
Modular Synthesis of Mobile Device Applications from
Domain-Specific Models

Raphael Mannadiar
McGill University

3480 University Street
Montreal, Quebec, Canada
rmanna@cs.mcgill.ca

Hans Vangheluwe
McGill University

3480 University Street
Montreal, Quebec, Canada

hv@cs.mcgill.ca

ABSTRACT
Domain-specific modelling enables modelling using constructs
familiar to experts of a specific domain. Domain-specific
models (DSms) can be automatically transformed to var-
ious lower-level artifacts such as configuration files, docu-
mentation, executable programs and performance models.
Although many researchers have tackled the formalization of
various aspects of model-driven development such as model
versioning, debugging and transformation, very little atten-
tion has been focused on formalizing how artifacts are ac-
tually synthesized from DSms. State-of-the-art approaches
rely on ad hoc coded generators which essentially use mod-
elling tool APIs to programmatically iterate through model
entities and produce the final artifacts. In this work, we
propose a more structured approach to artifact generation
where layered model transformations are used to modularly
isolate, compile and re-combine various aspects of DSms.
We demonstrate our technique by detailing the synthesis
of running Google Android applications from DSms, and
discuss how it may be applied in addressing the character-
istic non-functional requirements (e.g. timing constraints,
resource utilization) of modern embedded systems.

Categories and Subject Descriptors
D.2 [Software Engineering]: Software Architectures; D.2.11
[Software Engineering]: Software Architectures—domain-
specific architectures , information hiding, languages

General Terms
Design, Languages, Standardization

Keywords
Multi-paradigm modelling, Model transformations, Language
ripping and weaving, Application synthesis, Performance
metric synthesis, Google Android

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MOMPES ’10, September 20, 2010, Antwerp, Belgium
Copyright 2010 ACM 978-1-4503-0123-7/10/09 ...$10.00.

1. INTRODUCTION
Domain-specific languages (DSLs) allow non-programmers

to play an active role in the development of applications.
This makes obsolete the many error-prone and time consum-
ing translation steps that characterize code-centric develop-
ment efforts; most notably, the manual mapping between
the (often far away) problem and solution domains. Further-
more, due to their tightly constrained nature – as opposed
to the general purpose nature of UML models, for instance,
which are used to model programs from any domain using
object-oriented concepts –, domain-specific models (DSms)
can be automatically transformed to complete executable
programs. This truly raises the level of abstraction above
that of code. Empirical evidence suggests increases in pro-
ductivity of up to an order of magnitude when using domain-
specific modelling (DSM1) and automatic program synthe-
sis as opposed to traditional code-driven development ap-
proaches [15, 11, 14].

Due to the very central part played by automatic code
synthesis in DSM, we argue that structuring how models
are transformed into code is both beneficial and necessary.
Previous work realizes the said transformation by means of
ad hoc hand-coded code generators that manipulate tool
APIs, regular expressions and dictionaries [15, 11, 18]. In
constrast, our approach employs modular and layered visual
graph transformations whose results can readily be inter-
preted.

Section 2 briefly overviews related work. Section 3 intro-
duces a DSL we have developed for modelling mobile device
applications as well as the lower level formalisms and trans-
formations that make up and produce the layers between
the DSms and the generated applications. In Section 4, we
present a non-trivial instance model of our DSL, every stage
of the transformation to code and the synthesized applica-
tion running on a Google Android [1] device. In Section
5, we compare the traditional approach to artifact synthe-
sis to our own in the context of generating and presenting
non-functional requirement related performance information
from DSms. Finally, in Section 6, we discuss future work and
provide some closing remarks.

1Note that we refer to domain-specific modelling as DSM
and to a domain-specific model as a DSm.

2. RELATED WORK
In this section, we briefly discuss related research on three

topics: artifact synthesis from DSms, modelling mobile de-
vice applications and integrating performance concepts in
early development phases.

