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Abstract Domain-Specific Modelling reduces the gap

between problem domain and solution domain. It sup-
ports modelling using constructs familiar to experts

of a specific domain. Domain-Specific models (DSms)

are (semi-)automatically transformed to various lower-

level artifacts including configuration files, documen-
tation and executable programs. Although various as-

pects of model-driven development have been investi-

gated, such as model versioning, debugging and trans-

formation, relatively little attention has been paid to

formalising how artifacts are synthesised from DSms.
State-of-the-art approaches rely on ad hoc coded gener-

ators which essentially use modelling tool APIs to pro-

grammatically iterate through internal representations

of DSm entities to produce target-platform artifacts. In
this work, we propose a more structured approach to ar-

tifact generation where layered model transformations

are used to modularly isolate, compile and re-combine

various concerns within DSms, while maintaining trace-

ability links between corresponding constructs at dif-
ferent levels of abstraction. We study and demonstrate

how our approach simplifies addressing non-functional

requirements (e.g., timing and resource utilisation con-

straints) of modern embedded systems. This is achieved
through the modular synthesis of performance models

from DSms. We illustrate our work by means of the syn-

thesis of fully functional Google Android applications,

performance predictions, simulations and performance

measurement facilities from DSms of mobile phone ap-
plications.
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1 Introduction

Domain-Specific Modelling (DSM) allows domain ex-
perts to play an active role in development efforts. It

provides them with means to manipulate constructs

they are familiar with and to automate the many error-

prone and time consuming translation steps that char-

acterise code-centric development efforts. Most notably,
the gap between the problem and solution domains is

bridged. Automated transformation of Domain-Specific

models (DSms1) to complete artifacts (e.g., executable

programs, analysis models) becomes possible thanks to
the tightly constrained nature of Domain-Specific Mod-

elling Languages (DSMLs). This, as opposed to the

general purpose nature of UML, for instance, which is

used to model programs from any domain using object-

oriented constructs. Empirical evidence reports increases
in productivity of up to one order of magnitude when

using DSM as opposed to traditional code-driven devel-

opment approaches [34,22,32].

Due to the very central role played by automatic

artifact synthesis in DSM, structuring how DSms are

transformed into artifacts is both beneficial and neces-

sary. To this day, the prevalent approach to artifact syn-

thesis from DSms is to programmatically manipulate
internal model representations and generate text – often

code – [34,22]. Notwithstanding the fact that this ap-

proach contradicts Model-Driven Engineering (MDE)

1 Note that we refer to Domain-Specific Modelling as DSM
and to a Domain-Specific model as a DSm.
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principles [8], it is also riddled with flaws. Firstly, the
resulting generators are often conceptually very dis-

tant from the models they “compile”. This causes their

maintenance (e.g., as a result of meta-model evolution)

to be tedious, complex and error-prone. Furthermore,
implementing “advanced” features which require one-

or two-way communication between model and artifact

(e.g., model animation as a result of artifact execution)

adds considerable accidental complexity [7] to the gen-

erators – which in turn worsens their maintainability –
[41]. Another inconvenience of these hand-coded gener-

ators is that, due to their low-level nature and structure,

they are difficult to study and analyse. Artifact gener-

ators should be anything but difficult to understand as
they encode no less than the semantics (or meaning) of

the DSms themselves. As such, ensuring their correct-

ness and efficiently communicating their inner workings

(e.g., among project team members) are high priorities.

In short, the traditional approach makes the very cru-
cial semantics of models difficult to debug, maintain

and understand.

To address the aforementioned issues of poor main-

tainability, poor extensibility and low abstraction, we
propose that artifact synthesis from DSms be carried

out via visual rule-based graph transformations, that

iteratively isolate and project tangled concerns within

DSms onto appropriate lower-level modelling formalisms

as an intermediate step to final artifact generation. The
first of our two main contributions lies in this novel ap-

proach to artifact synthesis. The second lies in the study

and demonstration of how the approach can be used

to elegantly and modularly replicate numerous perfor-
mance assessment activities such as performance anal-

ysis, simulation and testing.

The rest of this paper is structured as follows. In

Section 2, we review related work. In Section 3, we in-

troduce our approach to artifact synthesis. In Section
4, we study and demonstrate how our approach simpli-

fies the addressing of the characteristic non-functional

requirements (e.g., timing and resource utilisation con-

straints) of modern embedded systems. Finally, in Sec-
tion 5, we discuss future work and provide some closing

remarks.

2 Related Work

In this section, we review relevant research on two top-

ics: artifact synthesis from DSms, and the integration

of performance concepts in the early stages of develop-

ment. These topics are not as unrelated as they may

seem: performance models generated from higher-level
application or domain-specific models can themselves

readily be considered as artifacts.

Most of current research in the general area of MDE
focuses on enabling modellers with development facil-

ities equivalent to those from the programming world.

