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technique by applying it to our running example, a DSL for designing role-playing games
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tool and used for combining the running example of this thesis.
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Chapter 1

Introduction

This chapter introduces the context of this thesis, as well as the problems that it ad-

dresses and the research questions that it tries to answer.

1.1 Context

The context of this thesis consists in domain-specific modelling and languages.

1.1.1 Domain-Specific Modelling

Domain-Specific Modelling (DSM) [1] is a branch of Model Driven Engineering (MDE)

[2] that aims to raise the level of abstraction beyond current programming languages by

specifying the solution to a problem in a language that uses concepts specific to the given

problem domain. This allows domain-experts (who should not need any programming

expertise) to play active roles in development efforts by modelling the solution using

only domain constructs that are familiar to them [3].

The final products of a DSM solution are complete artifacts (e.g., executable programs,

documentation, test cases or other models) that are (ideally) equivalent to those cre-

ated using traditional software engineering techniques. These artefacts are automati-

cally generated from their high-level specifications (created by the domain experts) via

domain-specific transformations. These transformations are created by more technically

experienced programmers and can produce as result either another model (of an inter-

mediate modelling language) or executable code (the final product). This automation

minimizes the accidental complexity of the system by avoiding the need to perform the

mappings from domain to design and then to code manually. Since this translation is

1
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automated, it can also be repeated effortlessly, therefore raising the level of abstraction

of the solution to the domain-specific modelling level. All the other abstraction levels

of the solution are in this way hidden from the user or domain expert. Thus, DSM

effectively shifts the focus of solutions to their design rather than their implementation.

DSM can also provide translation in the other direction, i.e., from executable code

to a domain-specific model, via traceability. This is possible because of the creation of

traceability links between artefacts at different levels of abstraction during the generation

stage. Following any given chain of links, a concept can be found at any of the existing

levels of abstraction. Traceability has applications for inspecting the system at runtime,

debugging, formal analysis results, etc.

The important raise in abstraction of DSM is mainly achieved by the specification of a

Domain-Specific Language, which is the most external and visible part for the user.

1.1.2 Domain-Specific Languages

Domain-Specific Languages (DSL’s) are small and focused modelling languages that

allow the specification of systems at a high-level of abstraction.

Modelling languages are essential elements of MDE and are defined by the following

three parts:

• The abstract syntax defines the internal structure concepts and rules of a language

and can also constraint all the possible model instances created with the language

to a subset of valid or well-formed ones.

• The concrete syntax takes care of the notation used to represent these concepts,

be it textually or visually.

• Finally, the semantics describes the meaning of the models in terms of a set of

known concepts, referred to as the semantic domain.

For a more detailed and formal definition of modelling languages see chapter 2.

1.2 Problem Statement

Because of their focused nature, DSLs are not as effective in representing a whole system,

but rather a view from it. These views, or language modules, need to be combined at

some stage in the software development process in order to specify the whole system.
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In addition, most of the current methods for their engineering still require them to be

built completely from scratch. There is thus a need for mechanisms for the combination

of these language modules or fragments.

Additionally, the combination of DSL’s would allow the reuse of existing language mod-

ules for creating new ones. Language reuse can bring to the MDE realm the same

benefits that it brought to the realm of software engineering, mainly the avoidance of

duplication of efforts, which in turn can lower the initial cost of building DSLs.

1.3 Research Questions

This work focuses on answering the following main research question:

Is it possible to combine domain-specific languages in a modular way?

We can expand the main research question above and also propose the following sub

questions:

1. Can we facilitate the engineering of DSLs via the combination of smaller DSL

modules?

2. Can we combine all the language components of DSLs, i.e., syntax (abstract and

concrete) and semantics?

3. Can we apply model and metamodel combination techniques, surveyed in previous

work [4], for the combination of DSLs?

4. Can DSL combination be generic, i.e., be applicable to models with heterogeneous

metamodels?

5. Can we combine DSLs using a model-based approach for the process as well for

the parts combined?

1.4 Motivation

In this section we discuss the two main motivations DSL combination more thoroughly.
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1.4.1 Re-usability

Most of the time, language engineers have to develop DSLs completely from scratch,

using only their own experience and expertise to do so [5]. This is in contrast to general

purpose or third-generation programming languages (3GL), where an engineer is able

to re-use the existing work of others to speed up the developing process or improve the

quality of the product. For example, the Petri nets language can be re-used for creating

similar languages that use a variant of the state-transition structure.

For DSLs, composition is one of the missing processes for enabling this feature, along

with a more formal specification of them and a library of high-quality and reusable

DSLs. In [5], Emerson and Sztipanovits afirm that re-usability can bring to domain-

specific modelling the same benefits that software reuse brought to 3GLs:

• Avoidance of duplication of effort (no overlap of concepts)

• Emergence of high-quality reusable DSLs (e.g., Statecharts or Petri nets)

• Recognition of key DSL modelling patterns and best practices

• Significant reduction in the time-to-market of DSLs.

Note that only the first item, avoidance of duplication of effort, is relevant for the scope

of this thesis, since it facilitates the development of DSLs.

1.4.2 Modularity

Modularity of modelling languages is a design technique that considers a system as

multiple components.

Modularity has benefits similar to those of encapsulation in software engineering, namely

a clean separation of, in this case, the models. It also makes the system easier to maintain

and extend because of its modular structure as opposed to a tangled one where two tasks

become unnecessarily difficult.

But modularity also has the disadvantage of being less efficient performance wise than its

counterpart, although this can be remedied by code optimization. The more modular

a system is, the more steps are needed to perform a task. A simple example is the

access of an object of a module many associations away from another one; in a modular

system, a chain of consecutive accessing operations through all modules in between

would be needed while in a non modular system this could be done directly with a
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single operation. An example of a modular language is the Discrete EVent System

Specification formalism (DEVS) [6].

When faced with the task of modelling a complex system, breaking it down into a set

of modules, where each one deals with a different concern, makes the task much easier.

These modules can be defined in different languages, each one better suited for the

different view or aspect of the system that it specifies. For instance, the behavioural

concern of the system can be designed using State Charts based language while the

structural part uses UML Class Diagrams. In the context of our work, we even want to

be more specific by, for example, subdividing the behaviour of a system into multiple

smaller DSLs. Examples of this approach can be found in the PhoneApps application, a

multi-concern DSL, in [7] and in [8], where textual language modules are used to model

a traffic light system.

The problem arises when the design phase is finished and it is time to create the final

application, which requires the smaller models of the system to be synthesized back

together in some way. If the models were created with the same modelling language

(i.e., they conform to the same meta-model), a homogeneous composition is needed.

But if, on the other hand, the models were designed in different modelling languages

or paradigms, they require a heterogeneous composition. The latter being, as expected,

more difficult since it would require a translation mechanism between the languages by,

for example, an interface.

1.5 Outline

This thesis structure is divided in the following way. In chapter 2 we provide a set of

basic background concepts and terminology which are used throughout the thesis. In

chapter 3 the running example is introduced: a DSL for creating role-playing games.

Two secondary DSLs are also presented in this chapter. These DSLs are used to il-

lustrate the combination technique presented in the thesis. Next, chapter 4 presents

the model combination mechanisms and techniques that have been adapted to fit our

solution. In chapter 5, the implemented solution for combining of DSLs is displayed.

A walk through the process is described as well as the limitations of the approach. Fi-

nally, chapter 6 recaps the work done in the thesis with conclusions about the research

questions presented in this chapter and a discussion about related and future work.



Chapter 2

Background and Terminology

In this chapter we define several concepts and present terminology that is used through-

out the rest of the paper. This chapter is based on the set of definitions for model

composition frameworks presented by Bézivin et al. in [9], [10] and [11].

2.1 Directed Graph

A formal way to define models, which is also useful for their visualization, is to represent

them as directed graphs. Let G = (NG, EG,ΓG) be a directed multi-graph that consists

of three elements:

• NG, a finite set of nodes;

• EG, a finite set of edges;

• ΓG : EG → NG ×NG, a function that maps edges to their source and destination

nodes.

2.2 Model

A model M = (G,ω, µ) is a triple where:

• G = (NG, EG,ΓG), is a directed multi-graph;

• ω is a model (called the reference model) with an associated graphG = (NG, EG,ΓG);

6
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• µ : NG ∪EG → Nω, is a function that maps all the nodes and edges of G to nodes

of Gω. This means both nodes and edges of G are constrained by nodes from Gω

(which is the graph of its reference model).

The relation between a model and its reference model is called conformance. Thus we

say that a model conforms to its reference model.

This definition allows an indefinite chain of models that conform to each other. However,

three levels are usually sufficient. We call these three levels metametamodel (M3),

metamodel (M2) and terminal model (M1).

2.3 Metametamodel

A metametamodel is a model that is its own reference model, in other words it conforms

to itself. This concept is called metacircularity and it avoids endless “meta” prefixes.

2.4 Metamodel

A metamodel is a model such that its reference model is a metametamodel.

2.5 Modelling Language

A modelling language is a language that defines a set of consistent rules for expressing

information or knowledge in the form of models. In [12], Chen et. al give a formal defi-

nition of a Domain-Specific Modelling Languages. This definition can also be applied to

the broader concept of modelling languages. They formally define a modelling language

as a five-tuple of the form:

L = {C,A, S,MS ,MC}

Where,

1. C is the concrete syntax, that defines the notation used to express the models

which may be graphical, textual or mixed;

2. A is the abstract syntax, which defines the concepts, relationships and constraints

or well-formedness rules of the language;
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3. S is the semantic domain, a set of concepts (usually defined in some formal frame-

work) in terms of which the meaning of the models of the language are explained;

4. MC : C → A is the syntactic mapping, it assigns a syntactic construct of the

concrete syntax C to the elements of the abstract syntax A;

5. MS : A→ S is the semantic mapping, which relates the syntactic elements of the

abstract syntax A to those of the semantic domain S.

A definition of a modelling language can be therefore divided into the following three

parts, where each one can be specified using models:

Abstract Syntax

The abstract syntax describes the concepts of a language and their properties, the legal

connections between them, the model hierarchy structures, and also grammatical rules

that enforce model correctness. These rules can significantly reduce the possible design

space which helps in designing correct applications.

The abstract syntax of a modelling language is normally specified with a meta-model [13].

The prefix ”meta” is used to denote that an operation, in this case modelling, is applied

twice. In other words, a meta-model is a conceptual model of a modelling language. A

meta-model provides a formal specification of the language which, supported by tools

(e.g., AToMPM, MetaEdit+), is used to create and modify models as well as generating

code from them.

Concrete Syntax

The concrete syntax provides a representation of the abstract syntax of a meta-model

as a mapping (syntactic mapping) between the meta-model concepts and their textual

or graphical representation. A language can have several concrete syntaxes.

Semantics

The semantics of a modelling language define the meaning of the syntactically correct

concepts of a modelling language. The semantics of a language comprise the already

defined concepts of semantic domain and semantic mapping.

There are many approaches for defining the semantics of a language. For this work,

however, the following two are more relevant:
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• Operational semantics often encode behaviour and give meaning to a language by

describing the transformation of the system from one state to the next (possibly

along some time model).