Most of current research in the general area of model-
driven engineering focuses on enabling modellers with de-
velopment facilities equivalent to those from the program-
ming world. Most notably, these include designing/editing
[9, 4, 3], differencing [2, 6, 12], transforming [8, 16], evolv-
ing [5] and debugging models [18]. More hands-on research
has explored the complete DSM development process start-
ing from the design of DSLs to the synthesis of required
artifacts from instance models. In these works, DSms are
systematically transformed to lower level artifacts by means
of ad hoc hand-coded generators [15, 11, 14]. However, no
allusions are made regarding model debugging, simulation,
tracing or any other activity where it might be desirable to
establish links between model and artifact. Wu et al. [18]
recognized this need for the context of DSm debugging and
proposed a generic grammar-based technique for generating
DSL debuggers that reuse existing integrated-development
environment facilities. Unlike previous work, mapping infor-
mation from model to code is computed and stored during
code generation. This information is then used to enable
common debugging activities such as setting and clearing
breakpoints and stepping into statements at the DSm level.
Limitations of this work are that the mapping construction
inevitably increases the complexity of the code generator
and that the said mapping is not readily presentable to the
modeller.

Several academic and non-academic efforts have investi-
gated the modelling and synthesis of mobile device appli-
cations. In [14], a meta-model for modelling mobile device
applications is introduced where behaviour and user inter-
face elements are intertwined. In [15], a meta-model for
home automation device interfaces with provisions for es-
cape semantics2 is described. The meta-model we introduce
in Section 3 is inspired by these two formalisms and is in
fact a combination and enhancement.

Finally, in [17], Tawhid and Petriu review past and cur-
rent research on the benefits of elevating performance con-
cerns to the early stages of development of software product
lines (SPLs) as well as propose means to realize the said
elevation. Their technique consists in annotating high-level
models which are later transformed to performance models
that lend themselves to analysis. The reasoning behind in-
tegrating low-level non-functional requirement related con-
cepts so early on is that it is best not to realize that these
requirements can not be met under the current design once
implementation is well under way. The mindset of SPLs
(where parameterizing high-level domain-specific concepts
enables application synthesis) is of course very similar to
that of DSM. Thus, means to reason about performance re-
lated concerns such as resource utilization and application
response time at the DSm level are desirable.

2Means to extend the modelling language’s expressiveness
are built into the language itself.

3. META-MODELS & TRANSFORMATIONS

3.1 PhoneApps
Mobile device applications often require high levels of user

interaction. It can thus be argued that behaviour and visual
structure make up the domain of such applications. The
PhoneApps DSL encompasses both of these aspects at an
appropriate level of abstraction (see Figure 1a). Timed, con-
ditional and user-prompted transitions describe the flow of
control between Containers – that can contain other Con-

tainers and Widgets – and Actions – mobile device spe-
cific features (e.g., sending text messages, dialing numbers)
– with each screen in the final application modelled as a top-
level Container (i.e. a Container contained in no other).
With a series of graph transformations, PhoneApps models
are translated to increasingly lower level formalisms until a
complete Google Android application is synthesized. Figure
1b gives an overview of the hierarchical relationships be-
tween the meta-models in play. The following subsections
overview each transformation3.

3.2 PhoneApps-to-Statecharts
The first step in the synthesis of executable applications

from PhoneApps models is the PhoneApps-to-Statecharts
transformation which extracts the models’ behavioural com-
ponents. Rather than attempt to invent a novel way of
transforming and generating code for complex behaviour, we
use the extensively proven and studied formalism of State-
charts [10] as our target formalism. The behavioural se-
mantics of PhoneApps models are fully encompassed in the
edges between Containers and Actions and can readily be
mapped onto Statecharts. Existing tools for Statechart com-
pilation, simulation, analysis, etc. can be exploited to pro-
duce efficient and correct code. Figure 2 shows an example
graph transformation rule4 from a subgraph of a PhoneApps
model to its equivalent in the Statechart formalism. When
the full PhoneApps-to-Statechart transformation has run
its course, every Container and Action has a correspond-
ing state. These are connected via customized transitions
according to the edges that connect their respective Con-

tainers and Actions. Note that the current range of pos-
sible behaviours of PhoneApps models requires only the ex-
pressiveness of timed automata. Future work will extend the
formalism with notions of hierarchy and concurrency such
that more powerful Statechart features (e.g., orthogonality,
nesting) become required.

