
Faculty of Science · Department of Computer Science

A Multi-Paradigm Modelling Foundation
for Twinning

within the context of Systems Engineering

Een Multi-Paradigma Modelleerbasis voor Tweelingsystemen
in de context van Systeemontwikkeling

Auteur:
Randy Paredis

Promotor:
prof. dr. Hans Vangheluwe

Proefschrift ingediend tot het behalen van de graad van
Doctor in de Wetenschappen: Informatica

Jury
Chairman
prof. dr. Moharram Challenger – University of Antwerp, Belgium

Promotor
prof. dr. Hans Vangheluwe – University of Antwerp, Belgium

Members
prof. dr. Joachim Denil – University of Antwerp, Belgium

prof. dr. Giovanni Lugaresi – KU Leuven, Belgium

prof. dr. Loek Cleophas – Eindhoven University of Technology, the Netherlands

prof. dr. Sanja Lazarova-Molnar – Karlsruhe Institute of Technology, Germany

Contact
Randy Paredis

University of Antwerp

Faculty of Computer Science

AnSyMo - MSDL

Middelheimlaan 1, 2610 Antwerpen, België

M: randy.paredis@uantwerpen.be

© 2025 Randy Paredis

All rights reserved.

Acknowledgements

I would like to thank a couple of people that played an important role during my PhD.

Firstly, a massive amount of appreciation goes towards my supervisor, prof. Hans

Vangheluwe. Without his help, enthusiasm and support I would not be where I am

now, both academically, and as a person. I truly believe I could not have wished for a

better supervisor. You not only showed me the ropes of the academic world (and small

sailboats), you also continuously encouraged my eagerness to do research and submerge

myself in the wonderful world of Twinning. You gave me so many different opportunities

that I am incredibly grateful for. Thank you for the hundreds of hours in (mostly) useful

lectures, and for having a contagious passion for scientific research.

I would also like to thank my colleagues at MSDL, MICSS-lab, Cosys-Lab, AnSyMo, and

the University as a whole. Thank you Joeri for sharing an office with me and putting

up with me for four years. Thank you Rakshit, Lucas, Pamela, Hussein, Arkadiusz, Yon,

Bert, and Sahar for the many research discussions and collaborations we had. Yon, in

particular, thank you for sharing your way too fancy room with me in San Diego, even

though you did not have to. Thank you Burak for the numerous breaks we took and

talks we had. To the extended MSDL family (Cláudio, Bentley, and Istvan); thank you

for providing feedback and pointers for papers and research, and for the numerous job

offers. To all other people of the University (in the department, the faculty and the

administration); thank you for your helpfulness and flexibility.

Every scientific work needs to be reviewed and accepted by the scientific community.

This thesis is no different. I would like to thank the members of my PhD committee and

jury: Moharram Challenger, Joachim Denil, Loek Cleophas, Sanja Lazarova-Molnar, and

Giovanni Lugaresi. With all of you I’ve had interesting discussions that allowed me to

rethink some aspects of my research, and gave me some much needed insights. Thank

you for your diligent reading and detailed feedback, as it has tremendously improved

my thesis.

Additionally, I would like to thank the Port of Antwerp-Bruges for their explanations of

internal functionalities of the nautical chain. This research was also partially supported

by Flanders Make, the strategic research center for the manufacturing industry.

Thank you mom and dad, without whom I would not have made it this far. Thanks

for listening to my countless explanations of things you did not necessarily understand.

Thank you for your never-ending love, support and feedback. Thank you for helping

me find a path through these past few years. Thank you, Seth, Karo, and Indra for your

unwavering support and curiosity.

Thanks to everyone in the Minelabs project. Thanks Maja and Bert for bringing me on

board, for making sure all the workshops were well prepared, and for ensuring the entire

i

ii

project was a success. A special thanks to Dante, Ine, and Joey for always being there

and putting up with my randomness and numerous rants. Thank you for being there

when I needed it most. Thank you for this amazing friendship.

Thank you to the people from Sporta Oostmalle – my extended family, who gave me the

necessary distractions outside of the university. In particular: thank you Jordi, Tibo, Ella,

Laure, Floor, Jeff, Tobias, Jan, and Inês for being there for me and supporting me all the

way. I don’t know how I would have survived these years without you.

Thank you Ludo for coaching me in my acting endeavours, wherever they brought me.

I am sure that your wisdom allowed me to grow as a public speaker and give better

presentations as a result.

And last, but far from least, thank you Camille, Jeremy and Jimmy for all the years we’ve

been friends. Our everlasting friendship that reappears each time we meet is truly special

to me.

Randy Paredis

5 March 2025

Abstract

The purpose of Systems Engineering is to analyse, design, optimize, operate, and evolve

complex Cyber-Physical Systems (CPSs). This often happens collaboratively and by

following complicated workflows. In our current day and age, these systems become

increasingly complex, up to the point that simple software does not suffice for their

creation. In order to deal with this complexity, the domain of Modelling & Simulation

(M&S) allows for system engineers to focus on their specific domain knowledge, without

the need for knowing all aspects of the CPSs.

These engineers build models, i.e., abstractions of the reality. Each model has a very

specific usage context. For instance, a model for the movement of vessels through a

marina is constructed entirely differently to a model that focuses on the safety of a

roundabout. Furthermore, the languages in which these models are created all have

their own advantages, disadvantages, and ideal use cases. Multi-Paradigm Modelling

(MPM) advocates to use the most appropriate languages, frameworks, tools, . . . when

explicitly modelling all aspects of a system.

Digital Twins (DTs) are simulation models running in parallel with a real-world system

while being fed the same input stimuli as that system. They can be used to analyse,

optimize and adapt CPSs. DTs have been identified as a major player in the current

industrial revolution. Combined with Big Data, Artificial Intelligence (AI), Internet of

Things (IoT), Green IT, and an increased focus on sustainability, they are predicted to cause

a major economic boom. Unfortunately, there is still very little consensus on an exact

definition for DTs (and their many variations). They have been used to mean anything

from M&S techniques to smart IoT solutions. In this work, we use the catch-all Twinning
Paradigm to refer to all concepts, techniques, architectures, . . . related to these systems.

In this paradigm, virtual instances, known as Twin Objects (TOs) (i.e., models), of an

Actual Object (AO) (i.e., a System under Study (SuS) in its environment) are continually

updated with the SuS’s state, health, performance, and maintenance status, over its entire

life-cycle.

Throughout the (currently quite ad-hoc) creation of Twinning Systems, a plethora of

choices impacts the functionality and performance of the realized system, comprised of

the actual SuS and its model. This work identifies four stages at which this variability

may appear:

• Properties of Interest (PoIs) in the Problem Space – An initial choice of the exact goal(s)

and purpose(s) for the Twinning System highly impacts the end product. The

literature has identified a vast number of these purpose(s), yet in this work, they

are grouped and joined together into a large Feature Tree.

• (Conceptual) Architecture and Design – When a choice is made in terms of goal(s), it is

important to identify the individual system components required to (functionally)

iii

iv

ensure the valid behaviour of the Twinning System. A Twinning Experiment (TE)
appears as a first-class entity in this conceptual architecture. It identifies a Twinning

System that is actively trying to solve a specific set of PoIs.

• Modelling & Simulation – The selection of the exact modelling languages and the

creation of the models is heavily impacted by the end goal(s), whilst also a large

point of variation in what the resulting Twinning System will look like. This may

also be impacted by the models that are already available for the system engineers.

• Deployment – Individual tools and frameworks need to be selected, as well as the

middleware, the communication protocols. . . Common choices for network com-

munication such as the Data Distribution Service (DDS) and MQTT each have their

own strengths and weaknesses which must be taken into account when trying to

satisfy non-functional properties such as meeting real-time deadlines.

Choices made in one stage influence the solutions and subsequent possible choices (or

configurations) in the subsequent stage.

As adoption of Twinning increases, the need to combine TEs arises. The question then

arises how to combine, compose, and federate such systems. Multiple TEs may corre-

spond to different requirements, goals and PoIs; may correspond to different components

in an architecture; may represent a system at different levels of detail, abstraction, and

fidelity; may be used at a type, or aggregate level or at instance level; . . . These various

reasons for combining TEs will be explored and some architectural solutions given. Such

combinations can consist of merging in the case of white-box components, or orchestra-

tion in the case of black-box components.

Following MPM principles, we propose to explicitly model and use workflows of TEs, as

well as their architectures. We apply the concepts of variability (also known as product

family) modelling, in particular to Twinning workflows and architectures. This allows

for the de-/re-construction of the different variants in a principled, reproducible and

partially automatable manner.

The choices that are made have a high impact on the required investment when creat-

ing the Twinning System, most notably on the development time and deployment cost.

This is especially true when multiple iterations are needed to find the most appropri-

ate level(s) of abstraction and detail, architecture, technologies and tools. This work

follows a Model-Based Systems Engineering (MBSE) methodology: before realizing a

Twinning architecture, Discrete EVent system Specification (DEVS) models for deployed

architecture alternatives can be constructed and simulated, to evaluate their suitability.

Two representative use-cases have been researched:

• Automated Guided Vehicle (AGV): Line Following Robot (LFR) – A simple LEGO

robot has a task to follow a visual trajectory on the ground. Alternatively, to show

the expansion to a more industrial setting, a TurtleBot has been used as well. The

TurtleBot focusses more on the combination of the TEs, whereas the LEGO LFR

shows the feasability of the presented approaches.

• Port of Antwerp-Bruges – A very simple model for the movement of vessels in the

Port of Antwerp-Bruges has been constructed. Throughout the system execution,

v

an anomaly occurs and the simulation needs to identify why this has happened.

Additionally, a 1D kinematic model of a vessel has been studied in much more

detail, including a DEVS simulation of the deployment of this system.

