Simulating Intracellular Protein Traffic and

Cellular Stress using PyDEVS

Reehan Shaikh
Modelling, Simulation and Design Lab
School of Computer Science
McGill University, Montreal, QC, Canada
reehan.shaikh@cs.mcgill.ca

May 2007

Abstract

A simulation of intracellular protein traffic and
how it affects cellular stress has been developed.
Though still in its early stages, it has proven to be
an easy way of simulating what proteins are doing in
the cell. Following a protein’s journey from the nu-
cleus to the plasma membrane or lysosome and what
it does in between has been the focus of this exper-
iment, as well as to hypothesize of the outcome of
such a journey, for example, how a cell is stressed.

Developed using PyDEVS, the Python imple-
mentation of the DEVS formalism, it can easily be
extended to support larger and more complex mod-
els. Moreover, future hypotheses of protein behaviour
within the cell can be easily tested using these exten-
sions. Due to PyDEVS’ hierarchical nature, adding
new models to the existing model is a seamless task
that involves declaring the model and patching it up
to the existing models via channels for communica-
tion.

1 Introduction

A eucaryotic cell is intracately separated into
little compartments known as organelles. Each or-
ganelle is surrounded by a membrane and carries out
a distinct function within the cell. Proteins play a
major role in these functions; they incite internal or-

ganelle reactions as well as transport molecules in
and out of the compartment. Certain proteins also
carry organelle-specific markers that help newly syn-
thesized proteins direct themselves to their destined
compartment. On average, a cell contains close to 10
billion proteins, divided into about 10,000 - 20,000
different types.

The complexity of the cell, the large number of
proteins and the important functions that proteins
aid in prove that a simulation of some sort is needed.
To be able to visualize exactly what happens when,
for example, the endoplasmic reticulum contains too
many unfolded proteins, we can further test hypothe-
ses in an extremely easy manner.

2 The Cell
2.1 Cell Organelles

Unlike a procaryotic cell, the animal cell is com-
posed of compartments known as organelles. More
than half of the cell’s volume is taken up by the cy-
tosol, the ogranelle responsible for all protein synthe-
sis and degradation. Intracellular membrane systems
further divide the cell into little aqueous pockets sep-
arate from the cytosol. These pockets make up the
rest of the cell’s organelles. The membrane’s lipid bi-
layer is impermeable to most hydrophilic molecules,
thus an organelle’s membrane must carry proteins

that help in the import and export of molecules.
Moreover, each membrane must also store proteins
with organelle-specific receptor markers that help
newly synthesized proteins find their destination or-
ganelle. These specific proteins give each organelle
its uniqueness.

The cytosol also carries out the majority of the
cell’s intermediary metabolism - the reactions where
small molecules are degraded and synthesized. These
small molecules are the essential building blocks of
the cell’s macromolecules. The cytosol, along with
the cytoplasmic organelles, make up the cytoplasm.
The cytoplasm surrounds one of the cell’s principal
organelles, the nucleus. The nucleus contains the
main genome of the cell and is entirely responsible
for DNA and RNA synthesis.

Close to half of the total area of the membrane
system in an animal cell is used to enclose the maze-
like organelle known as the endoplasmic reticulum
(ER). While other organelles translocate and import
proteins only after the protein is completely synthe-
sized, this special organelle is best known for translo-
cating proteins into its interior while the protein is
being synthesized. Consequently, the ER has many
ribosomes attached to its cytosolic surface which help
in the synthesis of these proteins. Once synthesized,
these proteins are usually bound for secretion to the
cell’s exterior or to other organelles.

The ER sends most of its proteins to the Golgi
apparatus. The Golgi is responsible for sending these
proteins to the cell’s various other organelles. Mito-
chondria, the second largest organelle of the cell, gen-
erates most of the cell’s ATP. The lysosome consists
of digestive enzymes that degrade obselete intracel-
lular organelles and proteins. It also destroys parti-
cles and macromolecules that may have slipped into
the cell via endocytosis. These particles and macro-
molecules, on their way to the lysosome, pass through
a number of organelles known as endosomes. Peroxi-
somes are organelles that hold enzymes used in a di-
verse set of oxidative reactions within the cell. Pro-
teasomes are abundantly dispersed throughout the
cytosol and aid in the its degradation of proteins.