They are usually better suited for giving meaning to behavioural languages (e.g.,

finite state automata (FSA), Petri nets or activity diagrams). Since structural

languages (e.g., class diagrams or entity relationship diagrams) have a more static

and non-behavioural nature, they cannot be very well represented by this type of

semantics;

• Denotational semantics define the meaning of a language in terms of another lan-

guage or formalism for which well defined semantics (operational or denotational)

exist, for example code, mathematics or Petri nets. With this kind of semantics,

any type of language (behavioural or structural) can be specified, as long as the

language it is being defined in can properly represent its concepts.

2.6 Transformation Rule

A transformation or graph rule R : MIN →MOUT is a function that takes a model MIN

as input, performs a matching of the LHS subgraph over it, replaces the match with

another subgraph RHS and outputs the model MOUT . A graph rule is parametrized

by:

• LHS, a left-hand side pattern that should be present in the input model;

• RHS, a right-hand side pattern that describes how the LHS should be transformed

after applying the rule;

• NAC, a negative application condition pattern that should not be present in the

input model for the rule to be applicable.

2.7 Model Transformation

A model transformation T , is an operation with signature SOUT = T (SIN ) that takes

a set of input models SIN , executes a set of transformation rules SR over the model

elements and produces a set of models SOUT as output.

A transformation is itself also a model and therefore all the general operations applicable

to models may be applied to transformations (including transformations that are called

higher-order transformations).
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2.8 Aspect Oriented Modelling

Aspect Oriented Modelling (AOM) translates the concepts and ideas applied at the

code level by aspect oriented programming (AOP) [14] to the model level. Usually, a

system contains one or more so called cross-cutting concerns spread along the system

(e.g., Logging or Debugging). These cross-cutting concerns are difficult to maintain

when tangled all over the system. AOM provides a way to isolate these concerns into

centralized and easy to maintain models which are called aspect models. The way to

keep these aspects where they should be located in the system is by defining two core

concepts inside them: a pointcut and an advice. The pointcut defines all the joinpoints

where the cross-cutting concern is located in the system. And the advice defines what

functionality, either a code segment in AOP or model instances in AOM, to insert at

the join-points. The act of combining aspect models into a base model is called weaving.

This terminology can be used in different contexts or implementations, for example when

using rules for weaving, a rule can be considered as the aspect, where the LHS is the

pointcut, the RHS is the advice, and the match is the joinpoint.



Chapter 3

Running Example

In this chapter, the RPG domain-specific language is introduced. In previous work [15],

a complete DSM solution has been implemented for this language, which includes a code

generator for Android applications as well as a domain framework. This language will

be used as the running example to illustrate the combination techniques that are applied

in the following chapters. In this chapter we also present two other DSLs, Pathfinding

and EventListener which will be later used to extend the RPG DSL with new features.

3.1 The Role-Playing Game DSL

The Role-Playing Game language, as its name indicates, allows the modelling of Role-

Playing Games (RPGs). An RPG is a game where players assume the roles of characters

in a fictional setting. The games created with this DSL fall more into the sub-category

of RPGs called dungeon crawlers. As the name indicates, the player has to explore a

dungeon taking the role of a character. In the dungeon the player encounters enemies

that it has to fight, items to collect and quests to complete.

3.1.1 Abstract Syntax

The abstract syntax of the RPG consists of all the structural elements that take part

in the game. It has been modelled using the SimpleClassDiagrams language as it can

be seen in AToMPM. To verify that a model is well formed, the abstract syntax is also

enriched with constraints such as cardinalities.

The abstract syntax model can be seen in Figure 3.1. At the top most level, the game

contains one or more scenes or “levels” where all the other structural elements are

11
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Figure 3.1: Abstract syntax of the RPG formalism defined using class diagrams

contained. In each scene, there are a number of tiles that can be connected to each

other from the left, right, top or bottom. This way, a two-dimensional map is created

for each scene. The game also contains characters, a hero and villains. There can be

exactly one hero but multiple villains. All characters can stand on one tile at the same

time and a tile can hold at most one character. There are four different types of tiles: an

obstacle tile on which no character can stand, a door tile, which is connected to another

door tile and can be used by a character to move form one scene to the other, a trap tile,

where a character loses life points whenever it stands on it and a regular tile, with no

added effects. On a regular tile, there can be an item. There are three types of items:

goals, can be picked up by the hero (its purpose is explained in the semantics), weapons,

that when picked up give a bonus in attack to the character and keys, which are used

to unlock doors (and enable a door for use).

3.1.2 Concrete Syntax

In AToMPM, concrete syntax is specified using a the Icon Definition language. This is

a simple language that for defining one-to-one mappings between each abstract syntax

entity and its visual representation. A model conforming to this language and used to

define the concrete syntax of the RPG DSL is illustrated in Figure 3.2. An instantiated

RPG model, using the visual concrete syntax in conjunction with its abstract syntax is

shown in Figure 3.3.
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Figure 3.2: Partial icon definition of the RPG DSL

3.1.3 Semantics

Since role-playing games have behaviour, their semantics are of the type operational.

They describe explicitly how the game can be executed or simulated and have been

defined using the TransformationRule and MoTif [16] transformation languages.

The operational semantics can be described with the following rules:

• The game is turn-based, first the hero gets a turn to either move or attack, then

all the villains get a turn to do the same, then it goes back to the hero and the

cycle repeats itself until the end game conditions are met.

• A character can move from one adjacent tile to another, as long as the tile is not

an obstacle tile and is not occupied by another character.

• A character can attack an enemy that stands in any adjacent tile.

• An item can be picked up by the hero by walking on its tile. Every item can only

be picked up once.

• If the hero picks up a weapon, the damage of the weapon is added to the hero’s

attack.
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Figure 3.3: Example instance model of the RPG DSL

• If the hero picks up a key, he can use a door that is unlocked by that key.

• The player wins the game if he picks up all the goals. There must be at least one

goal at the beginning of the game.

• The player loses the game if the hero is killed.

The semantics model designed for this DSL can be seen in Figure 3.4.

3.1.4 Performance

When executing the operational semantics in the AToMPM client, the game runs very

slowly, however when running it in an Android device using the Java generated code and

framework rule matcher, it performs much better. This is related to the architecture of
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Figure 3.4: Operational semantics of the RPG formalism defined using rule-based
transformations

AToMPM which depends on the network communication between the client application

(with whom the user interacts) and the server, where all the operations (including rule

transformations) are executed. Although modifying the architecture of AToMPM is

outside of the scope of this thesis, the performance can still be improved with the

following optimizations to the transformation rules:

• Having multiple attack rules for the attack action, e.g., AttackLeft, AttackRight,

etc, is more efficient than a single Attack Rule. The current single attack rule

used in the transformation has a search space that includes all the tiles in the

map while this search space could be greatly reduced by having individual rules

for each direction, that way, the rule matching algorithm would only consider as

candidates the tiles situated at the appropriate direction of the character.

• The AToMPM rule matcher allows the use of pivots in the transformation rules,

although this has not been implemented yet in our Java rule matcher. Pivots

could speed up the game by reducing the search space that some rules have to go

through. For example, all rules that use the node of the Hero in their application

(e.g., MoveHero, PickUpItems, IsHeroAlive) have to search for the Tile node where

the Hero stands from all the possible Tile nodes. Using pivots, after one of these

rules have found this Tile, it can mark it as a pivot and send it to the other rules

that use it, avoiding the duplicate searching of this Tile by these other rules.
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3.2 Pathfinding DSL

The Pathfinding DSL enables designers to create directed graphs and calculate the

shortest path between any two nodes of the graph.

The pathfinding DSL allows the creation of a weighted graph with a single source and

destination nodes. After creating such a graph, the operational semantics of the DSL

can be executed in order to find the shortest route between two nodes. The calculation of

the shortest path is based on Dijkstra’s algorithm, which has been completely modeled

using rule-based model transformations.

The purpose of this DSL is to extend the RPG DSL with pathfinding capabilities.

Pathfinding is at the core of any kind of artificial intelligence (AI) in games. It allows

to find paths between any two coordinates of the game world. An example of a feature

possible because of pathfinding is to have a villain move towards a Hero to attack it

and chase it. This is a big improvement compared to the default random movement

behaviour of the RPG DSL.

3.2.1 Syntax

The abstract syntax of the pathfinding formalism consists of the following elements:

• A Node that represents the entity of the same name in the search graph. For our

concrete case this is a location in the game map, e.g., a Tile. A node can be a

regular node or two special types: source and destination. There must be exactly

one source and one destination in the graph for the algorithm to work correctly.

The Node also contains attributes required for the Dijkstra’s algorithm like the

distance to the destination node and a isVisited flag.

• An Adjacent edge denotes that two nodes are connected in the search graph.

• A Previous edge which is used after the application of the algorithm to point to the

shortest path found. The path can be obtained by navigating from the destination

towards the source following the Previous edges.

The abstract syntax of the Pathfinding formalism, like the RPG formalism, has been

defined using the SimpleClassDiagram language in AToMPM.

The concrete syntax of the Pathfinding formalism is similar to the concrete syntax of

an undirected graph with the addition of annotations for specific attributes of Dijkstra’s

algorithm, e.g., distance, edge weights, and whether a node is visited.
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Figure 3.5: Abstract syntax model of the Pathfinding DSL

3.2.2 Semantics

The operational semantics of the Pathfinding formalism model Dijkstra’s algorithm com-

pletely, including its calculation of the node with the minimum distance.

The semantics of Dijkstra’s algorithm can be divided in the following steps:

1. Assign to every node an initial distance value: zero for the source node and infinity

for all other nodes (:InitNodes);

2. Mark all nodes as unvisited. Set the initial node as current. Create a set of the

unvisited nodes called the unvisited set consisting of all the nodes (:InitNodes);

3. For the current node, consider all of its unvisited neighbours and calculate their

tentative distances. Compare the newly calculated tentative distance to the current

assigned value and assign the smaller one. For example, if the current node A is

marked with a distance of 6, and the edge connecting it with a neighbour B has

weight 2, then the distance to B (through A) will be 6 + 2 = 8. If B was previously

marked with a distance greater than 8 then change it to 8. Otherwise, keep the

current value(:VisitNeighbor and :VisitNeighborVar);

4. When we are done considering all of the neighbours of the current node, mark the

current node as visited and remove it from the unvisited set (:MarkAsVisited).

A visited node will never be checked again;

5. If the destination node has been marked visited (:isCurrentDest)—when plan-

ning a route between two specific nodes— or if the smallest tentative distance

among the nodes in the unvisited set is infinity (:isCurrentInfinity)—when plan-

ning a complete traversal this occurs when there is no connection between the ini-

tial node and remaining unvisited nodes— then stop. The algorithm has finished;

6. Select the unvisited node that is marked with the smallest tentative distance, and

set it as the new ”current node” then go back to step 3 (:FindMinNode).
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These steps have been modeled using the MoTif transformation formalism in conjunction

with the rule-based transformations formalism to produce a main schedule containing

two sub-schedules (denoted by double edged rectangles) and around 15 rule models. The

main schedule model can be seen in Figure 3.6.