Because both use-cases are in completely different domains, we hypothesise that the

proposed methodology is applicable to all use-cases in similar domains, and everywhere

in-between.

vi

Nederlandstalige Samenvatting

Het doel van Systems Engineering is het analyseren, ontwerpen, optimaliseren, ex-

ploiteren en evolueren van complexe Cyber-Physical Systems (CPSs). Dit gebeurt vaak

in samenwerking en volgens gecompliceerde workflows. Vandaag de dag worden deze

systemen steeds complexer, tot op het punt dat eenvoudige software niet meer voldoende

is om ze te maken. Om met deze complexiteit om te gaan, stelt het domein van Mod-

elling & Simulation (M&S) systeemingenieurs in staat zich te richten op hun specifieke

domeinkennis, zonder dat ze alle aspecten van de CPSs hoeven te kennen.

Deze ingenieurs bouwen modellen, dat wil zeggen, abstracties van de realiteit. Elk model

heeft een zeer specifieke gebruikscontext. Bĳvoorbeeld, een model voor de beweging van

schepen door een jachthaven wordt volledig anders opgebouwd dan een model dat zich

richt op de veiligheid van een rotonde. Bovendien hebben de talen waarin deze mod-

ellen zĳn gemaakt allemaal hun eigen voordelen, nadelen en ideale toepassingsgebieden.

Multi-Paradigm Modelling (MPM) pleit voor het gebruik van de meest geschikte talen,

raamwerken, applicaties. . . bĳ het expliciet modelleren van alle aspecten van een systeem.

Digital Twins (DTs) zĳn simulatiemodellen die in parallel lopen met een systeem in de

echte wereld, terwĳl ze dezelfde invoerstimuli ontvangen als dat systeem. Ze kunnen

worden gebruikt om CPSs te analyseren, optimaliseren en adapteren. DTs zĳn geïden-

tificeerd als een belangrĳke speler in de huidige industriële revolutie. Gecombineerd

met Big Data, Artificial Intelligence (AI), Internet of Things (IoT), Groene IT en een ver-

hoogde focus op duurzaamheid, worden ze voorspeld een grote economische bloei te

veroorzaken. Helaas is er nog steeds weinig consensus over een exacte definitie voor

DTs (en hun vele alternatieven). Ze worden gebruikt voor alles van M&S-technieken tot

slimme IoT-oplossingen. In dit werk gebruiken we Twinning Paradigma als overkoepelend

begrip om te verwĳzen naar alle concepten, technieken, architecturen. . . die gerelateerd

zĳn aan dit soort systemen. In dit paradigma worden virtuele instanties, bekend als Twin

Objects (TOs) (d.w.z. modellen), van een Actual Object (AO) (d.w.z. een System under

Study (SuS) in diens omgeving) voortdurend bĳgewerkt met hun status, de gezondheid,

prestatie- en onderhoudsinformatie van de SuS gedurende de hele levenscyclus.

Tĳdens de (momenteel vrĳ ad-hoc) creatie van Twinning Systemen, beïnvloedt een

overvloed aan keuzes de functionaliteit en prestaties van het gerealiseerde systeem,

bestaande uit het feitelĳke SuS en het model daarvan. Dit werk identificeert vier stadia

waarin deze variabiliteit kan optreden:

• Properties of Interest (PoIs) (Belangseigenschappen) in de Probleemruimte – De initiële

keuze van de exacte doel(en) en doelstelling(en) voor het Twinning Systeem heeft

een grote invloed op het eindproduct. De literatuur heeft een groot aantal van

deze doelstelling(en) geïdentificeerd, maar in dit werk zĳn ze gegroepeerd en

samengevoegd in een grote Feature Tree.

vii

viii

• (Conceptuele) Architectuur en Ontwerp – Wanneer een keuze is gemaakt in termen van

doel(en), is het belangrĳk om de individuele systeemcomponenten te identificeren

die nodig zĳn voor het correcte gedrag van het Twinning Systeem. Een Twinning

Experiment (TE) verschĳnt als een hoofdentiteit in deze conceptuele architectuur.

Een TE identificeert een Twinning Systeem dat actief probeert om een bepaalde set

van PoIs op te lossen.

• Modelleren & Simulatie – De keuze van de exacte modelleertalen en de creatie van de

modellen wordt sterk beïnvloed door de einddoel(en) van het Twinning Systeem.

Tegelĳkertĳd is dit ook een groot punt van variatie in hoe het resulterende Twinning

Systeem eruit zal zien. Dit kan ook worden beïnvloed door de modellen die reeds

beschikbaar zĳn voor systeemingenieurs.

• Realisatie – Individuele applicaties en raamwerken moeten worden geselecteerd,

evenals de tussenliggende software, communicatieprotocollen. . . Gebruikelĳke keuzes

voor netwerkcommunicatie, zoals de Data Distribution Service (DDS) en MQTT,

hebben elk hun eigen sterke en zwakke punten, die in overweging moeten worden

genomen bĳ het streven naar niet-functionele eigenschappen, zoals het voldoen aan

realtime deadlines.

Keuzes die in één stadium worden gemaakt, beïnvloeden de oplossingen en de daaropvol-

gende mogelĳke keuzes (of configuraties) in het volgende stadium.

Naarmate dat Twinning toeneemt, ontstaat de behoefte om TEs te combineren. De vraag

is dan hoe dergelĳke systemen gecombineerd, samengevoegd, of gefedereerd kunnen

worden. Meerdere TEs kunnen overeenkomen met verschillende doelstellingen en PoIs;

kunnen overeenkomen met verschillende componenten in een architectuur; kunnen een

systeem vertegenwoordigen op verschillende niveaus van detail, of abstractie; kunnen

worden gebruikt op een type- of aggregatieniveau of op individueel niveau; . . . Deze

verschillende redenen voor het combineren van TEs zullen worden verkend en enkele

architecturale oplossingen worden gegeven. Dergelĳke combinaties kunnen bestaan uit

samenvoeging in het geval van white-box componenten, of orchestratie in het geval van

black-box componenten.

Volgens de MPM-principes stellen we voor om workflows van TEs expliciet te mod-

elleren en te gebruiken, evenals hun architecturen. We passen de concepten van vari-

abiliteitsmodellering (ook wel productfamilies genoemd) toe, met name op Twinning-

workflows en architecturen. Dit stelt ons in staat om de verschillende varianten op een

principiële, reproduceerbare en deels automatiseerbare manier af te breken of herop te

bouwen.

De keuzes die worden gemaakt hebben een grote impact op de benodigde investering

bĳ het creëren van een Twinning Systeem, met name op de ontwikkelingstĳd en de im-

plementatiekosten. Dit is vooral het geval wanneer meerdere iteraties nodig zĳn om het

meest geschikte abstractie- en detailniveau, de architectuur, technologieën en applicaties

te vinden. Dit werk volgt een Model-Based Systems Engineering (MBSE) methodologie:

voordat een Twinning-architectuur wordt gerealiseerd, kunnen Discrete EVent system

Specification (DEVS) modellen voor alternatieve geïmplementeerde architecturen wor-

den gebouwd en gesimuleerd om hun geschiktheid te evalueren.

Twee representatieve toepassingen werden onderzocht:

ix

• Automated Guided Vehicle (AGV): Line Following Robot (LFR) – Een eenvoudige

LEGO-robot met de taak om een visuele route op de grond te volgen. Om de

uitbreiding naar een meer industriële setting te tonen, is ook een TurtleBot gebruikt.

De TurtleBot focust meer op het combineren van TEs, en de LEGO LFR op de

geschiktheid van de voorgestelde technieken.

• Port of Antwerp-Bruges – Een zeer eenvoudig model voor de beweging van schepen

in de Port of Antwerp-Bruges werd gebouwd. Tĳdens de uitvoering van het sys-

teem doet zich een anomalie voor en de simulatie moet identificeren waarom dit is

gebeurd.

Daarnaast is er een 1D-kinematisch model van een schip in veel meer detail

bestudeerd, inclusief een DEVS-simulatie van de implementatie van dit systeem.

Omdat beide toepassingen in totaal verschillende domeinen zitten, veronderstellen we

dat de voorgestelde methodologie toepasbaar is op alle toepassingen in soortgelĳke

domeinen, en overal daartussenin.

x

Publications

The following list of peer-reviewed papers (and a poster) that I co-authored formed a

basis for this dissertation.

• Paredis, R., & Vangheluwe, H. (2021). Exploring a Digital Shadow Design Work-

flow by Means of a Line Following Robot Use-Case. Proceedings of the 2021 Annual
Modeling and Simulation Conference (ANNSIM), 1–12

Hans and I came up with the idea. I created the Line Following Robot (LFR) and the
Formalism Transformation Graph and Process Model (FTG+PM). I wrote the paper. Hans
reviewed and modified the paper accordingly.

• Paredis, R., Gomes, C., & Vangheluwe, H. (2021). Towards a Family of Digital

Model / Shadow / Twin Workflows and Architectures. Proceedings of the 2nd Inter-
national Conference on Innovative Intelligent Industrial Production and Logistics (IN4PL
2021), 174–182

Hans, Cláudio and I came up with the idea. Cláudio created the initial Feature Trees.
Cláudio wrote about the incubator use-case and I wrote about the LFR use-case. I worked
on the system architectures and the workflow (which was coordinated with Cláudio). Hans
reviewed and modified the paper accordingly.

• Paredis, R., & Vangheluwe, H. (2022). Towards a Digital Z Framework Based on a

Family of Architectures and a Virtual Knowledge Graph. Companion Proceedings of
the 25th International Conference on Model Driven Engineering Languages and Systems
(MODELS-C), 491–496

Hans and I came up with the idea. I created the LFR and the FTG+PM. I wrote the
paper. Hans reviewed and modified the paper accordingly.

• Paredis, R., Gomes, C., & Vangheluwe, H. (2023). A Family of Digital T Workflows

and Architectures: Exploring Two Cases. In A. Smirnov, H. Panetto, & K. Madani

(Eds.), Innovative intelligent industrial production and logistics (pp. 93–109). Springer

Nature Switzerland

This chapter was an extension of Paredis, Gomes, and Vangheluwe (2021). Hence, Hans,
Cláudio and I came up with the idea. Cláudio wrote about the incubator case and I wrote
about the LFR. I updated the Feature Trees. Cláudio and I wrote the chapter. Hans reviewed
and modified the chapter accordingly.