2.2 Protein Traffic

Most proteins’ lives begin in the cytosol where
ribosomes help in their synthesis. Depending on the
sorting signal contained in the amino acid sequence,
each protein is destined for a specific function in some
organelle. Most proteins actually don’t carry this sig-
nal and thus become resident cytosolic proteins. Pro-
teins that carry a signal usually end up in the nucleus,
ER, mitochondria or peroxisome. Moreover, there
are protein signals which direct proteins from the ER
to other organelles via the Golgi apparatus, which
acts as a protein sorter. Most intracellular trans-
port is guided via these signals and proteins bearing
some sort of signal must have complementary recep-
tor proteins to guide them to their destination. These
receptors act as catalysts and once they have directed
an incoming protein to its destination, the receptor
goes back to where it came from in order to be reused.
Moreover, a receptor protein can recognize more than
one sorting signal, so it can aid in a variety of protein
deliveries to different locations.

DNA and RNA systhesis occurs in proteins des-
tined for the nucleus from the cytosol. Some of these
proteins return to the cytosol after synthesis, oth-
ers go on to the ER where they attempt to fold and
assemble. Almost all proteins that must ultimately
end up in one of the cell’s organelles passes through
the ER[7]. Certain proteins that carry the ER re-
tention signal[2, p.701] will become ER resident pro-
teins where they will aid newly translocated proteins
in folding and assembling properly and until they end
up in their proper and final state, these new proteins
will not leave the ER. Thus, at some point, the ER
will become flooded with unfolded proteins.

This extra load on the ER will trigger an un-
folded protein response, UPR. This involves send-
ing a signal to the nucleus to increase “the tran-
sription of genes encoding ER chaperones”[2, p.705].
Moreover, the nucleus will also increase the number
of enzymes involved in ER-protein degradation. The
reason for this is that despite all the help from ER
chaperones, some proteins will never fold or assemble
properly. This will result in ER-associated degra-
dation, ERAD, whereby proteins are sent back to
the cytosol for degradation by proteasomes.

If folded and assembled properly, proteins will go
onto the Golgi apparatus where they will be sorted
by destination. The Golgi is divided into two main
sections, the cis, or entry, and trans, or exit, Golgi
networks. Both Golgi networks act as a filter which
first remove any escaped ER-resident proteins. These
proteins are sent back to the ER. Otherwise, proteins
that move further in their journey will go on to one
of the cell’s other organelles.

3 PyDEVS

The Discrete EVent system Specification was
first established in 1976 by Bernard P. Zeigler[1].
This formalism gave a detailed structure to discrete-
event modelling. PyDEVS is an implementation of
this formalism using Python!, an extremely high-
level, interpreted and object-oriented language. The
PyDEVS package contains two files; DEVS.py gives
the class architecture for hierarchical model defini-
tions while Simulator.py implements the simulation
engine. We will go into further detail about the mod-
elling architecture but no description of the simula-
tion engine is given as it doesn’t fall into the scope of
this paper. For those interested, please refer to [1].

There are two things to note of the simulation
engine that are of importance to us. First, there is
a notion of time, not real-time, but where events are
timestamped in some chronological order that they
occur. Secondly, the engine provides the modeller
with an easy way to define how long an experiment
will run via the use of a boolean value. This value
can be any boolean expression such as when a certain
model enters a specific state, when the simulation
clock reaches a certain value or always return false so
that the simulation will go on forever!

3.1 AtomicDEVS

An atomic DEVS model is used for describing a
simple system and is primarily referred to by its state.
Each atomic model starts in an initial state and has
an associated set of states. The time-advance func-
tion is used to calculate when the next internal transi-

lwww.python.org

tion is scheduled for. The internal transition function
allows an atomic model to change its state. Prior to
the internal transition, the output function permits
an atomic model to send messages to other models
by the use of the poke method. These messages are
sent over channels connected by ports. Ports are ei-
ther input or output and there is a clear distinction
between them (i.e. the same port cannot be used for
input and output).

Messages are received via the peek method, ex-
clusively used in the external transition function. If
a message is received, an external transition is trig-
gered. This also allows the atomic model to change
state but based on external stimuli only. When a
model is interrupted by a message, the elapsed time
since the last transition is stored. Access to this value
is also exclusive to the external transition funtion.
Once there is an external transition, the time-advance
function is called to schedule the next internal tran-
sition.

