *) ‘a’+ <B> !. (progress)
|aabbcc <S> ::= &(<A> ‘c’) * ‘a’+ <B> !. (progress)
aa|bbcc <S> ::= &(<A> ‘c’) ‘a’+ * <B> !. (progress)
aa|bbcc <B> ::= * ‘b’ <B>? ‘c’ (check <B>)
aab|bcc <B> ::= ‘b’ * <B>? ‘c’ (progress)
aab|bcc <B> ::= * ‘b’ <B>? ‘c’ (check <B>)
aabb|cc <B> ::= ‘b’ * <B>? ‘c’ (progress)
aabb|cc <B> ::= * ‘b’ <B>? ‘c’ (check <B>)
aabb|cc <B> ::= ‘b’ <B>? * ‘c’ (fail , return ,

progress)
aabbc|c <B> ::= ‘b’ <B>? ‘c’ * (progress)
aabbc|c <B> ::= ‘b’ <B>? * ‘c’ (return ,

progress)
aabbcc| <B> ::= ‘b’ <B>? ‘c’ * (progress)
aabbcc| <S> ::= &(<A> ‘c’) ‘a’+ <B> * !. (return progress)
aabbcc| <S> ::= &(<A> ‘c’) ‘a’+ <B> !. * (progress ,

complete)

Listing 5: Example parse of the string ‘aabbcc’ for the context-sensitive lan-
guage {anbncn : n ≥ 1} by a PEG parser using the grammar in Listing 4. ‘|’
indicates the current input position, and ‘*’ indicates the current position in a
state.

⟨S ⟩ ::= ⟨T ⟩ ‘+’ ⟨T ⟩

⟨T ⟩ ::= ‘a’
| ‘b’
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Listing 6: Simple grammar that can generate the strings a+a, a+b, b+a, and
b+b.

There are several algorithms for parsing Context-Free Grammars. The dif-
ference between them lies in how the algorithm behaves:

• Most parsers are ‘left-to-right’ and read input (characters if lexerless, to-
kens if with lexing step) without backing up.

• Some allow looking ahead one or more characters or tokens.

• Parsers can either perform a top-down parse which attempts to construct
the parse tree by looking at it from the top, or a bottom-up parse which
first looks at the lowest level of the parse tree and gradually constructs it
upwards.

• They can perform a leftmost derivation whereby production rules are ex-
panded from left to right, or a rightmost derivation does so in the opposite
direction. An example leftmost derivation for a+b from Listing 6 can be
given as follows:

⟨S⟩ ⊢ ⟨T ⟩ ‘+’ ⟨T ⟩ ⊢ ‘a’ ‘+’ ⟨T ⟩ ⊢ ‘a’ ‘+’ ‘b’

The same string can be derived using a rightmost derivation as follows:

⟨S⟩ ⊢ ⟨T ⟩ ‘+’ ⟨T ⟩ ⊢ ⟨T ⟩ ‘+’ ‘b’ ⊢ ‘a’ ‘+’ ‘b’

Figure 3 shows an overview of the most common parser algorithms for
Context-Free Grammars, a short explanation of their names is given here:

• LL(k): Left-to-right, Leftmost derivation with k tokens lookahead

• LR(k): Left-to-right, Rightmost derivation with k tokens lookahead

• SLR: Simplified LR parser, based on an LR(0) parser.

• LALR(k): Look-Ahead LR parser with k tokens look-ahead, an extension
to LR(0) parsers.

• GLR: Generalized LR parser, an extension to the LR parser algorithm
to support non-deterministic and ambiguous grammars. It can parse all
context-free languages.

• Earley: a chart parser using dynamic programming, named after its de-
veloper Jay Earley [18]. It can parse all context-free languages including
those that are ambiguous and/or non-deterministic.

• CYK: the Cocke-Younger-Kasami algorithm [79], another chart parser.
It can parse all context-free languages including those that are ambiguous
and/or non-deterministic.
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Context-Free Grammars

Unambiguous Grammars Ambiguous
Grammars

LL(0)

LL(1)

LL(k)

LR(0)

SLR

LALR(1)

LR(1)

LR(k)

GLR, Earley, CYK

Figure 3: Hierarchical representation of Context-Free Grammar classes, adapted
from [31].

Additionally, as said earlier Parsing Expression Grammars parser can parse
all context-free languages and some context-sensitive languages. PEG parsers
are mostly implemented as recursive descent parsers, which use recursive pro-
cedures to parse and allows both backtracking and infinite lookahead. By using
memoization to store the results of recursive parsing functions, the performance
of these parsers can be improved, these sorts of parsers are called ‘packrat
parsers’.

2.2.2 Parser generators

A parser generator is a sort of compiler, with its own language and parser,
that takes a grammar specification and turns it into a parser. Examples of
parser generators are ANTLR, GNU Bison, and Yacc. Some parser generators do
not generate the whole parser pipeline, and instead only generate the syntactical
analysis phase. These rely on other tools such as Lex and Flex to generate the
lexical analysis phase.

A language workbench contains a parser generator, but also includes func-
tionality such as diagnostics and special editor features. Languages designed
with a language workbench usually also automatically generate editors, which
on their own also provide special editor features either out of the box or by the
developer via tools provided by the workbench.
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2.3 Common Token Type Categories
Tokens passed from the lexer to the parser have an associated type (see

Section 2.2). When designing a language there are several sorts of token types
that are inevitably encountered. We go over a few of them.

2.3.1 Identifiers

Identifiers are used as a way to assign a name to parts of a program or
model. A name assigned to something usually needs to be unique with respect
to a specific ‘scope’, which dictates where a name is valid. When referencing
something named, this usually requires that the name is valid in the referencing
scope.

An identifier is usually made up of some letters and numbers, but cannot
begin with a number. Some languages support using Unicode characters. An
example identifier could be ‘foobar’.

2.3.2 Keywords

Keywords are reserved words which have a special meaning to the compiler.
When a parser makes use of a lexer, these are usually returned as instances of
their own token type. Keywords cannot be used as identifiers in most languages,
though there are some languages such as for example JavaScript that allow
keywords to be used as identifiers in some places, but not in others [28], [75].

Some example keywords are ‘for’, ‘if’, ‘float’, ‘return’, ‘class’, and
‘import’.

2.3.3 Operators and Separators

Separators are like punctuation used in natural language, in a sense that
they are used to split a program into multiple parts that each have their own
meaning. Examples of separators are: parentheses (‘(’ and ‘)’), brackets (‘[’
and ‘]’), braces (‘{’ and ‘}’), semicolons (‘;’), and commas (‘,’).

Operators are used to define a semantic operation or relation on one or more
‘operands’: for example the addition of two numbers. Examples of operators
are: addition (‘+’), increment (‘++’), subtraction (‘-’), division (‘/’), assignment
(‘=’), equality check (‘==’), and boolean AND (‘&&’).

2.3.4 White Space

White space are characters which are used for layout. These are usually the
following characters: space, horizontal tab, newline, and carriage return.

Under Unicode the White_Space property is defined as: “Spaces, separator
characters and other control characters which should be treated by programming
languages as “white space” for the purpose of parsing elements.”.
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2.3.5 Literals

Literals represent a constant value in source code such as numbers, booleans,
strings.

Strings are usually delimited by single (‘’’) or double quotes (‘"’), or by a
sequence of characters. These sometimes have different meanings depending on
the delimiters. For example, in C a double quoted string ends with a NULL byte,
while a single quoted string does not. The ability to write Unicode characters
is often allowed either directly or by using an escape sequence (usually as a
sequence of ASCII characters) which inserts them post parse. The following is
an example of a valid string in Python 3: "Привет мир!". The same string can
also be represented using character escapes as:

"\u041f\u0440\u0438\u0432\u0435\u0442 \u043c\u0438\u0440!"

Booleans only have two possible values, and as such they are usually repre-
sented using keywords such as true and false.

Numbers are usually written using decimal digits 0 through 9 in program-
ming languages. There are however other characters for representing numbers
included in Unicode. For example, the number 69 in Japanese Kanji is 六十九

Some languages have a concept of a ‘null’ value or pointer, which represents
the absence of a value or a reference to nothing. Examples of these are ‘null’,
‘nullptr’, ‘nil’, and ‘None’.

2.3.6 Comments

Most languages have a way of writing comments, which are a way to add
non-semantic pieces of text in a source document, such as for documentation, or
for temporarily disabling or removing part of the model or program. Comments
can be formed in several ways. Van Tassel put them into four categories in [93]:
positional, end-of-line, block, and mega comments. Additionally, some forms
of comments can lie outside of this categorization. For example, some esoteric
languages such as Brainfuck ignores any character which does not represent an
instruction (instructions being one of ‘>’, ‘<’, ‘+’, ‘-’, ‘.’, ‘,’, ‘[’, and ‘]’), which
is its way of writing comments.

Positional comments

Positional comments consider the entire line to be a comment, and require
the comment indicator to be in a specific position. Languages making use of
this style of comments are mostly from the age of when punch cards were still.

Examples of languages that use positional comments: FORTRAN (‘C’ in
column 1), BASIC (‘REM’ at start of line, see Listing 7), COBOL (‘*’ in column
7).

010 REM FIND PRIME NUMBERS LESS THAN 100
020 REM BY DENNIE VAN TASSEL
030 REM JULY 4, 1965
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040 LET A = 1

Listing 7: Example partial BASIC code indicating comment lines by putting REM
at the beginning of the line. Example from [93].