• Marah, H., Paredis, R., Challenger, M., & Vangheluwe, H. (2023). A Multi-Robot

Warehouse System: An Exemplar. Proceedings of the 2023 ACM/IEEE International

xi

xii

Conference on Model Driven Engineering Languages and Systems Companion (MODELS-
C), 530–538

Moharram came up with the idea. Hussein focused on the warehouse aspect, whereas I
focused on the individual robots. Hussein and I wrote the paper. Hans and Moharram
reviewed and modified the paper accordingly.

• Paredis, R., Vangheluwe, H., & Albertins, P. A. R. (2024). COOCK project Smart Port
2025 D3.1: “To Twin Or Not To Twin” (tech. rep.) (ArXiv preprint). University of

Antwerp

This paper was a deliverable for the Smart Port 2025 project with Port of Antwerp-Bruges.
Port of Antwerp-Bruges came up with the idea (in collaboration with Hans). I analysed
a lot of the literature to construct the data presented in the paper. Pamela focused on cost
analysis. I wrote the paper and Hans reviewed and modified the paper accordingly.

• Paredis, R., & Vangheluwe, H. (2024a). Exploring Twinning Variability [Poster].

Proceedings of the 4th Conference on Machines, Vehicles and Production Technology
(CMVPT)

Hans and I came up with the idea. I focused on the architecture. I created the poster.
Hans reviewed the poster accordingly.

• Paredis, R., & Vangheluwe, H. (2024b). Modelling and Simulation-Based Eval-

uation of Twinning Architectures and Their Deployment. Proceedings of the 14th
International Conference on Simulation and Modeling Methodologies, Technologies and
Applications (SIMULTECH), 170–182. https://doi.org/10.5220/0012865300003758

Hans and I came up with the idea. I created the experimentation setup and came up with
viable experiments. I wrote the paper. Hans reviewed and modified the paper accordingly.

The following list of peer-reviewed papers that I co-authored are not core contributions

within this thesis, but are nonetheless an important basis to support the previous list.

• Paredis, R., Denil, J., & Vangheluwe, H. (2021). Specifying and Executing the Com-

bination of Timed Finite State Automata and Causal-Block Diagrams by Mapping

onto DEVS. Proceedings of the 2021 Winter Simulation Conference (WSC)

Hans, Joachim and I came up with the idea. I created the CBD simulator and embed-
ded it in DEVS. I wrote the paper. Hans reviewed and modified the paper accordingly.

• Paredis, R., Exelmans, J., & Vangheluwe, H. (2022). Multi-Paradigm Modelling for

Model-Based Systems Engineering: Extending the FTG+PM. Proceedings of the 2022
Annual Modeling and Simulation Conference (ANNSIM), 461–474

Hans came up with the idea. Joeri and I discussed the ideas and wrote the paper. Hans
reviewed and modified the paper accordingly.

The following list of peer-reviewed papers that I co-authored are not part of the research

of this thesis.

https://doi.org/10.5220/0012865300003758

xiii

• Paredis, R., Van Mierlo, S., & Vangheluwe, H. (2020). Translating Process Interac-

tion World View Models to DEVS: GPSS to (Python(P))DEVS. In K.-H. Bae, B. Feng,

S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, & R. Thiesing (Eds.), Proceedings
of the 2020 winter simulation conference (pp. 2221–2232). Institute of Electrical; Elec-

tronics Engineers, Inc.

This is a paper that summarizes my work in translating GPSS to DEVS, as created for
my Master thesis. Hans came up with the idea. I wrote the paper, heavily supported by
Simon’s insights and pointers. Hans reviewed and modified the paper accordingly.

• Van Tendeloo, Y., Paredis, R., & Vangheluwe, H. (2020). An Introduction To Mod-

ular Modeling And Simulation With PythonPDEVS And The Building-Block Li-

brary PythonPDEVS-BBL. Proceedings of the 2020 Winter Simulation Conference (WSC),
1152–1166

This tutorial is a rework of a previous tutorial by Hans and Yentl. I contributed a set
of building blocks for DEVS, as described in my Master’s thesis. Hans wrote the paper.

• Parezys, J., Paredis, R., & Vangheluwe, H. (2023). CLAVS/ODVS: Combining

Class/Object Diagrams and DEVS. Proceedings of the 2023 Winter Simulation Confer-
ence (WSC), 2591–2602

Hans came up with the idea. Jordan researched this topic during his Master’s thesis. I
wrote the paper. Hans reviewed and modified the paper accordingly.

• Van Tendeloo, Y., Paredis, R., & Vangheluwe, H. (2023). An Introduction to Discrete-

Event Modeling and Simulation with DEVS. Proceedings of the 2023 Winter Simulation
Conference (WSC), 1531–1545

This tutorial is a rework of a previous tutorial by Hans, Yentl and I. I contributed the
use-case description on the Port of Antwerp. Hans wrote the paper.

Finally, there are also some journal papers currently in preparation. Note that there is no

guarantee that these will be accepted. Below, the working titles are listed.

• Denis, H., Paredis, R., Albertins, P., Vangheluwe, H., Farzadmehr, M., Carlan, V.,

Vanelslander, T., Luong, N.-Q., & Mercelis, S. (2025). Towards Smart Port of the

Future: Harnessing Ai and Simulation Models for Nautical Chain Optimization.

Transportation Engineering

This paper contains the results for the COOCK SmartPort 2025 project and this was
submitted to a Transformation Engineering special issue. The Port of Antwerp-Bruges
came up with the original project scope, which was later reduced by imec, Department of
Transport and Regional Economics (TPR) and Antwerp Systems and software Modelling
(AnSyMo). I researched and wrote the (Discrete EVent system Specification (DEVS)) sim-
ulation, imec researched and wrote about the Artificial Intelligence (AI) models, and TPR
researched and wrote about the KPIs. All authors reviewed the paper.

• Nezhad, S. N., Paredis, R., Van Acker, B., & Vangheluwe, H. (n.d.). Combining

experiments and a Historian for building Twinning systems, applied to a TurtleBot

xiv

use-case

This paper will be the journal version of the second half of Chapter 7, whilst also ex-
panding on Chapter 6. The TurtleBot use-case will be discussed in detail, and it will be
shown how multiple Twinning Experiments (TEs) can be combined when deploying this
system. Additionally, the Historian’s uses will be discussed in much more detail. Note that
the authors are not fixed for this work.

Activities

This chapter gives a brief overview of the academic activities I have actively partaken in

during my PhD. Note that this list is not exhaustive and mainly focuses on my academic

attributions. These activities are to some extend related to my research.

Organization of Scientific Activities

• Organizing Committee for the 4th International Workshop on Multi-Paradigm

Modelling for Cyber-Physical Systems (MPM4CPS) – 2022

• Organizing Committee for the 5th International Workshop on Multi-Paradigm

Modelling for Cyber-Physical Systems (MPM4CPS) – 2023

• Organizing Committee for the 6th International Workshop on Multi-Paradigm

Modelling for Cyber-Physical Systems (MPM4CPS) – 2024

Reviewing Scientific Posters and Papers

I reviewed posters for:

• the 26th International Conference on Model-Driven Engineering Languages and

Systems (MoDELS) – 2023

• the 27th International Conference on Model-Driven Engineering Languages and

Systems (MoDELS) – 2024

I reviewed papers for:

• the Journal of Simulation Modelling Practice and Theory 2021 (TJSM‘21)

• the Journal of Simulation Modelling Practice and Theory 2022 (TJSM‘22)

• the Journal of Simulation Modelling Practice and Theory 2023 (TJSM‘23)

• the 2022 Annual Modeling and Simulation Conference (ANNSIM‘22)

• the 2023 Annual Modeling and Simulation Conference (ANNSIM‘23)

• the 2024 Annual Modeling and Simulation Conference (ANNSIM‘24)

xv

xvi

• the 2025 Annual Modeling and Simulation Conference (ANNSIM‘25)

• Simulation: Transactions of the Society for Modeling and Simulation International

(2025)

Projects

• I worked on a detailed Causal-Block Diagram (CBD) simulator.

• I gained repository ownership for PythonPDEVS (Van Tendeloo & Vangheluwe,

2015)1 and I actively maintained this project.

• I worked on the COOCK project “Smart Port 2025: improving and accelerating the
operational efficiency of a harbour eco-system through the application of intelligent tech-
nologies”, with a focus on nautical chain optimization of the tugboats and pilots

behind the locks. This project was a collaboration between imec-UAntwerpen,

TPR – University of Antwerp, AnSyMo – University of Antwerp, and the Port of

Antwerp-Bruges.

• I collaborated on Minelabs2, a scientific expansion of Minecraft. It is meant for

high school students to experiment in a fun and interactive way with physics and

chemistry. This project was funded by imec within the scope of “Smart education
@ schools”. It was a collaboration between UAntwerpen, KLA and PITO Stabroek.

Minelabs Essentials was released as part of Minecraft Education on October 4th,

2024 (Segers, 2024).

Teaching

• Teaching Assistant for the “Model-Driven Engineering” course at the University of

Antwerp (2021-2022)

• Teaching Assistant for the “Modelling of Software-Intensive Systems” course at the

University of Antwerp (2020-2024)

Participation in Scientific Activities

2020

• The 23th International Conference on Model-Driven Engineering Languages and

Systems (MoDELS 2020), Virtual Conference. 16 - 23 October 2020.

• The Winter Simulation Conference 2020 (WSC’20), Virtual Conference. 14 - 18

December, 2020.

1https://msdl.uantwerpen.be/git/yentl/PythonPDEVS

2https://minelabs.be/

https://msdl.uantwerpen.be/git/yentl/PythonPDEVS
https://minelabs.be/

xvii

2021

• The Flanders MAKE Scientific Conference3, Virtual Conference. 4th of February

2021.

