
COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

COMP-667 Software Fault Tolerance

Overview of

AspectOPTIMA

Jörg Kienzle
School of Computer Science

McGill University, Montreal, QC, Canada

With Contributions From:

Samuel Gélineau, Ekwa Duala-Ekoko,

Güven Bölükba!i, Barbara Gallina

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Talk Outline

• Background on AOP

• My view of the “Essence” of Aspect-Orientation

• Weaving, Scattering, Tangling, Crosscutting

• Aspects and Reuse

• AspectOPTIMA

• Aspects for Objects, Threads and Contexts

• Example Configurations

• Conclusion

• Exception Handling Extension

2

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Aspect-Orientation

• Aspect-oriented software development (AOSD)

techniques aim to provide systematic means for the

identification, separation, representation and

composition of crosscutting concerns

3

Source

Target Module A Module B Module C Module D

Aspect X Aspect Y Aspect Z

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Aspect-Oriented Programming

• Modularize crosscutting concerns at the

programming language level

• Decompose problem into aspects, encapsulating

different concerns of the application [K+97]

• Weave aspects together for final product

• Weaving happens at so-called joinpoints

• Benefits: Simpler structure, improve readability,

customizability and reuse

4

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Weaving

• Mapping from a source representation to a target

representation

5

Source

Target Module A Module B Module C Module D

Aspect X Aspect Y Aspect Z

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Scattering

• A source module is scattered in a target

representation if part of it ends up in many target

modules

6

Source

Target Module A Module B Module C Module D

Aspect X Aspect Y Aspect Z

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Tangling

• A target module is tangled if it is composed of

parts of several source modules

7

Source

Target Module A Module B Module C Module D

Aspect X Aspect Y Aspect Z

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Crosscutting

• X crosscuts Y iff X is scattered in the target

representation, and there exists a module in the target

within which X and Y are tangled

8

Source

Target Module A Module B Module C Module D

Aspect X Aspect Y Aspect Z

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Asymmetric AO

• Well-identified base elements do not (and are not

allowed to) crosscut

9

Source

Aspects

Target

Aspect X Aspect Y Module A Module B
Source

Base
Module C

Module A Module B Module C

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Aspect Case Study: Transactions

• A transaction groups together a set of

operations on data objects, guaranteeing the

ACID properties

• Atomicity

• Consistency

• Isolation

• Durability

10

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Flat Transactions

11

32 Open Multithreaded Transactions

failure occurring after the withdraw operation has been completed on account
A, but before the deposit operation has begun on account B, results in the loss
of the amount of money being transferred. Such a situation is not acceptable.

Most systems that only provide flat transactions do not integrate excep-
tion handling with transactions, but use return error codes instead. There are
many problems with this approach. Firstly, the use of return codes has always
been described as a canonical example of bad practice caused by the absence
of a proper exception handling mechanism [Goo75]. Secondly, even if the
core language has exception handling, it is not integrated with transactions
and, as a result, application exception handling (including the exception con-
text, exception propagation, etc.) is separated from the transactional structure.

2.2.2 Flat Transactions with Savepoints

If some error occurs during the execution of a flat transaction that pre-
vents it from continuing (such as a bank account with insufficient balance, or
simply resources that are unavailable), the application programmer has only
two choices:

• Perform conventional error recovery, meaning that he or she must man-
ually recover from the error by undoing what went wrong up to a cer-
tain point and then re-execute the failed operation or try a different
alternate, or

• Abort the transaction as a whole, thereby giving up all changes made
on behalf of the transaction so far.

Of course the latter approach is much simpler, and for a short transaction,
such as the Transfer transaction, it is more appropriate. But there are situa-
tions where results are accumulated, not all of which are invalidated by a sin-
gle error in processing along the way. In that case, giving up all results is

Figure 2.1 A Flat Transaction

Thread

Withdraw (Amount)Transaction Begin

Account B

Transaction Commit

Account A

Deposit (Amount)

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Nested Transactions

12

36 Open Multithreaded Transactions

subtransactions are not durable, since their changes are only made persistent
when the top-level transaction commits.

Concurrent Execution of Nested Transactions
All transaction models discussed up to this point make use of a single

thread to execute operations on transactional objects. The following sections
present extended transaction models that increase concurrency by using mul-
tiple threads.

