
Combination of Domain-Specific Languages

Practical Research

Rafael Ugaz

1 Introduction

Domain Specific Languages (DSLs) are compact and focused languages for spec-
ifying systems at a high-level of abstraction while restricting the solution to
a specific domain. DSLs are an essential part of Domain Specific Modelling
(DSM), a branch of Model-Driven Engineering (MDE). A DSL can be used to
describe a view of a system, however, the use of small DSLs means that they
have to be combined together in order to form a complete system. In previ-
ous work [7], we have performed a literature review on the current techniques
for DSL combination where we also identified the areas that require further
research. The next step in this research is to implement these techniques and
experiment DSL combination ourselves. But for this to be possible, preliminary
enabling technology is needed that consists in the creation of the DSLs to be
combined and the complete implementation of a DSM solution to transform
them into running systems in a target environment.

The running example of this work is a role-playing game (RPG) that can
be run in the Android platform. The first and main DSL designed is used for
modelling this RPG in a visual environment. The rest of the DSLs are designed
as extensions for the RPG DSL. One for creating graphs and calculating the
shortest paths between two of its nodes, and the last one is for reading user
input and processing it.

This paper is organized as follows: Section 2 provides the necessary back-
ground on Domain Specific Modelling. Section 3 describes the DSLs that were
designed for this project. Section 4 presents the details of the code generation
process. Section 5 discusses the future work that the work of this paper is going
to enable in more detail.

2 Background

The work explained in this paper centres around the creation of the enabling
technology for transforming a model created in a high level modelling tool into
an application that can be run on an Android platform. The process of per-
forming this transformation is called a DSM solution.

1



Figure 1: Basic architecture of DSM [2]

The main background necessary for this paper consists of Domain Specific
Modelling (DSM) solutions and its components.

The main focus of this work is the creation of a DSM solution for creating
RPG games for the Android platform. A DSM solution allows for the automated
generation of running systems in a target environment from high level models,
that are modelled using the formalism. This provides benefits such as improved
productivity, quality and complexity hiding [2]. DSM solutions have a three-
level architecture, as illustrated in Figure 1, on top of the target environment:

• A DSL is the most, or sometimes only, visible part for the users (e.g.
developers or designers). It is the equivalent of source code in traditional
programming with the addition that it provides an abstraction specific to
a particular problem domain. Thus, it allows the designers to perceive
themselves as working directly with domain concepts. In the case of the
RPG DSL, it provides a specific visual modelling environment for the sole
purpose of designing role-playing games.

• The generator handles the extraction of information from the models in
order to transform it into code that can be run in the target environment
of the DSM solution. In the ideal case, the generated code does not needed
to be manually modified any further. The underlying target environment
usually provides a framework on top of it that is joined with the gener-
ated code to form the final product (e.g. an executable). The generation
process can also be comprised of multiple languages and transformations,
as in the case of this work.

• A domain framework provides the interface between the generated code

2



and the underlying target platform. It is usually formed by utility code or
elements that simplify the generated code (e.g. by extracting duplicated
code). This code can sometimes be reused from earlier development ef-
forts, before a DSM approach was used. For the RPG DSL, the domain
framework is primarily composed of Java code for displaying the Android
application (concrete syntax) and meta-model constructs that are reused
along different generated artefacts.

The generated code and the domain framework are not executed by them-
selves but in some target environment. This environment contains platform
code and is used regardless of how the implementation is done, manually or
using generators (DSM approach). In this work the Android platform is used
as the target environment.

3 DSLs

In this section we explain the test case DSLs that have been created for this
project. Currently, three formalisms have been designed: one main DSL for
modelling role-playing games (RPGs) and two extension DSLs that add new
features to it. The first extension DSL allows the creation of a directed graph
and the calculation of the shortest path from one node to another node of the
graph. The intent is that this DSL adds pathfinding capabilities to the RPG
DSL. The purpose of the second extension DSL is to detect and process user
input. This can provide user input handling to the RPG DSL, allowing the user
to have influence on the game (which is otherwise a simulation since it has no
user intervention).

These extension DSLs can also be used independently but they can be much
more valuable when combined with the RPG DSL to produce a final DSL
for modelling RPGs that has pathfinding and user input handling capabilities.
What interests us in this research is the process of their combination.

Each of the DSLs explained in this section are part of a Domain-Specific
Modelling (DSM) solution.