End-of-line Comments

End-of-line comments are slightly less restrictive than positional comments
in that they allow the comment indicator to be anywhere on the line, and all
columns after it are treated as comment, while the columns before are inter-
preted as program text.

Examples of languages that use end-of-line comments: Assembly (‘;’),
MySQL (‘--’), C++ (‘//’, see Listing 8), Java (‘//’), Python (‘#’).

int main() {
return 0; // Don ’t do anything , just return

}

Listing 8: Example C++ code with an end-of-line comment starting with ‘//’.

Block Comments

Block comments can start and end at arbitrary positions in a file, but instead
of having only one indicator, they have a start indicator and an end indicator.
This allows comments that span only a short piece of a line, and also those that
span multiple lines. A use case for these is the commenting out of longer pieces
of code without the need for adding a comment on each line.

Examples of languages that use block comments: C/C++ (‘/*’ ‘*/’),
Java (‘/*’ ‘*/’), HTML/XML (‘<!--’ ‘-->’, see Listing 9), etc.

<?xml version = "1.0"? >
<dictionary >

<!-- Placeholder , dictionary is empty -->
</dictionary >

Listing 9: Example XML with a block comment between ‘<!--’ and ‘-->’.

Mega Comments

If a comment exists within another comment, we call this a nested com-
ment. The idea behind this is the same as that which Van Tassel called mega
comments in [93]. A use case for this is that you may want to disable a piece
of code that already contains comments (either other code that is disabled, or
documentation).

Examples of languages that support nesting of comments: Scala, Swift (see
Listing 10), Dart, XML (not as actual comments, but as the marked section
type IGNORE, which prevents processing in conforming parsers [89], see also
Listing 11).
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/*
* Comments are started by /* and ended with */
* The comment is still going on even after
* the closing sequence due to nesting.
*/

print ("/* This is not a comment */")

Listing 10: Example nested comments in the Swift programming language, with
comments delimited by ‘/*’ and ‘*/’ and allowing nesting.

<?xml version = "1.0"? >
<profile >

<![IGNORE[
<!-- This is a regular comment in a mega comment -->
<friends >

<friend >Anna </friend >
<![IGNORE[
Disabled for testing
<friend >Steve </friend >
]]>

</friends >
]]>

</profile >

Listing 11: Example nested comments in XML, with IGNORE sections [89] being
used as comments, which allows them to be nested.

2.4 Language Server Protocol
The Language Server Protocol (LSP) [13], [71] is a protocol that defines

a way for editors or IDEs (“language clients”) to communicate with “language
servers”, which provide editor features such as auto completion, error checking,
refactoring, etc. The goal of the protocol is to allow developers to write a
language server once and be able to reuse it for multiple clients, as opposed to
having to implement the same features for different tools through different APIs
and possibly even in different programming languages.

The general architecture is one where a language server is started by a client
when it requires services provided by the server. This server only provides
services to the client that started it, but the client itself can request services
from multiple servers independently (see Figure 4).

Additionally, a language server can itself act as a client by starting other
language servers, which it can then use to delegate requests to. This approach
is one possible way of implementing embedded languages. The other is to use
request forwarding but this requires the client to do the heavy lifting.
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The protocol is based on the JSON-RPC protocol, which is a remote pro-
cedure call protocol encoded in JSON [56]. Clients and servers can both send
either requests which require a response for either successful handling or error
conditions, or notifications which do not require or even allow a response to be
sent back. A full overview of the protocol can be found at [71].

Figure 4: Illustration of the Language Server Protocol when a user using a de-
velopment tool acting as the language client is working with multiple languages.
The client starts multiple language servers that each process requests for their
respective languages [71].

Figure 5: Illustration of the Language Server Protocol showing the communica-
tion between a language client and a single language server [71].
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3 Language Variability Model
One of our goals is to have a parser that can work with many different kinds

of languages and support different language configurations. In this part we’ll
go over some ways these languages can differ from each other in their concrete
syntax by building a variability model, without looking at their abstract syntax
and semantics. An overview of our variability model can be seen in Figure 6.

Language
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ASCII Unicode

Implicit Explicit

Grammar Class Statement
Endings

Variants and
Dialects

Auto insertion
on missingCharacter

Support

Lexer

Indentation
Sensitive Free-form
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Sections

Positional End of line Block Mega

Comments

Token based implies Lexer

Parsing Expression
Grammar

Context-Free
Grammar

(Hierarchy)

Token basedLayout
constraints

Concrete Syntax

Figure 6: Visual representation of the variability model which we will use in our
comparison in Section 6.

3.1 Concrete Syntax
Larkin and Simon [60] discerned two kinds of representations for problems:

sentential (with sentences in a natural language describing the problem) and
diagrammatic (made up of diagrams, where every component describes part of
the problem). When modeling or writing code, we have a similar division in
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languages: textual languages that describe a model or program with characters
and words, and visual languages which describe a model or program by shapes,
colors, etc.

In the context of modelling, we speak of “concrete syntax” when talking
about the notation of a language, which can be either visual or textual. This
visual or textual concrete syntax gets mapped to the Abstract Syntax, which is
the abstract representation of a model.

We include this variability point for comparing editors mainly, due to the
fact that being able to edit textual and visual languages in the same program
offers users a better user experience such as having integrated environment and
needing to switch context less often.

3.2 Grammar Classification
As we described in Section 2.2.1 and can be seen in Figure 3, not every

context-free parser supports every Context-Free Grammar. Special care needs
to be taken to ensure the tool we chose supports a wide range of grammars,
while also keeping in mind the performance loss for extended support such as
ambiguity or non-determinism. Furthermore, some tools use a lexer or scanner
step to pre-process the parsed input, while others send the input text straight
to the parser, and this needs to be taken into account when choosing a tool.

3.3 Block Structures
A block is a collection or sequence of declarations and statements that com-

bined have some sort of semantic meaning.
In most programming languages, a block defines a sequence of instructions

to perform in that order. It also provides a concept of ‘scope’ which dictates
what ‘names’ or ‘identifiers’ are referenceable by the instructions in said scope.

In the following sections we describe two major and one minor forms of
syntax to indicate the start and end of a block.

3.3.1 Indentation Sensitive

Originally coined by Landin as the “off-side rule” in 1966 [59] when he de-
scribed a fictional family of languages called ISWIM (If you See What I Mean).
Nowadays these languages are referred to as “indentation sensitive” languages
[1], [11], which use the indentation of the first token on a line to denote which
block it belongs to.

Examples of these sorts of languages are Python [91] (see Listing 12),
CoffeeScript [4], and Make files.

Implementing grammars of these sort require special support by the parser,
either by having a lexer that produces tokens for increasing and decreasing the
indentation (see for example Listing 12), or by putting layout constraints in the
grammar [29]. Our evaluation for block structure support in our comparison in
Section 6 will thus focus mainly on this.

22



⟨Block⟩ ::=-- �Newline Indent ⟨Statements⟩ Dedent� ⟨SimpleStatements⟩ �� -�

⟨Statements⟩ ::=--
� �� ⟨Statement⟩ � -�

⟨Statement⟩ ::=-- �⟨CompoundStatement⟩� ⟨SimpleStatements⟩ �� -�

⟨SimpleStatements⟩ ::=--
� ‘;’ �� ⟨SimpleStatement⟩ � -�

Listing 12: Block definitions for Python 3 grammars. Indent and Dedent
are tokens generated by the lexer based on the indentation level of the source
document [91].

3.3.2 Free-form

If the usage of indentation or alignment does not have any meaning in a
language, we call it a “free-form language”. These sorts of languages require
other ways of indicate the start and end of blocks.

A lot of modern languages such as C++ [42], Java [41], Rust [78] use curly
braces (‘{’ and ‘}’) to start and end a block respectively, while ALGOL 68 uses
parentheses for this purpose. Other languages use words such as ‘begin’ and
‘end’, for example Pascal [43] or SHell script (‘if’/‘fi’, ‘do’/‘done’, etc.).

Writing grammars for these constructs is trivial, as they are just tokens
passed from the lexer to the parser without special processing, or in the case of
a scannerless parser are parsed directly without any special processing. An ex-
ample of such grammars can be taken from the latest Java language specification
[41] (Java 16) and can be seen in Listing 13.

⟨Block⟩ ::=-- ‘{’ �⟨BlockStatements⟩� �� ‘}’ -�

⟨BlockStatements⟩ ::=-- ⟨BlockStatement⟩
� �� ⟨BlockStatement⟩ � -�

⟨BlockStatement⟩ ::=-- �⟨Statement⟩� ... �� -�

Listing 13: Block statement grammar specification for Java 16 [41] (chapter 14).
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3.3.3 Section based

We view section based block structures as a variation to free-form languages.
They have a single or series of symbols which indicate the start of a block, but
have no specific symbol(s) to end a block, as they instead end implicitly.

Examples of these sorts of languages are INI (see Listing 14) configuration
files, and the meta-languages used by Spoofax such as SDF3, NaBL2 and ESV
(see Listing 15) [66].

Grammars for these languages are similar to those of free-form languages,
except for the lack of a specific end character, and instead rely on the parser to
automatically detect the end of each section. This form is most noticeable in
the example in Listing 15.

⟨Sections⟩ ::=--
� �� Newline �� �� ⟨Section⟩ � -�

⟨Section⟩ ::=-- ‘[’ ⟨SectionName⟩ ‘]’ Newline
� �� ⟨KeyValue⟩ � -�

⟨KeyValue⟩ ::=-- �⟨Key⟩ ‘=’ ⟨Value⟩� �� Newline -�

Listing 14: A partial example grammar definition for INI configuration files.