In the nested transaction model, sibling transactions can not cooperate,
since they are separate transactions, and thus run in isolation from each other.
But they can run concurrently, which may increase the performance of the
parent transaction dramatically. Most systems implementing nested transac-
tions have realized this. For example Argus (see section 11.1 on page 195) or
Camelot / Avalon (see section 11.2 on page 198) provide constructs that allow
an application programmer to run sibling transactions in parallel. It is impor-
tant to note here that the additional threads that are needed to execute the sib-
lings concurrently are created at the transaction boundary. The transactions
themselves are still sequential.

 Figure 2.5 shows a transaction that performs the transfer operation intro-
duced in the section on flat transactions. This time, the Withdraw and
Deposit operations are performed each in a separate nested transaction. The
two sibling transactions are executed concurrently, thus increasing the overall
performance. The result of the transfer does not depend on the order in which
the two component operations are executed, what counts is that they are either
both executed, or none is. This property is guaranteed by the outer transaction.
If a child transaction encounters a problem, it notifies the parent transaction,
which in turn can decide to re-execute the failed child transaction, or to abort
the entire transaction.

Figure 2.4 Serial Nested Transactions

Thread

OpA1

Top-level

Transactional Object A

Top-level

Transactional Object B
OpB1

OpA2

OpB2Transaction Begin Transaction End

T1.2.1

T1.2

T1T1.1

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Open Multithreaded Transactions

13

T1.1

T1
Thread A

Thread B

Thread C

Thread D

Thread C’

Thread B’

Threads are blocked until the
outcome of the transaction is known

Thread C starts
the transaction

Transactional Object O

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

AspectOPTIMA

• Observations

• Concurrency control and recovery are separate concerns at a higher

level of abstraction

• At the implementation level, the two concerns are tightly coupled

• Most transaction models are related, i.e. they share common concepts

• Challenge

• Is it possible to define many individually

reusable aspects that, when put together

in different ways, can implement various

transaction models, concurrency control

and recovery strategies?

14

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

AspectJ Design

• In our AspectJ implementation of

AspectOPTIMA, an aspect encapsulates

additional structure and behavior applicable to

base classes

15

Base Class

base fields

base methods

Base Class with Aspect
base fields

fields introduced by aspect

base methods

base methods intercepted by aspect

methods introduced by aspect

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Reusable Bindings in AspectJ

• Abstract Introduction Idiom

• Each aspect is applied to a dummy interface

• Bindings are established by making an application class

implement the dummy interface
• Binding can be specified using an aspect as well!

16

IntroductionContainer
(class or interface)

<<aspect>>
IntroductionLoader

<<introduction&advice>>

ApplicationClass
(class or interface)

<<aspect>>
ContainerConnector

<<bind>>

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Design of AspectOPTIMA

• 3 high-level concerns

• Objects

• Threads

• Contexts (or scopes of

 computations)

• We identified 12 aspects for objects, 3 for threads,

and 13 for contexts

• Each aspect has well-defined functionality and is

individually reusable

• Subtle dependencies and conflicts between aspects

17

Object A

Object C

Object B

Thread 1

Thread 2

Context

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

AccessClassified in AspectJ

package library.aspects.object;

import java.lang.reflect.Method;

import library.annotations.*;

import library.interfaces.AccessClassified;

import library.util.AccessTypes;

public aspect AccessClassifiedAspect {

 public String AccessClassified.getAccessTypeOfMethod (String methodName) {

! String accessType = AccessTypes.WRITE;

! for (Method method : this.getClass().getMethods()) {

! if ((methodName.trim()).equalsIgnoreCase(method.getName())) {

! ! if(method.isAnnotationPresent(ReadAccess.class))

! ! accessType = AccessTypes.READ;

 else if(method.isAnnotationPresent(UpdateAccess.class))

! ! accessType = AccessTypes.UPDATE;

! break;

! // If there is no annotation, assume the worst case

! }

 }

 return accessType;

} }

18

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

AccessClassified Bank Account

import library.annotations.*;

import library.interfaces.AccessClassified;

public class Account implements AccessClassified {

! public Account(int startingBalance) {

! ! balance = startingBalance;

! }

!

! @ReadAccess

! public int getBalance()

! {

! ! return balance;

! }

!