3.1 RPG

A role-playing game (RPG) is a computer game where players assume the roles
of characters in a fictional setting. The games created with this DSL fall more
into the sub-category of RPGs called dungeon crawlers. As the name indicates,
the player has to explore a dungeon taking the role of a character. In the
dungeon the player encounters enemies that it has to fight, items to collect and
quests to complete.

As mentioned before, the RPG DSL has a central role with respect to the
other DSLs of this work, namely, they are designed to extend it. In the following
sections, each language component of the RPG DSL is described.

3



3.1.1 Syntax

The abstract syntax of the RPG consists of all the structural elements that take
part in the game. At the top most level, the game contains one or more scenes
or “levels” where all the other structural elements are contained. In each scene,
there are a number of tiles that can be connected to each other from the left,
right, top or bottom. This way, a two-dimensional map is created for each scene.
The game also contains characters, a hero and villains. There can be exactly
one hero but multiple villains. All characters can stand on one tile at the same
time and a tile can hold at most one character.

There are four different types of tiles: an obstacle tile on which no character
can stand, a door tile, which is connected to another door tile and can be used
by a character to move form one scene to the other, a trap tile, where a character
loses life points whenever it stands on it and a regular tile, with no added effects.

On a regular tile, there can be an item. There are three types of items:
goals, can be picked up by the hero (its purpose is explained in the semantics),
weapons, that when picked up give a bonus in attack to the character and keys,
which are used to unlock doors (and enable a door for use).

The abstract syntax (meta-model) of the RPG DSL has been defined using
the class diagram formalism of the AToMPM meta-modelling tool. This is a
pretty straightforward translation from the domain concepts of a role-playing
game into class diagram constructs (classes and associations). The RPG meta-
model, defined using class diagrams, can be seen in Figure 2. Note that only
structural concepts are modelled here, there are no operations defined in any
class construct since the behaviour of the system is modelled using a different
formalism (model transformations). This way, the structure and behaviour of
the game (abstract syntax and operational semantics respectively) are cleanly
separated and modular.

The concrete syntax of the DSL gives each abstract syntax element a visual
representation. It is a simple one-to-one mapping between each metamodel class
or association and an svg graphic or bitmap image. An instantiated RPG model,
using the visual concrete syntax, is illustrated in Figure 3.

3.1.2 Semantics

Since a role-playing game has an execution, its semantics are operational. They
specify the behaviour of the abstract syntax elements explained in the previous
section and describe explicitly how the game can be executed or simulated.

The operational semantics can be described with the following rules:

• The game is turn-based, first the hero gets a turn to either move or attack,
then all the villains get a turn to do the same, then it goes back to the
hero and the cycle repeats itself until the end game conditions are met.

• A character can move from one adjacent tile to another, as long as the tile
is not an obstacle tile and is not occupied by another character.

• A character can attack an enemy that stands in any adjacent tile.

4



Figure 2: Abstract syntax of the RPG DSL, specified using a class diagram

5



Figure 3: An instance of the RPG DSL, with concrete syntax

• An item can be picked up by the hero by walking on its tile. Every item
can only be picked up once.

• If the hero picks up a weapon, the damage of the weapon is added to the
hero’s attack.

• If the hero picks up a key, he can use a door that is unlocked by that key.

• The player wins the game if he picks up all the goals. There must be at
least one goal at the beginning of the game.

• The player loses the game if the hero is killed.

These operational semantics rules have to be modelled in some way into the
RPG DSL. For this purpose we have chosen rule-based model transformations,
a type of model transformation. Model transformation is a sub-field of Model-
Driven Engineering (MDE) that allows the manipulation of models. This tech-
nique can be used for transforming a model that represents a state of the game
into a new one which is what effectively happens in the game just described.

Rule-based model transformations use graph-rewriting rules to specify how
a source model is to be transformed. They are composed of a Left-Hand Side
(LHS) and a Right-Hand Side (RHS) pattern, an optional Negative Application
Condition (NAC) pattern. The LHS and NAC patterns respectively describe
what sub-graphs should and should not be present in the source model for
the rule to be applicable. The RHS pattern describes how the matched LHS
pattern should be transformed by its application. Rule-based transformations
by themselves are not of much use, they require a transformation schedule to
determine the order in which they are applied to the host model (the subject
of the transformations). For the case of the RPG, the schedule models the
turn-based loop between the hero and the villains and every action (moving,

6



Figure 4: Operational semantics of the RPG DSL, defined using a transforma-
tion schedule

attacking, picking up items) that can happen in them. The schedule for the
RPG DSL can be seen in Figure 4.

