
context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

debugging in domain-specific modelling

raphaël mannadiar and hans vangheluwe

presented by hans vangheluwe

SLE 2010

debugging in domain-specific modelling 1/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

outline

1 context and problem

2 debugging: code vs. dsm

3 debugging transformations

4 debugging models and artifacts

5 conclusion

debugging in domain-specific modelling 2/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

outline

1 context and problem

2 debugging: code vs. dsm

3 debugging transformations

4 debugging models and artifacts

5 conclusion

debugging in domain-specific modelling 3/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

why do domain-specific modelling (dsm)?

problem and solution domains are often far apart

mapping problems to solutions manually is difficult, slow and
error-prone

but the process can be automated!

debugging in domain-specific modelling 4/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

why do domain-specific modelling (dsm)?

problem and solution domains are often far apart

mapping problems to solutions manually is difficult, slow and
error-prone

but the process can be automated!

dsm allows domain experts to play active roles in the development
process, even if they aren’t solution domain experts

debugging in domain-specific modelling 5/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

what’s under the hood?

artifacts are generated from domain-specific models (dsms)

artifacts may be configuration files, programs, performance models, etc.

rules of the trade dictate that artifact generation should be done via
model transformations

debugging in domain-specific modelling 6/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

how can i play?

the typical steps of a dsm project are...

1 modelling a domain-specific language (dsl)

2 specifying its semantics as model transformations

3 creating instance dsms

4 synthesizing artifacts from dsms

debugging in domain-specific modelling 7/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

what can go wrong?

bugs may creep in at any stage of a dsm project

means to debug model transformations, dsms
and synthesized artifacts are necessary!

debugging in domain-specific modelling 8/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

has anyone tried?

common approach to debugging dsms

debug coded artifacts to debug dsms
≡

debug bytecode to debug a coded program.

debugging in domain-specific modelling 9/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

has anyone tried?

common approach to debugging dsms

debug coded artifacts to debug dsms
≡

debug bytecode to debug a coded program.

a better approach by wu et al.

build mapping between domain-specific code statements
and artifact code statements during generation

combine mapping with Eclipse plugin that uses Eclipse debugger

→

debugging is performed directly on dsms

debugging in domain-specific modelling 10/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

what’s missing?

nothing is available for debugging visual dsms (not textual)

nothing is available for debugging modelled artifacts (not coded)

nothing is available for debugging model transformations

debugging in domain-specific modelling 11/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

what’s missing?

nothing is available for debugging visual dsms (not textual)

nothing is available for debugging modelled artifacts (not coded)

nothing is available for debugging model transformations

we propose a mapping between debugging concepts (e.g.,

breakpoints, assertions) in the software and dsm realms meant as

a guide for developing complete debuggers for dsm

debugging in domain-specific modelling 12/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

outline

1 context and problem

2 debugging: code vs. dsm

3 debugging transformations

4 debugging models and artifacts

5 conclusion

debugging in domain-specific modelling 13/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

debugging code 101

the bases of software debugging are observing system state and

hand-simulation

facilities to do this are bundled within modern programming
languages and integrated development environments

debugging in domain-specific modelling 14/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

language facilities

print statements

output variable contents

monitor program flow

debugging in domain-specific modelling 15/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

language facilities

print statements

output variable contents

monitor program flow

assertions

verify runtime conditions

compiler enabled/disabled

debugging in domain-specific modelling 16/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

language facilities

print statements

output variable contents

monitor program flow

assertions

verify runtime conditions

compiler enabled/disabled

exceptions

indicate and describe problematic system state

propagated or handled

debugging in domain-specific modelling 17/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

ide facilities

execution control

play, step, pause, stop

step over, step into, step out

release vs. debug modes

debugging in domain-specific modelling 18/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

ide facilities

execution control

play, step, pause, stop

step over, step into, step out

release vs. debug modes

runtime variable i/o

read/write global/local variables

debugging in domain-specific modelling 19/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