Most notably, these include designing (or editing) [14,

8,6], differencing [2,11,26], evolving [10] and debugging
models [41]. Another vast branch of research is that of

model transformation. MDE principles state that model

transformations are the preferred means of synthesising

arbitrary artifacts (whatever these may be) from mod-

els [8], and considerable efforts have targeted the devel-
opment and study of graphical and textual model trans-

formation languages and tooling [1,13,36,37,39]. How-

ever, very few researchers, other than Levendovszky et

al. in [25], have reported the use of model transforma-
tions for artifact synthesis in industrially relevant con-

texts. Indeed, another approach is favoured in most of

the works that have explored the complete DSM devel-

opment process starting from the design of DSMLs to

the synthesis of target platform artifacts from instance
DSms. In these endeavours, DSms are systematically

transformed to target platform artifacts by means of

ad hoc hand-coded text generators [34,22,32]. A short-

coming of this technique is that there is limited support
for model and generator debugging, model animation

(e.g., as a result of artifact execution), or any other

activity where it may be desirable and/or necessary

to have traceability links between corresponding con-

structs at the DSm and artifact levels. In [41], Wu et
al. recognised this need for traceability in the context

of DSm debugging, and proposed to augment DSm-to-

artifact code generators with facilities to compute and

store mapping information from model to code during
code generation. In their work, they demonstrate how

such information is both necessary and sufficient to en-

able common debugging activities such as setting and

clearing breakpoints and stepping into statements at

the DSm level. Limitations of their work include the
fact that the mapping construction inevitably intro-

duces considerable accidental complexity into the code

generator, and that the said mapping is not readily pre-

sentable to the modeller.

In [40], Tawhid and Petriu review past and cur-
rent research on the benefits of elevating performance

concerns to the early stages of development of Soft-

ware Product Lines (SPLs) and propose means to re-

alise the said elevation. Their technique consists in an-
notating UML models with information that enables

their subsequent transformation into performance mod-

els. These performance models lend themselves to anal-

ysis and can be used to produce performance predic-

tions. The reasoning behind integrating low-level non-
functional requirement related concepts so early on is

that it is best to realise that these requirements cannot
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be met by means of the current design early on in the
development process. This reasoning is shared by nu-

merous other authors in the performance engineering

community. In [5], Becker et al. present an approach

that makes use of MDE techniques to enable perfor-
mance predictions in the context of component-based

software engineering. The Palladio Component Model

is a meta-model that allows for performance-relevant

information to be specified on models of component-

based systems. For instance, a component’s time and/or
resource requirements can be parametrised by proba-

bility mass functions of the input sizes (e.g., number of

entries, number of kilobytes) of its arguments. From

a network of parametrised components, their frame-
work can produce performance predictions with asso-

ciated probabilities. Their framework also makes use

of model transformations to synthesise basic simula-

tions which issue synthetic demands on resources. In

[21,20], Kapova et al. further combine MDE and SPL
techniques. In their approach, target platforms are de-

scribed by feature diagrams. Then, selected features in

these diagrams are used to configure model transfor-

mation rules that refine application models with target
platform specifics. These refined application models are

in turn transformed into performance models, which

are themselves used to obtain performance predictions.

In sum, considerable attention has been paid to the

manual and (semi-)automated enhancement of software
models with performance-relevant information, and the

automatic synthesis of performance models and predic-

tions. A crucial problem remains however: the level of

abstraction of the development process remains fixed at
or near the solution domain. Indeed, although certain

performance- and platform-relevant details are hidden

from developers, the fact remains that these develop-

ers work with code and models of code. This contra-

dicts both the DSM and Multi-ParadigmModelling [15]
philosophies which promote development using constructs

and entities from the problem domain rather than the

solution domain.

The approach we present in this work addresses the
limitations of current artifact synthesis methods, and

enables the synthesis of performance predictions, simu-

lations and measurement facilities from domain-specific

models.

3 Structured Artifact Synthesis

It is not uncommon for various concerns (e.g., layout,

behaviour, performance) to be tangled within a prob-

lem description or domain. Consequently, DSMLs, whose
core purpose is to enable modelling of problem do-

mains, will often reflect this entanglement. The Separa-

tion of Concerns (SoC) principles dictate that modular-
ity (and its numerous derived benefits) can be achieved

by minimising the entanglement of concerns. Although

the problem domain (and thus its model) should ar-

guably not be altered and/or polluted by accidental
complexities in the name of these principles, the speci-

fication of DSm-to-artifact “synthesis engines” can in-

deed be made more modular by their application.

The SoC principles are at the core of the approach

presented in this section. We propose to isolate and

project the various concerns that make up a domain
(and by extension its associated DSML and DSms) onto

appropriate lower-level formalisms as an intermediate

step to target platform artifact generation. Thus, the

complete transformation of DSms into artifacts is com-

posed of numerous modular sub-transformations, each
focusing on a single concern. We detail and demonstrate

our approach in an example-driven manner, describing

how DSms of mobile phone applications are iteratively

and modularly transformed into intermediate represen-
tations, and eventually into fully functional Google An-

droid applications.

3.1 PhoneApps: A multi-concern DSML

A typical mobile phone application combines three core

concerns. The first is its visual interface, which is es-

sentially described by the placement of widgets on the
various screens the user must interact with. The second

is its behaviour, which is described by the timed (e.g.,

a welcome screen that disappears after two seconds)

and user-prompted (e.g., the click of a button) tran-

sitions between the aforementioned screens. The third
(and perhaps most domain-specific) encompasses fea-

tures and functions specific to mobile phone applica-

tions (e.g., sending text messages). A DSML for mo-

bile phone applications should capture these three con-
cerns at an appropriate level of abstraction, as does

the PhoneApps DSML2. Its meta-model is shown in

Fig. 1. Essentially, timed and user-prompted transi-

tions describe the flow of control between Containers –

that can contain other Containers and Widgets – and
Actions – mobile phone device specific features (e.g.,

sending text messages, dialing numbers) – with each

screen in the final application modelled as a top-level

Container (i.e., a Container contained in no other).