3.2 Pathfinding

The pathfinding DSL allows the creation of a weighted graph with a single source
and destination nodes. After creating such a graph, the operational semantics
of the DSL can be executed in order to find the shortest route between two
nodes. The calculation of the shortest path is based on Dijkstra’s algorithm,
which has been completely modelled using rule-based model transformations.

The purpose of this DSL is to extend the RPG DSL with pathfinding capa-
bilities. Pathfinding is at the core of any kind of artificial intelligence (AI) in
games. It allows to find paths between any two coordinates of the game world.
An example of a feature possible because of pathfinding is to have a villain move
towards a Hero to attack it and chase it. This is a big improvement compared
to the default random movement behaviour of the RPG DSL.

3.2.1 Syntax

The abstract syntax of the pathfinding formalism consists of the following ele-
ments:

• A Node that represents the entity of the same name in the search graph.
For our concrete case this is a location in the game map, e.g. a Tile. A

7



node can be a regular node or two special types: source and destination.
There must be exactly one source and one destination in the graph for the
algorithm to work correctly. The Node also contains attributes required
for the Dijkstra’s algorithm like the distance to the destination node and
a isVisited flag.

• An Adjacent edge denotes that two nodes are connected in the search
graph.

• A Previous edge which is used after the application of the algorithm to
point to the shortest path found. The path can be obtained by navigating
from the destination towards the source following the Previous edges.

The abstract syntax of the Pathfinding formalism, like the RPG formalism,
has been defined using class diagrams in AToMPM.

The concrete syntax of the Pathfinding formalism is similar to the concrete
syntax of a undirected graph with the addition of annotations for specific at-
tributes of Dijkstra’s algorithm, e.g. distance, edge weights, and whether a node
is visited.

3.2.2 Semantics

The operational semantics of the Pathfinding formalism model Dijkstra’s al-
gorithm completely, including its calculation of the node with the minimum
distance.

The semantics of Dijkstra’s algorithm can be divided in the following steps:

1. Assign to every node an initial distance value: zero for the initial node
and infinity for all other nodes.

2. Mark all nodes as unvisited. Set the initial node as current. Create a set
of the unvisited nodes called the unvisited set consisting of all the nodes.

3. For the current node, consider all of its unvisited neighbours and calculate
their tentative distances. Compare the newly calculated tentative distance
to the current assigned value and assign the smaller one. For example, if
the current node A is marked with a distance of 6, and the edge connecting
it with a neighbour B has length 2, then the distance to B (through A)
will be 6 + 2 = 8. If B was previously marked with a distance greater
than 8 then change it to 8. Otherwise, keep the current value.

4. When we are done considering all of the neighbours of the current node,
mark the current node as visited and remove it from the unvisited set. A
visited node will never be checked again.

5. If the destination node has been marked visited (when planning a route
between two specific nodes) or if the smallest tentative distance among the
nodes in the unvisited set is infinity (when planning a complete traversal;
occurs when there is no connection between the initial node and remaining
unvisited nodes), then stop. The algorithm has finished.

8



6. Select the unvisited node that is marked with the smallest tentative dis-
tance, and set it as the new ”current node” then go back to step 3.

These steps have been modelled using the MoTif transformation formalism
in conjunction with the rule-based transformations formalism to produce a main
schedule containing two sub-schedules (denoted by double edged rectangles) and
around 15 rule models. The main schedule model can be seen in Figure 5.

Figure 5: Schedule model of the Pathfinding DSL defined using the MoTif
Transformation formalism

3.3 User Input

The purpose of the User Input DSL is to allow the creation of models that
handle the input of the user and produce events that can be passed to rules in
a transformation schedule.

With the current version of MoTif (the transformation language being used
in this work), this is not possible and therefore most of the choices in the oper-
ational semantics of the RPG are being done randomly.

The abstract syntax of the User Input DSL can be seen in Figure 6a and is
based on the MoTif [5] DSL, since the idea is for them to be merged together
at a later stage of this project. It consists of a UserInputBlock class, that takes
care of processing the input of the user and an Event association from this
class to a TrafoElement class. TrafoElement is the class that all other rule
blocks inherit from in the MoTif metamodel, e.g. AtomicRules, BranchRules
and Success or Fail states. The Event association contains the information of
the input received, e.g. what key was pressed, by who and when.