ide facilities

execution control

play, step, pause, stop

step over, step into, step out

release vs. debug modes

runtime variable i/o

read/write global/local variables

breakpoints

pause on marked statement

debugging in domain-specific modelling 20/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

ide facilities

execution control

play, step, pause, stop

step over, step into, step out

release vs. debug modes

runtime variable i/o

read/write global/local variables

breakpoints

pause on marked statement

stack traces

navigable call stack to current statement

debugging in domain-specific modelling 21/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

debugging in dsm 101

the development process in dsm has two important facets: developing
models and developing model transformations

this introduces two important differences with the programming world:

1 artifacts to debug are not restricted to code

2 designing and debugging “compilers/interpreters” is now
common

debugging in domain-specific modelling 22/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

debugging in dsm 101...

in the paper, we explore how all of the above language and debugging
facilities translate into the debugging stages of both facets of dsm
development

in this talk, we focus only on print statements, exceptions and

execution control

debugging in domain-specific modelling 23/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

outline

1 context and problem

2 debugging: code vs. dsm

3 debugging transformations

4 debugging models and artifacts

5 conclusion

debugging in domain-specific modelling 24/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

dsm and model transformations

model transformations can elegantly define a dsm’s semantics

we focus only on rule-based model transformations

a rule-based model transformation describes a flow of rules∗ (which
may require debugging)

debugging in domain-specific modelling 25/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

print statements and model transformations

naive approach: normal rules with output calls in action code

requires identical source and destination patterns

requires loop prevention means

→ lots of accidental complexity

debugging in domain-specific modelling 26/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

print statements and model transformations

naive approach: normal rules with output calls in action code

requires identical source and destination patterns

requires loop prevention means

→ lots of accidental complexity

domain-specific approach: extend model transformation
languages with print rules

parameterized with one pattern, condition code and printing code

easily transformed to above naive rules

→ no accidental complexity

debugging in domain-specific modelling 27/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

print statements and model transformations...

it may seem odd to support a language construct whose usefulness is
mostly restricted to debugging purposes, but...

we should remember that print statements (whose usefulness is mostly
restricted to debugging purposes) are supported in every modern GPL

debugging in domain-specific modelling 28/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

stepping and model transformations

stepping over should run one (possibly composite) rule

stepping into should run one sub-rule (if any), or one primitive operation
(in t-core based systems∗)

stepping out should run in continuous mode until scope change

some modern tools (e.g., atom3) support basic rule-by-rule execution

debugging in domain-specific modelling 29/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

stepping and model transformations

stepping over should run one (possibly composite) rule

stepping into should run one sub-rule (if any), or one primitive operation
(in t-core based systems∗)

stepping out should run in continuous mode until scope change

some modern tools (e.g., atom3) support basic rule-by-rule execution

stepping is heavily dependent on model transformation language and
engine features

debugging in domain-specific modelling 30/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

pausing and model transformations

naive approach
immediate interruption

debugging in domain-specific modelling 31/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

pausing and model transformations

naive approach
immediate interruption

transactional approach
commit/roll-back current rule or t-core operation before pausing

debugging in domain-specific modelling 32/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

pausing and model transformations

naive approach
immediate interruption

transactional approach
commit/roll-back current rule or t-core operation before pausing

pausing should only occur when the system state is consistent and
observable

pausing is also heavily dependent on model transformation language and
engine features

debugging in domain-specific modelling 33/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

outline

1 context and problem

2 debugging: code vs. dsm

3 debugging transformations

4 debugging models and artifacts

5 conclusion

debugging in domain-specific modelling 34/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

dsm, models and artifacts

running models with denotational semantics implies executing
synthesized artifacts (as opposed to model transformations) and

observing dsm versus artifact evolution

in industry, dsls (and their semantics) might be defined by different
actors than the end-users

thus, we distinguish between two types of users

debugging in domain-specific modelling 35/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