⟨Sections⟩ ::=--
� �� ⟨Section⟩ � -�

⟨Section⟩ ::=-- � ⟨MenusSection⟩� ⟨ColorerSection⟩ �� ... �
� -�

⟨MenusSection⟩ ::=-- ‘menus’
� �� ⟨Menu⟩ � -�

⟨ColorerSection⟩ ::=-- ‘colorer’
� �� ⟨ColorRule⟩ � -�

Listing 15: Part of the section based language ESV from the Spoofax Language
Workbench [66].

3.4 Statement Endings
Most programming languages have a concept of statements, which denote

a sequence of operations to be performed on the current program state. In a
lot of those languages such as C++ [42], Java [41] (see Listing 16), Go [90] (see
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Listing 17), Rust [78], etc. they are separated with a semicolon (‘;’). Other
languages such as Python [91] and SHell script do not require separation with
semicolons, but allow them anyway to put multiple statements on a single line.
Also in Python, statements can continue on the next line if the line ends with a
backslash (‘\’) or if there are unclosed parentheses, brackets, or braces. Finally,
there are languages where semicolons are required but can be omitted in the
source file. For example, both JavaScript [28] and Go [90] insert semicolon tokens
under some circumstances that would otherwise cause a parse error.

⟨Statement⟩ ::=-- �⟨StatementWithoutTrailingSubstmnt⟩� ⟨IfThenStatement⟩ �� ⟨ForStatement⟩ �� ... �
� -�

⟨StatementWithoutTrailingSubstmnt⟩ ::=-- � ⟨Block⟩� ⟨EmptyStatement⟩ �� ⟨ExpressionStatement⟩ �� ... �
� -�

⟨EmptyStatement⟩ ::=-- ‘;’ -�

⟨ExpressionStatement⟩ ::=-- ⟨StatementExpression⟩ ‘;’ -�

⟨IfThenStatement⟩ ::=-- ‘if’ ‘(’ ⟨Expression⟩ ‘)’ ⟨Statement⟩ -�

⟨Block⟩ ::=-- ‘{’ �⟨BlockStatements⟩� �� ‘}’ -�

Listing 16: Partial grammar for Java 16 statements [41] (chapter 14), which
puts the separator (‘;’) in the individual statements (e.g. EmptyStatement,
ExpressionStatement) that require it.

⟨Statement⟩ ::=-- � ⟨Declaration⟩� ⟨SimpleStatement⟩ �� ⟨IfStatement⟩ �� ⟨Block⟩ �� ... �
� -�

⟨SimpleStatement⟩ ::=-- � ⟨EmptyStatement⟩� ⟨ExpressionStatement⟩ �� ⟨Assignment⟩ �� ... �
� -�

⟨EmptyStatement⟩ ::=-- -�

⟨ExpressionStatement⟩ ::=-- ⟨Expression⟩ -�
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⟨IfStatement⟩ ::=-- ‘if’ �⟨SimpleStatement⟩ ‘;’� �� ⟨Expression⟩ -

- ⟨Block⟩ �‘else’ �⟨IfStatement⟩� ⟨Block⟩ ��� �
� -�

⟨Block⟩ ::=-- ‘{’ ⟨StatementList⟩ ‘}’ -�

⟨StatementList⟩ ::=--
� �� ⟨Statement⟩ ‘;’ � -�

Listing 17: Partial grammar for Go statements [90], which puts the separator
(‘;’) in the StatementList production.

3.5 Comments
As written by Van Tassel in [93] (see Section 2.3.6), there are various sorts

of comment types. Both end-of-line comments and block comments are easily
implemented in most parsers as a regular expression in the lexical analysis phase
(see Section 2.2). For mega comments, some form of extended regular expres-
sions that allow recursion are the preferred way to implement them in the lexer,
though this requires the lexer supporting this. Lastly positional comments are
difficult because they work on a per-line basis, while most lexers and lexerless
parsers work on a per-character basis. Implementing them would require ei-
ther a pre-processing step or a custom lexer, and as such is difficult to achieve.
Thankfully, these sorts of comments only exist in languages as a relic of the
limitations of the past, and as such not supporting them is not a big issue.

3.6 Unicode
Unicode (see Section 2.1) support is an important requirement for us due

to the interoperability it provides between programs. However, there are still
languages that only support ASCII or other character sets as input, or that
use basic ASCII characters for most of their language but allow using Unicode
characters as well.

The following are important aspects we look at for Unicode support:

• Support for reading files in different Unicode encodings, but primarily
UTF-8.

• Support for using Unicode characters in the grammar specification lan-
guage, both in rule and token names, and in the actual string representa-
tion of tokens.

• Support for rendering Unicode characters, and properly taking into ac-
count characters which get encoded into multiple bytes or words based on
the memory representation. An example would be to not allow putting
the caret halfway through a character.
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3.7 Language Dialects or Variations
Some languages have multiple ways to be written down, or change between

releases. For example a programming language such as Python (version 2, 3 / 2.7,
3.6, 3.7, 3.8, etc.) or Java (version 5, 6, 7, etc.) evolves and adds new features,
which require new syntax to be added. Another example would be ALGOL,
which has a lot of different implementations and tweaks to the syntax, each to
suit a use case such as I/O capability. Prompto [94] is language and framework
which has three different dialects all in the same version of the software, with
all of them being convertible between each other, allowing the same model to
be specified each of the dialects without loss of data.

Important to us is the ability to select dialects at least per-extension, and
preferably even per-file. Another nice thing to have is the ability to change the
language/dialect on the fly without re-opening the file.

4 Tools Overview
In the following sections, we describe the tools we decided to look at for our

comparison and give some background information about them. Table 3 gives
an overview of the most important properties of each tool.

Name Languages Parser Designation

Spoofax Java
Stratego GSLR Language Workbench

Xtext Java LL(*) Language Workbench
Software Framework

JetBrains MPS Java N/A Language Workbench

IntelliJ IDEA Java N/A Integrated Development
Environment (IDE)

Atom JavaScript
CoffeeScript N/A Source Code Editor

Visual Studio Code JavaScript
TypeScript N/A Source Code Editor

Python PLY Python LALR(1) Library

Python Lark Python LALR(1)
Earley Library

Table 3: An overview of all the tools looked at in this comparison.
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4.1 Spoofax
Spoofax is an open-source language workbench for writing Domain Specific

Languages maintained by the TU Delft Software Engineering Research Group
[57], [66]. It is written in Java and uses an Eclipse based IDE to aid in the
development of languages, at the time of writing an IntelliJ IDEA plugin is also
under development [63].

Spoofax makes use of a Scannerless Generalized LR (SGLR) parser [95],
which does not use a lexing step during parsing of files.

4.2 Xtext
Xtext [26] and Xtend [21] are an open-source framework for writing Domain

Specific Language, and are maintained by the Eclipse Foundation. They are
written entirely in Java and have an Eclipse based IDE to aid in developing
languages, an IntelliJ IDEA plugin exists [20] but has not been updated since
2016 at the time of writing.

Xtext uses ANTLR v3 internally as its parser generator, which generates
parser that can parse LL(*) grammars [76].

4.3 JetBrains MPS
MPS (Meta Programming System) is an open-source IDE for creating and

working in Domain Specific Language and is developed by JetBrains [53]. It
is written in both Java and a “Base Language” which is a modeled version of
Java 6. Its key feature is that it works with a projectional editor which edits
the Abstract Syntax Tree (AST) directly, rather than using the classic textual
editor which needs a grammar specification and a parser to convert it to an
AST.

When writing a Domain Specific Language with MPS, the developer defines
the abstract syntax, constraints, concrete (textual) syntax, and both transla-
tional semantics and operational semantics. Additionally the developer can
write ’intentions’, which provide the user of the language with quick actions to
perform to the model, refactoring operations, migration operations (for when
the language gets updated), and tests for verifying the language definition.

4.4 IntelliJ IDEA
IntelliJ IDEA is a semi open-source Integrated Development Environment

(IDE) for writing Java libraries and programs [48], and features a variety of
plugins which add support for other languages. It is written entirely in Java
and features two editions: a free “Community Edition” and a paid for “Ultimate
Edition”. The paid edition features are built on top of the free edition, and
include closed-source code as opposed to the free edition’s open-source code
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4.5 Atom
Atom is an open-source source code editor developed by GitHub [32], it

features a variety of community made plugins which add editor features or
support for other languages. It is based on Electron, which is a framework for
developing applications with HTML, CSS, and JavaScript. Atom itself is written
in JavaScript and the CoffeeScript language [3] which compiles to JavaScript.

4.6 Visual Studio Code
Visual Studio Code [73] is a semi open-source source code editor developed

by Microsoft, it features a variety of plugins made by Microsoft and the com-
munity to add various features and support for other languages. Like Atom, it
is based on the Electron framework, which is why it is written in JavaScript and
TypeScript (which compiles to JavaScript).

4.7 Python Lex-Yacc (PLY)
PLY [7] is an open-source Python 2 & 3 implementation of the lexer and

parser generators Lex and Yacc. It makes use of an LALR(1) algorithm to
parse input.

At the time of writing, a new version of PLY is being developed by the same
developer under the name of SLY [6], which makes use of more modern versions
of Python and drops support for Python 2.

4.8 Python Lark
Lark [81] is an open-source Python 2 & 3 parsing toolkit. It supports both

an LALR(1) parser and an Earley [18] parser.
It is the successor of PlyPlus [80], which is a parser library built on top of

and extending PLY.