Most of its design has to be implemented with code, as opposed to the
previous formalisms (RPG and Pathfinding) that were designed using models

9



(a) UserInput metamodel (b) Instance model of the UserInput DSL

almost exclusively, because AToMPM does not provide any support for user
input handling. For this reason also, the User Input formalism can only be
executed and tested in Java and not in AToMPM. In Figure 6b, an example
can be seen of how the UserInput would seem, after being integrated with the
MoTif formalism, in a transformation schedule for the RPG DSL.

4 Code Generation

In this section we describe the process of transformation that models of the
explained DSLs (section 3) undergo in order to become runnable applications
for the Android platform. This process is composed of two different types of
elements: formalisms and transformations. The term formalism is used here in
a general way so that it includes modelling and programming languages as well
as executable code. Transformations convert instances of one formalism into
instances of another. An instance is a single occurrence of a model defined in
a formalism. This terminology is the same as that of FTGPM diagrams [4],
that have been used to illustrate the code generation process explained in this
section.

A FTGPM illustrating the whole code generation process can be seen in
Figure 7. On the left part of the diagram we can see the Formalism Transfor-
mation Graph (FTG). The FTG contains the set of languages involved in the
generation process (depicted by a rectangle) as well as the available transforma-
tions between those languages (labelled as small circles). On the Process Model
(PM), at the right side of Figure 7, the control flow between the different tasks
that are necessary to produce the Android platform executable is shown. The
labelled round edges are actions, i.e. executions or transformations declared in

10



Figure 7: Code generation process, from AToMPM to Android, using a
FTG+PM diagram

the FTG and the labelled square edged rectangles correspond to models (in-
stances) that are consumed and produced by the actions. On the PM side, a
thin arrow indicates data flow and thick arrows indicate control flow. Manual
transformations are shown greyed out in the FTG and PM diagrams.

In the next sections, we explain each language and transformation that takes
part in the code generation process.

4.1 AToMPM

AToMPM [6] stands for A Tool for Multi-Paradigm Modelling and is an open-
source framework for designing and engineering DSLs. All the DSLs of this work
have been designed using this tool. AToMPM allows for the creation of all the
components of a DSL, abstract, concrete syntax and semantics. In AToMPM
the metamodels used for defining these three components are modelled as well,

11



this is done by using a metametamodel (that is also modelled). Therefore, they
can all be inspected and modified with this tool. AToMPM features extensi-
bility by supporting the addition of third party scripts or plugins for added
functionality. The transformation explained in subsection 4.3 is implemented
mainly using plugins. All models created using this tool are stored in files that
use the JavaScript syntax and it is in this form that they are processed by the
corresponding transformation.

AToMPM contains a built-in engine for performing rule-based model trans-
formations, which consists of a rule matcher and a transformation scheduler.
Any DSL whose operational semantics are defined using rule-based transforma-
tions can thus be simulated inside the tool.

This engine also allows for the execution of action and condition code in-
side transformation rules, although it only supports Python or JavaScript code.
Since the target environment of our work is Android, primarily developed in
Java, it is not possible to use any action/condition code of existing models that
use either Python or JS. To solve this issue, we added Java code to the action
and conditions of rules alongside the existing Python/JS code. The Java code
has to be surrounded by the ”[JAVA]” tags in order to be parsed correctly by
the following transformations. In Figure 8, an example of the action code of
a rule can be seen where the first line contains the Python code and the lines
surrounded by the ”[JAVA]” tags contain the equivalent Java code.

A feature that would have been useful during the course of this work is asso-
ciation inheritance for language syntax formalisms like Class Diagrams. This is
currently not possible because AToMPM only supports edges that are between
two non-edge entities, i.e. nodes. For the case of Class Diagrams, this would
allow the formalism to be extended with an inheritance link between it’s as-
sociations, effectively allowing association inheritance for any instance models
defined in it.

AToMPM provides a concrete syntax metamodel for defining the visual rep-
resentation of formalisms. Unfortunately, this only allows for a partial modelling

Figure 8: Action code in AToMPM using Java syntax

12



of the concrete syntax of a formalism since it is not explicit enough. It supports
a mapping between each abstract syntax element and a visual construct (in svg
format or image). What it does not support are more complex properties of
a language that belong to the concrete syntax but that a designer is forced to
design using the abstract syntax language (e.g. class diagrams). For example,
in the RPG DSL, it is desirable that the Tiles of a Scene are arranged in the
two-dimensional next to their neighbours, so if Tile a has a top link going to Tile
b, then Tile b is automatically positioned above a. This had to be implemented
within the RPG abstract syntax model while it clearly belongs to the concrete
syntax. For this reason, the translation of the concrete syntax is currently done
via an ad hoc manual transformation (represented by the gray color in FTGPM
diagrams) and not automated like the other models. Since the DSLs in this
work do not have a complex concrete syntax model, this is not considered as a
major issue.