Figure 3.6: Schedule model of the Pathfinding DSL defined using the MoTif Trans-
formation formalism

Figure 3.7: Rule model for the rule block VisitNeighbor, shown in the schedule
model of Figure 3.6
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3.3 Event Listener DSL

The EventListener Template DSL is a simple language that follows the Observer pattern

and is used for handling the key presses sent to the subject (e.g., the tool AToMPM) by

the environment.

3.3.1 Syntax

Figure 3.8: Abstract Syntax model of EventListener DSL

Figure 3.9: Concrete Syntax model of EventListener DSL

The abstract syntax of the DSL primarily consists of the two types KeyListener and

KeyEvent. A KeyListener object can be related to at most one KeyEvent object, via

a CurrentEvent link. The KeyEvent class can be of several subtypes depending on

the key press that it represents. This can be seen as redundant since the type of the

key pressed is already stored in the keyCode attribute but modelling this characteristic

explicitly is useful for making rule transformations more clear as well as interactions

with the AToMPM environment. The abstract class QueueElement is a helper class

that provides the basic functionalities of a queue data structure. We let KeyEvent
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inherit from QueueElement to allow the ordering of event objects in a First-In-First-

Out (FIFO) manner. The abstract syntax of the DSL, containing all the mentioned

elements, can be seen in Figure 3.8. The concrete syntax is shown in Figure 3.9.

3.3.2 Semantics

The semantics of the DSL perform the following tasks in one iteration:

• First, the event at the head of the event queue (the oldest) is connected with the

KeyListener via a CurrentEvent link. This step is performed in the ProcessEvent

rule;

• Next, the type of the event is checked. Currently we support four types of events,

one for each arrow key in the keyboard. This check is done via the IsXXXArrow

query rules. If the type is not recognized, the transformation fails;

• According to the recognized type of the event, its corresponding action is invoked

via the XXXAction rules. If any of the action rules fail to apply, the whole trans-

formation fails as well;

• Finally, the current event is deleted, and the event queue is updated appropriately,

by making the following event the head of the queue.

The operational semantics, modelled using the MoTif scheduling language are shown in

Figure 3.10.

Figure 3.10: Operational Semantics model of EventListener DSL
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3.4 AToMPM

All the DSLs used in this work have been created using AToMPM (A Tool for Multi-

Paradigm Modelling), [17] an open source framework for designing DSL environments,

performing model transformations, manipulating and managing models. It is primarily

a graphical modelling environment but it is also possible to write textual commands for

more advanced users. Model transformations can be explicitly modelled in AToMPM,

this is done by defining a left-hand side (LHS), right-hand side (RHS) and negative

application conditions (NACs), similarly to graph transformations. The patterns inside

the rules use a similar concrete syntax as that of the input and output languages, but

adapted to rule patterns.

3.5 Code Generation

A complete DSM solution has been implemented (see [15] for details) along this DSL

which allows the automatic generation of instances of RPG that can be simulated in an

Android device.

As mentioned before, in a previous work [15], a complete DSM solution was developed

for supporting the automatic creation of Android applications (implemented in Java)

from models created with AToMPM. This framework supports languages that have been

defined using Class Diagrams for their abstract syntax and Rule-Based Transformations

for their semantics. A transformation engine was implemented in Java in order to execute

the transformations in the Android platform.



Chapter 4

Model Combination

In this chapter we explain model combination in detail. First, we define the fundamental

mechanisms present in model combination in a formal way. Next, we describe the main

techniques that apply these mechanisms in works created by different authors.

Although the focus of this thesis is how to combine DSL’s, this task can also be tackled

by using model combination techniques. In [10], Kurtev et al discuss the use of model-

based solutions for defining DSL’s. They define a DSL’s as a set of coordinated models,

where each one defines a language components: the abstract syntax, concrete syntax

and semantics. This means that model combination solutions can be applied to DSL

combination as well.

This relation between models and DSLs also occurs in the tool that will be used through-

out this work, AToMPM [17], where DSL’s are created by modelling these three com-

ponents separately. The action of combining two DSLs can therefore be translated to

the combination of the three models that define their components, using the model

combination techniques explained in this chapter.

Some techniques described in this chapter refer to metamodel combination, this is how

the authors of these techniques have labelled them. We consider them in a broader

sense model combination techniques, since a metamodel has a metametamodel and in

the perspective of this metametamodel, the metamodel is a model.

4.1 Mechanisms

In this section we provide a formal definition for the mechanisms that are employed in

model combination. It builds upon the definitions provided in chapter 2.

22



23

4.1.1 Correspondence model

A correspondence model C = (GC , ω, µ) is a model (section 2.2) that consists of links

between elements of different models, such that:

• Let S = {Mi = (Gi, ωi, µi); i = [1..n]} be a set of different models;

• GC has only two types of nodes: links and link endpoints;

• For each link endpoint in GC , there is a link connected to it through an edge;

• Each link endpoint in GC refers to an element e (node or edge) of a model Mi of

the set S;

• Links can have a many-to-many multiplicity as long as they have at least one link

point referring to each model.

Correspondence models can be used in model combination for indicating the elements of

two different models that have to be combined in some way, e.g., by a merge or extension

operation, see subsection 4.1.4 and subsection 4.1.5. They can also be used for trace-

ability between equivalent models at different levels of abstraction, see subsection 1.1.1.

The process of creating a correspondence model is encapsulated in a match operation.

4.1.2 Match operation

The match operation C = Match(S) takes as input a set of models S = {Mi =

(Gi, ωi, µi); i = [1..n]}, searches for equivalences between their elements and produces a

correspondence model C as output. This step defines which elements of one model are

to be combined with those of another model. It is possible to automate this operation

although it is usually more effective if it is performed manually by a user with knowledge

of the domain.

The semantics of the match operation consist of a mix of comparison and conformance

rules.

• Comparison rules determine syntactic similarities between model elements.

• Conformance rules determines if syntactically similar elements are also semanti-

cally compatible.
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The matching operation is also subject to some basic constraints such as typing and

multiplicity. The former requires the matched elements to be of compatible types, i.e.,

either the same type or one a subtype of the other. The latter applies for the matching

of links, in this case the multiplicities on both sides of one of the links should be entirely

contained in those of the other link, or vice versa. An example of a violation of the

multiplicity constraint is a link with 0..1 and another with 1..∗ (on the same side) being

matched together.

4.1.3 Compose operation

The compose operation MAB = Compose(MA,MB, CAB) takes two models MA and MB

and a correspondence model CAB between them and combines their elements into a new

output model MAB.

This operation is considered in this paper as a general and even abstract operation that

all the other composition operations must specialize or instantiate. For this operation

and its specializations, it is common that the models involved in the process conform

to the same metamodel. If this is not the case, an interface between the (meta)models

would be required.

4.1.4 Merge operation

The merge operation MAB = Merge(MA,MB, CAB) takes the same parameters as the

more general compose operation. It produces a different output MAB which includes

all the elements from MA and MB. Merge is a special case of model composition, since

it imposes the extra constraints of information preservation, which requires that all the

information from the input models should be present in the output models, without

duplicate information. The correspondence model is created by the match operation

and it specifies which elements are to be merged.

4.1.5 Extend operation

The extension operation EAB = Extend(MA,MB, CAB) is a special case of the compose

operation where:

• The models have the same metamodel

• Its main requirement is to create at least one new edge in the resulting model

from an element mA ∈ NGA
∪ EGA

to an element mB ∈ NGB
∪ EGB

.
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• The correspondence model defines between which elements these new edges are

created. Note that in this case the correspondence model does not represent equiv-

alency between elements (as it was the case for the merge operation).

4.1.6 Implement operation

The implement operation IAB = Implement(MA,MB, CAB) is a special case of the

compose operation where:

• It creates at least one node in the resulting model that did not previously exist

and does not strictly belong to either of the input models MA and MB.

• The correspondence model defines links between the place holder and the concrete

elements that implement them. In this case, as in subsection 4.1.5, the correspon-

dence model does not represent equivalence.

Place holder elements in a model represent concepts with missing information. This

information has to be provided by a concrete element (by implementing it) that satisfies

the place holder constraints, e.g., matching its type or signature. This type of elements

are generally used for behavioural models, where the missing information is a specific

behaviour of the operational semantics.

4.2 Techniques

In this section we go over several approaches by different authors where they apply the

mechanisms explained in the last section for the actual combination of (meta)models.

4.2.1 Merge

Model merging is a combination technique that does not assume an unbalanced relation-

ship between its participants, i.e., it is performed on two peer models. In terms of set

theory it can be expressed as the duplicate free union of two sets, where a set represents

the elements of a model.

In Figure 4.1, an example can be seen of a general merge operation on two metamodels

depicting different facets of a Role Playing Game (RPG), both defined in the UML class

diagrams metametamodel. This simple example contains two different join points or

correspondences which are located between the classes Tile and Hero of the same name
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Tile

x : int

Hero

name : string

Treasure

coins : int

Hero

name : string

Weapon

damage : int
attack : int

Tile

x : int // RPG_a
Hero

name : string // RPG_a

Treasure // RPG_a

coins : int

Weapon // RPG_b

damage : int

gold : int // RPG_a
attack : int // RPG_b

y : int // RPG_a

y : int gold : int

Tile

top : TIle
bottom : Tile
left : Tile
right : Tile

top : Tile // RPG_b
bottom : Tile // RPG_b

left : Tile // RPG_b
right : Tile // RPG_b

Figure 4.1: Merge operation of two class diagrams depicting two different metamodels
of an RPG

in both metamodels. The remaining classes Treasure and Weapon are not included in

the correspondences and thus they are both included in the final metamodel AB (along

with their corresponding associations). Finally, the Tile class of the resultant model

AB, an unresolved conflict can be observed. This conflict is caused by the fact that

both input metamodels have two different ways of representing the concept of location

of a Tile. Model A does this with the x and y coordinates while model B with the

neighbouring tiles of the four cardinal directions. This conflict is not properly solved in

this example since both concepts have been included in the final model and its solution

would require a decision by a user.

In this section, we review the most relevant techniques that apply model merging in

practice.

4.2.1.1 Merging based on correspondences by Pottinger

In [18], Pottinger and Bernstein propose an approach to model merging that depends

on a set of user-defined correspondences between the models, which compose the corre-

spondence model. The authors provide a generic framework that can be used to merge

all types of models, regardless of their metamodels.
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For the matching operation, this technique first identifies which elements of each meta-

model will be merged together. This information is then stored in the correspondence

model composed of a set of correspondences between them. The elements which are not

included in the set of correspondences are simply added to the result model without

modifying them, similarly to a union operation.

With the correspondence model created during the match operation, the merge operation

can begin. This composition is not as simple as the set union since the detection of

duplicates (which depends on what is defined as a duplicate, i.e., its semantics) as well

as their removal can be complex. In addition, the resulting merged model can also

present constraint violations, or conflicts, that the merge operation must resolve.