2 The PhoneApps meta-model is heavily inspired by the
meta-model for modelling mobile phone applications pre-
sented by Kelly and Tolvanen in [32,22]. Our new contri-
bution lies in the means used to produce artifacts from
PhoneApps models rather than in the definition of the lan-
guage’s meta-model.
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Fig. 1: The PhoneApps meta-model (as a UML Class Diagram).

Without a means to transform DSms into target
platform artifacts, they can only serve as blueprints

and documentation. The traditional approach to arti-

fact synthesis – which is also the one chosen by Kelly

and Tolvanen to produce artifacts from DSms for their

version of the PhoneApps DSML – to achieve this trans-
formation is via hand-crafted text generators. In our

approach however, a series of rule-based graph trans-

formations “compile” PhoneApps models into increas-

ingly lower-level (i.e., closer to code) formalisms un-
til a complete Google Android application is synthe-

sised. Fig. 2 depicts the relationships between the in-

volved formalisms, with arrows between them designat-

ing model transformations. Note that the three inter-

mediate formalisms onto which PhoneApps models are
projected reflect the three domain concerns.

As depicted in Fig. 2, projecting the three consti-

tuting concerns tangled within PhoneApps models pro-

duces disjoint instances of different formalisms, and as

such, the order in which these projections take place
is of no consequence. The formalisms and transforma-

tions introduced in Fig. 2 are described the following

sub-sections, and more detailed descriptions are pro-

vided in a technical report [28].

Note that the PhoneApps DSML is one of many
possible DSMLs for modelling mobile phone applica-

tions. Some alternatives may include provisions for us-

Fig. 2: Formalism Transformation Graph [15] for

PhoneApps.

ing touchscreen gesture, gyroscope and camera data

via new modelling constructs, others may be tailored

towards very specific application domains (e.g., health

care, social computing) and include higher-level abstrac-
tions3, finally others may require lower-level concepts

such as communication protocols to be exposed. In ei-

ther case, new model transformation rules and/or entire

3 We demonstrated this in [16] where we built SecureApps,
a DSML for modelling privacy preserving applications. We
later transformed SecureApps models into PhoneApps mod-
els (which were thus at a lower-level of abstraction) as an
intermediate step to artifact generation.
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model transformations may be required to isolate and
compile added concepts and concerns.

3.2 Isolating behaviour

The behaviour of a mobile phone application is inher-

ently state-based: control flows between disjoint appli-

cation screens. In the PhoneApps DSML, these states

are modelled as ExecutionSteps, and the flow between

them is fully described by event- and timeout-triggered
transitions. Thus, a natural mapping exists between

the behaviour described by a PhoneApps model and

a Statechart4 model [17]. Thus, the “first” step in the

synthesis of executable applications from PhoneApps
models is the isolation of their behavioural components

and their subsequent projection onto a behaviourally

equivalent Statechart model. This task is accomplished

by the PhoneApps-to-Statechart model transformation.

Fig. 3 shows one of the three rules5 that form the
PhoneApps-to-Statechart transformation. It depicts a

PhoneApps Container and its equivalent in the Stat-

echart formalism. A NAC is used to ensure that each

Container is mapped to only one Statechart State.
The edge between the Container and the State is a

traceability link that explicitly captures the correspon-

dence between them. The numerous uses of keeping

such traceability information were introduced in Sec-

tion 2 and are further developed in Section 3.6.

When the full PhoneApps-to-Statechart transforma-

tion has run its course, every PhoneApps Container

and Action has a corresponding Statechart State. These

are connected via customised Statechart Transitions

in a manner that reflects the edges that connect their

corresponding Containers and Actions. Traceability

links connect each construct in the generated State-
chart model with its corresponding construct in the

PhoneApps model. A key point of interest here is that

no information pertaining to the placement of widgets

4 Note that the current range of possible behaviours of
PhoneApps models requires only the expressiveness of timed
automata. Future work might extend the formalism with no-
tions of hierarchy and concurrency such that more powerful
Statechart features (e.g., orthogonality, nesting) become re-
quired.
5 Rules are the basic building blocks of rule-based graph

transformations. They are parametrised by a Left-Hand Side
(LHS) and Right-Hand Side (RHS) pattern, an optional Neg-
ative Application Condition (NAC) pattern, condition code,
and action code. The LHS and NAC patterns respectively de-
scribe what sub-graphs should and should not be present in
the source model for the rule to be applicable while the RHS
pattern describes how the matched LHS pattern should be
transformed by its application. Further applicability condi-
tions may be specified within the condition code while post-
application actions may be specified within the action code.

LHS

RHSNAC

s1.name = c1.ID

c1

s1

c1

c1

Fig. 3: A PhoneApps Container mapped to its be-

havioural equivalent Statechart State.

Fig. 4: The AndroidScreens meta-model (as a UML

Class Diagram).

within the Containers or to Action parameters ap-
pears in its Statechart representation: the PhoneApps-

to-Statechart transformation truly projects only the be-

havioural concerns of the source model.

Finally, although the proven and studied Statechart

formalism is indeed an appropriate target formalism in
this context (i.e., for the modelling of reactive state-

based behaviour), it may not be optimal for or even

capable of capturing other systems’ behaviour. For in-

stance, for a traffic network DSML describing the non-

deterministic flow of vehicles across connected road seg-
ments, it may be more appropriate for behaviour to be

mapped onto a formalism such as Petri Nets [33].