3.3 PhoneApps-to-AndroidAppScreens
After isolating and transforming the behavioural compo-

nents of PhoneApps models to Statecharts, another trans-

3See [13] for more detailed descriptions of the steps that
make up these transformations.
4Rules are the basic building blocks of rule-based graph
transformations. They are parameterized by a left-hand side
(LHS), a right-hand side (RHS) and optionally a negative
application condition (NAC) pattern, condition code and
action code. The LHS and NAC patterns respectively de-
scribe what sub-graphs should and shouldn’t be present in
the source model for the rule to be applicable. The RHS pat-
tern describes how the LHS pattern should be transformed
by the application of the rule. Further applicability con-
ditions may be specified within the condition code while
actions to carry out after successful application of the rule
may be specified within the action code.

(a) (b)

Figure 1: (a) The PhoneApps meta-model (as a Class Diagram); (b) A Formalism Transformation Graph [9] for PhoneApps.

Figure 2: A PhoneApps timeout mapped to a Statechart
timeout. The grayed out transition between Containers il-
lustrates the marking of that transition as “visited”.

formation is required to isolate and transform their user-
interface and Google Android related components. The for-
malism we propose to encompass this information is An-
droidAppScreens (see Figure 3a). When the full PhoneApps-
to-AndroidAppScreens transformation has run its course,
top-level Containers and Actions each have corresponding
Screens and Acts respectively. These are appropriately con-
nected to some number of constructs that represent snippets
of generated Google Android-specific code (e.g., XML lay-
out code, application requirement manifests, event listener
code). Figure 3b shows an example translation rule from
a subgraph of a PhoneApps model to its equivalent in the
AndroidAppScreens formalism.

The PhoneApps-to-Statecharts/AndroidAppScreens trans-
formations clearly demonstrate the modular and layered na-
ture of our approach to code synthesis. We improve upon
the traditional ad-hoc hand-coded generator approach on
numerous fronts.

First, the recurringly stated goals of simulation and de-
bugging at the DSm level can be achieved by instrumenting
the generated code with appropriate callbacks as in [18]. Un-
fortunately, in doing so, the code generator is polluted by
considerable added complexity. In our approach, the com-
plex task of maintaining backward links between models and
synthesized artifacts is accomplished by connecting higher-
level entities to their corresponding lower-level entities in
transformation rules via generic edges5. These have minimal

5Notice the purple, undirected edges between constructs of

impact on the readability of the rules and their specification
is amenable to semi-automation. The resulting chains of
generic edges can be used to seamlessly animate and update
DSms (or any intermediate models) during execution of the
synthesized application 6.

Second, the aforementioned generic edges can aid in the
debugging of the graph transformations themselves. Ad-
vanced DSM tools such as AToM3 [9] which support step-by-
step execution of rule-based transformations provide a lim-
ited but free transformation debugging environment where
one can very easily observe (and modify) the effect of every
single rule in isolation. Complex tasks such as determining
what was generated from which model entity become trivial
and don’t require any further instrumentation. Once again,
this is considerably easier, more modular and more elegant
that lacing a coded generator with output statements and
breakpoints.

Third, although in a finished product the inner work-
ings that convert DSms to artifacts should be hidden from
the modeller, it may be useful for educational purposes to
see how higher- and lower-level constructs are related (as
demonstrated in Figure 5). Both our transformation rules
and the cross-formalism links they produce explicit these re-
lationships.

Fourth, the multiple intermediate layers between model
and artifact (and the links between them) provide a means
to observe models from various “viewpoints”. For instance,
in the context of PhoneApps, to study only the behavioural
aspects of a model, one could observe the generated Stat-
echart in isolation from the DSm and the other generated
artifacts.