5 Criteria

5.1 Language Variability Support
In Section 3 we described our language variability model which represents

some common variation points in languages. The tool we pick should support
as many variations of this model as possible, as such we will check which parts
are (partially) supported or not.

5.2 Multi-language and Dynamic Parsing
As we eluded to at the beginning, our goal is to have a parsing toolchain that

supports multiple grammars throughout a source document, either by changing
the parser grammar or by deferring to a different parser. This is similar to

29



‘dynamic parsers’ as defined by Cabasino et al. [14] and Boullier [10], but
instead involves completely changing the grammar, and being able to go back
to the previous grammar, as opposed to modifying it without being able to
revert. We’ll refer to this as multi-language parsing for the purposes of our
comparison.

Additionally, we would like to be able to define languages while parsing, and
afterwards making use of those languages, all in the same source document. This
is for example similar to defining a formalism in an interactive terminal, and
then performing a command to start using this formalism, but with grammars
instead. We’ll refer to this as dynamic language definitions in our comparison.

5.3 Maintenance
Under this criterion we look at how maintained a specific tool is: do its

developers still actively commit code to it to either remove bugs, add features,
or modernize the codebase? Or has it been (partially) abandoned?

The importance here lies in the fact that if a tool has been abandoned or is
not receiving any more bug fixes, this would incur a cost on us to either fork
and fix bugs ourselves, or to replace it with a different tool/library and adapt
our codebase to it.

5.4 Documentation
This criterion looks at how well each tool is documented, which is important

for us to be able to properly use it. APIs provided by the tool need to be
annotated such that as developers of our own library or tool we know what it
expects, what it returns, etc. Any (meta-)languages provided by the tool itself
should also be properly explained, for example the concrete syntax definition
language (usually some form of Extended Backus-Naur Form or EBNF) should
have documentation on how to properly define rules and symbols.

We will focus on official manuals, guides and examples made available by
the creators and/or maintainers of each tool.

5.5 Setup
Under this criterion we look at what steps are required to get started using

each tool, both as a language designer and as a user of a language made with
the tool. If installation is easy, it makes our project easier to use by other users
and as such increases user experience.

For the best user experience, the user should be required to install as little
extra dependencies as possible, preferably none. If the user were to need to
install extra dependencies this should be made easy, such as the tool taking
care of downloading and possibly even installing them.

Plugins (or extensions, packages) for these tools are also an important way
of distributing functionality, and as such should be easy to download and install.
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Preferably this would be possible inside the tool/application itself, which would
configure everything on its own in order to make use of the plugin.

5.6 Support
This criterion looks at whether there is somewhere to get support for the

tool, such as a forum, discussion board or issue list. These places normally have
experienced users and developers of the tool that help new users getting started
or resolving issues they are having with the tool.

5.7 Editor Features
Because our end goal is to have an Integrated Development Environment

(IDE) that allows us to write Domain Specific Languages with arbitrary em-
bedding of other languages, this criterion focuses on the features that make up
an IDE: if they are supported or easy to add.

The following is a non-exhaustive list of IDE features:

• Syntax highlighting of semantic components.

• Completion of constructs, symbols, etc.

• Model transformations such as refactoring, renaming, etc. but also trans-
formations of the parse tree / abstract syntax tree.

• Informative error reporting for parsing errors, semantic errors, etc.

• Linting support to detect styling issues, smells, etc.

• Jumping to declaration and references of symbols.

• Debugging operational semantics: pausing execution, stepping through,
reading values in memory, etc.

• Structured overviews of a document detailing declared components.

5.8 Language Server Protocol
The Language Server Protocol (LSP) (see Section 2.4) is a protocol for edi-

tors and IDEs to make use of a language server which provides editor features.
Being able to provide our tool as a language server would be a great advantage,
as this would mean users of our tool would be able to choose the editing environ-
ment of their choice. With this in mind, we will look at each tool with the idea
of either (1) creating a language server using a library or language workbench,
or (2) for creating a language client such as for an editor or IDE.
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6 Comparison
In this section we will go over each of our criteria as defined in Section 5. In

Table 5 we provide an overview of this comparison to get a quick glance at the
overall outcome, using Table 4 as a reference for our scores.

Score Meaning
−−−− Extremely terrible support
−−− Terrible support
−− Very bad support
− Bad support
+ Alright support

++ Good enough support
+++ Good support

++++ Exceptionally well support
✓ Supports feature
✗ Does not support feature

Table 4: Overview of several symbols used in our comparison tables.
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Language Variability
Supporta + ++ + + ++ ++ +++ +++

Dynamic language
definitions + −− − + +++ + ++ +++

Multi-language
parsing −− −− ++++ ? b ? b ? b +++ +++

Maintenance ++ ++ +++ +++ − ++++ + ++

Documentation ++ ++ ++++ +++ ++ ++++ +++ ++

Setup +++ +++ +++ +++ +++ +++ +++ +++

Support + +++ +++ +++ ++ +++ ++ ++

Editor Features +++ +++ +++ ++ + c +++ N/A N/A

Language Server
Protocol −−− +++ N/A + d ++ ++++ + d ++ d

Overall ++ ++ ++ +++ +++ +++ ++ +++
a See Table 6 for a detailed overview of this criterion per tool.
b Support depends on used third-party libraries or toolchains.
c Additional features provided through third-party extensions or plugins.
d Support provided through third-party extensions, plugins, or libraries.

Table 5: Overview of the comparison result. See Table 4 for an overview of
meanings for each score.

6.1 Language Variability Support
In this section we compare each tool from section Section 4 to our language

variability model defined in Section 3. Table 6 provides an overview of this
comparison, including scores.
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Textual languages ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Visual languages ✗ ✗ ✗ ✓ ✓ ✓ N/A N/A

Parser Class SGLR LL(*) N/A ? a ? a ? a LALR(1) LALR(1)
Earley

Lexer step ✗ ✓ N/A ? a ? a ? a ✓ Optionalb

Indentation sensitive
block structures ++++ +++ N/A ? a ? a ? a + ++

Explicit Statement
Endings ++ ++ N/A ? a ? a ? a +++ +++

Implicit Statement
Endings ++ ++ N/A ? a ? a ? a +++ +++

Comments + ++ N/A ? a ? a ? a ++ +++

Unicode Encodings −− ++ + ++++ +++ +++ ++++ ++++

Unicode Specification −−− + + ? a ? a ? a ++ ++

Unicode Editing +++ +++ + +++ +++ +++ N/A N/A

Dialects
Per File −−− +++ +++ −− ++++ ++++ N/A N/A

Dialects
Per Extension +++ +++ N/A +++ +++ +++ N/A N/A

Overall + ++ + + ++ ++ +++ +++
a Support depends on used third-party libraries or toolchains.
b Can be configured without lexer when using the Earley parser algorithm.

Table 6: An overview of the language variability support. See Table 4 for an
overview of meanings for each score.
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Spoofax

Visual or Textual Textual: ✓ Visual: ✗

Spoofax is designed for writing textual languages. As such it does not support
visual languages.

Grammar classification Parser class: SGLR Lexer step: ✗

Spoofax makes use of a Scannerless Generalized LR parser [95], which does not
use a lexing step.

Block structures Indentation sensitive: ++++
Spoofax supports free-form and section based languages by default due to their
simple nature. It also offers support for layout sensitive languages [29], which
includes indentation sensitive languages and more. It does this by allowing lay-
out constraints to be defined in the grammar definition if configured to support
this.

Statement endings Explicit: ++ Implicit: ++
Due to the simple nature of explicit statement endings, this variant is easy to
implement. Optional explicit statement endings such as in Go however are not
possible due to not being able to configure token injections on missing tokens.
For implicit statement endings, it’s possible to write a grammar that uses line
endings as statement separator, allows these to be escaped, and also allows
multiple statements on a single line with the user of a separator character.
However, there is no way to tell the parser to start ignoring end of lines under
circumstances such as in Python when there are unclosed parentheses, because
these are global options to the parser.

Comments +
End-of-line comments and block comments are easily implemented as terminals.
Positional and mega comments are not supported by the grammar definition,
and no support exists for custom lexers due to SGLR parsers not having a lexing
step.

Unicode Encodings: −− Specification: −−− Editing: +++
At the time of writing, though the editors used by Spoofax (Eclipse, IntelliJ
IDEA) support Unicode characters, Spoofax itself does not support them. The
underlying parser has added support for Unicode recently, but this has not yet
been propagated to the meta-languages used to engineer a language 1.

Language dialects or variations Per File: −−− Per Extension: +++
Spoofax does not support selecting different variants or dialects except by as-
signing a different file extension for each variant.

1https://github.com/metaborg/jsglr/pull/72
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Xtext

Visual or Textual Textual: ✓ Visual: ✗

Xtext is designed for writing textual languages. As such it does not support
visual languages.

Grammar classification Parser class: LL(*) Lexer step: ✓

Xtext makes use of ANTLR3 under the hood, which uses an LL(*) parser [76]:
a Left-to-right Leftmost derivation parser with infinite lookahead, and includes
a lexing step.

Block structures Indentation sensitive: +++
Xtext supports free-form and section based languages by default due to their
simple nature. It also supports indentation sensitive languages if configured,
which it does by outputting indent and dedent tokens.

Statement endings Explicit: ++ Implicit: ++
Due to the simple nature of explicit statement endings, this variant is easy to im-
plement. Optional explicit statement endings such as in Go can be implemented
by providing a custom lexer, which can insert tokens if needed. For implicit
statement endings, it’s possible to write a grammar that uses line endings as
statement separator, allows these to be escaped, and also allows multiple state-
ments on a single line with the user of a separator character. However, there
is no way to tell the parser to start ignoring end of lines under circumstances
such as in Python when there are unclosed parentheses, because these are global
options to the parser.