3.3 Isolating layout

The layout concern of a mobile phone application is

captured by widget placement within application screens.

In the PhoneApps DSML, screens are modelled as top-
level Containers, and widgets as Widgets. The for-

malism we introduce as a target for the projection of

the layout concern is AndroidScreens. Its meta-model

is shown in Fig. 4. Essentially, Screens are connected
to snippets of Google Android-specific code (e.g., XML

layout code, event listener Java code, etc.).

The layout semantics of PhoneApps models are fully

encompassed within the contents and parameters of
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top-level Containers. Fig. 5 shows an abridged ver-
sion of one of the rules that form the PhoneApps-to-

AndroidScreens transformation. It depicts the extrac-

tion of the layout-relevant information found within a

PhoneApps Container, and its storage into appropri-
ate constructs of the AndroidScreens formalism. A NAC

is used to ensure that the rule is only applied once for

each Container. The edges between the Container and

the AndroidScreens constructs once again capture cor-

respondence information.
When the full PhoneApps-to-AndroidScreens trans-

formation has run its course, top-level Containers each

have corresponding Screens. These are connected to

appropriately parametrised instances of AndroidCode

sub-types. Traceability links connect each construct in

the generated AndroidScreens model with its correspond-

ing construct in the PhoneApps model. Note that no in-

formation pertaining to the behaviour of the PhoneApps

model appears in its AndroidScreens representation. In-
deed, the parametrised transitions that connect PhoneApps

ExecutionSteps have been stripped away by the pro-

jection onto the AndroidScreens formalism. Neverthe-

less, the generated Statechart model produced by the
PhoneApps-to-Statechart transformation is not entirely

semantically disjoint from the generated AndroidScreens

model produced here: they are linked through the top-

level Container which is mapped to both a Statechart

State and AndroidScreens Screen. The resolution of
these “correspondences” will be discussed in Section 3.5

when the three intermediate representations of PhoneApps

models are woven back together into target platform ar-

tifacts.

3.4 Isolating mobile phone device features

Features specific to mobile phone applications include

making phone calls, sending text messages and launch-
ing native smartphone applications such as browsers.

Although there are many more such features, in its cur-

rent state, our PhoneApps DSML only supports these

three. They are respectively modelled by the SendMessage,

DialNumber and ViewWebPage constructs. The formal-
ism we introduce as a target for the projection of this

final concern is PhoneFeatures. Its very simple meta-

model is shown in Fig. 6. Essentially, Features are

parametrised by a code attribute and are optionally
connected to a Permissions construct, which describes

the permissions (e.g., access to the contacts list, ac-

cess to geographic position) required by the Feature.

Once the PhoneApps-to-PhoneFeatures transformation

has run its course, each SendMessage, DialNumber and
ViewWebPage construct has an associated PhoneFea-

tures Feature, with its code attribute set to Google

Android API calls that enact the mobile phone ap-
plication functionality modelled in the corresponding

PhoneApps Action.

Fig. 6: The PhoneFeatures meta-model (as a UML
Class Diagram).

3.5 Merging intermediate representations

A side-effect of our approach of projecting DSms onto

various intermediate representations, is that these pro-

jections eventually need to be reconciled to produce the
final target platform artifacts. This is especially rele-

vant when certain constructs in the DSm are mapped

to constructs in more than one intermediate represen-

tation, as is the case in our running example.

Following the mindset of easing the specification of

traceability links between DSm and artifacts, we intro-

duce a final intermediate formalism, AbstractFiles, as
a target for the merging of the generated Statechart,

AndroidScreens and PhoneFeatures models. This triv-

ially simple formalism merely serves as an abstraction

of files on disk. Its sole construct, the ModelledFile

entity, has two attributes, filename and contents, and

its mapping to physical files on disk is straightforward.

Hence, rather than output the results of the merging

process directly to files, they are first stored as an in-

stance model of the AbstractFiles formalism. Beyond
the eased maintenance of traceability links between the

ModelledFiles that make up the generated Abstract-

Files model and their source constituents (i.e., model

entities from the three intermediate representations),
an added benefit of this design choice is that the gen-

erated contents for each (future) file can be reviewed

from within the modelling environment as part of the

debugging process. This, as opposed to having to locate

generated files on disk, opening them in a separate ed-
itor, and possibly having to return to the model editor

to perform changes. Note that if a finer level of trace-

ability is required, contents may be an instance of an

explicitly meta-modelled programming language.

A sensible and generic approach to take for the re-

alisation of the merging process is for the intermediate

representation that captures behaviour to become the
main executable artifact. This artifact should be in-

strumented to make appropriate use of artifacts that
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LHS RHS

SetContent

...
<?xml?> event

listener

GenContent

c1

c1

NAC

SetContent

...
<?xml?> event

listener

GenContent

c1

Fig. 5: Extracting information from a Container into new AndroidScreens constructs.

capture other concerns. Thus, in the PhoneApps ex-

ample, the first step of the merging process is for the

entryAction attribute of every Statechart State to be

populated with method calls that execute the render-
ing of a Screen (renderScreen ScreenID()) or the ex-

ecution of a Feature (runFeature FeatureID()) de-

pending on if that State corresponds to a PhoneApps

Container or Action. Next, a Statechart compiler is

used to produce efficient and correct Java code from
the Statechart model. The third and fourth steps are

the transformation of the AndroidScreens and Phone-

Features models into Statechart-oblivious target plat-

form code. The former transformation is two-fold. First,
each Screen produces a ModelledFile containing XML

code that embodies widget placement. Second, a Java

method, renderScreen ScreenID(), that carries out

widget content and event handler setup is appended to

another ModelledFile, M . The XML and Java code
are both constructed from the contents of AndroidCode

constructs associated to the Screen. As for the trans-

formation of PhoneFeatures models, each Feature re-

sults in a Java method, runFeature FeatureID(), pop-
ulated with the contents of that Feature’s code at-

tribute. These generated methods are also appended

to M .