Regarding conflicts, the authors provide the following categorization for those that can

arise, based on the meta-level where they occur:

• Representation conflicts occur at the model level and are caused by conflicting

representations of the same modelled (real world) concept. An example is having a

model A which represents the concept of name by one element Name while model B

represents it by two elements: FirstName and LastName. How the concept should

be represented in the final model is a decision that is application dependent and

is performed before the merging algorithm.

• Meta-model conflicts, are caused by the violation of the constraints of one of the

two metamodels involved in the merging.

• Fundamental conflicts are caused by violations of constraints at the metameta-

model level, the representation to which all models must conform to. In other

words when the result of a Merge would not be a model due to violations of the

metametamodel.

4.2.1.2 Package Merge in UML 2

UML 2 [19] defines Package Merge as an operation for merging the contents of two

packages together. The elements of the models or metamodels contained in the packages

are merged if they share the same name and signature. Package merge aims at allowing

the definition of metamodels in UML more modular. It is a directed relationship between

two packages which indicates that the contents of the target package are merged into

the contents of the source package. The composition occurs in two phases which apply

a set of constraints and transformations [20]. First, during the match operation, the

constraints are used to check if two elements are equivalent. When this is the case, the
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transformations take care of the actual merging. Elements that do not have a matching

counterpart are simply carried over to the result model. Constraints and transformations

are expressed declaratively through match rules and transformation rules. These rules

are pre-defined for each metamodel type (class diagrams, sequence diagrams, etc) of the

UML family of metamodels and are thus not generic.

An important feature that is mentioned in the UML 2 specification and that is very

important for all composition approaches is that a resulting element will not be any less

capable than it was prior to the merge, in other words that the merge operation does

not violate Liskov’s substitutability principle. In this case it means that the resulting

navigability, multiplicity, visibility, etc will not be reduced as a result of a package merge.

According to Vallecillo [21], the problem with this approach is that its current definition

is neither precise nor sound and it does not consider possible conflicts between the

structural constraints of the metamodels merged . As a result, it may break the well-

formed rules (constraints) of the models that it combines. Furthermore, no traceability

links are created between the resultant metamodel and the input models. Finally, he

points out the fact that this technique works exclusively for models defined with the

UML metamodel.

4.2.1.3 Metamodel merge in GME

In [22], Lédeczi et al. propose an extension to UML that allows metamodel composition

from existing metamodels. This extension consists in the addition of three new UML

operators for using in metamodel combination:

• The equivalence operator is used to denote a full union between two UML class

objects. The union includes all attributes and associations, including generaliza-

tion, specialization, and containment, of each individual class. It can be thought

of defining the join points for the source metamodels, similarly to the correspon-

dences definition combined with the merging steps of Pottinger’s approach (see

subsubsection 4.2.1.1).

• With the implementation inheritance operator the child class inherits all of the

parent class’s attributes, but no associations except the containment ones where

the parent functions as the container.

• While the interface inheritance operator allows no attribute but does allow full

association inheritance, with the exception of containment associations where the

parent functions as the container.
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The union of the implementation and interface inheritance is the normal UML inher-

itance and their intersection is null. The three operators mentioned are simply a no-

tational convenience or syntactic sugar since each of them has an equivalent “pure”

UML representation. These equivalent representations, however, would make a diagram

significantly more cluttered and difficult to understand.

The merge operation of this approach is very similar to Package Merge except that the

operation takes place at the class instead of the package level. The correspondence

model is not automatically created based on the names of classes but by manually

using the equivalence operator which indicates the correspondence between two classes

for their subsequent merge. This approach deals exclusively with UML class diagrams

(metamodels) and is therefore even more specific than Package Merge which can be

applied to all types of UML diagrams.

The authors mention that it is important that the composition leaves the original meta-

models intact, so that they can still be used independently. Also, the newly composed

metamodel should be capable of instantiating existing models created using the original

metamodels (backwards compatibility).

An implementation of these operators has been added by the authors to the Generic

modeling Environment (GME), a DSL design environment, developed in the Vanderbilt

University.

4.2.1.4 Applied technique

In this work we have employed a similar variant of the merge techniques explained in

this section with the following main differences:

• It allows duplicate information. This is because the tool we use does not impose

this restriction;

• Its matching operation is empty, no correspondence model is needed. Therefore

the combination can be performed automatically without user intervention;

• Conflict detection and resolution is not automated and has to be performed man-

ually by the user after the combination has been completed.

For more details on our implementation see subsection 5.2.2.
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4.2.2 Templates

In the context of model composition, templates are an asymmetric combination tech-

nique where one abstract template model, is instantiated by a concrete one via an

implement operation. A template provides reusability by allowing the creation of gen-

eral models that can later be further specified by instantiating pre-defined points called

template parameters.

In Figure 4.2, a simple example of the template technique is shown. Two metamodels

(that conform to the UML class diagram metametamodel) depict basic concepts of the

same RPG application as in the previous examples. The template model RPG template

contains the Location, Character and Item classes while the extension model RPG tiles

specifies three new types of Tile: Obstacle, Trap and Door. The special feature in this

technique is the symbol “|” before the Location class. This means that the Location

class is a template parameter that has to be instantiated by a concrete element of

another model (in this case a class since it is a homogeneous composition technique).

In the RPG tiles model, the Tile class instantiates or binds to the template parameter

|Location.

4.2.2.1 Template Instantiation by Emerson and Sztipanovits

Template instantiation is an asymmetric composition technique where an abstract meta-

model, the template, is bound to a concrete one. It is asymmetric because the template

metamodel acts as the base model and is extended by the bound model. A binding

relation specifies that a concrete entity (of the concrete metamodel) plays the role of an

abstract entity (of the template metamodel). Abstract entities in a template are also

called parameters since they, as in mathematical functions, can be replaced by a set of

values or entities.

In [5], Emerson and Sztipanovits propose the use of template instantiation to overcome

the limitations of techniques such as model merge and interfacing. The problem with

these techniques, according to the authors, is that they are not well suited for the

multiple reuse of metamodel fragments into the same composite metamodel. In other

words, when performing a chain of consecutive compositions into one same metamodel,

the weaving of a composition can be affected by the changes made when weaving a

previous one.

Template instantiation, on the other hand, automatically creates new relationships be-

tween the pre-existing elements in a target metamodel with the template parameters of

a common meta-modelling pattern. These common meta-modeling patterns are created
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Tile

x : int
y : int

Obstacle Trap

damage : int

Door

isLocked : boolean

Tile

x : int
y : int

Obstacle Trap

damage : int

Door

isLocked : bool

Character

name : string

Item

value  : int
gold : int

leadsTo

|Location

x : int

Character

name : string

Item

value : int
y : int gold : int

binding

Figure 4.2: Example of the template instantiation technique in the context of the
RPG DSL

from a set of templates of several metamodels that are commonly-occurring, e.g., State

Charts, Data Flow graphs, Hierarchy, etc.

The authors provide a simple prototype for template instantiation in the GME meta-

modelling language which guides users through the selection of the template to be used

and the assignment of the template parameters or roles to domain specific concepts.

Then, it automatically edits the domain-specific metamodel in order to instantiate the

template.

This composition technique can be applied to a broader spectrum of metamodels, the

ones for which common metamodel patterns templates are provided and it is therefore

heterogeneous. This means that it can be useful for abstract, concrete syntax as well as

for the semantics of a language.
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4.2.2.2 Templates in metaDepth

MetaDepth [23] is a textual meta-modelling environment tool that allows deep meta-

modelling, in the sense that it supports an arbitrary number of meta-levels. This tool

also has mechanisms that allow the definition of the three components of a language: ab-

stract, concrete syntax and semantics. In [24], the mechanism of templates is used inside

the metaDepth tool. This enables a more flexible definition of model and metamodel

fragments, as they permit their connection.

They define a metamodel template as a metamodel where some elements (meta-classes,

features, associations) are variables. The connection requirements for such variables are

expressed through a concept. There are two types of concepts defined in the work of De

Lara: structural and hybrid concepts.

Structural Concepts A structural concept is a specification of the structural require-

ments that need to be found in the abstract syntax of a model. Some elements of the

concept can be variables or parameters, that have to be bound to concrete elements by

another model. If a model provides parameters to a concept it is said to instantiate

it since it satisfies the concept’s requirements. This is useful since generic operations

defined to work on a concept can then also be applied to any model that instantiates it.

Hybrid Concepts The binding that structural concepts require is a structural re-

lation between the concept and a meta-model. This binding can be somehow limiting

however, since it requires the concrete meta-model to have a similar structure as the

concept in order to be possible. A more flexible mechanism is desired that allows bind-

ing concepts to a wider domain of meta-models with heterogeneous structures. Hybrid

concepts provide this flexibility by hiding the specific structure of concepts behind ap-

propriate operations. These operations form an interface (similar to Java interfaces)

and impose less structural requirements to the bound meta-models. As a drawback, the

meta-models are required to implement the operations specified in the concept.

Concept specialization Similar to class inheritance in Object-Oriented programming

languages (OOPL’s), concept specialization is a way to construct hierarchies of concepts

where Liskov’s substitution principle applies and therefore generic behavior defined for a

concept is also applicable to all of its specializations (subclasses). Concept specialization

is also a means to construct concepts incrementally.

In [8], Meyers et al. shows how to compose modelling languages by using these compo-

sition mechanisms. They perform composition on homogeneous metamodels due to the
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fact that all models have been defined with MetaDepth and thus conform to the same

meta-model.

It is worth mentioning that this is one of the few approaches that composes all three

components of a language, including the often neglected concrete syntax. The disad-

vantages of the approach are that it deals exclusively with textual languages defined in

Meta-Depth (it is not a generic approach). Although it is possible to create an extra

step in the process where a model defined in any modelling language is transformed into

a model that conforms to the MetaDepth metamodel.

For future work, the authors of [24], mention they plan the addition of more advanced

mechanisms for composition that allow bidirectional binding of two templates or a more

flexible binding.

4.2.2.3 Applied technique

In this work we use a template instantiation technique similar to the one used in

metaDepth where a metamodel template has some elements as variables. Concepts

are not used in our technique and therefore there are no constraints for binding concrete

elements to variable ones. This is how Emerson and Sztipanovits define the template

instantiation technique where there is no mention of any constraints during the matching

operation other than the basic typing and multiplicities.

4.2.3 Interfacing

Model interfacing is a technique that combines two models by defining an interface

between them consisting of elements that do not strictly belong to either of them but

allow them to interact with each other [5].

In terms of programming languages, an interface can be considered a method with an

empty body that only defines its signature, i.e., parameters and return types. The

keyword interface is used in the Java programming language to define a class that

only contains such methods and it is used as a contract that requires any subclass to

implement them.

Adapting this idea to modelling and specifically to rule transformations, an interface may

consist of abstract rules, i.e., without an implementation, a place-holder. A difference

between abstract methods and rules is that the former impose a constraint or a contract

on their implementation via their signature, while the latter do not have a signature and

thus impose almost no constraints to the implementation. Rules can still be constrained
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by adding pre- and postconditions (expressed as rules as well) surrounding the abstract

rule in question.