4.2 MetaDepth

MetaDepth [1] is a textual meta-modelling environment which has as main ad-
vantage over AToMPM that it supports the execution of EGL templates.

MetaDepth also gives the option for validating models by checking any con-
straints included by the meta-modeller. Constraints are currently not supported
since they also have to be converted into the right format before MetaDepth
can process them.

Adding MetaDepth to the code generation process allows us to use EGL
but also makes it more convoluted and more prone to error. Before an EGL
template can be executed on a MetaDepth model, the model has to be loaded
correctly into the program. This adds a new layer of complexity since it requires
the exporter of AToMPM to be complete and to cover all possible errors that
the transformed model could originate. This transformation, implemented in
JavaScript is explained in detail in subsection 4.3.

4.3 AToMPM to MetaDepth: Javascript

After a model has been correctly loaded into MetaDepth, the appropriate EGL
template can be executed to produce a text file. The first transformation con-
verts models defined in AToMPM (in JS format) to models in the MetaDepth
format. This transformation is performed using a modified version of an ex-
isting plugin included in the latest version of AToMPM. The downside of the
original plugin is that it can only process one model at a time, i.e. the one
that is currently loaded in the model editor of AToMPM. Thus, a user has to
manually load every model it wishes to export and then click on the export
button of the plugin. This is very inconvenient, specially for systems that span
through a large amount of models, e.g. the RPG DSL requires an instance
model, metamodels and (rule) transformation models to be exported.

For this reason, the plugin has been modified in order to support automatic
export of all the required models with a single click from the user. This plu-

13



Figure 9: AToMPM-to-MD

gin first prompts the user to select two models: the host and transformation
(i.e. schedule) models and then it exports them along with all other necessary
models for their correct functioning. The automatically exported models are
obtained by navigating through the dependencies of these two selected models
(e.g. metamodel toolbars and imported rules). For the case of a transformation
model, these are all the rule models (and their pattern metamodels) that are
contained in it as well as any sub-transformations. For an instance model, the
plug in exports the metamodel(s) that are loaded into the editor at the time of
export.

Other minor changes made to the original plugin are: escaping of non-
alphanumeric characters in any variable names of the model (permitted in
AToMPM but not in MetaDepth), as well as modifying any variable names
that use MetaDepth’s reserved words (e.g. Node, Edge, Model) so that the
models can be properly loaded into MetaDepth. Finally, special characters like
slash, backslash and quotations are properly escaped.

An additional script that was implemented is one for performing the RAM-
ification [3] of a regular metamodel in order to generate a pattern metamodel
(in MetaDepth). This script performs the basic actions from the RAMification
process. It removes the abstract classes of the model (relaxation), adds label
attributes to be used by the transformation engine (augmentation) and lastly
it modifies the data type of the attributes of all model elements so they can
express conditions or actions (modification).

4.4 Java

Java is a popular general-purpose programming language that can be used to
write Android applications (“apps”). It has a much lower level of abstraction
compared to the previous meta-modelling languages.

14



4.4.1 Multiple Inheritance

A difference between Java and the previous languages is that Java does not sup-
port multiple implementation inheritance. It only supports multiple interface
inheritance which only allows the classes to inherit method definitions (meth-
ods with an empty body). This poses a problem since the previous languages
allow full implementation inheritance and a model that has to be transformed
into Java (using EGL) could contain this feature. The choice that was made
was to keep the multiple inheritance and recreate or simulate it in Java. The
alternative was to stop supporting this feature in the previous languages but
this would limit the modelling capabilities of the designers by depriving them
from this feature.

For recreating multiple inheritance in Java, we had to recreate inheritance
altogether. This was done by adding a subclass tree as a hash map data structure
to each metamodel. Then, at the moment of creation of the metamodel object,
all the types that are defined in it are stored as keys and all their subtypes
as values. Using the subclass tree as well as extra framework functions, it is
possible to determine any inheritance relationship between two objects of the
model. Since Java’s regular inheritance is not used in the generated classes,
no attributes or methods are being inherited by subclasses. Therefore, this
had to be done manually in the generation step (subsection 4.5) by effectively
duplicating all attributes and methods of a superclass in all its subclasses. This
clearly goes against object oriented design but is the only choice since Java’s
regular inheritance is not being used.