Once the Statechart-to-AbstractFiles,AndroidScreens-

to-AbstractFiles, and PhoneFeatures-to-AbstractFiles have

run their course, a number of ModelledFiles have been
generated. One of them contains the compiled State-

chart model, another contains layout and mobile phone

feature methods, the remainder (one for each AndroidApps

Screen) contain XML layout code. The final step of
the artifact synthesis process is for physical files to be

output from these ModelledFiles. After compilation,

these can be loaded onto a Google Android-enabled de-

vice.

One of the AndroidScreens-to-AbstractFiles rules is

shown in Fig. 7. It depicts the creation of an Abstract-
Files ModelledFile that holds the XML layout speci-

fication of an AndroidScreens Screen. A NAC is used

to ensure that the rule is only applied once for each

Screen.

The entire process of artifact synthesis from DSms

has been introduced. Tangled concerns within DSms
are isolated and projected onto lower-level (i.e., closer

to code) formalisms in a modular fashion. Then, the

generated instances of these intermediate formalisms

are woven back together to reflect the semantics of the

source DSm. Finally, the result is output to disk to
form the target platform artifacts. Moreover, the many

model transformations involved leave behind a network

of traceability links between corresponding constructs

at different levels of abstraction, from DSms to target
platform artifacts (and back). The following sub-section

details the benefits of our approach over the traditional

text generator approach to artifact synthesis.

3.6 Benefits of Modular Artifact Synthesis

The motivations for our approach were the need to

address the poor maintainability and extensibility of
hand-crafted text generators, as well as to raise their

low level of abstraction. In the following, we explain

how our approach improves on text generators in these

three areas.
The most important advantage of our approach is

that it raises the level of abstraction and modularity of

“artifact synthesis engines”. Whereas in the traditional

approach, their development includes interaction with

internal model representations and the writing of com-
plex code, in our approach, the task of implementing

an artifact generator is reduced to specifying relatively

simple (graphical) model transformation rules that in-

teract with model entities as they are presented to mod-
ellers. Furthermore, the layered nature of our approach

(i.e., the existence of intermediate representations be-

tween DSm and artifacts) enables low-level (e.g., target

platform) details to be hidden within lower-level trans-

formations (i.e., intermediate representation to artifact
transformations). This, as opposed to their inclusion in

higher-level, DSm to artifact transformations.
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LHS RHS

<?xml?>

s1

x1

NAC

s1

<?xml?>

s1

x1
f

f.filename = s1.ID+".xml"
f.contents = x1.code

Fig. 7: The creation of one ModelledFile per Screen to hold its XML layout specification.

The second benefit is that the multiple intermedi-

ate layers between DSm and artifact provide a means to

observe models from various viewpoints. For instance,
in the context of DSms of mobile phone applications,

to study only the behavioural aspects of a model, one

may study the generated Statechart model in isolation

from the DSm and the other generated artifacts. More

generally, a developer who wishes to focus his atten-
tion on a single concern without being distracted by

irrelevant (from the point of that concern) details can

easily do so. This would be an arduous task in the tradi-

tional approach where no intermediate representations
are available.

The remaining benefits of our approach result from

the network of traceability links it creates between cor-

responding constructs at different levels of abstraction.
In the past, the generation of such traceability infor-

mation was included within existing text generators,

thereby reducing their modularity and polluting them

with added accidental complexity. In contrast, our ap-

proach performs the complex task of maintaining cor-
respondence links between DSms and synthesised ar-

tifacts by explicitly connecting higher-level entities to

their corresponding lower-level entities in transforma-

tion rules via generic edges. These edges have minimal
impact on the readability of the rules – one could even

argue that they improve their readability by clarifying

correspondences – and their specification can be auto-

mated.

The first of many “advanced” tasks that are made

possible by traceability links is DSm animation as a

result of artifact execution. Basic commands can be ex-

changed between synthesised artifacts and the model
editing tool. These can then be propagated up the net-

work of traceability links and animate the model. In our

example, the entry into an application screen (which

amounts to the entry into a compiled Statechart State)

can produce the highlightSource command. Once re-
ceived by the model editor, the corresponding Android-

Screen Screen, PhoneApps Container and Statechart

State are highlighted, with each correspondence re-

solved by navigating the network of traceability links.

We have prototyped this in our implementation of the
running example in AToM3 [14]. A single transforma-

tion rule suffices to instrument the entryAction attribute

of generated Statechart States with the means to send

commands to the model editor. This rule can easily be

enabled or disabled and does not affect any of the other
rules. Thus, its impact in terms of accidental complex-

ity is minimal.

Another “advanced” task that is greatly simplified

by the presence of traceability links is the debugging

of DSms and of model transformations. In [30], we dis-

cussed how advanced debugging facilities could be built
on top of traceability links. The seamless two-way com-

munication between DSm and artifact that they enable

can assist in such debugging tasks as stepping through

the execution of DSms, setting breakpoints at various
levels of abstraction, and propagating meaningful ex-

ceptions from executing artifacts back to modellers.