Comments ++
End-of-line comments and block comments are easily implemented as terminals.
Neither positional nor mega comments are supported by the grammar definition,
and due to abstraction and lack of access to internals it is also not possible to
implement these using a custom lexer.

Unicode Encodings: ++ Specification: + Editing: +++
Xtext only supports UTF-8 as an encoding for source files. The meta-grammar
supports Unicode characters directly and indirectly via Java escape sequences,
but does not support them in rule and terminal names. Xtext relies on the
Eclipse Platform to build its editor windows on, as such the Xtext editor prop-
erly supports Unicode glyph rendering and does not split characters which are
represented by multiple bytes.

Language dialects or variations Per File: +++ Per Extension: +++
Xtext supports selecting different language variants to open a file in (named
editors), but this is a side effect of it making use of the Eclipse Platform and
would not necessarily work in other editors.
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JetBrains MPS

Visual or Textual Textual: ✓ Visual: ✗

MPS supports both textual languages and graph based visual languages. How-
ever these graph based visual languages have been deprecated in support for an
external plugin [46].

Grammar classification Parser class: N/A Lexer step: N/A
Because MPS does not parse actual text, we did not grade it for this variability
point.

Block structures Indentation sensitive: N/A
Because MPS does not parse actual text, we did not grade it for this variability
point.

Statement endings Explicit: N/A Implicit: N/A
Because MPS does not parse actual text, we did not grade it for this variability
point.

Comments N/A
Because MPS does not parse actual text, we did not grade it for this variability
point.

Unicode Encodings: + Specification: + Editing: +
MPS supports Unicode partially. However the reflective editor only properly
works with characters on the Basic Multilingual Plane (characters with code
points from U+0000 to U+FFFF). The meta-language supports Unicode char-
acters directly the same way as all other languages, though named concepts are
restricted to regular ASCII names. Characters outside this range need to be
split up into multiple 16-bit words internally, and the editor allows the caret to
be put between two 16-bit words that make up a single character. A bug report
has been filed to address this issue, and it will likely be fixed in the future.

Language dialects or variations Per File: +++ Per Extension: N/A
MPS only supports a single default visual editor for a concept. However multiple
dialects can be implemented by adding a property to the root concept and
making it editable, which allows quick changing of the dialect.

IntelliJ IDEA

Visual or Textual Textual: ✓ Visual: ✓

IntelliJ IDEA primarily supports textual languages. It is possible to create a
custom editor window, which can be used to add a visual editor.
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Grammar classification Parser class: N/A Lexer step: N/A
IntelliJ IDEA itself does not specify which parser to use, it is up to developers
of plugins to decide on which parser to use. We note however that the parser
used in the official tutorial makes use of a Parsing Expression Grammar (PEG)
parser.

Block structures Indentation sensitive: N/A
Because IntelliJ IDEA does not provide a specific parsing technology, we did
not grade it for this variability point.

Statement endings Explicit: N/A Implicit: N/A
Because IntelliJ IDEA does not provide a specific parsing technology, we did
not grade it for this variability point.

Comments N/A
Because IntelliJ IDEA does not provide a specific parsing technology, we did
not grade it for this variability point.

Unicode Encodings: ++++ Specification: N/A Editing: +++
IntelliJ IDEA supports the following Unicode encoding formats: UTF-8, UTF-
16 BE, UTF-16 LE, UTF-32 BE, UTF-32 LE. Supported glyphs depend on the
system fonts installed and multi-byte or multi-word characters do not get split
in half. Because IntelliJ IDEA does not provide a specific parsing technology,
we did not grade this variability point for parsing/syntax definition.

Language dialects or variations Per File: −− Per Extension: +++
IntelliJ IDEA does not allow changing the language of an open document or
opening a document in a specific language without configuring a file association.
Extension or file pattern associations however can be configured.

Atom

Visual or Textual Textual: ✓ Visual: ✓

Atom primarily supports textual languages. There exists an API to display
custom content in the editor window, and users have created packages that add
diagrams.net (formerly draw.io) support to Atom 2.

Grammar classification Parser class: N/A Lexer step: N/A
Atom does not specify which parser to use, it is up to developers of plugins
to decide on which parser to use. We note however that the suggested parsing
technology “tree-sitter” makes use of a Generalized LR (GLR) parser with a
lexing step. Syntax highlighting is also supported using TextMate grammar
files, which uses regular expressions to find patterns in files but does not actually
parse them.

2https://atom.io/packages/atom-drawio
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Block structures Indentation sensitive: N/A
Because Atom does not provide a specific parsing technology, we did not grade
it for this variability point.

Statement endings Explicit: N/A Implicit: N/A
Because Atom does not provide a specific parsing technology, we did not grade
it for this variability point.

Comments N/A
Because Atom does not provide a specific parsing technology, we did not grade
it for this variability point.

Unicode Encodings: +++ Specification: N/A Editing: +++
Atom supports the following Unicode encoding formats: UTF-8, UTF-16 BE,
UTF-16 LE. Supported glyphs depend on the system fonts installed and multi-
byte or multi-word characters do not get split in half. Because Atom does not
provide a specific parsing technology, we did not grade this variability point for
parsing/syntax definition.

Language dialects or variations Per File: ++++ Per Extension: +++
Atom allows changing the language of an open document without re-opening it,
though this association does not last. It also allows associating by file exten-
sions/patterns or exact filenames, and for package authors to register language
variants.

Visual Studio Code

Visual or Textual Textual: ✓ Visual: ✓

VSCode supports textual languages and custom editors. Users have created
extensions that add diagrams.net (formerly draw.io) support 3.

Grammar classification Parser class: N/A Lexer step: N/A
VSCode does not provide any facilities to parse on its own, extension developers
are instead expected to implement this on their own (with libraries, etc.). Syntax
highlighting is also supported using TextMate grammar files, which uses regular
expressions to find patterns in files but does not actually parse them.

Block structures Indentation sensitive: N/A
Because VSCode does not provide a specific parsing technology, we did not
grade it for this variability point.

Statement endings Explicit: N/A Implicit: N/A
Because VSCode does not provide a specific parsing technology, we did not
grade it for this variability point.

3https://marketplace.visualstudio.com/items?itemName=hediet.vscode-drawio
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Comments N/A
Because VSCode does not provide a specific parsing technology, we did not
grade it for this variability point.

Unicode Encodings: +++ Specification: N/A Editing: +++
VSCode supports the following Unicode encoding formats: UTF-8, UTF-16
BE, UTF-16 LE, it also allows automatically detecting which encoding is used,
though it will default to UTF-8. Supported glyphs depend on the system fonts
installed and multi-byte or multi-word characters do not get split in half. Be-
cause Atom does not provide a specific parsing technology, we did not grade
this variability point for parsing/syntax definition.

Language dialects or variations Per File: ++++ Per Extension: +++
VSCode allows changing the language of an open document without re-opening
it, though this association does not last. It also allows associating by file exten-
sions/patterns or exact filenames.

Python Lex-Yacc

Visual or Textual Textual: ✓ Visual: N/A
As PLY is a parser framework, it only supports textual languages.

Grammar classification Parser class: LALR(1) Lexer step: ✓

PLY uses an LALR(1) parser with a lexing step.

Block structures Indentation sensitive: +
PLY supports free-form and section based languages by default due to their
simple nature. In order to support indentation sensitive languages, a custom
lexer needs to be used.

Statement endings Explicit: +++ Implicit: +++
Due to the simple nature of explicit statement endings, this variant is easy to
implement. Optional explicit statement endings such as in Go can be imple-
mented by using a custom lexer. For implicit statement endings, it’s possible to
write a grammar that uses line endings as statement separator, allows these to
be escaped, and also allows multiple statements on a single line with the user
of a separator character. A custom lexer implementation is required to allow
suspending implicit statement ends such as when there are unclosed parentheses
in Python.

Comments ++
End-of-line comments and block comments are easily implemented as terminals.
Positional comments can be implemented by either performing a pre-processing
step before lexing occurs, replacing commented lines but losing this information
in the token stream, or by providing a custom lexer which would allow these
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tokens to remain in the token stream. For mega comments, we can write a
token specification that checks for nesting and applies it recursively, updating
the lexer state upon matching.

Unicode Encodings: ++++ Specification: ++ Editing: N/A
Lark supports all Unicode encoding formats supported by Python: UTF-8,
UTF-16 BE, UTF-16 LE, UTF-32 BE, UTF-32 LE; selection of these encoding
formats needs to be done by the programmer however. The meta-grammar
supports Unicode characters directly and indirectly via Python escape sequences
in patterns, but does not support them in rule and terminal names. Because
PLY is not an editor, we did not grade it with regards to editor support for
Unicode.

Language dialects or variations Per File: N/A Per Extension: N/A
Because PLY is a parser framework, it can parse multiple languages and dialects,
but it is up to the user to define them and select the appropriate parser. For
this reason we decided to not grade Lark on this variability point.

Python Lark

Visual or Textual Textual: ✓ Visual: N/A
As Lark is a parser framework, it only supports textual languages.

Grammar classification Parser class: LALR(1), Earley Lexer step: Optional
Lark implements three different kinds of parser:

• an LALR(1) parser with a lexing step;

• an Earley parser [18], which and can be configured to work with or without
a lexing step; and

• a CYK parser, which is deprecated/unsupported and therefore not in-
cluded in the comparison.