• The 2021 Annual Modeling and Simulation Conference (ANNSIM 2021), Virtual

Conference. 19 - 22 July, 2021.

• The NEMO Summer School 2021, Virtual Conference. 19 - 30 July, 2021.

• The 24th International Conference on Model-Driven Engineering Languages and

Systems (MoDELS 2021), Virtual Conference. 10 - 15 October, 2021.

• The 2nd International Conference on Innovative Intelligent Industrial Production

and Logistics (IN4PL 2021), Virtual Conference. 25 - 27 October, 2021.

• The Winter Simulation Conference 2021 (WSC’21), Virtual Conference. 14 - 16

December, 2021.

2022

• The 2nd Conference on Machines, Vehicles and Production Technology (CMVPT),

Flanders Expo, Ghent, Belgium. 22th of March 2022.

• Workshop on Fidelity in Systems Engineering, Lisbon, Portugal. 30 - 31 May 2022.

• The micro MPM Workshop, University of Antwerp, Antwerp, Belgium. 14 June

2022.

• The ADEPT Workshop 2022, Het Pand, Ghent, Belgium. 17th of June 2022.

• The 2022 Annual Modeling and Simulation Conference (ANNSIM 2022), San Diego

State University, San Diego, CA, USA. 18 - 20 July 2022.

• The 2022 ESI Symposium, Theatre De Schalm, Veldhoven, Meiveld 3, the Nether-

lands. 27th of September 2022.

• The 25th International Conference on Model-Driven Engineering Languages and

Systems (MoDELS 2022), Montreal, Canada. 23 - 28 October 2022.

2023

• The 18th Computer Automated Multi-Paradigm Modelling (CAMPaM) workshop

with a focus on Model Based Systems Engineering for and by Digital Twins, Institute

of Scientific Studies of Cargèse, Corsica, France. 20 - 24 March 2023.

• MSDL Summer Research Day, University of Antwerp, Antwerp, Belgium. 1st of

September 2023.

• The 26th International Conference on Model-Driven Engineering Languages and

Systems (MoDELS 2023), Västerås, Sweden. 1 - 6 October 2023.

3Later renamed to “Conference on Machines, Vehicles and Production Technology (CMVPT)”.

xviii

2024

• The 4th Conference on Machines, Vehicles and Production Technology (CMVPT),

Kortrĳk, Belgium. 26th of March 2024.

• The 14th International Conference on Simulation and Modeling Methodologies,

Technologies and Applications (SIMULTECH 2024), Dĳon, France. 10 - 12 July

2024.

Contents

Acknowledgements i

Abstract iii

Nederlandstalige Samenvatting vii

Publications xi

Activities xv

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions and Gaps . 4

1.3 Roadmap . 7

2 Background 9

2.1 Digital Twins: State-of-the-Art . 9

2.1.1 Digital Twin Architectures . 10

2.1.2 Asset Administration Shell . 12

2.1.3 Existing Tools and Frameworks . 13

2.2 Multi-Paradigm Modelling . 13

2.2.1 Language Combinations . 14

2.2.2 FTG+PM . 16

2.3 Modelling Formalisms . 17

2.3.1 Feature Trees . 18

2.3.2 Causal-Block Diagrams . 19

xix

xx CONTENTS

2.3.3 Functional Mock-Up Units . 20

2.3.4 DEVS . 21

2.3.5 Deployment Diagrams . 22

2.4 Communication Protocols . 23

2.4.1 MQTT . 23

2.4.2 DDS . 23

2.4.3 OPC UA . 23

2.4.4 ROS 2 . 24

3 Goals: To Twin or Not To Twin 25

3.1 Properties of Interest . 26

3.2 Goals, Purposes, and Objectives . 26

3.2.1 Design . 26

3.2.2 Operation . 27

3.2.3 Visualization . 28

3.2.4 Maintenance . 29

3.3 Quality Assurance . 29

3.3.1 Consistency . 30

3.3.2 Execution . 31

3.3.3 Ilities . 31

3.3.4 Company . 33

3.4 Usage Contexts . 34

3.4.1 System Type . 34

3.4.2 Bx Connection . 35

3.4.3 Sustainability . 35

3.4.4 Liveness of Execution . 35

3.4.5 User . 35

3.4.6 Context . 36

3.4.7 PLM Stage . 36

CONTENTS xxi

3.4.8 Reuse . 37

3.5 Conclusions . 37

4 Conceptual Reference Architecture 39

4.1 Yet Another Twinning Architecture . 39

4.2 Common Architecture Variations . 41

4.3 Mapping the Architecture . 44

4.3.1 Conceptual/Functional Mapping . 44

4.3.2 Mapping through Realization . 44

4.4 Actual Object and Twin Object . 45

4.4.1 Electromechanical Entity . 46

4.4.2 Digital Entity . 47

4.4.3 Solid Entity . 47

4.4.4 Biophysical Entity . 48

4.4.5 Social Entity . 48

4.4.6 Workflow Entity . 49

4.4.7 System-of-Systems Entity . 49

4.5 Conclusions . 49

5 Technologies and Deployment 51

5.1 State-of-the-Art . 51

5.2 Literature Analysis . 52

5.2.1 Generic Methodologies, Concepts and Buzzwords 52

5.2.2 Languages . 53

5.2.3 Tools, Frameworks and Technologies 54

5.2.4 Communication Protocols . 56

5.2.5 Hardware . 57

5.3 DEVS Simulation . 58

5.4 Concusions . 58

xxii CONTENTS

6 Combining Twinning Architectures 61

6.1 Federation of Twinning Systems . 62

6.1.1 Multiple Properties of Interest . 63

6.1.2 Multiple Independent TEs . 65

6.1.3 Type vs Multiple Instances . 66

6.1.4 Architectures Connecting Multiple Components 67

6.1.5 Multiple Formalisms/Languages . 68

6.1.6 Multi-Abstraction/Detail/Fidelity 70

6.1.7 Multiple Life-Cycle Stages . 73

6.1.8 Multiple Copies for Redundancy . 74

6.1.9 Multiple Combinations of Multi-* 75

6.2 White Box vs. Black Box Combinations . 78

6.3 Conclusion . 79

7 Representative Use-Case: Automated Guided Vehicle 81

7.1 LEGO Line Following Robot . 82

7.1.1 System Design . 82

7.1.2 System Decomposition . 82

7.1.3 Component Gathering . 84

7.1.4 Digitization . 84

7.1.5 Robot Assembly . 86

7.1.6 Plant Modeling . 86

7.1.7 Controller Modelling . 89

7.1.8 CBD Composition . 95

7.1.9 Calibration . 95

7.1.10 Deployment and Simulation . 97

7.1.11 System Analysis . 99

7.1.12 Robot Versions . 99

7.2 TurtleBot . 101

CONTENTS xxiii

7.2.1 Requirements . 101

7.2.2 Conceptual Architecture . 102

7.2.3 Formalisms and Models . 104

7.2.4 Deployment . 105

7.3 Conclusions . 108

8 Representative Use-Case: Port of Antwerp 109

8.1 Port of Antwerp . 110

8.1.1 Requirements . 110

8.1.2 Conceptual Architecture . 112

8.1.3 Formalisms and Models . 112

8.1.4 Deployment . 113

8.1.5 Anomaly Detection . 113

8.2 1D Movement of a Vessel . 120

8.2.1 Requirements . 122

8.2.2 Architecture . 122

8.2.3 Formalisms and Models . 123

8.2.4 Deployment . 123

8.2.5 DEVS Model . 124

8.2.6 Analysis of Alternatives . 126

8.3 Conclusions . 129

9 Conclusions and Future Work 131

9.1 Conclusions . 131

9.2 Limitations and Threats to Validity . 132

9.3 In Preparation . 133

9.4 Future Work . 133

10 Anecdotes 135

10.1 Sand Tables . 135

xxiv CONTENTS

10.2 Apollo 13 . 136

10.3 Alan Alda meets Alan Alda 2.0 . 137

10.4 Industrial Revolutions . 138

10.4.1 First Industrial Revolution – Mechanization 138

10.4.2 Second Industrial Revolution – Industrialization 138

10.4.3 Third Industrial Revolution – Digitization 139

10.4.4 Fourth Industrial Revolution – Robotization 139

10.4.5 A Note on Industry 5.0 . 140

11 pyCBD 143

11.1 Simulator Features . 143

11.2 Visual Syntax in DrawIO . 147

Acronyms 151

Bibliography 153

List of Figures

1.1 Worldwide Google Trends for the Digital Twin topic, as obtained on Febru-

ary 7th 2024. 2

1.2 Scopus document count between 1996 and 2024 for "digital twin*" OR
"digital shadow*", as obtained on February 22nd 2025. 3