We also explored how the debugging of model trans-

formations could benefit from traceability links. In par-

ticular, the presence of clear links that depict “what
is generated from what” greatly facilitates the debug-

ging of faulty transformation rules. This is considerably

more modular and elegant than the alternative: lacing

a coded text generator with output statements and/or
breakpoints.

Last but not least, although in a finished product

the inner workings that synthesise artifacts from DSms

should be hidden from the modeller, it may be useful

for didactic purposes to see how higher- and lower-level

constructs are related. Both our simple and modular
transformation rules and the cross-level links they pro-

duce make these relationships explicit.

4 DSms and Performance Concerns

The approach to artifact synthesis we presented in the

previous section can also be instrumental in the con-
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text of modelling (and synthesising) embedded soft-
ware. More specifically, it helps address non-functional

requirements. Keeping with our running example, al-

though the Google Android platform abstracts away

numerous traditional embedded systems concerns such
as task scheduling, PhoneApps models remain models

of embedded system applications. Thus, timing and re-

source utilisation information may be relevant and even

required by modellers. More generally, there are nu-

merous scenarios where domain-specific modellers may
require information regarding the performance6 of ar-

tifacts synthesised from their models. A common code-

centric approach for the addressing of this need is for

model transformations to refine annotated software mod-
els into performance models from which simulations and

performance predictions are produced. The application

of DSM principles, and specifically of the approach to

artifact synthesis presented in the previous section, can

improve that technique in at least three ways.

First, in our approach, application models (i.e., DSms)

are no longer polluted with performance-related an-
notations. Instead, this information is fully encapsu-

lated in model transformations that produce platform-

specific performance models from DSms. Moreover, like

the PhoneApps-to-Statechart and PhoneApps-to-Android-

Screens transformations, which project only concern-
relevant information onto their targets, only concern-

relevant information is projected onto generated perfor-

mance models. This, as opposed to performance models

in the code world, which combine performance concerns
and business logic.

Second, one of the key differences between DSM and

traditional code-centric development is that the for-
mer enables full code generation (as opposed to code

skeletons). Consequently, performance models gener-

ated from DSms can not only be used to produce sim-

ulations and performance predictions. They can also
be further integrated into the artifact generation pro-

cess to instrument target platform artifacts with per-

formance measurement facilities. This integration and

instrumentation is analogous to the merging of inter-

mediate formalisms discussed in Section 3.5. Revisit-
ing our running example, the entryAction and exitAc-

tion attributes of compiled Statechart States can be

augmented with performance measurement facilities to

compute the time and resources consumed by the sys-
tem in each State. These facilities could also include

means to communicate their results back to the model

editor (and the modeller). Indeed, the process of per-

forming DSm animation by propagating commands up

along the network of traceability links described in Sec-

6 We use the term performance loosely to represent time
and other resources “consumed” by an application.

tion 3.6 can be used to propagate performance measure-
ments back to any of the intermediate representations

and to the DSm7 during artifact execution. In practice,

this might result in model entities being “tagged” with

performance measurements, and even flagged as not
meeting modeller-specified performance requirements,

during run-time.

Third, the aforementioned instrumentation of ar-

tifacts may also assist in the arduous task of model

calibration, a prerequisite to the synthesis of platform-
specific performance models. This task consists in de-

termining a platform’s performance parameters (i.e.,

the time and resource consumption associated to vari-

ous activities) such that a realistic platform model may

be produced (as shown in Table 1). Target-platform ar-
tifacts augmented with performance measurement and

reporting facilities can be used to measure the perfor-

mance of arbitrary tasks (e.g., the loading of a screen

with x widgets), and thus to construct such platform
models. Hence, in our DSM-based approach, model cali-

bration is reduced to the creation of trivial DSms where

tasks of interest are modelled, and to the collection of

the performance metrics reported by automatically syn-

thesised and instrumented target-platform artifacts.

A high-level representation of the above in the con-

text of our running example is presented in Fig. 8 which

features new formalisms and transformations. These are

explored in detail below.

AndroidPerformanceModel is introduced as a new
intermediate formalism between PhoneApps models and

Google Android applications8. Fig. 9 shows a simple

meta-model for performance models. ResourceConsumers

are interconnected via ResourceConsumerConnectors.
These are parametrised with a probability attribute that

defines the probability that the flow of control moves

between the ResourceConsumers they connect. These

probabilities can be set to realistic values (as opposed

to their default values) by the modeller such that per-
formance predictions have realistic associated probabil-

ities9. In practice, these probabilities might reflect the

fact that certain use cases are more probable than oth-

ers. Finally, non-functional requirements are modelled
via ResourceConsumptionConstraints. These may be

explicitly associated with specific ResourceConsumers,

or implicitly associated to all of them (if they are not

7 Conceptually, it may however be ambiguous or confusing
for performance related information to be displayed in any
representation other than the generated performance model.
8 The dashed transformation arrow from AndroidPerfor-

manceModel to AbstractFiles indicates that the generated
application does not need to be instrumented with perfor-
mance measurement facilities for it to function.
9 Augmenting performance predictions with probabilities

was borrowed from Becker et al.’s work [5].
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Fig. 8: An updated Formalism Transformation Graph for PhoneApps.

Fig. 9: The AndroidPerformanceModel meta-model (as a UML Class Diagram).

connected to any of them). This enables the modelling

of local (e.g., maximum resource usage for one com-
ponent of the application) and global (e.g., maximum

resource usage for the full application) requirements.