4.2.3.1 Applied technique

The interfacing technique used in this work is based on the hybrid concepts idea of sec-

tion 4.2.2.2 where it is possible to create abstract operations, without an implementation

or method body. These operations have to be implemented with information provided

by the user through an implement operation (subsection 4.1.6). The operations follow

the idea presented by Emerson in [5] since their implementation plays the role of the

glue or elements between the two metamodels combined that do not strictly belong to

any of them.



Chapter 5

DSL Combination in AToMPM

This chapter presents the framework that we have developed for combining domain-

specific modelling languages in the AToMPM tool.

The proposed solution is built upon the work of Meyers et al [8] where they compose

textual DSLs using the MetaDepth tool. It applies the techniques explained in chapter 4

to combine each of the three aspects of DSLs: abstract, concrete syntax and semantics.

These three aspects are illustrated as models in the figures

5.1 Template DSLs

A Template DSL can be extended using an extension relation (see subsection 4.1.5) by

a Concrete DSL resulting in a Combined DSL.

Both the Concrete and Combined DSLs are regular DSLs defined using the same meta-

models for their syntax and semantics. Template DSLs, however, are different than

regular DSLs in the following aspects:

• Their abstract syntax is defined using a variant of class diagrams where some

classes can be of the special type parameter class. A parameter class is denoted by

a & prefix in its name and it can be instantiated by a regular class of a different

DSL. A class that instantiates a parameter can substitute it in any future occur-

rences, similarly to an inheritance relation. This technique is based on templates

of subsection 4.2.2;

• Their operational semantics are defined using a variant of a transformation sched-

ule language where some rule blocks can be marked as abstract, which means

35
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that they have to be implemented in order for the operational semantics to be

executable. This technique is based on interfacing of subsection 4.2.3.

Thus, a template DSL can be instantiated by instantiating its metamodel and imple-

menting its required interface rules. After a template DSL has been instantiated, its

semantics can be applied to the concrete DSL that instantiated it. This allows the se-

mantics to be generic, since they can be used on any DSLs, as long as they instantiate

the template DSL.

In the following subsections we explain the steps that have been taken to convert the

secondary DSLs of chapter 3, Pathfinding and EventListener, to Template DSLs so

that they can be used in the combination framework that we have created. The RPG

DSL is not converted to a Template since it plays the role of the Concrete DSL in the

combination phase discussed later.

5.1.1 Pathfinding Template

The Pathfinding DSL, presented in section 3.2, is used to create graphs with a source

and a destination node and to then calculate the shortest path between them.

To convert the Pathfinding DSL into a template their abstract syntax and semantics

models were modified as follows: First in the class diagram metamodel, the node and

edge classes are converted into parameter classes by adding a & prefix to their names.

The fields contained in these classes can also be converted to parameter fields, which

behave in an analogous way as parameter classes: they have to be instantiated by a

concrete field. But for the case of this work this is not used and therefore not done, al-

though having parameter fields would make the template even more generic and flexible.

The final form of the template DSL can be seen in Figure 5.1;

Figure 5.1: The abstract syntax SimpleClassDiagram model of the Pathfinding tem-
plate

For the operational semantics, the following rules are made abstract :
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Figure 5.2: The sub-transformation used in the Pathfinding DSL, abstract rules are
denoted by a & prefix in their name.

Figure 5.3: The default implementation of the &SetSrc abstract rule of the transfor-
mation shown in Figure 5.2. The text in the yellow area is a description of the expected

behaviour of the abstract rule (it adds no extra behaviour).

• setSrc and setDst, that marks a node as the source and destination node, respec-

tively, before the start of a new shortest path calculation;

• initWeights, which sets all the initial weights for all the edges in a graph.

All of these rules take place during the T initNodes sub-transformation, which is ex-

ecuted at the start of the main transformation. To make a rule abstract, their name

is extended with the prefix &, similarly to parameter classes. In addition, a new rule

model is created for it and placed in the Interface directory of the DSL. This rule model
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can be empty, or have an implementation that describes the default behaviour of the

rule, for example the setSrc rule’s default behaviour might be to mark a random node

as the source.

An example of a DSL that could instantiate this template could be a network of cities

connected by highways. The cities would be the nodes, the highways the edges, and the

distance between the cities could represent the weight of the edges. Another example is

a computer network where nodes pass data through network links (edges). The delay for

the data to traverse each link can be represented by the weight of an edge. Afterwards,

for both examples, the shortest path between two nodes (network nodes or cities) can

be calculated using the Pathfinding DSL’s algorithm.

5.1.2 EventListener Template

The Event Listener DSL, presented in section 3.3, applies the Observer pattern for key-

presses event handling. By converting it into a template, other languages can benefit

from event handling capabilities.

In order to transform this DSL into a Template, the KeyListener class becomes a pa-

rameter class. This allows a class from a Concrete DSL to instantiate KeyListener and

be able to register events of the type KeyEvent. The abstract syntax, modelled using

class diagrams, can be seen in Figure 5.4.

Figure 5.4: The abstract syntax SimpleClassDiagram model of the EventListener
Template DSL

For the semantics of the DSL, the variable elements are the action rules, i.e., LeftAction,

RightAction, etc. These four rules are made abstract by adding the & prefix to their

names and by moving them into the Interface folder. In these rules, the user of the

template must manually specify the consequences of pressing one of the four supported

arrow keys.
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Figure 5.5: The operational semantics of the EventListener Template DSL, the ab-
stract rules are denoted by a & prefix in their name.

This DSL has been created with the idea of combining it with the RPG DSL, so that

pressing an arrow moves a character of the game in the corresponding direction, but it

can be easily extended to support more keys for many other functions.

5.2 Combination Process

In this section we walk through the activities involved in the combination process from

the user’s perspective. The flow of activities that take place during the combination

are displayed in Figure 5.6. This figure depicts the activity with a model of the FTG-

PM language [25]. It consists of two sub-diagrams: on the left side, the Formalism

Transformation Graph (FTG) is shown, which declares the set of languages involved in

the process as well as the transformations between those languages; on the right side,

the Process Model (PM) diagram is depicted, which describes the control and data flow

of activities.

The inputs for the combination process are a Template DSL, explained in section 5.1,

and a Concrete DSL, a regular DSL created by the user that is to be extended by the

template. Each DSL (Template or Concrete) consists of the following three parts, that

are represented as a single or multiple models:

• Abstract syntax metamodel, defined using the SimpleClassDiagrams language;
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Figure 5.6: FTGPM of the combination process from the point of view of the user
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• Concrete syntax metamodel, created using the ConcreteSyntax language;

• Semantics model, defined using the Transformation (for schedules) and TransformationRule

(for rules) languages. The semantics model is usually composed of one or more

transformation schedules where each can contain at least one transformation rule.

The process starts with the activity :Bind SimpleClassDiagram, which transforms the

template and user’s metamodels into a bound metamodel, an extension of class diagrams

that allows the creation of binding links between classes, associations and fields. This

activity is coloured grey to denote that it is not automated and needs the intervention of

the user, who has to specify the binding relations between the metamodels. An example

of a bound metamodel is shown in Figure 5.8. The FTG diagram at the left hand side

classifies the bound metamodel as an instance of the Annotated SimpleClassDiagram

language since it still conforms to the SimpleClassDiagram language but is annotated

by additional elements (the binding links) that belong to the TemplateCombination

toolbar. This toolbar provides the user with the necessary tools for specifying the links

that are involved in our DSL combination technique.

The next two activities :Combine Icon Metamodels and :Combine SimpleClassDiagram

can be done in any order and are executed automatically by our implemented frame-

work in AToMPM. The :Combine Icon Metamodels applies the technique described in

subsection 5.2.2 to produce an Icon Metamodel for the combined DSL. The :Combine

Icon Metamodels activity performs a model transformation that converts the annotated

bound metamodel into the combined metamodel by replacing binding links according to

the technique of subsection 5.2.1. An example of a combined metamodel after performing

this activity is illustrated in Figure 5.8.

After having combined the abstract and concrete syntax models of our participant DSLs,

they have to be compiled into a language. In AToMPM, a language can be created by

compiling these two elements, a specification of its semantics is not necessary for this

purpose. The compilation occurs in the three :Compile activities shown in the PM

diagram. The third activity compiles the abstract syntax into a pattern metamodel. A

pattern metamodel is a RAMified [16] version of the abstract syntax metamodel that is

used in the creation of transformation rules.

With the compiled pattern metamodel at hand, the template transformation (specifying

its operational semantics) can be migrated to the new formalism. This is performed by

the :Clone And Migrate Semantics activity, which first copies the directory OpSem of

the template formalism into that of the combined formalism. Then, it executes a retyping

operation on all the models in the cloned directory and migrates their pattern metamodel

to the pattern metamodel produced by :Compile Pattern Metamodel. The result of
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this activity is the Migrated Template Transformation artifact, that comprises all

the schedule and rule models of the template operational semantics. This migrated

transformation is now defined in terms of the newly created types of the combined

language and can therefore be applied to any instance that conforms to it.

The migrated transformation is not completely ready for usage though, first any abstract

or interface rules that it contains have to be implemented by the user. This is done via

the :Implement Interface Rules manual activity, detailed in subsection 5.2.3. It takes

the implemented rules as input and produces the final combined transformation artifact

that is ready to be applied to an instance of the new combined language.

To create an instance of the new language, the user has two possibilities: creating a new

instance from scratch, using the compiled concrete and abstract syntax metamodels to

do so; or it is also possible to migrate an existing instance model of either the template

or the user’s language. The :Migrate Instance Model applies a similar mechanism as

the rule migration activity mentioned previously. In any case, the result of any of these

two activities is an instance of the newly created combined language.

Finally, the diagram includes the :Run Transformation activity, which is not techni-

cally a part of the combination process but it is the goal that it tries to accomplish.

This activity employs the transformation engine present in AToMPM by loading the

combined instance model into the canvas and executing the combined transformation,

producing a variant instance model that still conforms to the combined language.

The following subsections, explain in more detail the combination of each language

component, i.e., abstract syntax, concrete syntax and semantics, that take place during

the combination process described above.

5.2.1 Abstract Syntax

The abstract syntax of the two languages are combined using templates, where one of

the participant abstract syntax metamodel plays the role of the template and the other

that of the instantiating metamodel. Templates are used in the Template Instantiation

technique [5] explained in subsubsection 4.2.2.1 as well as in De Lara’s MetaDepth

implementation in [24].

Our approach does not include concepts so it does not demand any structural require-

ments from the instantiating metamodel. It is the responsibility of the user template to

use a metamodel with a compatible structure as the template. However, it does require

the implementation of some elements of its operational semantics, in a similar way as

hybrid concepts [24], this is discussed in subsection 5.2.3.
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The template is bound by tracing binding links between the entities of the template and

the user’s metamodels. Since the template is designed for combining metamodels defined

in the class diagram language, three kind of bindings can be performed, depending on

the type of entities involved: class, association and field bindings. In the next sections

we describe how each of these types of entities are bound and combined.

5.2.1.1 Binding Classes

The binding of a class is performed by the user by tracing a binding link between a

parameter class (denoted by a & prefix) of the template metamodel and a class of the

user metamodel.