Finally, the most important advantage of our approach
is perhaps that it raises the level of abstraction of the de-
sign of “code synthesis engines”. Rather than interacting
with tool APIs and writing complex code, the task of im-
plementing a code generator is reduced to specifying rela-

different formalisms in the figures describing rules.
6Future work will explore extending these animation capa-
bilities to more advanced debugging activities such as alter-
ing the execution flow.

(a) (b)

Figure 3: (a) The AndroidAppScreens meta-model; (b) Extracting information from a Container into new AndroidAppScreens
constructs.

tively simple (graphical) model transformation rules using
domain-specific constructs. In a research community that
ardently encourages the use of models and modelling and
more generally development at a proper level of abstraction,
our approach to code synthesis seems like a natural and log-
ical evolution.

3.4 AndroidAppScreens- and Statecharts-to-
AbstractFiles

Benefits of keeping links between models and generated
artifacts were discussed in the previous subsections. Follow-
ing the same mindset, we introduce the AbstractFiles formal-
ism. This trivially simple formalism serves as an abstraction
of the actual generated files i.e., a model element exists for
each generated file. Hence, rather than compile and out-
put the previously generated AndroidAppScreens and Stat-
echart models directly to files on disk, their compilation re-
sults in an instance model of the AbstractFiles formalism.
An added benefit of this design choice is that the generated
output for each file can be reviewed from within the mod-
elling environment as part of the debugging process; there
is no more need to locate files on disk and open them in a
separate editor. Figures 4a and 4b show two example trans-
formation rules from subgraphs of an AndroidAppScreens
model to their equivalent in the AbstractFiles formalism.
As for the transformation of the Statechart constructs to
the AbstractFiles formalism, the output of a Statechart com-
piler is directed towards an AbstractFiles model element to
be later output to a Java file on disk.

4. CASE STUDY: CONFERENCE REGISTRA-
TION IN PHONEAPPS

We now present a hands-on example that demonstrates
the successive intermediate representations involved in syn-
thesizing a Google Android conference registration appli-
cation from a PhoneApps model. Of particular interest is
the intuitive mapping between each model and its counter-
part(s) in the lower-level formalisms. The following will ex-
plicit the above-mentioned advantages of easier debugging
and readability of the code and code synthesis engines that
result from our approach. Figure 5a shows the modelled
conference registration application CR in the PhoneApps
formalism. There are 3 main use cases: (1) registering, (2)
viewing the program schedule and (3) canceling a registra-
tion. The first is explored below.

1. The user sees the Welcome screen for 2 seconds and is
taken to the ActionChoice screen;

2. The user clicks on“Register”on the ActionChoice screen
and is taken to the EnterName screen;

3. The user enters his name, clicks “OK” and is taken to
the PaymentMethodChoice screen;

4. The user clicks on a payment method. A text mes-
sage containing the user’s name and chosen payment
method is sent to a hardcoded phone number after
which the user is taken to the RegistrationDone screen;

5. The user sees the RegistrationDone screen for 2 sec-
onds and the application exits;

6. The mobile device’s operating system restores the de-
vice to its state prior to the launch of the conference
registration application.

The output of the PhoneApps-to-Statecharts transforma-
tion is shown in Figure 5b7. Essentially, the application
behaviour encoded in CR’s transitions is isolated and used
to produce an equivalent Statechart. Not visible are the
state entry actions which effect function calls to generated
methods that carry out tasks on the mobile device such as
loading screens and sending text messages.

The output of the PhoneApps-to-AndroidAppsScreens is
shown in Figure 5c. Essentially, the layout and mobile device
specific aspects encoded in CR are translated to appropriate
elements of the AndroidAppsScreens formalism.

Figure 5d shows the model after the AndroidAppsScreens-
to- and Statecharts-to-AbstractFiles transformations have
completed8. The two transformations output to a disjoint
set of AndroidAppsFiles entities and can thus be run in par-
allel. Their results are presented together to illustrate the
merging of the previously isolated conceptual components
into a single, final target formalism.