The initialization of an atomic model allows the
modeller to set the initial state, set the starting
elapsed time (so that the model can begin its times-
tamping of events at some time other than the default
0.00) and define the model’s set of ports. The de-
fault behaviour of the atomic model’s time-advance
function is to return oco(infinity). The internal and
external transition functions both return the current
state if not overridden. The default output function
does absolutely nothing. The constructor will set the
elapsed time to the default 0.00 and the model’s state
to None - Python’s null object. No ports are defined.

In summary, an atomic model will first call its
time-advance function to schedule the next internal
transition at time z. It will then set itself to its ini-
tial state. If no external stimuli interrupts the model
before time x is reached, then the model outputs its
messages if any, an internal transition takes place and
the time-advance function schedules the next internal
transition at time y. If the model is interrupted be-
fore time z, no messages are sent, an external tran-
sition is triggered and the time-advance function is
called to schedule the next internal transition at time
z. Note that if a model continuously gets interrupted
by external stimuli, it will never make an internal
transition - this can be easily overcome as discussed

in the following implementation section.

3.2 CoupledDEVS

A coupled DEVS model is used to describe com-
plex systems. It consists of, possibly several, sub-
models that are either atomic or coupled. A coupled
model has only one function of importance to the
modeller, the select function. This method is used
as a tie-breaker if and when two submodels of the
coupled model have events scheduled at exactly the
same time. It allows the modeller to choose a specific
model whose events should be carried out first.

A coupled model may also have ports. The only
difference is that the input (output) port of the cou-
pled model must be connected to the input (output)
port of one of the coupled model’s submodels. Es-
sentially, only atomic models can send messages to
each other. If some atomic model Al (that is a sub-
model of a coupled model C1) must send a message
to atomic model A2 (that is a submodel of C2), then
A1l must send the message from its output port to
the output port of C1, C1 will send the message from
its output port to the input port of C2 and finally C2
will deliver the message from its input port to the in-
put port of A2. Hence, three separate channels must
be defined for this communication to take place. The
channel that connects C1 and C2 must be defined in
a coupled model C3 which has as submodels C1, C2
and possibly other models. The channel that con-
nects C1 and Al must be defined in C1. Finally, C2
defines the channel that connects it to Al.

The initialization of a coupled model first instan-
tiates all its submodels and then defines the channels
between submodels as well as between itself and any
of its submodels. The default select function will
return the first element in the list of colliding sub-
models. When a model is instantiated, it is given a
unique mylD attribute and this list is lexicograph-
ically sorted based on this attribute. The default
constructor for a coupled model will do absolutely
nothing.

4 Implementation

The model is implemented as follows. All the
cell’s organelles are represented as atomic models.
The entire cell is depicted as a coupled model with the
organelles as its submodels. This section will go into
precise detail of the implementation of each model
and their overridden methods, as well as any diffi-
culties and workarounds that were needed to allow
for easier functionality. It is assumed that you have
already installed the PyDEVS package and have ac-
cess to its base classes and default interface methods.
A readme file is included with the project for this
purpose. The cytosol (and cytoplasmic) organelles
aren’t included in the model since they only produce
the proteins and pass them onto the nucleus. They
also pass proteins to the mitochondria and peroxi-
some but these organelles only use up the proteins
and have no direct effect on stressing the cell. Hence,
these organelles aren’t modelled either. Moreover,
the endosome only acts as a pit stop for proteins en
route to the lysosome, so it is excluded as well.

4.1 Helper Classes

To allow for easier functionality, a State class
is created that consists of two attributes - one to
hold the actual current state and another to hold the
elapsed time since the last transition. I had origi-
nally started with the state variable of each model to
be a string which depicted the actual current state.
There was no problem with such an approach since
the state attribute of a model can take the form of
any type or object. But further reading showed that
each model’s total state consists of the actual cur-
rent state as well as the elapsed time since the last
transition[1]. The difficulty of not keeping track of
the elapsed time was that a model A’s internal tran-
sition never took place if some other model B kept
interrupting A with external messages.