The drawbacks of this approach are that all the functionality that Java
provides for inheritance is lost for the generated models. No polymorphism is
possible since, for Java, no inheritance relationship exists between any classes.
This means that objects have to be casted to a class, given that the name of
such class is known beforehand. If the name of the class of an object is not
known beforehand it is not possible to cast it and therefore impossible to access
the inherited attributes of the object.

For example, using the RPG DSL from subsection 3.1, one could desire to
read the attribute Position of an object of kind Tile (i.e. of type Tile or a
subtype thereof). It would not be possible to simply cast the object to Tile
since it could have the type Trap or Door (both subtypes of Tile) and this
would throw an exception and the program would fail.

To bypass this problem, we use Java Reflection which makes it possible to
inspect classes, fields and methods at runtime. Using Reflection one is able
to read an attribute of an object by passing its name as a string to a Java
Reflection method. In the same example as before, for the object of kind Tile,
its Position can be obtained with at runtime without having to perform any
casts. Reflection has the downside that it could perform operations that would
be illegal in non-reflective code, such as accessing private fields and methods and
it can also produce other unexpected side-effects. For the concrete case of this
project, it made debugging a bit more difficult since it moves the functionality
of accessing and modifying fields from compile-time to runtime and instead of

15



Figure 10: Java framework design

receiving errors with the compiler, an exception is thrown.

4.4.2 Framework

Being Java the last programmable language of the transformation process (the
last being Android’s APK package format), it contains all the framework needed
for the DSM solutions discussed before. The main functionality of the framework
is the metametamodel for all languages that are implemented. The structure
of the metametamodel can be seen in Figure 10. It consists of the following
classes:

Model The Model class that contains helper methods for querying and ma-
nipulating a generated model. All generated model classes are subclasses of
Model. Some examples of the functionality added by this class is:

• getNodesOfKind for obtaining a list of nodes of the same type and sub-
type of a given node.

• getAdjacent for obtaining all the nodes that are connected to a given
nodes via an edge.

• add and remove for manipulating the model’s elements.

Node The Node class represents an element of a model. It is equivalent to
the Class construct of class diagrams. Every node object of a model defined
in AToMPM, is transformed into a MetaDepth Node clabject and finally it is
converted into a subclass of a Java Node. This framework class contains helper
methods such as the following:

16



• getAttribute and setAttribute for manipulating a node’s attributes (using
Java’s Reflection). This is needed as part of the solution for the lack of
multiple inheritance in Java.

• getIncoming and getOutgoing returns the incoming and outgoing edges
of a node, respectively.

Edge The Edge class contains the information of an edge or link of the pre-
vious languages of the transformation. The equivalent in class diagrams of
AToMPM are associations and in MetaDepth the clabjects of the type Link (a
manually added class to replace the built-in and problematic Edge construct
of MetaDepth). This class contains methods for accessing and modifying the
source and destination nodes of an edge.

RuleModel The RuleModel class is a template for all transformation rules,
defined using the formalism of the same name in AToMPM. Having this all
generated rule models inherit from this class gives us the advantages of poly-
morphism and also avoids having duplicated code for each generated rule.

ScheduleModel The ScheduleModel class serves as a template as well, but
for transformation schedules. Furthermore, it provides the same benefits as the
RuleModel framework class.

4.5 MetaDepth to Java: EGL

As mentioned in subsection 4.1, AToMPM models are stored using the JavaScript
syntax and can be queried and modified with JS scripts as well. In theory, this
is enough for creating a code generator using JavaScript. However, JavaScript is
not a very appropriate language for code generation compared to the available
alternative: the Epsilon Generation Language (EGL). EGL (subsection 4.5) is a
model-to-text template-based language for generating code that can be applied
to any language that conforms to the model interface of the Epsilon Family
of Languages. Since AToMPM currently does not implement this interface,
it cannot be used directly with EGL templates. For this reason we added the
MetaDepth tool to the code generation process, which supports the execution of
EGL templates. Furthermore, the latest version of AToMPM includes a plugin
for exporting AToMPM models into MetaDepth models.

Once a model has been translated into MetaDepth’s syntax, it can be loaded
on the tool and next, an EGL template can be executed. There are four kinds
of models that are currently supported for transformation to Java, and each of
them requires a different EGL template:

• Metamodels, defined using the Class Diagram formalism.

• Instance models, defined using any metamodel that is defined using the
Class Diagram formalism.

17



Figure 11: MD-to-Java

• Transformation rule models, defined with the TransformationRule meta-
model (subsubsection 4.5.1).