Note that in our running example, performance require-

ments are defined at the level of abstraction of perfor-
mance models (i.e., in AndroidPerformanceModel enti-

ties). A more principled approach might be to extend

the PhoneApps DSML itself with one or more construct

to specify these requirements. This is especially sensi-

ble for contexts where performance is a “domain con-
cern”: in such cases, it would arguably be non-domain-

specific to force modellers to interact with a generated

intermediate representation rather than with DSms for

performance-relatedmatters. Hence, PhoneApps Actions
and top-level Containers could be augmented with at-

tributes pertaining to their maximum allowed resource

consumption. Their mapping onto equivalent Resource-

ConsumptionConstraints would then be carried out by

an appropriately altered version of the PhoneApps-to-

AndroidPerformanceModel transformation.

The AndroidPerformanceModel formalism is at the

heart of the new transformations introduced by Fig. 8.
PhoneApps-to-AndroidPerformanceModel is the first. One

of its rules is shown in Fig. 10. It depicts the pro-

jection of a top-level PhoneApps Container onto an

AndroidPerformanceModel ResourceConsumer, with a
NAC ensuring the rule is only applied once per match-

ing Container. The contents of the generated Resource-

Consumer are abridged in the interest of brevity. They

are defined using target platform information regarding
time and resource consumption of various activities, as

shown in Table 1. For instance, the loadingTimeRange

attribute will reflect the time range required for a Google

Android device to load the number of widgets present

in the corresponding Container and populate them
with modeller specified data. When the PhoneApps-

to-AndroidPerformanceModel transformation has run

its course, each PhoneApps ExecutionStep has an as-

sociated ResourceConsumer. These are connected via
ResourceConsumerConnectors in a manner that reflects

the transitions between corresponding Containers. From

AndroidPerformanceModelmodels, any one of the three

general performance assessment methods may be car-

ried out. Namely, analysis, simulation and testing10.

Performance analysis statically computes metrics

from performance models. In our example, it is cap-

10 A thorough comparison of the pros and cons of these dif-
ferent methods is provided in [5].
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Function Execution Time Range (s) Battery Usage Range (%)

Tap Touch Screen [0.001, 0.003] [0.0001, 0.0003]
Load Screen [0.05, 0.07] ∗ nb widgets [0.001, 0.003] ∗ nb widgets

Send SMS [0.1, 0.3] + [0.1, 0.2] ∗ ⌈sms.length÷ 120⌉ [0.01, 0.03] ∗ ⌈sms.length÷ 120⌉
Send Email [0.05, 0.1] ∗ ⌈msg.length÷ 1024⌉ [0.05, 0.07] ∗ ⌈msg.length÷ 1024⌉

Load Web Data data.size÷ 200Kb
s

data.size÷ 50Mb
%

Load Local Data data.size÷ 5Mb
s

data.size÷ 500Mb
%

Table 1: Synthetic performance specifications for Google Android devices.

LHS

RHSNAC

r.batteryUsageRange = ...
r.loadingTimeRange = ...

Fig. 10: Populating a ResourceConsumerwith informa-

tion from a top-level Container.

tured by the AndroidPerformanceModel-to-Performance

Metrics transformation. First, it extracts every possible
path between the ResourceConsumers corresponding to

the starting and finishing PhoneApps ExecutionSteps.

Then, for each path, resource consumption metrics and

probabilities are computed by summing the resource re-
quirements of all nodes (i.e., ResourceConsumers) and

multiplying the probabilities of all edges (i.e., Resource-

ConsumerConnectors) along the path. This “cumula-

tive” approach to estimating a path’s resource con-

sumption is not unlike that presented in [9,31], where
general equations are introduced to compute perfor-

mance metrics of various component compositions. Fig. 11

shows the two rules that make up the path extraction

portion of the AndroidPerformanceModel-to-Performance

Metrics transformation. The top rule initializes the traver-

sal algorithm. The second, which annotates a Resource-

Consumer with all currently known paths reaching it, is

iteratively re-applied until a fixed-point is reached11.

In the end, the ResourceConsumer corresponding to
the finishing PhoneApps ExecutionStep is annotated

will all possible non-cyclic paths reaching it. Although

performance analysis in general is powerful due to its

11 Note that, in the interest of brevity, the expression that
captures fixed-point verification is omitted from the rule’s
condition code.

LHS RHS

Fig. 11: A rule-based implementation of a path extract-

ing graph traversal algorithm.

exhaustive nature, it can become impractical (and even
infeasible) as the number of possible usage scenarios (or

paths) of a system grows. Our approach does not (and

can not) escape this reality, and as such, as the number

of ResourceConsumers increases, the number of paths
may become intractable.

Simulations enable arbitrary execution paths to be
observed and others to be ignored. In the code-centric

development world, simulations are commonly gener-

ated from software models refined with performance an-

notations, with missing business logic captured by syn-
thetic workloads. To capture a system’s behaviour at an

appropriate level of abstraction, with a focus on time

and resource-usage, the DEVS (Discrete EVent system

Specification) [38] formalism is often appropriate. For

the purpose of this work, DEVS is similar to State-
chart, with a different kind of modularity, tailored for

simulation. The key benefits of producing DEVS mod-
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els rather than coded approximations of a system are
essentially the same as those discussed in Section 3.6. In

our running example, the synthesis of DEVS models for

simulation is performed by the AndroidPerformanceModel-

to-DEVS transformation, whose description we omit
due to its similarity with the PhoneApps-to-Statechart

transformation.