For example, suppose the time-advance function
for the nucleus and the ER returns a constant value
x and y, respectively. Also suppose that x < y. Once
the simulation is started, the nucleus will send a mes-
sage to the ER via its output function, perform an in-
ternal transition and schedule its next internal transi-

tion at time 2z. The ER will then receive an external
message, perform an external transition and sched-
ule its next internal transition at time z + y. There
will be another message sent from the nucleus to the
ER at time 2z (since 2z < z + y) and the ER, after
performing an external transition, will schedule its
next internal transition at time 2x + y. This cycle
of events will never allow the ER model to take its
internal transition. Consequently, the ER will never
output any messages either, so the model will never
propogate information further than the ER (more-
over, the ER can never send a reply message, if need
be, back to the nucleus).

For this reason, we opt for a variable time-
advance function. When the ER is interrupted by
some external stimuli, the current elapsed time z is
stored. When the time-advance function is called,
it will return the difference between the actual time
that the next internal transition would have taken
place y and the elapsed time x. Hence, if z time
units have passed and the ER gets interrupted by
the nucleus, we would set the next internal transition
of the ER to be at y - z, allowing for the transition
to take place at time y, as originally scheduled.

There is also a Protein class. Proteins are the
actual messages passed from the nucleus to the ER,
as well as from the ER to the Golgi and from the
Golgi to the lysosome and plasma membrane. Like
the state attribute of a model, a message can be of
any type or object. A protein has two types, “p” or
“c”, which stand for a regular protein or a chaperone
protein, respectively. All proteins are instantiated in
the nucleus. They have three attributes - a boolean to
check if the protein folded properly, another boolean
to check if the protein should be discarded and an
integer to keep track of how many times the protein
tried to fold. A chaperone protein is just a helper
protein. A regular protein starts off as unfolded. It is
passed to the ER where it tries to fold randomly with
a fifty percent success rate. After five unsuccessful
tries to fold, it is set to be discarded. If successful,
the protein is set to folded and passed onto the Golgi,
where it goes onto either the lysosome or the plasma
membrane.

4.2 The Model

There are five modelled organelles - the nucleus,
ER, Golgi, lysosome and plasma membrane. Imple-
mented as five separate classes, they all inherit from
AtomicDEVS. Common to all models is the time-
advance function. Currently, the “time” at which
all events occur is at intervals of 30. Recall that
this is not real-time, but just a timestamp. Hence,
when looking at the trace of a simulation, all times-
tamps are multiples of 30. The time-advance function
will always return the difference between 30 and the
elapsed time of the total state of the model. It will
store this difference in a temporary variable and set
the total state’s elapsed time to 0.0. The reason for
this is if no external interrupt occurs in the next 30
time units, we would like the time-advance function
to return the correct value when it is called subse-
quently. Finally, the difference is returned.

The total state’s elapsed time is set in the exter-
nal transition function, which is also common to all
models. If a model is externally interrupted, the ex-
ternal transition function is triggered. This function,
having exclusive access to the elapsed time since the
model’s last transition, will store a copy of this value
in the total state’s elapsed time attribute so that it
may be accessible to the time-advance function. Also
common to all models is an associated State class.
The constructor of each model sets the model’s ini-
tial state to a new instance of the State class with
the actual state being “regular” and the total state’s
elapsed time being 0.0. Thus, each model has its own
State class instance and in our case, the experiment
will have five instances of the State class.

The constructor for the nucleus doesn’t override
the default elapsed time of the model, so the model
starts at 0.0. Also declared is an input port and an
output port for communication with the ER. Finally,
because proteins start off in the nucleus, a protein
counter is started as well. This counter will serve
as the ID for each instantiated protein. The nucleus
expects input from the ER and this input, an exter-
nal interrupt, is exclusive to the external transition
function. The messages from the ER can either be
“help” or “okay”. If the ER asks for help, the nucleus
changes its state to “stressed”. If the ER says that

it is okay, the nucleus changes its state to regular.
The internal transition function isn’t overriden be-
cause the nucleus only makes state transitions based
on external events from the ER, so it just returns the
current state. The output function will send differ-
ent messages depending on the state of the nucleus.
If in regular state, a new Protein is instantiated, its
type is set to a regular protein and it is sent to the
ER. If stressed, the instantiated Protein’s type is set
to chaperone and then sent to the ER. Finally, the
protein ID counter is incremented.