! @WriteAccess

! public void setBalance(int newBalance)

! {

! ! balance = newBalance;

! }

}

19 COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Per Object Aspects

20

• Lockable: Creates lock types, gets and releases locks

• AccessClassified: Provides access kind for each method

(read, write, update)

• Named: Associates a name (string) with each application

object instance

AccessClassified Named CopyableLockable

<i> ContextAware<i> Shared Traceable <i> VersionedSerializable

<i> ContextTracing

Checkpointable

Persistable

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Per Object Aspects

21

• Copyable: Provides cloning and state replacement

capabilities

• Shared: Enforces multiple reader / single writer

• Traceable: Provides operation invocation information

AccessClassified Named CopyableLockable

<i> ContextAware<i> Shared Traceable <i> VersionedSerializable

<i> ContextTracing

Checkpointable

Persistable

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Per Object Aspects

22

• ContextAware: Informs context whenever an operation is

invoked

• Serializable: Provides streaming capabilities

• Versioned: Creates views (separate instances of the same

application object), associable to threads

AccessClassified Named CopyableLockable

<i> ContextAware<i> Shared Traceable <i> VersionedSerializable

<i> ContextTracing

Checkpointable

Persistable

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Per Object Aspects

23

• Checkpointable: Establishes, restores and discards

checkpoints

• ContextTracking: Remembers contexts that access the

object

• Persistable: Saves and loads state from stable storage

AccessClassified Named CopyableLockable

<i> ContextAware<i> Shared Traceable <i> VersionedSerializable

<i> ContextTracing

Checkpointable

Persistable

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Specifying Dependencies in AspectJ

• Traceable objects have to be AccessClassified

and Named as well

package library.aspects.object;

import library.interfaces.Traceable;

import library.interfaces.Named;

import library.interfaces.AccessClassified;

import library.util.ObjectTrace;

public aspect TraceableAspect {

! declare parents: Traceable implements Named, AccessClassified;

! public ObjectTrace Traceable.createMyTrace(String methodName) {

! ! String accessType = getAccessTypeOfMethod(methodName);!

! ! ObjectTrace trace = new ObjectTrace(this,accessType);

! ! return trace;

! }

}

24

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Per Thread Aspects

25

ContextParticipant

<i> Collaborative <i> OutcomeAffecting

• ContextParticipant: Provides context creation and

destruction functionality

• Collaborative: Provides joining functionality and control

on number of participants

• OutcomeAffecting: Provides opinion on outcome of the

context

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Per Context Aspects

26

• Tracking: Remembers all operation invocations made on

behalf of the context

• OutcomeAware: Associates success/failure outcome with

a context

• Pausable: Suspends participant work if needed

<i> Nested <i> Collaborative<i> OutcomeAware <i> Pausable

<i> Terminatable

<i> VotedOutcome

<i> Tracking

<i> ExitSynchronizing<i> Checkpointing<i> Deferring<i> 2-Phase-Locking

<i> Recovering

<i> EntrySynchronizing

{xor}

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Per Context Aspects

27

• Nested: Allows contexts to be nested

• Collaborative: Manages many participants for a context

• 2-Phase-Locking: Forces participants to acquire read/

write/update locks when performing work, and releases

all locks when context ends

<i> Nested <i> Collaborative<i> OutcomeAware <i> Pausable

<i> Terminatable

<i> VotedOutcome

<i> Tracking

<i> ExitSynchronizing<i> Checkpointing<i> Deferring<i> 2-Phase-Locking

<i> Recovering

<i> EntrySynchronizing

{xor}

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Per Context Aspects

28

• Deferring: Create a context-local version of every object

before modification takes place

• Checkpointing: Establish a checkpoint before

modification takes place

• Terminatable: Interrupt participants and end context, if

needed

<i> Nested <i> Collaborative<i> OutcomeAware <i> Pausable

<i> Terminatable

<i> VotedOutcome

<i> Tracking

<i> ExitSynchronizing<i> Checkpointing<i> Deferring<i> 2-Phase-Locking

<i> Recovering

<i> EntrySynchronizing

{xor}

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Per Context Aspects

29

• EntrySynchronizing / ExitSynchronizing: Synchronize

partitipants on context entry or context exit

• Recovering: Undo all state changes if outcome is

unsucessful

• VotedOutcome: Decide on context outcome by applying a

voting strategy to the opinions of participants

<i> Nested <i> Collaborative<i> OutcomeAware <i> Pausable

<i> Terminatable

<i> VotedOutcome

<i> Tracking

<i> ExitSynchronizing<i> Checkpointing<i> Deferring<i> 2-Phase-Locking

<i> Recovering

<i> EntrySynchronizing

{xor}

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Dealing with Aspect Conflicts