The final step is the trivial transformation of the Mod-

elledFiles to actual files on disk. The end result of this
series of transformations is two-fold. First and foremost,
a fully functional Google Android application that perfectly
reflects the original PhoneApps model is synthesized as shown

7For clarity, we refrain from reproducing the entire CR
model and generic edges between it and generated constructs
in Figures 5b, 5c and 5d. Instead, we overlay corresponding
constructs.
8Remember that though they are hidden here, numerous
generic edges connect the ModelledFiles to Statechart and
AndroidAppsScreens constructs

(a) (b)

Figure 4: (a) Creating one ModelledFile per Screen to hold its XML layout specification; (b) Appending event listener and
content initialization code to a ModelledFile of the main Java artifact “PhoneApp.java”.

(a) (b)

(c) (d)

Figure 5: (a) Conference registration in PhoneApps; (b) The CR model after applying the PhoneApps-to-Statecharts trans-
formation; (c) The CR model after applying the PhoneApps-to-AndroidAppsScreens transformation; (d) The CR model after
applying the AndroidAppsScreens-to-AbstractFiles and Statecharts-to-AbstractFiles transformations.

in Figure 6. Second, an intricate web of interconnections
between model entities at different levels of abstraction is
created. This web can be used for explanatory purposes
(i.e., as we have used it to relate corresponding constructs
in Figures 5b and 5c) or to ease debugging and simulation
of DSms.

5. CASE STUDY: PERFORMANCE METRICS
FROM PHONEAPPS

Our approach can also be beneficial in the context of mod-
elling embedded systems and more specifically, in the ad-
dressing of their characteristic non-functional requirements.
Although the mobile devices we target are indeed embedded
systems, the Google Android API abstracts away traditional
embedded system concerns. However, it is conceivable that
information such as expected running time and battery us-
age may be required by the modeller. Indeed, the designer
of a PhoneApps DSm might be faced with non-functional
requirements pertaining to resource utilization and applica-
tion response time. Hence, means to constrain or at least
measure such performance related aspects should be pro-
vided. In this case study, we compare how such facilities
could be implemented using both our approach to artifact
synthesis and the traditional coded generator approach.

First, see Table 1 for a set of imaginary performance spec-
ifications for all Google Android devices. Second, let us as-
sume that these specifications are stored and formatted such
that they can be easily read from a modelling tool or a coded
program. Finally, let us also assume that the modeller of a
conference registration application is faced with the three
non-functional requirements listed below:

• The full execution must require less than x% battery
power;

• The full execution must require less than y seconds;

• The waiting time between two Screens should never
exceed z seconds.

Such requirements in conjunction with target platform
specifications (ala. Table 1) could help a modeller discrim-
inate between design decisions such as preloading a device
with data versus downloading it at runtime, or communicat-
ing via email versus text messaging.

The task of generating performance models and/or statis-
tics from DSms is analogous to that of generating any other
artifact. Thus, the traditional coded generator approach
would programmatically iterate over model entities to pro-
duce desired output (e.g., estimates of battery usage and
running time9). One option would be to extend an existing
generator (in this context, a generator that would synthe-
size complete Google Android applications from PhoneApps
models) with performance measuring provisions. Another
option would be to write a new generator from scratch and
have it focus solely on extracting performance related in-
formation from models. Both approaches have merits and

9These estimates could be parameterized and plotted to il-
lustrate pertinent bounds such as “the application respects
requirement r provided SMS messages are restricted to x
characters” or “local data as opposed to web data should be
used if the said data is larger than y megabytes”.

limitations. Although the latter will be more efficient, it may
induce considerable code duplication since model traversal
and information extraction will conceivably be carried out in
a similar fashion than in existing generators. On the other
hand, the former option might introduce undesired complex-
ity and reduce the modularity of an already complex gener-
ator. In either case, providing more advanced features (e.g.,
“tagging” domain-specific constructs with battery usage or
running time information at the DSm level, live performance
data updates from DSm modifications) that exploit one- or
two-way links between model and artifacts will require con-
siderably polluting the generator’s code.