There are different approaches for realizing a binding relation between classes but the one

we deemed more useful was inheritance, as explained below. An alternative approach is

replacing all instances of the parameter class by an equivalent instance (with an identical

state) of the bound class. This can be done in AToMPM by modifying the instance

models raw files directly (in a similar way as model migration is done in subsection 5.2.3).

If the class that is bound to a parameter becomes a subclass of that parameter, it means

that it can take the place of any instances of the parameter class (Liskov’s substitutability

principle). This coincides with the semantics of a binding, where an abstract parameter

is replaced by the variable or value that instantiates it.

Using inheritance to realize the binding has the additional benefit of allowing the reuse

of transformations by using the option match subtypes in their transformation rules.

By activating this feature, transformations that were defined to match parameter classes

will also match any subtypes of that class, in this case the class of the user’s metamodel

that is bound to it. This allows the creation of generic transformations defined in terms

of a template (and its parameters).

5.2.1.2 Binding Associations

For associations it is not possible to use the same approach as for classes since AToMPM

does not support association inheritance. The chosen solution is to represent associations

as classes, at least the associations that are template parameters and are going to be

usually sub-classed. This allows association bindings to behave in the same way as class

bindings, the downside of this approach is that it requires the metamodel to be modified.

An alternative approach is to simulate the inheritance relation by storing the information

of the super and sub-associations and then, using this information, modifying all instance

models by replacing all occurrences of the super class by ones of the sub-class. The
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replacement could be done using a simple model transformation and it would be similar

to a model migration operation, but it would have to be executed each time that the

instance model changed since a new instance of the association could be added.

Parameter associations are denoted in the same way as classes, with a & preceding their

name and are bound by connecting it via a binding link to an association of the user

metamodel.

5.2.1.3 Binding Fields

To bind two fields, the user has to trace a link connecting the two classes where these

fields are contained and then select the FieldBinding link type. Afterwards, the user

must fill in the names of the source and destination fields. The source field (i.e., the

template field) is denoted by a & prefix in its name.

In order for two fields to be bound successfully to each other, the following requirements

have to be met:

• The class where the link originates has to be a template class, which are denoted

by a & prefix in their name;

• The two classes that contain the fields in question must be bound to each other

by a Binding link that originates from the template class;

• The two fields must be of the same type, either primitive or object type.

If any of this requirements is not met, the transformation process will not recognize the

field binding and skip it.

As mentioned before, we use the SimpleClassDiagram formalism to model the abstract

syntax of domain-specific languages. This formalism does not explicitly model the field

objects of a class, there are no field objects available as it is the case for class and

association objects. Instead, the fields are encoded in a dictionary or map inside their

parent class object. Therefore, the binding of fields can not be realized by inheritance

as in the previous sections. The alternative solution that we use is to store the binding

information (i.e., the two fields that are being bound to each other) within the class

where the binding originates, also referred to as the template class.

To store the binding information we the AToMPM feature of hidden attributes. An

attribute with a $ prefix in its name becomes a hidden attribute, which means that it

is not visible at the instance level (when an instance of the class in question is created)
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The user of the language is not aware of any hidden attributes since they are not shown

as part of the entity in AToMPM’s object editor.

To access the hidden attribute, the template designer has to use AToMPM’s meta-

modelling API within transformation rule’s action and condition code. To read or modify

the hidden attribute, the functions getAttr() and setAttr() can be used respectively.

These functions take as first parameter the name of the field (including the $ symbol).

The information of a field binding is stored automatically by the template combination

transformation.

Since the intention of the parameter field is for it to be a place-holder, its value is never

used.

So this field can be used for storing the binding information, namely the name of the

user’s field.

The name of the field can be retrieved by using the meta-modelling API functions from

within rules in the following way:

# get the name of the bound attribute stored in the hidden attribute

attrName = getAttr(’$&paramAttr’)

# Next, get the value of the attribute using the obtained name

attrValue = getAttr(attrName)

In Figure 5.7, an example of a field binding can be seen. Figure 5.7a shows the binding

configuration, where the template field &isActive is bound to isAlive. Putting this in the

context of the DSLs, the Character object, which now also behaves as a KeyListener,

will only be active (i.e., listen to incoming events from the environment) as long as the

character is alive (its hp larger than zero) in the game. Figure 5.7b shows the class

diagram after the binding link has been processed. The information is now stored in the

hidden attribute $&isActive. Its value is now of type string and it contains the name

of the other field that participated in the binding, i.e., isAlive.

sec:combine-concrete-syntax

5.2.2 Concrete Syntax

The combination of concrete syntaxes is performed by applying a variant of the meta-

model merge technique explained in subsection 4.2.1. This operation combines two

models defined in the ConcreteSyntax language, the default way of defining concrete
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(a) Example of a field binding between classes of the EventListener Template DSL
(top) and the RPG DSL (bottom)

(b) Example of a field binding between classes of the EventListener
Template DSL (top) and the RPG DSL (bottom)

Figure 5.7: Example of a field binding operation

syntax in AToMPM. Because of the nature of the models being combined, one being a

template with abstract parameters and the other a concrete one, it suffices to perform

a full union of the two concrete syntax definitions to create a new icon definition that

corresponds to the combined abstract syntax metamodel. This can be done by loading

one model into the canvas, inserting the other model and saving it as the new combined

icon metamodel. The user can modify the result if he desires as long as the correctness

of the icon metamodel is preserved.

In case elements are found to have the same name, they are not merged but both added

to the resultant icon metamodel. Name clashes can be ignored because AToMPM does

not throw an error in case of duplicate icon names, it simply uses the one that was

created first (the one with smallest ID). Conceptual equivalences, i.e., two entities with

different names that represent the same concept, are difficult to detect automatically,
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Figure 5.8: Binding of the PathfindingTemplate and the RPG languages

Figure 5.9: The produced abstract syntax model after processing the binding relations
of Figure 5.8

and are therefore left for the template user to realize if he so desires.

5.2.3 Semantics

For designing the semantics of a DSL we also use DSLs, namely:

• TransformationRule, a formalism provided by the AToMPM designers that allows

the creation of graph transformation rules and;

• MoTif, for specifying the control flow or also called scheduling of the transformation

rules created with the previous formalism. This formalism is also included by

default with the latest version of AToMPM and has been designed by Syriani [26].
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The combination of the semantics of two languages is performed on schedule granularity.

Rules are kept separate, they cannot be merged. Therefore the combination consists in

specifying an interleaving of the rules contained in the two to-combine schedules. This

type of combination is non-intrusive at the rule level since it does not modify the original

rules and intrusive at the schedule level. Additionally, new rules may have to be created

(by the user) in order to act as an interface or glue between the rules of the two combined

schedules.

We consider two approaches for combining the semantics of two DSLs, they are both

similar in that they require the user to implement a set of required behaviours at the

moment of binding. They differ in the way that these behaviours have to be specified.

5.2.3.1 Abstract Rules

The first approach is to define abstract rules in the schedule of the template language.

These rules have no implementation at design time, but do require and expect a certain

behaviour (specified by their name and a small description) at run (simulation) time.

They are similar to the concept of abstract methods or functions used in programming

languages (e.g., Java or C#), that contain no body and have to be overridden by a

concrete method of a derived class.

To represent them in the scheduling language that we are using (MoTif), we employ the

composite rule construct. MoTif’s composite rules contain a reference to another (sub-)

transformation instead of a rule as regular rules do. Additionally, we mark abstract rules

with a & prefix in their name to differentiate them from regular composite rules and

also delineate them with an orange outline. This is a purely syntactic change and has

no effect to the scheduling language (they remain being composite rules). It is intended

so that the user of the template knows which rules have to be implemented in order to

instantiate said template.

The procedure of implementing these rules by the user can be eased by the template

designer if he creates basic rule models (with very simple implementation) and links

them to the transformation scheduler using the path attribute, that points to the loca-

tion where the model file is located in the AToMPM directory. Creating these models

beforehand allows them to act as default implementations in case the user decides not

to provide one. They are also useful as an example for the user on a possible way of

implementing these abstract rules. An example of the default implementation of an

abstract rule is shown in Figure 5.3. It can also be seen that it is accompanied by a

brief description of the expected behaviour for the rule, this provides further assistance

to the user of the template.
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In Figure 5.2, a fragment of the PathfindingTemplate DSL’s transformation scheduler

is shown. It contains three abstract rules (denoted by a & prefix in their name) that are

used for initializing purposes of the transformation.

5.2.3.2 Operations

The second approach is inspired by De Lara’s hybrid concepts [24].

In order to adapt the functionality of operations as used in hybrid concepts, the invoca-

tion of operations from within rule condition or action code needs to be supported. Oper-

ations should be called in a similar way as the Transformation API functions getAttr()

and setAttr(), that take the label of a pattern element as first parameter. The differ-

ence between these two is that the API functions are defined beforehand (in the source

files of AToMPM), while operations are to be implemented during the instantiation of

a template.

It is worth noting that operations called from a rule’s LHS pattern have to respect the

constraints of an LHS, namely that they can not make any modifications or have side

effects to the host graph, in a similar way as the getAttr() function. If an operation does

have side effects, it must not be allowed to be invoked from within the LHS condition

code, in the same manner as the function setAttr() is not. While with the example

functions getAttr() and setAttr() it is clear for AToMPM which one has side effects

and which does not, with operations this is not trivially detectable by AToMPM. To

detect this, a transitive search could be performed in order to determine if an operation

is contained in the RHS or LHS blocks of a rule. The solution we have found is to include

this information in the definition of an operation: whether or not it has side effects. This

can be done with an additional attribute in AToMPM that the user implementing the

operation has to fill in at the moment when it instantiates said rule.

In this section we consider two approaches for implementing operations in AToMPM: a

modelling and a coded approach.

Modeling approach This approach for implementing operations in AToMPM is

the most suitable to the context of domain specific languages, where models take a

central role. It consists in defining operations using transformation rules, widely used

throughout this work to specify behaviour. In order to support this integration, two

functionalities are required from transformation rules: passing data between them during

an execution of a transformation and the ability to nest one rule (or a transformation of

multiple rules) inside the condition or action code of another. This approach proposes

the creation of a new type of rule called operation rules.
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Passing data Exchange of information between transformation rules is necessary

for allowing rules to take input and produce output data. The existing transformation

framework of AToMPM offers two ways of accomplishing this, pivots and session keys:

Pivots allow rules that are executed consecutively to share one or more common pattern

elements. This can be used to speed up the matching process by making an element

that is often matched across different rules a pivot in one rule and pass it to the next

one and so on, in this way avoiding extra work on the subsequent rules. But pivots can

also be applied to obtain the desired functionality of passing input and output values

between rules. Note that only metamodel elements can be passed as pivots, so if an

operation’s return value is of a primitive type such as Integer or Boolean this would

have to somehow be contained in a metamodel element. This could be achieved by

having an object in the canvas with the only purpose of being the pivot and holding

input and output values during the execution of a transformation. In order to support

all possible types of values, this pivot object would need to either have a field for each

possible type or store the value as a string and later parse it.