1.3 Gartner Research Hype Cycles for Emerging Technologies 3

1.4 Twinning variability driven by workflows. 6

2.1 The “conceptual model for PLM”, adapted from Grieves and Vickers (2017). 9

2.2 Digital Model vs Digital Generator vs Digital Shadow vs Digital Twin

(Kritzinger et al., 2018; Tekinerdogan & Verdouw, 2020). 11

2.3 5D architecture for Twinning (Tao & Zhang, 2017). 12

2.4 The original FTG, adapted from Vangheluwe (2000). 15

2.5 An example PM. 17

2.6 Example Feature Tree. 18

2.7 Simple CBD model with an algebraic loop. 20

3.1 Variability Modelling Space, adapted from Kang and Lee (2013). 25

3.2 Feature Tree for the Goals of a Twin . 27

3.3 Feature Tree for the Quality Assurance of a Twin 30

3.4 Feature Tree for the Usage Context of a Twin 34

4.1 Generic (conceptual) TE architecture with presence conditions. 40

4.2 Orchestration of the conceptual architecture; adapted from Paredis and

Vangheluwe, 2022. 41

4.3 Timeline of TEs; adapted from Paredis and Vangheluwe, 2022. 42

4.4 Five architectural variations for the conceptual reference architecture. . . . 43

xxv

xxvi LIST OF FIGURES

4.5 The 5D architecture, based on Tao and Zhang (2017), as shown in Figure 2.3,

annotated with the presence conditions from Figure 4.1. 45

4.6 Seven different entities that AOs and TOs can be. 46

5.1 Distribution of identified generic technologies. 53

5.2 Distribution of identified languages. 54

5.3 Distribution of identified communication protocols. 55

5.4 Distribution of identified communication protocols. 56

5.5 Distribution of identified hardware. 57

6.1 Combining TEs with multiple PoIs. 63

6.2 Combining TEs with multiple PoIs timeline. 64

6.3 Combining independent TEs. 65

6.4 Aggregating data from multiple Instances of the same Type. 66

6.5 Aggregating data from multiple dependent TEs. 68

6.6 Combining dependent TEs timeline. 69

6.7 Combining TEs with multiple formalisms. 70

6.8 Combining TEs with multiple levels of abstraction. 71

6.9 Combining TEs with multiple states timeline. 72

6.10 Combining TEs with multiple life-cycle stages. 73

6.11 Combining TEs with redundancy. 75

6.12 Hierarchically combining TEs. 76

6.13 Example timeline for hierarchically combining TEs. 77

6.14 Combining two White Boxes through merging the contents. 78

6.15 Combining two Black Boxes through orchestration. 79

7.1 Workflow for the LFR use-case. 83

7.2 Conceptual architecture for the AGV use-case. 84

7.3 LFR experimentation setup. 85

7.4 Unity3D version of the robot, running on the server in room M.G.330 at

the University of Antwerp. 85

LIST OF FIGURES xxvii

7.5 Unity3D version of the robot. 85

7.6 Closeup of the Unity3D robot. 86

7.7 Free-body diagram of a differential-drive robot. 87

7.8 Using a different point on the robot. 88

7.9 Free-body diagram of the robot, with respect to the robot’s mass and a ball

caster. 88

7.10 Curvilinear space, adapted from Sloane (2018). 90

7.11 Bang-Bang and Proportional controller for following a closed path. 91

7.12 Proportional-Differential controller for following a closed path. 92

7.13 Normal PID and Curvature-aware PID controller for following a closed

path. 93

7.14 Special PID controllers for following a closed path. 94

7.15 CBD plant model for the LFR use-case. 96

7.16 CBD controller model for the LFR use-case. 96

7.17 CBD model for the TO of the LFR. 96

7.18 A dashboard for the LFR use-case. 97

7.19 Deployment diagram for the LFR use-case. 98

7.20 Example experiment results for the LFR. 99

7.21 LFR with tracked threads. 100

7.22 LFR versions with a frictionless ball caster. 100

7.23 The TurtleBot driving around in the lab. 101

7.24 TEs for the TurtleBot use-case. 103

7.25 Conceptual architecture for the TurtleBot’s TEs. 104

7.26 Example timeline for the TurtleBot TEs. 105

7.27 TFSA with embedded ODEs for the TurtleBot’s tracking simulator. 106

7.28 Example map for the TurtleBot. 106

7.29 Deployment diagram for the TurtleBot. 107

8.1 Simplified map of the Port of Antwerp. 111

8.2 Architectural view for the example case. 112

xxviii LIST OF FIGURES

8.3 PythonPDEVS example implementation for a Confluence. 114

8.4 Deployment for the Port of Antwerp-Bruges use-case. 115

8.5 Docking occupancy anomaly trace and absolute error. 116

8.6 Limiting the arrival of ships fault injection. 118

8.7 Broken Berendrecht-Zandvliet Lock fault injection. 118

8.8 Broken Kieldrecht Lock fault injection. 119

8.9 Broken Boudewĳn-Van Cauwelaert Lock fault injection. 119

8.10 Broken Berendrecht-Zandvliet Lock and broken Kieldrecht Lock fault in-

jection. 120

8.11 Occupancy check of broken Lock fault injection. 121

8.12 Conceptual architecture variant for the ship use-case. 123

8.13 Velocity of the real ship (AO) versus that of its twin (TO) as they try to

reach the varying target velocity 𝑣𝑡 . 124

8.14 Orchestrator in PythonPDEVS. 125

8.15 Publish Subscribe DEVS model (MQTT). 127

8.16 Average latency of different publish-subscribe technologies. 127

8.17 Deployment Diagram for MQTT experiment setup. 128

8.18 Polling DEVS model (OPC UA on top of TCP/IP). 128

8.19 Shared Memory DEVS model. 129

8.20 Average latency of different communication protocols. 129

10.1 Worldwide Google Trends for the Digital Twin term in the Media and En-
tertainment category, as obtained on February 7th 2024. 137

10.2 Global GDP between 1600 and 2021, based on data from Bolt and van

Zanden (2020) and The World Bank (2023), with major data processing by

Our World in Data (2023). 141

11.1 BouncingBall example CBD model. 144

11.2 EvenNumberGenerator example CBD model. 146

“All the secrets of the world are contained in books. Read
at your own risk.”

– Lemony Snicket

Chapter 111
Introduction

From the human body to photosynthesis, from hurricanes to human interactions, from

gravity to factories. . . the world we know and love consists of countless interacting

processes (or systems) that span any number of domains. Over time, each of these

domains have embraced software as a core component, yielding software-intensive systems
(Giese, 2006). Cyber-Physical Systems (CPSs) are defined as systems that consist of cyber
components (as computerized implementations) and physical components (Carreira et al.,

2020). The main focus here is on the interaction between these components. The cyber

part should be able to cause the physical component to change state, and such a change

will feed-back into a state change on the cyber component.

The main goal of Systems Engineering is to design, integrate, and manage systems over

their entire lifecycle (Kassiakoff et al., 2010). Commonly, this is done by separating a

system in its subcomponents, each of them individual parts of the system, with their

own functionalities. Ackoff (1971) defines a system as “a set of interrelated elements”. It can

be considered simple when there is a limited number of subcomponents and the output(s)

of each subcomponent can easily be derived from their input(s). It is called complicated
when the total number of subcomponents is too large to get a good understanding by

just looking at it. As soon as randomness and human interaction are introduced (such

that the output(s) of a subcomponent cannot easily be determined), a system can be

considered complex (Grieves & Vickers, 2017; Mitchell, 2009).

Creating, deploying, modifying and maintaining a very large, complex CPS is a difficult

undertaking. There is a lot that can go wrong on every level in this process. Mod-

elling & Simulation (M&S) techniques can help solve the plethora of issues that may arise

in this context.

A model of a system is an abstraction of that system in a specific validity frame. It is a spe-

cific, contextualized view on this system. Constructing models allows us to better grasp

their correlated systems and thus the world we live in. A modelling formalism defines the

syntax (i.e., the set of allowed constructs, including their textual or visual representation)

and the semantics (i.e., the unambiguous evaluation of the models). Model-Based Systems

Engineering (MBSE) combines Systems Engineering and M&S such that complex CPSs

can be created, abstracted, analysed, modified, . . . from a model.

Multi-Paradigm Modelling (MPM) advocates modelling every part of a system explicitly,

using their most appropriate modelling language(s), the most appropriate tool(s), . . . at

1

2 CHAPTER 1. INTRODUCTION

the most appropriate level(s) of abstraction and detail (Mosterman & Vangheluwe, 2004).

This also encourages using multiple models for the same system (Batty, 2021). Digital

Twins (DTs) are already commonly used by system engineers to create CPSs. MPM

provides guidance in the choice of modelling formalisms and workflows. For DTs, it

is emphasised that there should be “different kinds of twins” (Arcaute et al., 2021), thus

encouraging the use of MPM.

1.1 Motivation

As outlined in the Reference Architecture Model for Industry 4.0 (RAMI 4.0) (Hankel &

Rexroth, 2015), we are currently at the frontier of the fourth major industrial revolution.

This revolution is also commonly called Industry 4.0, Industry 5.0, or (more accurately)

Industry 4.0S (Raja Santhi & Muthuswamy, 2023), where the “S” stands for “sustainabil-

ity”. The increased rise in power and usability of Artificial Intelligence (AI) techniques,

increasing complexity of CPSs, and ever-increasing volumes of big data push our world

towards digitization. As a result, DTs have started to emerge as a major backbone for

Industry 4.0S.

Figure 1.1 shows the worldwide Google Trends for the topic Digital Twin. Note that the

number on the plot represents “search interest relative to the highest point on the chart”. It

is clear that the introduction of DT in 2014 (Grieves, 2014) and its exploration in 2017

(Grieves & Vickers, 2017) caused a large surge in interest.

Figure 1.1: Worldwide Google Trends for the Digital Twin topic, as obtained on February

7th 2024.

Similarly, a search on Scopus using the terms "digital twin*" OR "digital shadow*"
yielded a total of 85,759 documents between 1996 and 2024; with 32,870 documents

in 2024 alone. This is visualized in Figure 1.2. 26,921 of these documents have been

published by China; 9,954 by the US; and 7,587 by Germany.

1.1. MOTIVATION 3

Figure 1.2: Scopus document count between 1996 and 2024 for "digital twin*" OR
"digital shadow*", as obtained on February 22nd 2025.

In the 2017 Gartner Research Hype Cycle for Emerging Technologies (see Figure 1.3a)1,

we can find DT at the Innovation Trigger stage. In the 2018 edition (see Figure 1.3b)2, it

had already moved to the Peak of Inflated Expectations. Surprisingly, later reports do no

longer mention DTs.

(a) 2017 Gartner Research Hype Cycle (b) 2018 Gartner Research Hype Cycle

Figure 1.3: Gartner Research Hype Cycles for Emerging Technologies

DTs (and their various forms) appear to be omnipresent in any number of domains

(Dalibor et al., 2022; Paredis et al., 2024), albeit often used as a vacuous marketing

instrument. While there is a vast body of research on theoretical frameworks, the practical

implementations and deployment are still often omitted (Hassan & Aggarwal, 2023).