Analogous options for generating performance informa-
tion using our model transformation-based our approach are
fairly obvious: a new orthogonal model transformation could
be created or existing model transformations could be refac-
tored. For instance, PhoneApps-to- or AndroidAppScreens-
to-Metrics transformations could be introduced with rules
that count such things as the total number of Widgets on
all Screens along each possible execution path. Both op-
tions raise the same concerns as in the traditional approach;
namely that PhoneApps-to- and AndroidAppScreens-to-Metrics
will conceivably bare numerous similarities to the PhoneApps-
to- and AndroidAppScreens-to-AbstractFiles transformations
respectively whereas merging everything into a single trans-
formation might result in a complex intermingling of con-
cerns. Nevertheless, our model transformation-based ap-
proach will facilitate the creation of links between DSm and
synthesized performance related artifacts thereby facilitat-
ing the implementation of the aforementioned advanced fea-
tures.

Thus far, we have focused on “static” performance metrics
in the sense that we assume that the desired information can
be extracted from static DSms. However, it may be required
to execute (or simulate) models to obtain more detailed and
precise results (e.g., average and expected measurements as
opposed to best and worst case theoretical bounds). Con-
structing such“dynamic”performance metrics would require
that the generator or transformation rules instrument the
synthesized executable artifacts (e.g., with code to incre-
ment a counter for every displayed widget). Instrumentation
to output global information such as total measured running
time could just as easily be produced by the traditional ap-
proach than by our own. However, to output more localized
measurements (ideally on the DSm itself and possibly even
during runtime) like the battery usage of a SendMessage en-
tity or the time of entry of each Screen, links between DSm
and artifact become a necessity. As we have repeatedly ar-
gued, such links are easier to specify and represent with our
approach than with coded generators.

In sum, the numerous benefits of our technique to artifact
synthesis not only apply to generating coded applications
but also to the production and display of performance data
useful in the modelling of embedded system applications.

6. CONCLUSION AND FUTURE WORK
We proposed a structured approach to artifact generation

where layered model transformations are used to modularly
isolate, compile and re-combine various aspects of DSms,
while leaving behind a web of interconnections between cor-

(a) (b) (c) (d)

Figure 6: Screengrabs of the synthesized application running on a Google Android device emulator: (a) The Welcome screen;
(b) The ActionChoice screen; (c) The ProgramSchedule screen; (d) The EnterName screen.

Function Execution Time Range (s) Battery Usage Range (%)

Tap Touch Screen [0.001, 0.003] [0.0001, 0.0003]
Load Screen [0.05, 0.07] ∗ nb widgets [0.001, 0.003] ∗ nb widgets

Send SMS [0.1, 0.3] + [0.1, 0.2] ∗ ⌈sms.length ÷ 120⌉ [0.01, 0.03] ∗ ⌈sms.length ÷ 120⌉
Send Email [0.05, 0.1] ∗ ⌈msg.length ÷ 1024⌉ [0.05, 0.07] ∗ ⌈msg.length ÷ 1024⌉

Load Web Data data.size ÷ 200Kb

s
data.size ÷ 50Mb

%

Load Local Data data.size ÷ 5Mb

s
data.size ÷ 500Mb

%

Table 1: Imaginary performance specifications for Google Android devices.

responding constructs from formalisms at different levels of
abstraction. We argued that our approach improves upon
the traditional ad-hoc coded generator approach to synthe-
sizing applications from DSms. Discussed benefits include
improving the domain-specificity and easing the develop-
ment and debugging of code synthesis engines, providing
clear pictures of the real and conceptual links between con-
structs at different levels of abstraction and simplifying the
construction of inter-formalism mappings that enable ad-
vanced functionalities such as DSm animation, simulation,
debugging and on-the-fly tagging.