30

Aspect A Aspect B

Application

Aspect A Aspect B

Aspect AB

Application

{interference}

<
<
b
in

d
>
>

<
<
b
in

d
>
>

<<bind>>

<
<
b
in

d
>
>

<
<
b
in

d
>
>

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Conflict Examples

• Copyable ↔ Lockable

• Copyable ↔ Shared

• Serializable ↔ Named

• Versioned ↔ ContextAware

• Versioned ↔ Persistable

• Checkpointable ↔ Persistable

• Nested ↔ Tracking

• Nested ↔ Deferring

• Nested ↔ Checkpointing

• Nested ↔ 2-Phase-Locking

• Nested ↔ 2-Phase-Locking ↔ Recovering

31 COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Example Configuration 1

Flat Transactions, Optimistic Concurrency

Control, Deferred Update

• Thread: ContextParticipant, OutcomeAffecting

• Context: Tracking, Deferring, OutcomeAware,

Recovering

• Object: ContextAware, AccessClassified, Named,

Trackable, Copyable, Versioned, Persistable,

ContextTracking

32

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Invoking an Operation

33

:Object:Thread

op(..)

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Invoking an Operation

34

:ContextAware

op(..)
c := getContext(..)

:ContextParticipant c:Context

work(..)

:Object:Thread

op(..)

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Invoking an Operation

35

:ContextAware

op(..)

c:Context

work(..)

:Object:Thread

op(..)

:AccessClas:ContextTracker

getKind(op)
work(..)

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Invoking an Operation

36

:ContextAware

op(..)

c:Context

:Object:Thread

op(..)

:AccessClas:Deferring

getKind(op)
work(..)

work(..)

:Tracking

getModified()

newVersion()

:Versioned :Copyable

clone()

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Invoking an Operation

37

:ContextAware

op(..)

c:Context

:Object:Thread

op(..)

:Trackable:Tracking

getTrack(op)
work(..)

:Named

getName()

:AccessClas

work(..)

getKind(op)

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Invoking an Operation

38

:ContextAware

op(..)

c:Context

:Object:Thread

op(..)

work(..)

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Invoking an Operation

39

:Versioned

op(..)

:Object:Thread

op(..)

c := getContext(..)

:ContextParticipant

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Invoking an Operation

40

:Object:Thread

op(..)

• 5 Interceptions

• 2 Interceptions of the actual method invocation

• 3 Interceptions of the work operation of the context

• Collaboration of 11 Aspects

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Operation Invocation Summary

41

:ContextAware :AccessClas:Tracking :Named:Deferring :Object

op(..)
getContext(..)

getName()

newVersion()

:Versioned :Copyable

op(..)

op(..)

getKind(op)

:ContextParticipant

clone()

work(..)

:Context

work(..)

getModified()
work(..)

:Trackable

getTrack()

getContext(..)

:ContextTracker

getKind(op)
work(..)

getKind(op)

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Example Configuration 2

Open Multithreaded Transactions, Pessimistic

Lock-Based Concurrency Control, Inplace Update

• Thread: ContextParticipant, OutcomeAffecting,

Collaborating

• Context: Tracking, 2-Phase-Locking, Checkpointing,

OutcomeAware, Recovering, Nested, Collaborative,

ExitSynchronizing, OutcomeVoted

• Object: ContextAware, AccessClassified, Named, Lockable,

Trackable, Copyable, Checkpointable, Shared, Persistable

42

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

An Operation Invocation

43

:ContextAware :AccessClas:Tracking :Named:Checkpointing :Shared :Object

op(..)

getKind(op)

getContext(..)

getName()

work(..)

establish()

:Checkpointable :Copyable

op(..) getKind(op)

op(..)

getKind(op)

:ContextParticip :Lockable

lock()

clone()

work(..)