There is still a lot of research to be done, but they already solve real problems and use a

number of mature techniques and technologies from M&S. Hence, we hypothesize that

DT has reached the Slope of Enlightenment on the hype cycle. In 2017, Market Research

Future predicted that the DT market would reach 15 billion USD worldwide by 2023

1https://www.gartner.com/en/documents/3768572

2https://www.gartner.com/en/documents/3885468

https://www.gartner.com/en/documents/3768572
https://www.gartner.com/en/documents/3885468

4 CHAPTER 1. INTRODUCTION

(El Saddik, 2018; Market Research Future, 2017). In reality, 16.8 billion USD was reached.

Horizon Grand View Research (2024) predicts a growth of 37.5%, totalling for USD 155

billion, by the end of 2030.

Despite its growing popularity, a vast number of different DT definitions exist. Rumpe

(2021) mentions 112 different definitions3, found during the largest DT literature study to

date (Dalibor et al., 2022). While there is some consensus on these definitions, some are

too domain-specific (Steinmetz et al., 2018), whereas others are incredibly vague (Yacob

et al., 2019) or even contradictory (Autiosalo et al., 2019). As a result, related terminology

(like Digital Shadow, Digital Model, Digital Avatar, Digital Passport, Digital Thread,. . .) also

suffers from this ambiguity.

In fact, the term Digital Twin has been used to mean anything between M&S and Internet

of Things (IoT). For instance, Damköhler (2022) uses it to refer to a simulation, whereas

Ferguson (2020), Mahmoud et al. (2023), and Z. Zhang et al. (2022) apply it in the IoT

domain. This is where we introduce the Twinning Paradigm as the entire spectrum

between those research areas. It is the conceptual notion of the interaction between a

System under Study (SuS) in its environment and its corresponding model, and how both

are connected throughout the entire life-cycle of the system. A main reasoning behind

this paradigm is that a solution to any problem in this spectrum, will likely be applicable

to other problems in the spectrum. This thesis will contribute to the Twinning Paradigm

by using DTs (and its many variations) as a main point of reference.

Twins are often built for already realized systems, forcing system engineers to drastically

modify their architecture. This is usually done in an ad-hoc manner, where very little

attention is given to the choices made throughout the construction and deployment of

these Twinning Systems. In reality, there is a large amount of variability that can seep in.

These differences can be as little as using different communication protocols, but also as

big as the purpose for which the twin is used.

Thus, we can define the following research questions:

• RQ1: What are the most common reasons and definitions for (creating) DTs?

• RQ2: Given the large number of existing DTs in the literature, can we unify?

• RQ3: What is the relationship between specific DT requirements, the system archi-

tecture, the used models, and the eventual deployment?

• RQ4: How to quantitatively support deployment choices?

• RQ5: How can we combine multiple DTs into a larger system?

1.2 Contributions and Gaps

In Paredis, Gomes, and Vangheluwe (2021), we hinted at the “multiple definitions prob-

lem” and tried to introduce Digital X as a solution (where the X identified any DT related

term). In Paredis and Vangheluwe (2022), this became Digital Z, where the Z referred to

3All are listed on https://awortmann.github.io/research/digital_twin_definitions/.

https://awortmann.github.io/research/digital_twin_definitions/

1.2. CONTRIBUTIONS AND GAPS 5

the demographic generation naming convention (Generation X, Generation Y, Genera-

tion Z, Generation Alpha,. . .). Later, we referred to this as Digital T (Paredis et al., 2023),

before we actually started focusing on the Twinning Paradigm (Paredis et al., 2024).

A Twinning System consists of an Actual Object (AO) (i.e., a SuS in its environment)

that is continually kept in-sync with a Twin Object (TO) (i.e., a model of that SuS). Notice

the usage of “continual” as opposed to “continuous”. Whereas the latter implies “an
uninterrupted execution”4, “continual” can be defined as “in a constantly repeated manner:
over and over”5. As such, normal M&S is not necessarily continual, as there simply needs

to exist an original (Stachowaik, 1973). As soon as this continuality is introduced, the

Twinning Paradigm arises.

Important to denote here is that the AO does not have to exist in the real, physical world

(for instance, it can be a set of data traces, or even a set of algorithms), and neither does

the TO need to be digital. In the case that the TO is digital, the Twinning System can be

considered a DT.

We will consider a Twinning Experiment (TE) a Twinning System that only focuses on

a single Property of Interest (PoI). For instance, when the goal is anomaly detection, the

corresponding TE will execute an anomaly detection experiment. When the goal is fault
diagnosis, there will be a fault diagnosis experiment. Note that we define an experiment

as follows: “an experiment is an intentional set of (possibly hierarchically composed) activities,
carried out on a specific SuS in order to accomplish a specific set of goals.” A Twinning System

can consist of one or more TEs. Hence, we will use TEs as first-class entities in the

realization of a Twinning architecture. Because each TE conceptually focuses on a single

goal, the TE will encapsulate each AO-TO combination.

This thesis focuses on the creation of TEs and their usage. Mainly, on why and how they

are used, including the many different possibilities of this usage. We have identified

four main stages where Twinning variability may occur. They are shown in Figure 1.4.

This workflow of stages will be applicable for systems engineering, with a specific focus

on Twinning. Important to denote is that each of these stages has their own (set of)

workflow(s), which is part of an overall set of workflows that can be used to construct a

TE. Note the relationship to the IIRA Architecture Framework (Industry IoT Consortium,

2022) and The ISO/IEC 12207 standard (R. Singh, 1996).

Stage A (Properties of Interest in the Problem Space)
Twins are always constructed with very specific goals or purposes in mind – sometimes

known as digital twin capabilities (Ali et al., 2025). The architecture of a Twinning System

that focuses on safety-monitoring will be different to a Twin for predictive maintenance.

Based on existing studies in the literature (Dalibor et al., 2022; Jones et al., 2020; Minerva

et al., 2020; Van der Valk et al., 2020; Wanasinghe et al., 2020), a non-exhaustive list of

requirements was created in the form of a Feature Tree (Kang & Lee, 2013; Paredis et al.,

2024). It classifies the most common goals for constructing TEs, and focuses on a set of

preliminary questions that system engineers should consider.

Stage B (Design (Conceptual) Architectures)
This stage helps in identifying which goals lead to which components, and which result-

ing conceptual (or functional) system architecture will be the result. Each goal leads to

4https://www.merriam-webster.com/dictionary/continuous

5https://www.merriam-webster.com/dictionary/continually

https://www.merriam-webster.com/dictionary/continuous
https://www.merriam-webster.com/dictionary/continually

6 CHAPTER 1. INTRODUCTION

PR
O

PER
TIES O

F IN
TER

EST
IN

 TH
E PR

O
B

LEM
 SPA

C
E

D
ESIG

N
(C

O
N

C
EPTU

A
L) A

R
C

H
ITEC

TU
R

ES
D

EPLO
YM

EN
T

G
oals

PoIs
C
ontext

Q
uality

W
O

R
K

FLO
W

A
B

C

C
H

O
O

SIN
G

 FO
R

M
A

LISM
S

B
U

ILD
IN

G
 TH

E M
O

D
EL

D

F
i
g
u

r
e

1
.
4
:

T
w

i
n

n
i
n

g
v
a
r
i
a
b
i
l
i
t
y

d
r
i
v
e
n

b
y

w
o
r
k
fl

o
w

s
.

1.3. ROADMAP 7

a single experiment, so a subset of goals will lead to a collection of experiments. These

experiments are conceptually separated, but may need to collaborate with each other. At

a high level, an orchestration unit may manage these experiments, do some reasoning,

store the data, etc.

Of course, this is still only at the conceptual level, and many experiments might need

to be combined. If all components are a so-called white box, introspection is possible,

and the combination of experiments can be done easily. When they are black box, more

complicated scenarios similar to co-simulation orchestration are needed.

Stage C (Choosing Formalisms / Building the Model(s))
The previous stage yielded a set of components and parts, including a description of how

they must be combined in an architecture. Using the Feature Trees, and a set of addi-

tional requirements, it is possible to select which formalisms (or languages) are the most

appropriate to implement the given requirements. Notice how the MPM methodology

shines through in this phase.

Once all the formalisms were selected, MBSE techniques can be used to create these

models. An Formalism Transformation Graph (FTG) can show how these are then

combined.

Stage D (Deployment)
Deployment is the concrete realization of a system on a hardware and software level. The

components are deployed on specific hardware, using predefined protocols. Networked

connections between components are constructed, such that the architectures from B

reappear here, albeit more specialized. There exist a plethora of possible technologies to

choose from, and system engineers can be informed by what is available to them and, if

possible, assisted in their choice.

MBSE often uses simulation to prototype a system, before it is deployed. This reduces

cost, workload, and manpower. We can use a similar approach here, where the deploy-

ment is done in simulation, and a deployment space exploration is performed. This was

done in Paredis and Vangheluwe (2024b) to verify which of the available technologies

would be the best fit for a system.

Eventually, the system can be realized.

1.3 Roadmap

Chapter 2 provides a short background to the techniques used for this thesis, mainly

focusing on the modelling tools and frameworks that were used. It also discusses how

DTs came to be and some of the current-day research on it.

The main idea behind the next chapters is visualized in Figure 1.4. Stages A , B , and

D are discussed respectively in Chapter 3, Chapter 4, Chapter 5. Here, Chapter 3 aims

to answer RQ1, and Chapter 4 answers RQ2. Stage C focuses on MBSE and MPM

techniques for creating (or reusing) models and their languages. This thesis will not

delve deeper into this stage, however some scientific contributions were also made on

this front, as discussed in Chapter 2. Chapter 3, Chapter 4, and Chapter 5 outline the

8 CHAPTER 1. INTRODUCTION

details for Figure 1.4 by focusing on a single goal and a single PoI. Chapter 6 on the

other hand focuses on multiple goals, and how to combine the previously discussed

techniques. The main focus here will be on expanding Chapter 4, yet all four stages will

be discussed. It therefore focuses around RQ5.