The ER is the driving model of this simulation.
It dictates if the cell is stressed and keeps track of
folded, unfolded and chaperone proteins as well as
proteins to be discarded. The ER’s constructor will
first declare lists to hold the different sets of proteins.
Two sets of input and output ports are also declared,
one set for communicating with the nucleus and the
other with the Golgi. The ER can expect two ex-
ternal interrupts, one from the nucleus and another
from the Golgi. The nucleus will always send mes-
sages that hold a protein object. If it is a regular
protein, it is added to the unfolded list, otherwise it
is a chaperone protein and it is added to the chaper-
one list. The Golgi will always send back the chap-
erone proteins that the ER sent to it, so those will
be added to the chaperone list as well. The internal
transition function will first iterate over all unfolded
proteins. Each protein will try to fold. If folded, it
will be removed from the unfolded list and put into
the folded list. If the protein doesn’t fold, we make
sure it isn’t ready to be discarded. If so, we remove it
from the unfolded list and append it to the discarded
list. Finally, we check if there are too many unfolded
proteins, currently the maximum is three. If this is
the case, we change our state to stressed. If not, we
change our state to regular. The output function will
randomly, with a twenty percent rate, send a chaper-
one protein to the Golgi. Otherwise, with an eighty
percent chance, it will send a folded protein. As for
the nucleus, if the state of the ER is regular, it will
send a string message saying “okay”. If the ER is
stressed, it will send a message saying “help”.

The Golgi’s constructor will define three lists to
keep track of proteins. A list for those that will end
up in the plasma membrane, another for those whose

destination is the lysosome and the third for those
that need to return to the ER. An input port and an
output port are defined for communication with the
ER. Two other output ports are defined as well, one
for sending messages to the plasma membrane and
the other for the lysosome. The plasma membrane
and lysosome don’t send messages to the Golgi, so
no input ports are required. The external transition
function only expects input from the ER, in the form
of a Protein object. If it is a regular protein, it is
put into the plasma membrane list fifty percent of
the time, otherwise it goes into the lysosome list. If
it is a chaperone protein, it gets appended to the
ER list. The internal transition function is not over-
ridden since the Golgi doesn’t perform any activities
when the cell is stressed. The output function will
check if its ER-proteins list has any elements. If so,
the chaperone protein is sent back to the ER. Then
the lists for the plasma membrane and lysosome are
checked in that order for elements and if any contents
are found, they are sent to their respective destina-
tions.

The plasma membrane and lysosome are identi-
cal but separate models since either organelle is the
last stop in a protein’s journey. The constructor de-
clares a list to store received proteins as well as an
input port so that the Golgi can send messages to it.
The external transition function expects input from
the Golgi, in the form of a protein object. This reg-
ular protein is appended to the list. The internal
transition checks if there are any elements in the list.
If so, the first element is removed. In the case of the
plasma membrane, this can be regarded as protein
secretion whereas for the lysosome, it can be seen as
protein degradation. The output function is not over-
ridden since both these organelles don’t output any
messages.

Finally the class Cell, which inherits from Cou-
pledDEVS, acts as the coupled model holding all of
the above-mentioned atomic models together. The
constructor first instantiates each submodel and then
creates the necessary channels by connecting its sub-
models’ ports. In the case of colliding models, the
select function is overridden to return the nucleus,
then the ER, otherwise the Golgi. If none of these
models is found, then the last model in the list of

colliding models is returned. This was done because
the nucleus needs to pass proteins to the ER so that
something interesting can become of the experiment.
We choose the ER over the Golgi so that the ER can
dictate if the cell is stressed.

4.3 The GUI

The GUI is driven by the events that take
place within the simulation. The GUI has a helper
class called Writer which is actually embedded in
the model itself. When an experiment is executed,
the Writer class is instantiated only once and used
throughout the simulation. Its constructor first cre-
ates a file called output.sim. If the file already ex-
ists, it is cleared of any content. The file handle is
closed and a command counter is started. Every-
time there is some type of communication between
two models, the communication is recorded into the
output.sim file. This is a fairly easy task since all
communication starts in a model’s output function.
Within the output function of each model just be-
fore the message is sent, we call the Writer to record
the communication. To allow for easy implementa-
tion, the Writer class also has a method called write.
It takes as input the originating model, the message
that will be passed and the destination model. The
output.sim file is opened, a list of the form

[command, origin, message, destination]

is recorded and the file is closed. Finally, the com-
mand counter is incremented.