Block structures Indentation sensitive: ++
Lark supports free-form and section based languages by default due to their
simple nature. In order to support indentation sensitive languages, either a
post-lexing step needs to be configured on the parser, or a custom lexer needs
to be provided.

Statement endings Explicit: +++ Implicit: +++
Due to the simple nature of explicit statement endings, this variant is easy to
implement. Optional explicit statement endings such as in Go can be imple-
mented by using a custom lexer. For implicit statement endings, it’s possible to
write a grammar that uses line endings as statement separator, allows these to
be escaped, and also allows multiple statements on a single line with the user
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of a separator character. A custom lexer implementation is required to allow
suspending implicit statement ends such as for example Python does when there
are unclosed parentheses.

Comments +++
End-of-line comments and block comments are easily implemented as terminals.
Positional comments can be implemented by either performing a pre-processing
step before lexing occurs, replacing commented lines but losing this information
in the token stream, or by providing a custom lexer which would allow these
tokens to remain in the token stream. For mega comments, using the regex mod-
ule allows defining recursive regular expressions to achieve them. An example
regular expression for comments that start with /* and end with */ is given as
such:

/\*(?:(?!(?:/\*|\*/)).|(?R))*\*/

Alternatively a custom lexer can be provided to implement mega comments.

Unicode Encodings: ++++ Specification: ++ Editing: N/A
Lark supports all Unicode encoding formats supported by Python: UTF-8,
UTF-16 BE, UTF-16 LE, UTF-32 BE, UTF-32 LE; selection of these encoding
formats needs to be done by the programmer however. The meta-grammar
supports Unicode characters directly and indirectly via Python escape sequences
in patterns, but does not support them in rule and terminal names. Because
Lark is not an editor, we did not grade it with regards to editor support for
Unicode.

Language dialects or variations Per File: N/A Per Extension: N/A
Because Lark is a parser framework, it can parse multiple languages and dialects,
but it is up to the user to define them and select the appropriate parser. For
this reason we decided to not grade Lark on this variability point.

6.2 Multi-language and Dynamic Parsing
Spoofax

Dynamic language definitions Spoofax is able to reload languages upon
building them, without requiring an IDE restart or reload. However this process
does not happen automatically, and it is not clear to us how parsers for new
language definitions are created.

Multi-language parsing Spoofax does not support multi-language parsing
due to us not being able to change the parser mid-parse. Included in the work-
bench is the SPoofax Testing language (SPT), which is an example of a language
that contains embedded fragments. While this is close to our goal, the parsing
here happens as a post-processing step rather than during parsing itself and as
such does not qualify as multi-language parsing.
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Xtext

Dynamic language definitions In order to use a language definition, it
needs to be compiled from its original specification, this also requires running a
Java compiler. Theoretically it may be possible to dynamically define a language
and load it in the current process, but this would at the very least require
adding a class loader, including the Xtext compiler, and a the user having a
JDK installed. In conclusion, it should be possible, but very complicated.

Additionally, when creating a language and testing it in a development IDE,
the IDE needs to be restarted if the language is changed.

Multi-language parsing Xtext does not support changing the parser mid-
parse, and as such does not support multi-language parsing.

JetBrains MPS

Dynamic language definitions In order to use a language and its editors
in MPS it needs to be (re-)generated, but it does not require an IDE restart or
reload. This makes it impossible to add new languages or formalisms dynami-
cally, without re-implementing everything provided by MPS already.

Multi-language parsing While MPS does not actually parse languages, due
to the fact that one can reuse (parts of) existing languages defined with MPS,
working with multiple languages in a single source file is possible.

IntelliJ IDEA

Dynamic language definitions IntelliJ IDEA provides both declarative and
runtime declaration of "File Types", though at the time of writing the facilities
for runtime declarations are deprecated and slated for removal in favor of the
declarative method [44].

Multi-language parsing Because IntelliJ IDEA itself does not specify which
parser to use, we do not evaluate this criterion.

Atom

Dynamic language definitions Atom provides access to the list of currently
loaded grammars via its GrammarRegistry [33], which can dynamically be added
to and removed from by packages. Grammars added this way need to be read
from the filesystem however, so this requires writing a temporary file.

Multi-language parsing Because Atom itself does not specify which parser
to use, we do not evaluate this criterion.
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Visual Studio Code

Dynamic language definitions Visual Studio Code currently does not pro-
vide a way to register languages at runtime. The underlying system used by the
editor Monaco [70] supports dynamically adding languages4, but this is not ex-
posed to extensions5 and instead is done declaratively in an extension’s package
specification.

Multi-language parsing Because VSCode itself does not specify which par-
ser to use, we do not evaluate this criterion.

Python Lex-Yacc

Dynamic language definitions Because PLY is an API for creating lexers
and parsers from a specification, defining languages is done relatively easily.
There exist some oddities however with the way this is done:

• When looking at examples and the documentation, we noticed that parser
and lexer configurations are supposed to be defined in source files either
directly in the file global namespace, or as members of a class. They can
also be defined either separately or together.

• While not explicitly documented, because of the above if you pass a regular
dictionary, a missing attribute error gets raised. Similarly, dynamically
defined classes also have this issue due to not being associated with a
source file.

• These missing attributes are accessed even if they are not necessary and
should be used only when optimizing.

The result is that we cannot dynamically define new languages with PLY, unless
we write them to a temporary file first.

Multi-language parsing Due to the large freedom of modifying PLY thanks
to it being written in Python, implementing multi-language parsing should be
possible, however we would need to implement this ourselves.

Python Lark

Dynamic language definitions Lark is an API for creating a lexer-parser
pipeline based on a textual grammar specification. Therefore defining a gram-
mar dynamically simply requires creating a new string representation in the
right format. Alternatively the option exists for passing in a grammar defini-
tion that is already been parsed, but this is less documented and probably more
likely for internal use.

4https://github.com/microsoft/vscode/blob/e1f0f8f51390dea5df9096718fb6b647ed5a9534/
src/vs/editor/standalone/browser/standaloneLanguages.ts#L581

5https://github.com/microsoft/vscode/blob/94c9ea46838a9a619aeafb7e8afd1170c967bb55/
src/vs/workbench/api/common/extHost.api.impl.ts#L1108
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Multi-language parsing Like PLY, Lark is written in Python and this gives
us great freedom for modifying its behaviour, as such implementing multi-
language parsing is possible though again through implementing it ourselves.

6.3 Maintenance
We performed the following evaluations in June 2021. The accompanying

contributions graphs have been recorded in August 2021 from each project’s
respective GitHub repository where possible, and have only been recorded to
serve as a reference frame for this document at the time of writing. The graphs
represent contributions on the main branch of each repository, and exclude
merge commits and bot accounts.

For an up-to-date version of these graphs one can navigate to these reposi-
tories themselves, go to the ‘Insights’ tab, and select ‘Contributors’ (assuming
this will stay available for the foreseeable future).

Spoofax

Spoofax is split into multiple git repositories: the main runtime reposi-
tory (‘spoofax’), IDE specific repositories (‘spoofax-eclipse’ and ‘spoofax-
intellij’), and core language development language repositories.
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Figure 7: Contributions graph for the metaborg/spoofax repository on GitHub.
See https://github.com/metaborg/spoofax.
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Figure 8: Contributions graph for the metaborg/spoofax-eclipse repository
on GitHub. See https://github.com/metaborg/spoofax-eclipse.
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Figure 9: Contributions graph for the metaborg/spoofax-intellij repository
on GitHub. See https://github.com/metaborg/spoofax-intellij.

If we look at the contributors graph for the main runtime repository (see
Figure 7), we can see that commit activity has been about the same throughout
its history.

Looking at the IDE integration for Spoofax, we can see that the Eclipse
repository (see Figure 8) has had reduced activity since 2017. The IntelliJ
integration (see Figure 9) is less old, only starting halfway 2015, but also only
receiving most of its activity until 2017 after which it has been mostly silent.

We also take a quick look at the repositories for core components of the
Spoofax language workbench:

SDF2/SDF3 (‘spoofax-sdf’) See Figure 10. This repository has had con-
tinuous activity since its start until now (with a small dip in 2018).

NaBL/Statix (‘spoofax-nabl’) See Figure 11. This repository has been ac-
tive since its start, but starting halfway 2016 its activity increased significantly,
staying at the same pace even still.

Stratego1/Stratego2 (‘spoofax-stratego’) See Figure 12. Activity in this
repository has seen an increase since halfway 2018, before that there was only
limited activity.

ESV (‘spoofax-esv’) See Figure 13. This component has received little ac-
tivity (seeing only at most 5 commits throughout a month), though this activity
has been consistent throughout time. Activity has decreased since circa 2017
though.

SPT (‘spoofax-spt’) See Figure 14. Aside from a dip in activity in 2012 and
2019, this component has had about the same activity throughout its lifetime.