A simpler way of obtaining the same functionality is using session keys instead of pivots.

Session keys are dictionary entries stored in a transformation session. A transforma-

tion session enables user data to be easily accessed and stored across several rules and

transformation executions. It is only cleared when a transformation is (re)-loaded in the

AToMPM client. The methods session get(key) and session put(key, val) respec-

tively enable retrieving and setting or updating a stored value. Operation rules can set

a session key with an appropriate name e.g., <NameOfRule> OUT with the returned value

in the action code of their RHS. Subsequently, this value can be retrieved by rules with

the session get(key) function from their action and condition code. Session keys can

replace the functionality of pivots by storing the id of a specific object and subsequently

in another rule matching objects against that id. However, since pivots are implemented

in the source code of AToMPM they might be more efficient, but they are not as suitable

as explained above. A combination of using pivots (for elements) and session keys (for

primitive data) seems like the most ideal solution.

Since the underlying implementation of the session keys is done in Python, which has

dynamic typing, the values stored can be of any type, including a data structure such

as a dictionary where multiple values could be stored in one entry. This allows the

specification of operations with multiple return values. A possible extension to simplify

the usage of session keys is to encapsulate them into new functions that are specific to

retrieving input and producing output values. For example, new API functions such

as returnOutput(val) and getParameters() could automatically use the name of the
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Figure 5.10: Transformation rule of the getWeight() operation using session keys.
The condition and action code of each pattern block can be seen below it.

rule where they are contained as the key. This has the advantage of reducing possible

errors while handling session keys as well as making it simpler to design operation rules.

In Figure 5.10 the operation rule getWeight() used in our running example can be seen.

It uses session keys to pass and receive parameters, it takes the ID ($atompmID) of the

caller Neighbor link as input and it returns its appropriate weight depending on the

tiles to which it is connected. This rule takes part of the binding process to combine the

Pathfinding and RPG languages of our running example.

Nested rules The second functionality needed to support operations is to allow them

to be called from within rule condition and action code, similarly to how the functions

getAttr() and setAttr() can be called.

This can be achieved by defining an operation in one or several rules and include them

in a transformation schedule. The schedule can then be executed with a function from

within pattern code of an ongoing rule execution. Input parameters would have to

be stored in session keys as explained before executing the nested transformation and,

after its execution, the result would be retrieved from another appropriate session key.

Unfortunately, the current version of AToMPM does not support the loading and running

a transformation from within a rule’s code. It is possible however to modify AToMPM’s

source code and add this functionality, but this is beyond the scope of this work.

As mentioned earlier, it is important that an operation that is called from an LHS block

has no side effects. An alternative option to achieve this is to simulate the behaviour

of nested rules with the available tools at our disposal, i.e., transformation rules and

schedules. There are two cases in which operation rules can be invoked that we have to

consider.
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One occurs when an operation is invoked from within an LHS pattern. In this case

the execution of the rule has to be paused right after a pattern has been matched

and before the condition code is executed, since this code uses the return value of the

operation. At this moment the control is given to the invoked operation until it has

finished. Any needed parameters are passed to the operation rule using session keys.

When the operation completes, the control is given back to the rule along with the

output of the operation, which is used in the condition code. If the condition of the

rule fails, the matching engine has to backtrack to a different match. In that case the

operation will have to be executed again before executing the condition code. This is

repeated for as many times as the condition code is re-entered, since, for every match

candidate, the operation might have a different input and produce a different result.

An attempted approach for simulating the invocation of operations from within LHS

blocks is adding an extra rule to the schedule called pre-rule that precedes any rule that

has such an invocation. This pre-rule is used to match the same elements as the rule

that invokes the operation, by having an identical LHS pattern. However, the pre-rule

does not perform any changes to the match, its RHS contains the same elements as its

LHS — thus leaving the match exactly as it was found. Upon completion, the pre-rule

stores the necessary match data, such as the atompmId of the matched elements, in order

to allow the second part of the rule to continue its execution.

A step-by-step example of this solution is shown in Figure 5.11. Figure 5.11a shows the

initial setup of the schedule, the LHSinvokes link can be added to indicate that a rule

invokes an operation from its LHS pattern. Note that this is not a valid transformation

specification and thus has to be transformed into one. In Figure 5.11b, the pre-rule is

created and all incoming links to the rule (in this case only an initial link) are rerouted

to the pre-rule. Then, in Figure 5.11c, the outgoing failure link from the rule is instead

changed to originate from the pre-rule. If the pre-rule, that takes care of the matching

phase, fails to find a match, the entire rule (now consisting of the pre-rule, operation

and rule) would also fail.

Finally, in Figure 5.11d, the internal links between the pre-rule, operation and rule are

created. If the pre-rule succeeds in finding a match, the operation (&GetWeight) is

executed. The operation should always succeed in finding a match since it retrieves the

match from the pre-rule and reapplies it, for this reason it does not have an outgoing

fail link. In case it fails the intention is for the transformation controller to throw an

error. After the operation succeeds, the actual rule is executed; this rule makes use of

the value produced by the operation in its condition code to find an appropriate match,

in the shown example the weight of the node has to meet a certain criteria. It is possible

that the rule condition fails, because the weight of the node was not appropriate for
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(a) An operation is invoked from a rule,
denoted by the LHSinvokes link

(b) Pre-rule creation and rerouting of in-
coming initial link

(c) Rerouting of outgoing failure link to
originate from the pre-rule

(d) Final form of the schedule after drawing
of internal links

Figure 5.11: Transforming a fragment of a schedule to support an operation rule

example; then the pre-rule has to be executed again and therefore the failure link is

added from the rule to the pre-rule. In order to avoid an infinite loop if no match

is found, the rule and pre-rule need to keep track of a list of nodes that have been

considered in the pre-rule. This list, called the matched list is stored using session keys

so that it is accessible to both of them.

These steps have been modelled using a higher-order transformation schedule and is

thus fully automated in AToMPM.

If a rule invokes the operation from within its RHS pattern’s action code, no modifica-

tions to the schedule have to be made (like in the case where invocation occurs in the

LHS), since if an operation is called from an RHS, it means that the rule has already

been applied successfully. Having the operation rule scheduled after the rule that invokes

it would then suffice to simulate the behaviour.
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This approach has several disadvantages compared to the standard way of rule matching.

First, modelling (part of) a matching algorithm using transformation schedules and rules

is much more complicated than implementing it in a programming language. This is

needed because of the limitation of not being able to call nested transformations from

within LHS’s or RHS’s code. Second, the access to the internal matching data is limited

from the modeler’s perspective and thus a parallel set of variables have to be created

and kept track of. Lastly, each matching would take extra work and thus it takes much

longer for the transformation to finish.

Coded approach An alternative that is much more viable with the current frame-

work of AToMPM is to define operations using code instead of transformation rules.

Since the code is to be executed from within conditions and actions, it has the same

properties, i.e., it is implemented using either Python or Javascript and it has access to

the Transformation API functions of AToMPM normally accessible from pattern code.

The implementation of this approach consists of adding the snippet where a given op-

eration is defined to the condition or action code blocks that invoke them. This can be

performed using a mix of transformations and AToMPM scripts, by loading the models

of the appropriate rules, modifying their LHS or RHS blocks accordingly and saving the

model again. Or it can also be done by modifying the source code of the transformation

rule models files directly. Note that it can not be done beforehand by the template

designer since the snipper with the implementation does not exist at that time, it has

to be implemented by the user of the template (the one that instantiates it).

5.2.4 Model Migration

This section briefly discusses the model migration technique applied in the combination

process. In order to use the operational semantics of the template DSL on the newly

created combined DSL, the models that specify the semantics have to be migrated to

the new formalism. This migration consists in replacing all the type references of one

metamodel to another one. It has to be applied to all the rule models that reference

the pattern metamodel of the original template formalism. In addition, transformation

models that have references to these rules have to be changed as well so that they

refer to the cloned set of rules instead. These references are strings that contain the

path (relative to the root of AToMPM’s folder) to the file where such rule is defined.

Furthermore, instance models can also be migrated as well, although this is not essential

to the combination process as it is migrating the operational semantics.
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Model migration allows for an interesting choice between a key question mentioned by

Vallecillo in [21]: whether users should know about the combined language at all. The

combined language can be effectively hidden from the user by performing the model

migration operation sparingly for converting the models written in one of the original

DSLs back and forth to the combined DSL when needed. For example, before execut-

ing the combined transformation model the instance model could be converted to the

combined language and when this transformation finished its execution the instance is

converted back to its original language. This allows the transformation to be applicable

while the user is oblivious to how it was applicable and to any auxiliary entities (classes,

attributes, etc.) that the combined transformation requires.

5.3 Limitations of the Approach

This section presents some of the limitations of our approach that we have identified.

• The DSLs that participate in the combination have to be defined using the Sim-

pleClassDiagram, MoTif, TransformationRule and ConcreteSyntax formalisms of

AToMPM. Our prototype currently does not support DSLs that have been created

using other formalisms;

• The concrete syntax combination is simple and it leaves the detection and resolu-

tion of conflicts to the user. Visual concrete syntax combination is not a subject

we could find much literature on, with the exception of [27].;

• Our technique does not completely combine the semantics of the DSLs, since the

user has to manually combine the combined transformation schedule into an exist-

ing one in order to complete the combination. For example, when the RPG DSL

instantiates the Pathfinding Template DSL, the semantics of Pathfinding can be

applied to RPG, but they are not yet completely combined. This has to be done

by the user by manually creating a new (or modifying an existing) transforma-

tion schedule that applies the semantics of RPG as well as those of Pathfinding.

A possible way to include this in our approach could be to make both the RPG

and Pathfinding DSLs (following the same example) Template DSLs and then

make them instantiate each other In that case, however, the user would need extra

knowledge to apply our technique, namely how to create a Template DSL;

• Our approach does not support the automatic propagation of the changes from

any of the participant DSL’s to the resultant combined DSL, also known as DSL

Evolution [28]. This is a feature that, if present, would provide modularity to the

process of designing a DSL using our approach;
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• During the match operation, for the abstract syntax as well as semantics, there are

no constraints on the elements that the user designates. A user might for example

bind two classes of incompatible types but our solution would simply proceed as

normal and then produce a wrong result. This problem could be solved by adapting

the idea of concepts (see subsubsection 4.2.2.2) to our solution in order to impose

extra requirements on the elements to be matched.



Chapter 6

Conclusion

In this thesis we have introduced a solution for the combination of domain-specific

languages. We have applied it on an example of a role-playing game DSL and expanded

it with new features by grouping them in separate modules that were later combined.

Concerning our main research question, we have shown that it is possible to combine

DSLs in a modular way. We have implemented a prototype for the AToMPM tool that

allows the combination of DSLs by combining the models that define their syntax and

semantics. The ideas of this prototype can be adapted to other meta-modelling tools

since they are based on existing techniques for model combination which have been

applied in a variety of different tools.