To illustrate the validity of this research and to experiment with, a simple Line Following

Robot (LFR) was constructed in Paredis and Vangheluwe (2021). Marah et al. (2023)

expands on this idea by placing it in the context of a shop-floor or warehouse. Chapter 7

delves deeper in the LFR models that were researched within the context of differential-

drive robots. It is applied to a simple LEGO robot, eventually resulting in a Digital

Shadow (as per Kritzinger et al. (2018)’s definition). Another application focuses on a

more industrial domain, as it creates a Twinning System with multiple experiments for

a TurtleBot use-case.

Additionally, Antwerp Systems and software Modelling (AnSyMo) was part of the

COOCK project “Smart Port 2025: improving and accelerating the operational efficiency of a
harbour ecosystem through the application of intelligent technologies”. Together with imec and

Department of Transport and Regional Economics (TPR) (at the University of Antwerp),

the Port of Antwerp-Bruges tasked us to construct an optimization process for their nau-

tical chain. Our contributions in this project mainly focus on simulation and animation.

As will be discussed in Chapter 8, this can be considered a twin as well. Information

provided by the domain experts at Port of Antwerp-Bruges and execution traces from

2022 allowed us to create a posthumous Twinning System.

Similar to the LFR, the Port of Antwerp-Bruges use-case will focus on two cases: (1)

the movement of vessels throughout the port, and (2) the behaviour of a 1D ship. This

latter case is simplified such that the deployment phase can be discussed in more detail,

including a simulation of the deployment (thus verifying its correctness). This provides

a proof-of-concept answer to RQ4.

The LFR use-case is vastly different from the Port of Antwerp-Bruges situation. Hence,

if we can apply the same techniques to the LFR as to the Port of Antwerp-Bruges, we

hypothesise that these techniques can also be applied anywhere in-between. This was

not verified. Similarly, the use-cases that lie outside of this range are left as an exercise to

the reader.

Chapter 7 and Chapter 8 not only show a proof-of-concept for each of the stages, they

also aim to answer RQ4 by following the presented workflow in detail. They contain

specific use-cases, but they can be generalized to other use-cases in other domains.

Finally, some concluding remarks and identifications for future work is presented in

Chapter 9.

“History does not repeat itself, but it does rhyme.”
– Mark Twain

Chapter 222
Background

This chapter provides a background for this thesis. It presents a number of concepts

and techniques that will be used to create a modelling foundation for the Twinning

Paradigm. Section 2.1 will outline the current state-of-the-art for DTs and Twinning

in general. More related work will be highlighted in future chapters, but this section

provides a basic understanding of what DTs are and how to use them. Next, Section 2.2

will introduce the MPM methodology that was briefly hinted at in the introduction.

MPM is a core concept in this thesis, as it allows us to focus on formalism-independent

solutions to Twinning problems. In Section 2.3, an overview of the general formalisms

that were used in this research will be provided. Using multiple formalisms for their

individual purposes shows the practical application of the MPM ideology. Finally, in

Section 2.4, the most common communication protocols for Twinning will be discussed.

Additionally, in Chapter 10, some additional concepts are also introduced, as well as

where some ideas of this work came from. This appendix contains some not too scientific

background information and thus is not an important part of this work, but is included

for completeness.

2.1 Digital Twins: State-of-the-Art

In 2001, the concept of Digital Twins (DTs) was born. Figure 2.1 was shown during

a presentation that focused on Product Lifecycle Management (PLM) in the aerospace

industry (Grieves & Vickers, 2017). PLM focuses on the trajectory of a company’s products

throughout their lifetime (Stark, 2022), which is massively helped with DTs.

data
Real Space

System under Study information
process

Virtual Space
Model

M1 M2 M3 Mn...

Figure 2.1: The “conceptual model for PLM”, adapted from Grieves and Vickers (2017).

9

10 CHAPTER 2. BACKGROUND

In essence, it combines a SuS with a virtual copy (i.e., a model) thereof, such that additional

analysis, optimization, and adaptation becomes available. The figure illustrates this by

showing a Real Space that transfers some data (commonly sensor and environmental

data) to a Virtual Space. This Virtual Space can then control and reply to the Real Space
by forwarding analysis information. Multiple instances of the Virtual Space can exist,

each of them allowing different kinds of analysis. The idea behind DTs is also known as

Symbiotic Simulation Systems (Aydt et al., 2008) Virtual Digital Fleet Leader (Glaessgen &

Stargel, 2012), Information Mirroring Model (Grieves, 2008), and Mirror Worlds (Gelernter,

1993), but Digital Twin is the common consensus since 2010 (M. Singh et al., 2021).

The Real Space is also referred to as Physical Shop-Floor (Tao & Zhang, 2017), Physical
Counterpart (Dalibor et al., 2022), Real Twin (El Saddik, 2018), Physical Object (Becker et al.,

2021; Kritzinger et al., 2018; Paredis & Vangheluwe, 2021), Physical Entity (Jones et al.,

2020; Negrin et al., 2021), Physical Twin (David et al., 2023), Twin of Interest (Diakité &

Traoré, 2023), or Actual System (Eramo et al., 2021; Tao et al., 2022), to name a few.

Whereas “Physical” often recurs here, this is not always the case. For instance, Heithoff

et al. (2023) aims to use DTs for sustainable software systems. And Rambow-Hoeschele

et al. (2018) builds a DT for business processes. Hence, a better name would be AO,

which combines the more general “Actual” with the “Object” term from Kritzinger et al.

(2018).

Similarly, the Virtual Space is also considered a Virtual Shop-Floor (Tao & Zhang, 2017), a

Digital Object (Becker et al., 2021; Kritzinger et al., 2018), a Logical Object (Minerva et al.,

2020), a Virtual Entity (Jones et al., 2020), or a Digital Twin (Bibow et al., 2020; Bolender

et al., 2021; Kibira et al., 2021; Madni et al., 2019; Tekinerdogan & Verdouw, 2020).

“Virtual” actually means “abstracted” (i.e., a model), but nowadays, it is more often used

as a synonym for “digital”. This is also how most of the above terminologies are usually

interpreted, but this is not necessarily the case: the model does not necessarily exist in

the digital space. The same can be said for this Virtual Space: there is no requirement

that the model exists only digitally. Tero et al. (2010) and Topuzoglu et al. (2019) discuss

how biological slime molds can be used to map out subway networks. Ferguson (2020)

discusses how an electromechanical system was used as a Virtual Entity1. Even so-called

Sand Tables (see Chapter 10) can technically be considered a Virtual Entity, even though

they are fully analog. Hence, the TO is introduced to also capture those particularities.

The word “twin” was chosen to avoid the virtual/digital confusion, and “object” for the

same reasoning as before. Whenever the TO is not in the digital domain, we can consider

the twin an Analog Twin (AT), as opposed to a DT.

2.1.1 Digital Twin Architectures

A common categorization of DT systems was done by Kritzinger et al. (2018), where most

notably the connection between the AO and the TO was analysed. This is visualized in

Figure 2.2. Whenever this connection is mainly manual, the authors suggest calling such

a system a Digital Model. Whenever the connection is automated from the AO to the

TO, allowing an automated transfer of sensor-data and environmental information, the

authors suggest using Digital Shadow. Finally, a Digital Twin appears if this connection

1Note that this might have had digital components, but did not really exist in a digital space.

2.1. DIGITAL TWINS: STATE-OF-THE-ART 11

is automated in both directions. Note that this connection will never be fully automatic.

For instance, a smart lightning system still needs a manual light bulb replacement.

Actual Object

Twin Object

Digital Model

Actual Object

Twin Object

Digital Shadow

Actual Object

Twin Object

Digital Twin

Automatic Data Flow Manual Data Flow

Actual Object

Twin Object

Digital Generator

Figure 2.2: Digital Model vs Digital Generator vs Digital Shadow vs Digital Twin

(Kritzinger et al., 2018; Tekinerdogan & Verdouw, 2020).

Tekinerdogan and Verdouw (2020) extends this categorization with a Digital Generator (i.e.,
the dual of the Digital Shadow – also pictured in Figure 2.2). David and Bork (2024) delve

deeper into this notion of automation and identify a Human-Actuated Digital Twin (i.e.,
a Digital Generator that requires the human to take the actions) and a Human-Supervised
Digital Twin (i.e., a DT that needs the human’s approval when steering the physical object).

While there are a plethora of different DT architectures (each of which focusing on

different aspects of the system), Tao and Zhang (2017)’s 5D architecture reappears the

most often. It is pictured in Figure 2.3. As the name describes, the architecture contains

five main components:

1. the Physical Shop-Floor (i.e., the AO);

2. the Virtual Shop-Floor (i.e., the TO);

3. the Shop-Floor Service System (i.e., the set of services or processes that compute,

visualize, yield, and store information about both AO and TO);

4. the Shop-Floor Digital Twin Data (i.e., an active database to maintain the current

execution of the overall system); and

5. all connections between these components.

In essence, this architecture highlights and separates the key components in a Twinning

system.

Other architectures mainly use the same separation of concerns. Madni et al. (2019) also

separates the architecture in a Digital Twin (in this context, the TO is meant), a Physical
Twin (i.e., the AO), some knowledge base as sole source of truth, and a set of so-called

services that are executed on the Twinning system. A similar separation is done by Llopis

et al. (2023), where a data lake is located between the AO and the TO. The set of services

is separated by the authors in service components (i.e., components that add functionality)

and analysis components (i.e., components that do some analysis). Lutters and Damgrave

(2019) identify the Digital System Reference, showing how DTs enable the creation of smart

products.