We conclude that Spoofax is being actively developed by its developers.
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Figure 10: Contributions graph for the metaborg/spoofax-sdf repository on
GitHub. See https://github.com/metaborg/spoofax-sdf.
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Figure 11: Contributions graph for the metaborg/spoofax-nabl repository on
GitHub. See https://github.com/metaborg/spoofax-nabl.
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Figure 12: Contributions graph for the metaborg/spoofax-stratego repository
on GitHub. See https://github.com/metaborg/spoofax-stratego.
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Figure 13: Contributions graph for the metaborg/spoofax-esv repository on
GitHub. See https://github.com/metaborg/spoofax-esv.
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Figure 14: Contributions graph for the metaborg/spoofax-spt repository on
GitHub. See https://github.com/metaborg/spoofax-spt.
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Xtext

Xtext is split over multiple git repositories:

xtext See Figure 15. The main repository until 2016 after which it was split
up into several repositories, which is now used to host the online documentation.

xtext-core See Figure 16. Contains the main/core framework of Xtext.

xtext-lib See Figure 17. This repository contains the standard library for
Xbase languages, which allows interaction with Java.

xtext-extras See Figure 18 on page 50. Contains addons such as Xbase

xtext-xtend See Figure 19 on page 50. This repository contains the code for
Xtend, which allows writing Java-like programs usually based on some source
model written by the user.

xtext-eclipse See Figure 20 on page 51. Contains all code related to the
Eclipse IDE integration.

xtext-idea See Figure 21 on page 51. Contains all code related to the IntelliJ
IDEA integration. Support for this has been dropped since 2019.

xtext-web See Figure 22 on page 51. Contains all code related to the web
editor for Xtext.
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Figure 15: Contributions graph for the eclipse/xtext repository on GitHub.
See https://github.com/eclipse/xtext.

Looking at all the graphs for these repositories, we can say that activity has
remained roughly the same throughout from the start in 2010 up until today.
We note that there is a significant spike around 2015-2016, which is when the
main repository got split into multiple smaller ones.

In conclusion, Xtext has been and is continuing to be actively maintained,
with exception of the IntelliJ IDEA integration.
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Figure 16: Contributions graph for the eclipse/xtext-core repository on
GitHub. See https://github.com/eclipse/xtext-core.
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Figure 17: Contributions graph for the eclipse/xtext-lib repository on
GitHub. See https://github.com/eclipse/xtext-lib.
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Figure 18: Contributions graph for the eclipse/xtext-extras repository on
GitHub. See https://github.com/eclipse/xtext-extras.
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Figure 19: Contributions graph for the eclipse/xtext-xtend repository on
GitHub. See https://github.com/eclipse/xtext-xtend.
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Figure 20: Contributions graph for the eclipse/xtext-eclipse repository on
GitHub. See https://github.com/eclipse/xtext-eclipse.
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Figure 21: Contributions graph for the eclipse/xtext-idea repository on
GitHub. See https://github.com/eclipse/xtext-idea.
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Figure 22: Contributions graph for the eclipse/xtext-web repository on
GitHub. See https://github.com/eclipse/xtext-web.
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JetBrains MPS
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Figure 23: Contributions graph for the JetBrains/MPS repository on GitHub.
See https://github.com/JetBrains/MPS.

MPS is contained in a single repository, which simplifies determining whether
it is actively maintained or not. Looking at the contributions graph (see Fig-
ure 23), we can say that while development started in 2004, active development
only started in 2007 and has continued to this day, only slowly lowering in
activity since around 2015-2016.

In conclusion: we can say that MPS is being actively developed.

IntelliJ IDEA
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Figure 24: Contributions graph for the JetBrains/intellij-community repos-
itory on GitHub. See https://github.com/JetBrains/intellij-community.

The community edition of IntelliJ IDEA is open source and contained in a
single repository, we can thus look at its contributions graph (see Figure 24) to
see how active development on it is. Looking at this graph, we see that since the
start in 2004 (first git commit, though their first release was in 2001) activity
has seen a steady increase. Because the paid edition of IntelliJ IDEA is closed
source, we can only say that it is very likely to be as or more actively developed
than the free edition.

Based on this, we can conclude that IntelliJ IDEA is actively maintained.
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Figure 25: Contributions graph for the atom/atom repository on GitHub. See
https://github.com/atom/atom.

Atom

Atom has been developed since 2011. Looking at the contribution graph
(see Figure 25), it looks like the most active time was from 2013 to halfway
2016. Afterwards activity decreased, and halfway 2019 this has decreased even
further. This indicates that active development has stalled at least somewhat,
though this can just be an indicator that the tool is feature complete (leaving
new features to be added as packages). Furthermore, the official blog has not
received a new post for almost 2 years now, with the last post being in July of
2019 announcing the release of Atom 1.39 [34]. Lastly GitHub, the creator of
Atom, got bought by Microsoft in 2018 [67] which owns competing editor/IDE
Visual Studio Code. GitHub also announced GitHub Copilot [38] (an AI driven
code generation tool) in 2021 which only supports VSCode, with at the time of
writing no plans to bring this to other platforms [38].

While there has been no official announcement of Atom losing support, all
signs point to it already having lost a significant part and may only be in
maintenance mode, and possibly being abandoned in the near future.
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Figure 26: Contributions graph for the microsoft/vscode repository on
GitHub. See https://github.com/microsoft/vscode.

Visual Studio Code is a relatively new (2015) editor/IDE, looking at the
contributions graph (see Figure 26) it looks like activity has been constant or
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even maybe slightly increasing since then. We can say that Visual Studio Code
will most likely stay actively maintained the following few years.

Python Lex-Yacc
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Figure 27: Contributions graph for the dabeaz/ply repository on GitHub. See
https://github.com/dabeaz/ply.
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Figure 28: Contributions graph for the dabeaz/sly repository on GitHub. See
https://github.com/dabeaz/sly.

According to PLY homepage [7], PLY is no longer maintained as an in-
stallable package (last release being from 2018 [8]), and new features are no
longer being added. However it states that it is still maintained and modern-
ized, though in effect this is for bugfixes only. It also links to a more modern
parser/reimplementation of PLY which is maintained by the same developer
called SLY [6], [9], though this is currently still a work in progress and has not
yet seen a public release.

Looking at the contributions graph for both PLY and SLY (see Figures 27
and 28), not much can be gathered due to the activity being very low.

Python Lark

Lark is a relatively new library (2017). Looking at its contributions graph
(see Figure 29) activity has been about the same throughout its lifetime up until
the time of writing.

As it currently stands, it looks like Lark will keep being actively maintained
in the near future, with new features still being added.
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Figure 29: Contributions graph for the lark-parser/lark repository on
GitHub. See https://github.com/lark-parser/lark.

6.4 Documentation
Spoofax

Extensive documentation for Spoofax is available on the MetaBorg site [66].
This includes all the languages used to for developing your own languages and
usage of the API. Some parts of this are still a work in progress at the time of
writing, but placeholders exist.

Xtext

Xtext provides a tutorial to get familiar with most language specification
features in 15 minutes [22]. More in-depth information including the exact
syntax, services provided, and examples of common language configurations are
also provided on their online documentation.

JetBrains MPS

MPS has an extensive manual [52] available for creating and working with
languages, going over every aspect that is available to the designer and providing
information for implementing common language patterns.

IntelliJ IDEA

Extensive documentation for developing a plugin for IntelliJ IDEA is pro-
vided [49], including a whole section about adding new languages [45], though
these only focus on a single Lexer/Parser technology (any technology can be
used however, as long as they implement the API).

Atom

Atom calls itself the “hackable editor” because as a user you can run their
own code in it with full access to the API, with the documentation [33] having
a whole chapter dedicated to the different ways one can “hack” their editor.
Included are sections about defining grammars for syntax highlighting [35] with
Tree-sitter [12] or TextMate (legacy) [61]. Adding other parts that are part of
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an IDE experience requires other packages that are provided by the community,
and their documentation is provided on their respective repositories.

Visual Studio Code

Visual Studio code has an extensive amount of guides on how to write exten-
sions to implement IDE features for custom languages using their extension API
[68]. They include specific documentation on how to have embedded languages.

Python Lex-Yacc

PLY features an extensive documentation on how to use it [7]. It includes
guides on error recovery during parsing/lexing.

Python Lark

Lark has growing amount of documentation [83] aimed at teaching the user
how to use it mostly based on examples. They also have a set of examples
with common language recipes such as handling indentation with Python-like
languages.

6.5 Setup
Spoofax

The Spoofax language workbench mainly works as an Eclipse IDE plugin.
Instructions on how to install Spoofax are provided on the documentation site
[65]. Specific support for Mac is available via the Homebrew package manager.
For other platforms a manual download is required, these downloads contain a
prebuilt Eclipse IDE installation with Spoofax added.

Additionally, an IntelliJ IDEA plugin is also available, though this one does
not contain all functionality yet. Using this plugin is as simple as downloading
it and adding it to an existing IntelliJ installation.

Xtext

Xtext works as a plugin for the Eclipse IDE, installing it works via the
built-in plugin mechanism. An IntelliJ IDEA plugin also exists, but has been
abandoned (last updated in 2016). Installation instructions for the Eclipse plu-
gin can be found on the Xtext site [25].

JetBrains MPS

MPS supports all major platforms on its download page [53]:

• Linux binaries are prebuilt and provided as a tarball (.tar.gz file) which
the user needs to place somewhere. No support for any package managers
is provided.
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• Mac support is provided for both Intel based platforms and Apple Silicon
based platforms in the form of app container .dmg files.

• For Windows an executable installer file is provided.

An alternative option to install MPS and keep it updated is by downloading
the JetBrains Toolbox application [50]. The same platform support applies here,
but it allows updating MPS easily.

IntelliJ IDEA

IntelliJ IDEA supports the same platforms on its download page [48] as MPS
does, and is also supported by the JetBrains Toolbox application [50], as they
are both developed by JetBrains.

Atom

Atom provides installation instructions for all current major platforms in its
documentation [39]:

• Support for installing on the following Linux distributions is provided:
apt (Ubuntu, Debian), yum (Red Hat, CentOS), dnf (Fedora),
zypp (OpenSUSE).