In previous work [15] we applied an ad-hoc and non-modular approach for creating and

extending the RPG DSL (our running example) with new features. In this thesis, we

applied a modular solution to this problem. We extended the running example via DSL

combination by allowing the user to create separate secondary DSLs (e.g., Pathfinding

and EventListener) for the extensions and subsequently combining them into the main

DSL (e.g., RPG). This facilitates the addition of new features as separate modules,

improving the extensibility of our approach. It also allows the independent modification

of existing modules, providing improved maintainability.

In this thesis, we have shown that it is possible to combine all the language components

of DSLs, i.e., syntax (abstract and concrete) and semantics. We have achieved this by

doing two things:

• Splitting a DSL into a set of coordinated models (see chapter 4), where each

one represents a language component, i.e., syntax (abstract and concrete) and

semantics;

57
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• Applying variants of existing model-based combination techniques to each corre-

sponding pair of these coordinated models: merge (subsection 4.2.1) for the con-

crete syntax, templates (subsection 4.2.2) for the abstract syntax and interfacing

(subsection 4.2.3) for the semantics.

The combination of two DSLs has been explicitly modelled using transformation rules

and schedules. Some secondary aspects of the process have been implemented with code.

AToMPM tool is capable of supporting language combination techniques thanks to their

choice of modelling everything explicitly (including the definition of a language) and

supporting model transformations. In this thesis, we have provided a DSL combination

technique that is generic, as long as its definition conforms to the following, or similar,

languages:

• The abstract syntax must conform to an object oriented modelling language (con-

taining classes, associations, inheritance, fields) such as class diagrams. Our im-

plementation in AToMPM supports the built-in SimpleClassDiagram formalism;

• For the concrete syntax, we support a simple dictionary language where strings

representing the name of an element are mapped to their visual representation.

AToMPM provides the built-in language ConcreteSyntax for this purpose and we

therefore support the combination of models that conform to it. Unlike for the

abstract syntax where using class diagrams is the de facto choice, there is a lack for

a standard language to define the concrete syntax of DSLs. However, our approach

should be also applicable to other languages with a similar dictionary structure

with names of elements and their representation or icons. Since the combination

of the concrete syntax is currently a simple merge, that even allows duplicates, it

should also be applicable to textual concrete syntax languages, e.g., the language

used in [8] and created in metaDepth;

• Concerning the semantics of the languages, it conforms to a transformation sched-

ule language, which contains rule blocks that refer to models defined in a rule

transformation language. These two languages have many implementations in

different tools which we can adapt to fit our solution

In order to apply rule-based transformations on the elements of a given language,

the metamodel (i.e., abstract syntax, defined using class diagrams) of that language

has to be adapted into a pattern metamodel. This is done via a process called

RAMification [16], that performs the following changes to the original metamodel:

– Relaxation: remove all abstract classes;

– Augmentation: add label attributes to be used by the transformation engine;
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– Modification: change the data type of the attributes of all model elements to

String, so they can express conditions or actions.

With a RAMified pattern metamodel available, transformation rules can be created

in the rule language that refer to it. This is done by including pattern elements in

the LHS and RHS constructs of the rule language.

In AToMPM we use the MoTif [26] formalism for the scheduler language, and the

built-in TransformationRule language and RAMified DSL for the rules.

6.1 Comparison with related work

In this section we compare the solution presented in this thesis with existing solutions

for DSL (and model) combination. In [8], Meyers et al. present a similar solution for the

complete combination of DSLs created in the textual meta modelling tool metaDepth.

Our solution differs in that it was implemented for the visual meta-modelling tool

AToMPM which is more accessible to non-programmers because of its visual nature.

Unlike their solution, we do not use concepts to impose constraints on the participant

DSLs, since this was not deemed as relevant as the actual combination for the prototype

phase, it is thus left for future work. The absence of concepts and thus constraints on

the participant DSLs has the drawback of increasing the possibility of unexpected re-

sults such as breaking the functionality or semantics of languages by realizing incorrect

bindings. Another difference is that we tried to only perform minimal modifications to

the source code of AToMPM, while the authors of [8] have created metaDepth and can

modify it with more ease.

In previous work [4], a classification of techniques was presented with a comparison

table for the current DSL combination techniques. The table, split in two, can be seen

in Figure 6.1 and Figure 6.2.

Our approach has been named DSL Combination and is located at the bottom of the

table. It has the following characteristics:

• Both, since the abstract syntax is combined using templates, which is asymmetric,

and the concrete syntax using merge, a symmetric technique;

• It is a homogeneous technique since it can only be applied to DSLs created using

three specific formalisms (one for each language component);

• Its domain are class diagrams for the abstract syntax and rule transformations for

the semantics;
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• Therefore it supports the combination of both the structural and behavioural parts

of a language (syntax and semantics);

• It is in the prototype stage and therefore classified as partial implementation;

• The combination happens after the user has instantiated the interface rules and

not at design time, i.e., the moment of composition is dynamic;

• The matching method is semi-automatic since the user has to manually specify

the binding links for the abstract syntax and semantics while this is not necessary

for the concrete syntax, where the matching method is automatic;

• No conflict resolution strategy is present in our approach since we have decided to

focus more on the actual combination of DSLs and not yet its correctness;

• The approach is highly modular, it encourages working with small module DSLs

separately and combining them in a straight forward manner.

• It also counts with low intrusion, which means that the original DSLs have few or

no modifications when present in the combined DSL.

6.2 Future Work

This work can be continued in the following different directions that have been left as

future work:

• The creation of a library of common Template DSLs. Combined with the presented

technique, this would further facilitate the engineering of new DSLs;

• Some aspects of the supported languages have been left out in our solution. For

example structural constraints and actions of the SimpleClassDiagram formalism,

pivots of TransformationRule and several more advanced rule blocks of MoTif.

• The combination of the concrete syntax of DSLs. Our implementation has em-

ployed a simplified version of the Merge technique that restricts the combination

and does not take into account conflicts. This can be further explored to support

a more and flexible combination.

• The addition of constraints to the combination process in order to ensure the

creation of meaningful results. An example of such constraints is presented in [24],

by the name of concepts.



61

• As mentioned in section 5.3, the combination of the semantics of DSLs could be

extended to allow the combinations of two templates that instantiate each other.

This has the drawback of requiring the user to be more involved in the combination

process and its exploration is therefore left as future work.
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Pottinger Merge [18] Symmetric Homogeneous Generic Both Syntax None

Package Merge [19] Symmetric Homogeneous UML Both Syntax None

GME Merge [22] Symmetric Homogeneous CD Structural Syntax None

Barbero Extension [11] Asymmetric Homogeneous Generic Both Syntax None

Template Instantiation
[5]

Asymmetric Homogeneous CD Both Syntax None

MetaDepth Templates
[8]

Asymmetric Homogeneous CD Both Both Textual

Parametrization [29] Asymmetric Homogeneous CD Structural Both Visual

Embedding [21] Asymmetric Homogeneous Generic Both Both -

Refinement [5] Asymmetric Homogeneous - - Both -

Interfacing [5] Both Heterogeneous - - Both -

Semantic Adaptation
[30]

Asymmetric Heterogeneous Generic Both Semantics None

GeKo [31] Asymmetric Homogeneous Generic Both Both None

RAM [32] Asymmetric Homogeneous UML Both Syntax None

MATA [33] Asymmetric Homogeneous UML Both Syntax None

GMCF [34] Both Homogeneous Generic Structural Syntax None

AOAM [35] Asymmetric Homogeneous CD Both Syntax None

WEAVR [36] Asymmetric Homogeneous UML Both Syntax None

Semantic Weaving [37] Asymmetric Homogeneous SD Behavioural Semantics None

DSL Combination Both Homogeneous Generic Both Both Visual

Figure 6.1: First part of the overview of the classification of composition techniques
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Pottinger Merge [18] Partial Static Manual Resolution Low High

Package Merge [19] Complete Static Automatic None Low Low

GME Merge [22] Complete Static Manual None Low Low

Barbero Extension [11] Complete Static Automatic None Low Low

Template Instantiation
[5]

Partial Static Manual None High Low

MetaDepth Templates
[8]

Complete Dynamic Manual None High Low

Parametrization [29] None Static Manual None High Low

Embedding [21] None - - - Low High

Refinement [5] None - - - High Low

Interfacing [5] None - - - High None

Semantic Adaptation
[30]

Complete Dynamic Manual None High Low

GeKo [31] Partial Static Manual None Low Low

RAM [32] None Static Manual None Low Low

MATA [33] Partial Static Manual None Low Low

GMCF [34] Partial Static Automatic Resolution Low Low

AOAM [35] Partial Static Automatic Avoidance Low Low

WEAVR [36] Complete Static Manual Avoidance - -

Semantic Weaving [37] Partial Static Automatic Avoidance Low High

DSL Combination Partial Dynamic Manual None High Low

Figure 6.2: Second part of the overview of the classification of composition techniques



Appendix A

Example Combination in

AToMPM

This chapter shows, in screenshots, a full example of the DSL template combination

technique in the AToMPM tool.

Figure A.1: After starting the template combination by pressing the T button on the
toolbar (top right), the user is presented with this file browser dialog where she is asked
to select the desired Template DSL metamodel (see section 5.1). For this example we

have chosen the PathfindintTemplate DSL
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Figure A.2: Then, the user is asked to select the User DSL metamodel, in this example
the RPG DSL.

Figure A.3: Next, the combination process pre-loads a transformation and asks the
user to create the desired binding links (see subsection 5.2.1). When finished, the user
can play the already loaded transformation to continue with the combination process.



66

Figure A.4: Here, we see the binding links created, coloured red. We have bound the
&Edge and &Node classes to the Neighbour and Tile classes, respectively. This is done
with the intention of supporting finding the shortest path from a given Tile to another.

Figure A.5: In this figure we can see the resulting combined metamodel after the
TemplateCombination transformation has been executed. In this case it replaced the
class binding links with inheritance links and it removed the redundant Src and Dst as-
sociations between Tile and Neighbour. The details of this transformation are explained

in subsection 5.2.1
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Figure A.6: Next, the combined abstract syntax metamodel is compiled into a meta-
model file. This file (along with the concrete syntax metamodel file) can be used for
loading a metamodel toolbar of the AS which allows the creation of models that conform

to the said metamodel.

Figure A.7: For combining the concrete syntax, the user is asked to select the desired
Template DSL concrete syntax model.
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Figure A.8: Then, the user is asked to select the desired User DSL concrete syntax
model.

Figure A.9: With the models selected, they are automatically combined as explained
in subsection 5.2.2 and subsequently compiled to a concrete syntax metamodel which,
together with the abstract syntax metmaodel, allow the creation of instances of the

combined DSL.
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Figure A.10: The pattern metamodel is also compiled at this point, since it requires
both concrete and abstract syntax model in order to be generated. This pattern meta-
model is used in the transformation rules used for defining the operational semantics.

Figure A.11: Next, the operational semantics models, contained in the OpSem folder,
are cloned to the folder of the new combined DSL. The models in this folder are also
modified, by updating their types, in order to make them compatible with the combined

formalism (see subsection 5.2.4).
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Figure A.12: After these steps, the guided part of the DSL combination is complete.
What still has to be done at this point is to implement the operational semantics

interface as explained in subsubsection 5.2.3.1.
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