:Context

work(..)

getModified()

work(..)

:2-PL

getAccessed()

lock()

:Trackable

getTrack()

getKind(op)

unlock()

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Aspect Frameworks and AO Languages

• Properties of our Design
• Clear separation of concerns

• High reusability

• Complex aspect dependencies

• Complex aspect interference

• Essential Language Features
• Separate Aspect Binding

• Inter-Aspect Configurability

• Inter-Aspect Ordering

• Per-Object (per instance) Aspects

• Dynamic Aspects

• Thread-Aware Aspects

44

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Case Study Target Audience

• Aspect-Orientation

• AOSD Processes

• AO Modeling Notations

• AO Validation and Verification

• AO Language Features

• AO Programming Environments

• Fault Tolerance

• Formalization of Fault Tolerance Models

• Generation of Fault Tolerance Models

45 COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Validation by Implementation [1]

• AspectJ prototype implementation

• Theoretical implementation in CaesarJ

• Encountered language limitations

• Weak Aspect-To-Class Binding

• Reflection/Superclass Execution Dilemma

• No Explicit Inter-Aspect Configurability

• No Per-Object Aspects

• No Dynamic Aspects

• Work-arounds exist

• Language Improvements Suggested

• Initial performance evaluation

46

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Future Work

• Define Benchmarks and Evaluate Different Compilers

• Implement AspectOPTIMA in other AO languages and

compare language expressiveness

• Extend AspectOPTIMA

• Concurrency Control and Recovery
• Semantic concurrency control

• Recovery based on intention lists

• Provide weaker forms of Isolation, relaxed Atomicity

• Transaction Models
• Exception Handling

• Inter-Transaction Dependencies (Look-Ahead Transactions, SAGAS)

• Support Other Fault Tolerance Models (N-Version Programming)

47 COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Notion of Outcome

48

No guarantees

Exception

FailureException

UserDefined UserDefined...

AbortException

UserDefined UserDefined...

UserDefined UserDefined...

Backward Error RecoveryForward Error Recovery

Outcome

Normal Exceptional

ACID guaranteed

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Exception Handling Participants

• ExceptionHandling: Capable of handling internal

exceptions

• Local Handling: First attempts to handle internal

exceptions locally

• CollaborativeHandling: Paricipates in collaborative

handling of internal resolved exceptions

• OutcomeAware: Is notified of external exception

49

ContextParticipant

<i> Collaborating<i> OutcomeAffecting OutcomeAware

LocalHandling

ExceptionHandling

CollaborativeHandling

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

Exception Handling Objects and Context

• Context

• BackwardRecovering and ForwardRecovering

• ExceptionResolving

• Objects

• Self-Checking

Exact functionality still to be determined

50

COMP-667 - Overview of AspectOPTIMA, © 2007 Jörg Kienzle

AspectOPTIMA References

Aspect-Orientation

[1] J. Kienzle, Ekwa Duala-Ekoko and S. Gélineau, “AspectOPTIMA:A Case Study on Aspect

Dependencies and Interactions”, Transactions on Aspect-Oriented Software Development, in press.

[2] J. Kienzle and S. Gélineau, “ AO Challenge: Implementing the ACID Properties for Transactional

Objects”, in Proceedings of the 5th International Conference on Aspect-Oriented Software Development -

AOSD 2006, March 20 - 24, 2006, pp. 202 – 213, ACM Press, March 2006.

[3] J. Kienzle and R. Guerraoui, “ AOP - Does It Make Sense? The Case of Concurrency and Failures”, in

16th European Conference on Object–Oriented Programming (ECOOP’2002), Lecture Notes in

Computer Science 2374, (Malaga, Spain), pp. 37 – 61, Springer Verlag, 2002.

Open Multithreaded Transactions

[4] M. Monod, J. Kienzle, and A. Romanovsky, “Looking Ahead in Open Multithreaded Transactions”, in

Proceedings of the 9th International Symposium on Object and Component-Oriented Real-Time

Distributed Computing, pp. 53 – 63, IEEE Press, April 2006.

[5] J. Kienzle, Open Multithreaded Transactions — A Transaction Model for Concurrent Object-Oriented

Programming. Kluwer Academic Publishers, 2003.

51