• Transformation rule schedule models, defined with the MoTif [3] meta-
model (subsubsection 4.5.2).

Note that for this approach only one template is required for the metamodels
of all the different formalisms involved. This is because all of their metamodels
have been defined using the same metamodel, i.e. class diagrams.

4.5.1 Rule

Generating the rule and schedule models is only the first part of the work. What
remains is being able to apply these rules to host models, using a schedule model
to determine the order. In order to apply a transformation rule to a host model
and produce a new host model, a technique similar to pattern matching has
to be performed. Applying a transformation rule involves the following three
steps:

1. Try to match all the elements of the left-hand side (LHS) pattern to the
host model.

2. If the matching is successful (no single element of the LHS was left out
of the match) then try to match the negative condition (NAC) pattern to
the host model.

3. If the NAC was not matched, then the match was successful and the
right-hand side (RHS) pattern can be applied to the matched elements.
The RHS performs the actual transformation of the model.

18



Figure 12: Rule-to-Java

We considered two approaches for implementing the rule matching technique.
One was to create a centralized engine (as part of the Java framework) that takes
as input a rule and a host model, applies the rule and then produce the new
transformed host model. The other was to add the rule matching functionality
inside each generated rule model, specific to the rule. For the first option,
the pattern matching algorithm would be implemented using Java and for the
second using EGL (to generate Java files). Even though Java is a better suited
language for implementing such an algorithm, doing it at the generation stage
has the advantage of simplifying the algorithm since it only has to work for the
specific rule where it is located. Creating a generic matching engine was deemed
as a more complicated process. It also would have performed less optimally since
it had to be able to process all the possible rules of the domain. Therefore the
second option was chosen with the only downside being that EGL was not as
expressive and powerful as Java for this task.

The matching engine for each rule consists of up to two methods for matching
the LHS and/or NAC patterns and one method for transforming the matched
elements. The matching algorithm consists of two parallel depth-first searches
(DFS) on the nodes of the host model and those of the pattern to be matched.
This has been implemented by generating a chain of nested for loops, one for
each node of the pattern. Inside each for loop, all the possible matching can-
didates (nodes of the host model) are compared to the pattern node of the for
loop until a match is found, in which case the next nested for loop is entered, or
until no more candidates are left, in which case the current for-loop is exited (i.e.
it backtracks) and the previous one continues iterating through its candidates.
The generated algorithm also takes into account the case of unconnected group
of nodes in the host model, i.e. strong components. This is solved by detecting
the strong components of the host model beforehand and then restarting the
previously explained DFS on each of them.

19



Figure 13: Schedule-to-Java

4.5.2 Schedule

The schedule of a transformation also requires an engine in order to execute
its control flow in the target environment. This was implemented following the
same approach as the transformation rules, embedding the functionality to each
individual schedule model instead of creating a centralized generic scheduling
engine to serve all of them. The schedule main functionality is contained within
the step method, which attempts to apply one rule and, according to whether
the attempt was successful or not, it passes control to the next rule.

The current scheduler EGL transformation supports the following MoTif’s
rule blocks that can be defined using this language:

• ARule (atomic), applies the rule on one match.

• SRule (star), applies the rule recursively until no matches are found.

• QRule (query), applies a match for the LHS.

• BRule (branch), non-deterministically selects one successful branch of ex-
ecution.

• CRule (composite), refers to another (sub-)transformation.

An example of the input and output of applying the scheduler

4.6 Android

Android is an operating system for mobile devices such as smartphones that
we have chosen as the target environment of this project. We are considering
Android as a language even though the actual language it uses is Java because

20



a Java application still has to undergo a transformation before it can be used
as an Android app. The files have to be packaged in the .apk format which
contains the executable byte code files. This packaging is performed by using
the Ant tool to execute tasks provided by the Android Software Development
Tool (SDK).

4.6.1 Framework

In order to run the generated Java code as an Android app, a framework is
required. This framework is also implemented using Java but it uses the Android
API and is therefore specific to this section.

The first part of the framework is the Activity class. An Activity is the
entry point of an Android app and it provides the screen with which the user
interacts. The layout of an app is contained in the Activity.