• On Mac, Atom provides a zip file which can be installed into the Appli-
cations folder.

• For Windows it includes an installer executable file.

Atom provides a way for publishing packages publicly to atom.io and in-
stalling them from within the application itself.

Visual Studio Code

Visual Studio Code has installation instructions for all current major plat-
forms in its documentation [72]:

• Support for installing on the following Linux distributions is provided:
Snap (Ubuntu), apt (Ubuntu, Debian), yum (Red Hat, CentOS),
dnf (Fedora), zypp (OpenSUSE), AUR (Arch Linux), nix (NixOS).

• A .app application file is provided for installing on Mac.

• An installer executable is provided for installing on Windows.

Visual Studio Code allows developer to publish extensions to the Visual
Studio Code Marketplace, which allows them to be installed from the applica-
tion itself. However, this marketplace is only available in builds provided by
Microsoft themselves and usage by non-official builds is prohibited.
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Python Lex-Yacc

Installation of Python Lex-Yacc can be done by using the Python package
manager pip and installing the ply package [8]. If we were to use this library for
our tool, it would be downloaded automatically as a dependency on installation.

Python Lark

Installation of Lark can be done by using the Python package manager pip
and installing the lark-parser package [82]. If we were to use this library for
our tool, it would be downloaded automatically as a dependency on installation.

6.6 Support
Spoofax

On its support page [62] Spoofax details an issue tracker for issues and
feature requests [85]. Furthermore there exists a Slack organization for user
support which one can get access to upon request.

Xtext

Xtext on its community page [23] links to the Xtext forum [19] for getting
help in case you are stuck. They also link to their GitHub for reporting bugs
and feature requests.

JetBrains MPS

On its product page [53] near the bottom are links to the MPS community
forum [55] for receiving support with using it. It also has a link to the JetBrains
issue tracker for MPS [51] for reporting issues and submitting feature requests.

IntelliJ IDEA

On the IntelliJ IDEA product page [48] near the bottom are links to the
community forum [54] for receiving support, and to its issue tracker [47] for
reporting issues and submitting feature requests.

Atom

Atom used to have a Discourse discussion forum for user support but now
uses GitHub discussions instead [36]. Bug reports and feature requests can be
done on the same GitHub repository.

Visual Studio Code

At the bottom of the FAQ for Visual Studio Code [74] it is mentioned users
can submit bug reports and feature requests on the GitHub repository [69] and
using Stack Overflow for getting support [87].
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Python Lex-Yacc

The homepage for PLY [7] notes the GitHub repository [5] as the place to
get support with issues and bug reports.

Python Lark

The main Lark repository [81] notes that GitHub issues or Gitter [40] should
be used for questions or issue reporting. Additionally there exists a GitHub
discussions page [37] where questions can be asked, though this is not directly
mentioned in the documentation.

6.7 Editor Features
Spoofax

Based on the official Spoofax documentation [66] the Spoofax Language
Workbench supports the following list of editor features:

• Provided by the Editor SerVice language (ESV):

– Syntax highlighting/coloring.

– Line and block comment declaration for comment and uncomment
shortcuts.

– Parentheses, brackets, and braces (called fences) matching and high-
lighting.

– Menus for language actions

– File outline view.

– Hover tooltips.

– Compile on save.

– Model validation and analysis.

– Text formatting, provided as a menu action, and output to a new
file.

• Provided by the Syntax Definition Formalism 3 language (SDF3):

– Text completion.

• Provided by the Name Binding Language (NaBL2):

– Reference resolution.

– Model validation and analysis.

• Provided by the IDE (Eclipse or IntelliJ IDEA):

– Version control integration.
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Xtext

According to the official Xtext documentation [24], the following editor fea-
tures are supported:

• Syntax highlighting/coloring (lexical and semantic).

• Model refactoring.

• Run-time debugging.

• Comment and uncomment shortcuts.

• Language specific menus

• File outline view.

• Hover tooltips.

• Compile on save.

• Automatic editing (auto-closing quotes, parentheses, etc.).

• Automatic indentation.

• Model validation, analysis, and quick fixes.

• Reference resolution and highlighting.

• Text completion.

• Text formatting.

• Text folding.

• Inline annotations.

• Version control integration.

JetBrains MPS

Based on the official documentation [52] MPS supports the following editor
features:

• Syntax coloring and formatting.

• Editor actions.

• Run-time debugging.

• Editor keybindings.

• File outline view (structure view, undocumented).

• Model validation, analysis, and quick fixes.
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• Reference resolution and highlighting.

• Text completion.

• Automatic formatting.

• Model inspection.

• Model refactoring.

• Version control integration.

IntelliJ IDEA

IntelliJ IDEA supports the following editor features based on the official
documentation [45]:

• Syntax highlighting/coloring.

• Editor actions.

• Run-time debugging.

• Comment and uncomment shortcuts.

• File outline view.

• Model validation, analysis, and quick fixes.

• Reference resolution and highlighting.

• Text completion.

• Automatic and manual formatting.

• Model inspection.

• Text folding.

• Version control integration.

Atom

Based on the official documentation [33] Atom supports the following editor
features out of the box:

• Syntax highlighting/coloring.

• Comment and uncomment shortcuts.

• Basic text completion.

• Text folding.
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• Version control integration.

Additionally the following editor features are provided through extensions
such as atom-ide-ui [30]:

• Smart text completion.

• Run-time debugging.

• File outline view.

• Model validation and analysis.

• Reference resolution and highlighting.

• Hover tooltips.

• Text formatting.

Visual Studio Code

Visual Studio Code supports the following editor features based on the offi-
cial documentation [68]:

• Syntax highlighting/coloring.

• Editor actions.

• Run-time debugging.

• Comment and uncomment shortcuts.

• Model validation and analysis.

• Hover tooltips.

• Reference resolution and highlighting.

• Text completion.

• Text formatting.

• Text folding.

• Version control integration.

Python Lex-Yacc

As PLY is not an editor but a parsing library, we do not consider this part
for our comparison.
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Python Lark

As Lark is not an editor but a parsing library, we do not consider this part
for our comparison.

6.8 Language Server Protocol
Spoofax

Spoofax does not currently have any documented support for the language
server protocol. There exists a repository that has a skeleton for implementing
a language server [64] but it has not received any updates for 4 years at the
time of writing.

Xtext

Xtext has built-in support for creating a language server when setting up
a new Xtext project. It includes a basic instructions page to guide the user
through this [27].

JetBrains MPS

MPS does not provide language server protocol support. Because as of
right now the protocol is purely for textual documents, and MPS models are
represented and saved internally as a tree, the protocol is not compatible with
MPS at this time.

IntelliJ IDEA

No official support for the language server protocol exists in IntelliJ IDEA.
A community plugin that allows IDEA to act as a language client exists, but
has not been updated since February 2020 due to the pandemic at the time of
writing [88].

Atom

A community (formerly official) package exists to help with implementing a
language client in Atom [2], which we could use to add support to Atom if we
were to write a language server.

Visual Studio Code

The language server protocol was originally developed for use with Visual
Studio Code, and while it has since been opened up as a standardized protocol,
to this day development of the two is connected.
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Python Lex-Yacc

PLY has no facilities for building a language server with it. One would have
to manually write one either from scratch or based on a library that implements
most of the LSP protocol already, and use PLY as the parser.

Python Lark

Lark has no built-in language server features in its API. One would have to
manually write one either from scratch or based on a library that implements
most of the LSP protocol already, and use Lark as the parser.

The Lark grammar language itself does not have a language server yet, but
work is being done on creating one at the time of writing [84]. This would make
use of Lark itself as the parser for the language server and would be a good base
to create our own language server with Lark.

7 Conclusion & Future work
We investigated common patterns of notation for textual computer lan-

guages. Based on this we made a variability model which we described in
Section 3. In it we described (1) properties important for the parser such as
the grammar classification, whether it has a lexical analysis phase, support for
Unicode, and the possibility of specifying alternative syntaxes; (2) properties
of the structure of the language such as how statements and blocks are delim-
ited and structured, and what comments look like; and (3) properties of the
language structure, but which require specific support from the parser such as
indentation sensitive or layout sensitive constructs, and auto-insertion of miss-
ing tokens in cases where semantically their omission does not matter. Possible
future work on this model could involve additional variability points which we
could not think of. Furthermore, a suite of example grammar definitions and
test documents for each possible variation point could be developed, with which
a standardized test can be developed.

In Section 6.1 we took our variability model and tried to match it to a se-
lection of language workbenches, editors, and parsing libraries. We conclude
that for supporting our variability model, using a parsing library is the best
way to get as much support as possible. While language workbenches are very
versatile for writing domain-specific languages (DSLs), they also have some lim-
itations in important aspects: (1) dynamically defining new grammars is either
not possible, slow, or difficult; (2) using multiple languages in a single source
file is impossible or only implementable as a workaround; and (3) implementing
unsupported language constructs is impossible because they do not allow mod-
ifying the parser technology. When looking at support for our variability model
by the editors we looked at, we note that a lot of aspects are dependent on the
underlying parser but that most of them also provide support for the Language
Server Protocol.
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We conclude that the best option is to take the best of two worlds: to use
a parsing library for the best support of our variability model which provides
the parsing facilities, and to use an editor which has extensive support for the
Language Server Protocol. With this option, there is still the requirement of
implementing our own language server, but there exist libraries to aid in this.
Additionally a language client would need to be written for each editor, though
with existing libraries this is trivial.
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