The third and last performance assessment method

is the testing of (nearly) completed products. Their per-

formance is often measured through code instrumenta-
tion with measurement facilities. In our running exam-

ple, this weaving12 of measurement facilities is captured

by the AndroidPerformanceModel-to-AbstractFiles trans-

formation. A simplified version of one of its rules in

shown in Fig. 12. It depicts the aforementioned weav-
ing of performance measurement and reporting facili-

ties within the generated Statechart via instrumenta-

tion of State entryAction and exitAction attributes. A

key point of interest is that a ResourceConsumption-

Constraint also participates in this instrumentation:

if the timing constraint described by the modelled re-

quirement is not satisfied, the corresponding Resource-

Consumer entity will be “tagged” with a red perfor-

mance metric rather than a green one. Thus, another
benefit of our DSM-based approach is that it enables

models of non-functional requirements to be meaning-

fully included into the artifact synthesis process. Note

that “global only” performance measurements may be
compared to “global and local” measurements to ascer-

tain the performance footprint of the woven measure-

ment and reporting facilities.

We have discussed how three common performance

assessment methods, each of which is instrumental in
the development of modern embedded systems applica-

tions, are supported by our approach to artifact syn-

thesis. For each method, our DSM-based approach im-

proves upon its state-of-the-art siblings in the code-

centric development world. We now further evaluate our
approach by reviewing how performance analyses, sim-

ulations and measurement facilities would be produced

using the traditional coded text generator approach to

artifact synthesis from DSms.

The task of generating performance metrics from
DSms (i.e., carrying out performance analysis) is anal-

ogous to that of generating any other artifact. Thus, the

traditional coded generator approach would program-

matically iterate over model entities to produce desired
output, conceivably with a coded version of the traver-

sal algorithm depicted in Fig. 11. Augmenting existing

12 The term “weaving” is borrowed from the Aspect-
Oriented Programming [23] world due to certain similarities
between aspect weaving and our instrumentation of the com-
piled Statechart.

code generators to produce such performance metrics
would increase their accidental complexity and further

reduce their modularity. Additional instrumentation to

add performance measurement and reporting facilities

into target platform artifacts, or to produce coded sim-
ulations or DEVS models would either result in con-

siderable code duplication, or in further loss of mod-

ularity. Thus, although coded generators can replicate

the three performance assessment methods – after all,

anything can be programmed –, doing so would consid-
erably hamper their modularity and/or maintainability.

5 Conclusion and Future Work

Our work is motivated by the numerous shortcomings

of the traditional approach to artifact synthesis from

DSms. Indeed, the programmatic manipulation of in-
ternal model representations to produce target platform

artifacts is at too low a level of abstraction. This makes

them difficult to reason about, maintain (e.g., as a re-

sult of meta-model evolution) and extend.

The approach we introduce in this paper addresses

these limitations. We propose that artifact synthesis

from DSms be carried out via (visual) rule-based graph
transformations that isolate and project tangled con-

cerns within DSms onto appropriate lower-level mod-

elling formalisms as an intermediate step to final ar-

tifact generation. This approach has numerous bene-

fits, including a considerable raise in the level of ab-
straction of artifact synthesis engines, which increases

their accessibility and eases their maintenance and ex-

tensibility. It also greatly facilitates the maintenance

of traceability information between corresponding con-
structs at different levels of abstraction. This infor-

mation is instrumental in enabling “advanced” tasks

such as DSm and model transformation debugging, and

DSm animation (as a result of artifact execution). Ad-

ditionally, our approach contributes to the area of em-
bedded system applications modelling (and synthesiz-

ing) and, more specifically, in the addressing of their

characteristic non-functional requirements. Indeed, the

discussed benefits of structuring artifact synthesis are
not restricted to coded application synthesis. They also

apply to the generation of performance models from

DSms, and of performance predictions, simulations and

measurement facilities from performance models.

We demonstrated our technique by detailing the

synthesis of fully functional Google Android applica-

tions from DSms, and by replicating three common

performance assessment methods (i.e., analysis, simula-
tion and testing). Note however that although our case

study is bound to the Google Android platform, our
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LHS

RHSNAC

c1

Fig. 12: A generated Statechart State instrumented with performance measuring and reporting facilities.

approach is not. Despite the fact that some of the pre-

sented model transformations would indeed need to be

refactored if the targeted platform were to change (e.g.,

to Apple iOS), their essence and purpose would be left

intact, with each one isolating (or merging) a single
concern onto lower- and lower-level representations.

Finally, despite its advantages, our technique still

has the unfortunate drawback that it requires a consid-
erable amount of (non-trivial) manual work: the seman-

tic mapping of DSms to artifacts still needs to be spec-

ified manually. This implies that DSML designers must

manually identify which portions of their languages to
project onto which lower-level formalisms, how to carry

out the said projections, and how to merge their results

back into coherent artifacts. Our current [27] and future

work revolves around the (semi-)automation of this pro-

cess. For instance, combining an explicit DSML con-
cept generalisation relationship (e.g., “A PhoneApps

ExecutionStep is a Statechart State”) with higher-

order transformations13 allows for the automation of

much of the above work (e.g., part or all of the PhoneApps-
to-Statechart transformation can be generated auto-

matically).

13 Transformations that take other transformations as input
and/or outputs.
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