The second framework element is the View that is used for displaying the
actual model, e.g. the game world map in the RPG DSL. The View is analogous
to the concrete syntax metamodel of the AToMPM environment, its purpose is
to display all the contents of a given model in the canvas of the environment.
Since the concrete syntax metamodel of AToMPM is not being used in the
generation process (reason explained in subsection 4.1), each of the formalisms
of this work, e.g. RPG or Pathfinding, require a separate View class that takes
care of its display. In this section we explain in detail all the transformation
steps of the code generation process of our DSM solution. We use three different
transformations that are applied to a model for translating it to each of the
languages explained in section 4. An overview of this process, using the RPG
formalism as example, is illustrated in Figure 7.

4.7 Java to Android: ANT

The last transformation converts all the generated and framework Java files
to the APK package format that can be executed in an Android device. This
transformation is performed using the Apache Ant command-line tool used for
automating the software build process and is geared towards Java projects, like
the one at hand. Using Android’s SDK we have implemented an Ant script
for automatically compiling the source files, building the APK, installing the
APK on a device and finally running it in such device. This script has been
integrated into AToMPM’s plugin for exporting models (See subsection 4.1) and
is executed after the models have been converted to Java format, allowing the
designer to perform the complete generation process (consisting of the three
sub-transformations of this section) with only one click.

5 Future Work

Having the test DSLs defined and their generation process automated sets up
the field for experimenting with the language combination techniques of [7].

21



They shall be applied to the main RPG DSL in order to create an extended one
which is able to creating games that can be run on the Android platform and
that have extra features such as pathfinding, user input, debugging capabilities,
along with other possible future extensions.

Since the RPG and Pathfinding languages have been defined using the same
formalisms, that is class diagrams for their abstract syntax and rule-based trans-
formations for their semantics, their combination falls into the category of homo-
geneous. In order to combine them, the abstract syntax and semantics models
have to be joined. This task could be much more difficult if the formalisms
with which the languages were designed were different. For example if the RPG
semantics were defined using rule-based transformations and the Pathfinding
language using state charts. In that case, a translation would have to be per-
formed from one formalism to the other or they could both be translated into
a formalism in between.

Regarding the combination of their abstract syntax, the technique that cur-
rently seems most appropriate is combination by inheritance. This could be
done by letting a Tile (and thus all its subtypes) of the RPG DSL be a subtype
of the Node type of the Pathfinding DSL. This would allow tiles to be regarded
as graph nodes to which the pathfinding algorithm could be applied.

For the semantics, the transformation of the Pathfinding DSL would remain
untouched, since it could still be applied to tiles after the abstract syntax combi-
nation. But the semantics of the RPG DSL would have to be modified in order
to use the new information given by the Pathfinding DSL, namely the shortest
path between two tiles. The intent is that, instead of having a character moving
to a random tile on its turn, it would move to the tile that brings him in the
right direction towards its goal (e.g. an enemy character or an item that it
wants to pick up). The exact way the semantics of these two DSLs would be
combined is still not clear and is the subject of the future work that will focus
solely in DSL combination.

References

[1] Juan De Lara and Esther Guerra. Deep meta-modelling with metadepth. In
Objects, Models, Components, Patterns, pages 1–20. Springer, 2010.

[2] Steven Kelly and Juha-Pekka Tolvanen. Domain-specific modeling: enabling
full code generation. Wiley-IEEE Computer Society Press, 2008.

[3] Thomas Kühne, Gergely Mezei, Eugene Syriani, Hans Vangheluwe, and
Manuel Wimmer. Explicit transformation modeling. In Models in Software
Engineering, pages 240–255. Springer, 2010.

[4] Levi Lucio, Sadaf Mustafiz, J. Denil, B. Meyers, and Vangheluwe H. The
formalism transformation graph as a guide to model driven engineering.
2012.

22



[5] Eugene Syriani, Jeff Gray, and Hans Vangheluwe. Modeling a model trans-
formation language. In Domain Engineering, pages 211–237. Springer, 2013.

[6] Eugene Syriani, Hans Vangheluwe, Raphael Mannadiar, Conner Hansen,
Simon Van Mierlo, and Hüseyin Ergin. Atompm: A web-based modeling
environment. In Demos/Posters/StudentResearch@ MoDELS, pages 21–25,
2013.

[7] Rafael Ugaz. Weaving of domain-specific modelling languages a literature
review. 2014.

23


	Introduction
	Background
	DSLs
	RPG
	Syntax
	Semantics

	Pathfinding
	Syntax
	Semantics

	User Input

	Code Generation
	AToMPM
	MetaDepth
	AToMPM to MetaDepth: Javascript
	Java
	Multiple Inheritance
	Framework

	MetaDepth to Java: EGL
	Rule
	Schedule

	Android
	Framework

	Java to Android: ANT

	Future Work