The DSLs, transformations and case studies we presented
provided empirical evidence to back our claims that (graph-
ical) model transformations are a better means of gener-
ating artifacts (be they programs or performance metrics)
from DSms than coded generators. However, our approach
still requires some formalization. Since we essentially ripped
and woven DSLs with our transformations, we believe that
the first step towards this formalization is the study of the
broader ideas and theory of DSL weaving and ripping, specif-
ically during language design. For instance, combining some
form of explicit DSL concept generalization relationship (e.g.,
PhoneApps.ExecutionStep is a Statechart.State) with higher-
order transformations10 could enable the automation of much
of the above work (e.g., part or all of the PhoneApps-to-
Statechart transformation could be generated automatically).
As a final benefit of our approach, although (semi-)automatically
generating transformation rules seems straight-forward, gen-

10Transformations that take other transformations as input
and/or outputs.

erating parts of a coded generator would not only require
considerable effort but likely produce a complex and in-
complete program that would be difficult to understand let
alone complete and maintain. Thus, our technique is more
amenable to (semi-)automation.

7. REFERENCES
[1] Google android. http://code.google.com/android/.

[2] Marcus Alanen and Ivan Porres. Difference and union
of models. In Unified Modeling Language (UML),
volume LNCS 2863, pages 2–17, 2003.

[3] Jean Bezivin. On the unification power of models.
Software and Systems Modeling (SoSym), 4:171–188,
2005.

[4] Alan W. Brown. Model driven architecture: Principles
and practice. Software and Systems Modeling
(SoSym), 3:314–327, 2004.

[5] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo,
and Alfonso Pierantonio. Automating co-evolution in
model-driven engineering. In Enterprise Distributed
Object Computing (EDOC), pages 222–231, 2008.

[6] Antonio Cicchetti, Davide Di Ruscio, and Alfonso
Pierantonio. A metamodel independent approach to
difference representation. Journal of Object Technology
(JOT), 6:165–185, 2007.

[7] Krzysztof Czarnecki and Ulrich Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000. 832 pages.

[8] Krzysztof Czarnecki and Simon Helsen. Feature-based
survey of model transformation approaches. IBM
Systems Journal (IBMS), 45:621–645, 2006.

[9] Juan de Lara, Hans Vangheluwe, and Manuel
Alfonseca. Meta-modelling and graph grammars for
multi-paradigm modelling in AToM3. Software and
Systems Modeling (SoSym), 3:194–209, 2004.

[10] David Harel. Statecharts: A visual formalism for
complex systems. The Science of Computer
Programming, 8:231–274, 1987.

[11] Steven Kelly and Juha-Pekka Tolvanen.
Domain-Specific Modeling : Enabling Full Code
Generation. Wiley-Interscience, 2008. 427 pages.

[12] Yuehua Lin, Jeff Gray, and Frederic Jouault.
DSMDiff: A differentiation tool for domain-specific
models. European Journal of Information Systems
(EJIS), 16:349–361, 2007.

[13] Raphael Mannadiar and Hans Vangheluwe. Modular
synthesis of mobile device applications from
domain-specific models. Technical report, McGill
University, 2010.

[14] MetaCase. Domain-specific modeling with MetaEdit+:
10 times faster than UML.
http://www.metacase.com/resources.html; June 2009.

[15] Laurent Safa. The making of user-interface designer a
proprietary DSM tool. In 7th OOPSLA Workshop on
Domain-Specific Modeling (DSM), page 14,
http://www.dsmforum.org/events/DSM07/papers.html,
2007.

[16] Yu Sun, Jules Whit, and Jeff Gray. Model
transformation by demonstration. In MODELS,
volume LNCS 5795, pages 712–726, 2009.

[17] Rasha Tawhid and Dorina Petriu. Integrating
performance analysis in the model driven development
of software product line. In Proceedings of the 11th
international conference on Model Driven Engineering
Languages and Systems (MODELS), 2008.

[18] Hui Wu, Jeff Gray, and Marjan Mernik.
Grammar-driven generation of domain-specific
language debuggers. Software : Practice and
Experience, 38:1073–1103, 2008.