The GUT’s constructor declares the widget that
will hold the image which depicts the current com-
mand. Also, a status bar is added for convenience
as well as a menu with basic simulation controls.
These controls include opening a simulation file with
a .sim extension and exiting the program, both under
the File menu. The Simulation menu includes Start,
Pause and Stop controls for running a visual simula-
tion. The Help menu contains an About feature with
minimal information. A reference to every type of
image is created so that we can easily swap images
at once. There are two sets of images - those that
show a normal cell and those that show a stressed
cell. Booleans to check if a simulation has started

and if the cell is stressed are also declared, as well as
a string to hold the simulation file name and a list to
hold all of the simulation commands obtained from
that file. An attribute named after is also declared.
Its use will be discussed shortly.

Opening a simulation file only gives the GUI the
absolute path to the file. Once a user opts to start the
simulation, the file is opened and all the commands
are read at once into a list. Then the runSim method
is called. It stores and removes the first command in
the list (in turn, this moves the second command to
the first position), parses it and calls the update Photo
method. Depending on the command, certain images
are displayed. Most commands are associated with
two images, so we needed a way to let the simulator
show an image, sleep for a certain amount of time,
show the second image, sleep for a certain amount of
time and finally continue with the rest of the com-
mands by calling runSim again. First, the Tkinter
(Python’s widely used GUI library) sleep method was
used. This posed a problem because the application
became completely dormant; users that tried to in-
terrupt the current simulation couldn’t. So, if you
wanted to interrupt it, you had to click the mouse at
exactly that millisecond where the application was
processing a command and wasn’t sleeping!

So, I looked into the library and found a very
nifty method called after. It allows you to schedule
an event to be executed at a certain time from now,
usually a function call. While waiting for the event
to occur, the application doesn’t sleep and can be in-
terrupted. Moreover, a scheduled event can also be
cancelled. Thus, every photo change was put into a
function that could be called by this after method.
Everytime an event was scheduled, its handle was
stored in the after attribute described above. If the
application is interrupted, the after handle is can-
celled and the event won’t take place. So, for exam-
ple, the updatePhoto method calls the method zeroa
to display the first image which shows a protein about
one-third the distance from the nucleus to the ER.
This method will schedule an event to call the method
zerob, which shows the protein about two-thirds the
distance from the nucleus to the ER, x milliseconds
from now. The method zerob will schedule an event
to call the runSim method in x milliseconds. Finally,

runSim will process the next command and this cycle
of events will occur again. Currently, x is set to 750
milliseconds.

5 Conclusion

A simulation of intracellular protein traffic and
how it impacts cellular stress has been developed.
At the present moment, certain internal cellular be-
haviour has been assumed to attain the current re-
sult. For example, if the ER has too many proteins
within it, the cell becomes stressed. My first goal was
to develop a working model. With this, I will further
the model and tweak certain aspects of it to obtain a
more realistic set of results.

Near future work includes fiddling with the prob-
ability functions that dictate where proteins end up.
Also, the current implementation doesn’t simulate
the effects of ERAD as well as the help that chap-
erone proteins provide in the ER. Both these issues
have been started but yet to be finished. Once this
is achieved, then the visual simulator needs to be
tweaked to show the results visually.

References

[1] Jean-Sébastien Bolduc and Hans Vangheluwe. A
modelling and simulation package for classical hi-
erarchical DEVS. MSDL technical report MSDL-
TR-2001-01, McGill University, June 2001.

[2] Bruce Alberts et al. Molecular Biology of the Cell.
Garland Science, New York, 4th edition, 2002.

[3] Sean Munro. Lipid rafts: Elusive or illusive? Cell,
115(4):377-88, November 2003.

[4] Sean Munro. Organelle identity and the organi-
zation of membrane traffic. Nature Cell Biology,
6(6):469-72, June 2004.

[5] Hugh R.B. Pelham and James E. Rothman. The
debate about transport in the golgi—two sides of
the same coin? Cell, 102(6):713-9, September
2000.

[6] Enrique Rodriguez-Boulan and Anne Musch.
Protein sorting in the golgi complex: shift-
ing paradigms. Biochim et Biophys Acta,
1744(3):455-64, May 2005.

[7] James E. Rothman. The golgi apparatus: Two
organelles in tandem. Science, 213(4513):1212—
19, September 1981.