dsm, models and artifacts

running models with denotational semantics implies executing
synthesized artifacts (as opposed to model transformations) and

observing dsm versus artifact evolution

in industry, dsls (and their semantics) might be defined by different
actors than the end-users

thus, we distinguish between two types of users

designers
are fully aware of the model

transformations that describe model
semantics and generate artifacts

debugging in domain-specific modelling 36/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

dsm, models and artifacts

running models with denotational semantics implies executing
synthesized artifacts (as opposed to model transformations) and

observing dsm versus artifact evolution

in industry, dsls (and their semantics) might be defined by different
actors than the end-users

thus, we distinguish between two types of users

designers
are fully aware of the model

transformations that describe model
semantics and generate artifacts

modellers
have implicit understanding of model
semantics but little or no knowledge

about how they are specified

debugging in domain-specific modelling 37/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

exceptions, models and artifacts

dsms might be animated but what is truly being executed are synthesized
artifacts

→ exceptions originate from artifacts

debugging in domain-specific modelling 38/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

exceptions, models and artifacts

dsms might be animated but what is truly being executed are synthesized
artifacts

→ exceptions originate from artifacts

which exceptions to catch and propagate are design decisions of
the dsl architect

“silent” handlers for irrelevant exceptions should be
generated alongside synthesized artifacts

relevant exceptions should be translated into domain-specific
terms and propagated to the modeller or designer

debugging in domain-specific modelling 39/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

exceptions, models and artifacts...

debugging in domain-specific modelling 40/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

stepping, models and artifacts

what is a step in an arbitrary dsm?

debugging in domain-specific modelling 41/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

stepping, models and artifacts

what is a step in an arbitrary dsm?

we define a step as any modification to any parameter of
any entity in a dsm

debugging in domain-specific modelling 42/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

stepping, models and artifacts

what is a step in an arbitrary dsm?

we define a step as any modification to any parameter of
any entity in a dsm

stepping can be considered from two orthogonal perspectives:
the modeller’s and the designer’s

for modellers, the three step commands intuitively translate to dsls with
hierarchy and composition

debugging in domain-specific modelling 43/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

stepping, models and artifacts...

generating artifacts from dsms
creates an implicit hierarchy
between them

a designer may prefer for the step
into operation to take a step at

the level of corresponding
lower level entities∗

debugging in domain-specific modelling 44/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

pausing, models and artifacts...

a sensible approach is to pause the execution before running...

the next step at the dsm level for the modeller

the next step at the artifact level for the designer

a key enabler for pausing and stepping is (ideally automatic)

instrumentation of artifacts to enable running only parts of
them at a time

debugging in domain-specific modelling 45/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

outline

1 context and problem

2 debugging: code vs. dsm

3 debugging transformations

4 debugging models and artifacts

5 conclusion

debugging in domain-specific modelling 46/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

sales pitch

our work is meant as a guide for developing complete
debuggers for dsm

debugging in domain-specific modelling 47/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

sales pitch

our work is meant as a guide for developing complete
debuggers for dsm

in the paper, you’ll find

a detailed mapping for all of the listed debugging
concepts

a clear distinction between the debugging of model
transformations and dsm debugging, and between

debugging scenarios for designers and modellers

a discussion on how to generate more readily debuggable
artifacts

debugging in domain-specific modelling 48/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

questions?

thank you!

debugging in domain-specific modelling 49/50



context and problem debugging: code vs. dsm debugging transformations debugging models and artifacts conclusion

dsm to artifact correspondence links

debugging in domain-specific modelling 50/50


	context and problem
	necessary-to-get-little-page-number-circles-in-header

	debugging: code vs. dsm
	necessary-to-get-little-page-number-circles-in-header

	debugging transformations
	necessary-to-get-little-page-number-circles-in-header

	debugging models and artifacts
	necessary-to-get-little-page-number-circles-in-header

	conclusion
	necessary-to-get-little-page-number-circles-in-header