Other sources focus on the details of the TO itself. For instance, Bibow et al. (2020),

Bolender et al. (2021), and Tekinerdogan and Verdouw (2020) show the behaviour of

12 CHAPTER 2. BACKGROUND

data

Interaction and Mapping

Physical
Shop-Floor

data

Virtual
Shop-Floor

driving

driving

driving

Shop-Floor
Digital Twin Data

Interaction

Shop-Floor
Service System

data
Interaction

Iterative
Optimization

Iterative
Optim

ization Ite
ra

tiv
e

Op
tim

iza
tio

n

Figure 2.3: 5D architecture for Twinning (Tao & Zhang, 2017).

the TO as a MAPE-k loop. In Kibira et al. (2021), a separation of the entities inside the

TO is done, yielding a set of services or processes that need to be active for a valid TO

execution.

Notice that the architecture outline coincides with the identification of what exactly a

Digital Twin is. Bibow et al. (2020), Bolender et al. (2021), and Kibira et al. (2021) have

identified the Digital Twin as a synonym for the TO, as opposed to the whole system

(which is the definition used for this work). In fact, at RWTH Aachen, a different DT

definition is used. For them, the DT is the set of models of the system, a set of Digital
Shadows, and the set of services. They define a Digital Shadow as a “set of contextual
data traces and their aggregation and abstraction collected for a specific purpose with respect to
an original system” (Rumpe, 2021). In short, they identify a DT as being the full set of

models, their execution traces, and what happens with the models. A part of this relates

to our usage for TO. Notice as well the relationship with cognitive twins (Lu et al., 2020)

(i.e., twins where all extraneous information about the system is also stored).

2.1.2 Asset Administration Shell

The RAMI 4.0 proposed the Asset Administration Shell (AAS) as a concept (Hankel &

Rexroth, 2015). Nowadays, the AAS is widely recognized as a foundation for interoper-

ability (Ferko et al., 2024; Quadrini et al., 2023). In order to support Industry 4.0, the AAS

was designed as a standardized representation of an asset (Boss et al., 2020). It provides

an interoperable solution for capturing the essential information of assets (Ye et al., 2021).

The AAS is based on the notion that the data, models and meta-information encloses an

asset like a shell. It consists of a header and a body. The header describes the identification

of the asset, and the body consists of a number of submodels. Each submodel represents a

different aspect of the concerned system (i.e., a different view). These can be CAD models,

functional descriptions, algorithms. . . A complete description of the AAS metamodel can

2.2. MULTI-PARADIGM MODELLING 13

be found in Bader et al. (2022).

Note that this idea of the shell is highly similar to the cognitive twin, as well as the Digital
Shadow as defined by Rumpe (2021). The set of submodels in the body highly resonates

with the idea behind MPM.

In Oakes et al. (2021), a mapping is provided for DTs onto the AAS. Similarly, Ferko et al.

(2024) shows how DTs can benefit from the AAS. Cavalieri and Salafia (2020) discusses

how OPC UA fits with the concept of the AAS to provide an interoperable solution for

Industry 4.0, a sentiment confirmed by Quadrini et al. (2023). Kannoth et al. (2021) shows

how the AAS can be used practically through the Eclipse BaSyx middleware2.

2.1.3 Existing Tools and Frameworks

Due to its popularity, it stands to reason that there are a lot of tools and frameworks to

enable the creation of DTs. In fact, Hassan and Aggarwal (2023) indicates that most of

the literature is focused around creating these frameworks, often omitting the practical

implementation.

The Eclipse ecosystem provides multiple tools (i.e., Eclipse Hono3, Eclipse Ditto4, Eclipse

Vorto5, Eclipse BaSyx. . .) that work in conjunction when used for DTs. Siemens also

provides such a set of tools (e.g., Siemens Xcelerator6, Siemens Insights Hub7. . .). Alter-

natively, XMPro8, FlexSim9, and many other tools can be used to achieve the same.

Steindl et al. (2020) analysed the combination of AI techniques and DTs. Other papers

have focused on exact DT characteristics (El Saddik, 2018; Oakes et al., 2021), such that

tools can be implemented better.

This work will not propose a new tool. However, it will present a framework for Twinning,

based on the literature. It will make use of the identified characteristics, purposes,

architectures and deployment strategies.

2.2 Multi-Paradigm Modelling

In our current day and age, the complexity of software-intensive systems (Giese, 2006)

keeps increasing, up to the level of CPSs. CPSs emerge from the networking of multi-

physical (mechanical, electrical, hydraulic, bio-chemical, ...) and computational (control,

signal processing, logical inference, planning, ...) processes, often interacting with a

highly uncertain environment, including human actors, in a socio-economic context

(Carreira et al., 2020). It is the heterogeneity in views, components, abstractions and

2https://eclipse.dev/basyx/

3https://eclipse.dev/hono/

4https://eclipse.dev/ditto/

5https://eclipse.dev/vorto/

6https://xcelerator.siemens.com/global/en.html

7https://plm.sw.siemens.com/en-US/insights-hub/

8https://xmpro.com/

9https://www.flexsim.com/

https://eclipse.dev/basyx/
https://eclipse.dev/hono/
https://eclipse.dev/ditto/
https://eclipse.dev/vorto/
https://xcelerator.siemens.com/global/en.html
https://plm.sw.siemens.com/en-US/insights-hub/
https://xmpro.com/
https://www.flexsim.com/

14 CHAPTER 2. BACKGROUND

their many inter-relationships, in combination with the many stakeholders from different

domains, collaboratively designing such systems, that contribute to their complexity. For

instance, planes run on approximately 6 million lines of code, whereas modern cars have

over 100 million lines of code (Charette, 2009)10. This code steers the overall execution of

the system, receives and handles sensor information, and sends control signals to engines

and other actuators, whilst at the same time maintaining the legal (and physical) safety

requirements and playing the music you selected.

All this code is too complex and too vast to maintain. M&S is an important enabler in the

construction of such complex systems. MBSE focuses on modelling within the scope of

Systems Engineering, where models are seen as first-class concepts in the development

process. Starting from an initial set of goals, Systems Engineering carries out a number

of activities (manual or automated) to achieve these goals. The combination of these

activities is called the workflow or life-cycle. It can be explicitly modelled in a Process

Model (PM), in an appropriate modelling language such as UML Activity Diagrams

(Object Management Group, 2017). Russell et al. (2016) discuss a set of workflow patterns

which are useful when designing a PM.

While each model corresponds to a formalism, there is no “one formalism to rule them all”.

In essence, each formalism has its own advantages and caveats, and a selection of the most

appropriate ones will be advantageous for any project. This is the idea behind MPM:

model every aspect and part of a system explicitly using the most appropriate formalisms,

most appropriate views, most appropriate tools. . . (Mosterman & Vangheluwe, 2004).

To help realize MPM, Mustafiz et al. (2012) introduced the Formalism Transformation

Graph and Process Model (FTG+PM) – a framework for MBSE in which a PM is combined

with a FTG, i.e., a “map” of all artifact types (also known as meta-models) and activity

types (in the form of contracts) and how they are related. Lúcio et al. (2012) show how

the FTG+PM can be used to reason about all models and modelling languages required

for the valid execution of a power window.

In its 2035 vision for Systems Engineering, the International Council on Systems En-

gineering (INCOSE 2021) describes the critical role MBSE plays in tackling increasing

system complexity, mainly when supported by toolchains (Ma et al., 2022). It also states

the importance of integrated analysis in a broad set of system domains. We believe that

MPM can help realize INCOSE’s 2035 vision. DTs are already used by system engineers

to create complex systems, but they can benefit from guidance in the choice of modelling

formalisms and workflows, as provided by MPM.

2.2.1 Language Combinations

Given that we now know to use multiple formalisms to model a certain system, the

main question that remains is how these can be combined and executed such that their

semantics remains the same. Multiple solutions for this problem exist, but this section will

focus on the three that were used during this research. For instance, Denil et al. (2012)

shows how numerous formalisms can be used and combined for the valid execution of a

power window in a car.

10These numbers from 2009 might be dwarfed by the current systems.

2.2. MULTI-PARADIGM MODELLING 15

2.2.1.1 Formalism Transformations and Translations

The most common approach in combining languages is via a model transformation onto

the same base language (Czarnecki, Helsen, et al., 2003). A few common base languages

to translate to are Discrete EVent system Specification (DEVS), SysML, Timed Finite State

Automata (TFSA), Petri-Nets, Ordinary Differential Equations (ODEs), but others are

used as well.

Borland and Vangheluwe (2003) and Shaikh and Vangheluwe (2011) have attempted to

translate Statecharts onto DEVS. In Paredis et al. (2020), we have shown a similar approach

for General Purpose Simulation System (GPSS). Sanz et al. (2007) provided a mapping

for SIMAN/Arena blocks by encoding the logic in Modelica. In order to provide discrete

event simulation for SysML blocks, a translation onto DEVS was introduced in Kapos

et al. (2014). Commonly, safety analysis is done via translating onto Petri-Nets (Choppy

et al., 2011; Meyers et al., 2014).

A lot of the discussed translations focus on a mapping onto the DEVS formalism. In

Vangheluwe (2000), Figure 2.4 was introduced to show that DEVS can be used as a

“common denominator” and assembly language to which many other discrete-event

modelling languages can be mapped. This figure is considered a FTG, but more ac-

curately a Formalism Relationship Graph. It represents which discrete-event translations

(hypothetically) exist. As can be seen, DEVS is the basis language that can be used for

translations.

PDE

KTG

DAE non-causal set

Bond Graph a-causal

Bond Graph causal

DAE causal set

scheduling-hybrid-DAE

Cellular Automata

Petri-Nets

Process Interaction
Discrete-Event

3 Phase Approach
Discrete-Event

Event Scheduling
Discrete-Event

System Dynamics

Transfer Function

DEVS&DESS
DEVS

Difference Equations

Statecharts

Activity Scanning
Discrete-Event

Timed Automata

DAE causal sequence (sorted)

state trajectory data (observation frame)

Figure 2.4: The original FTG, adapted from Vangheluwe (2000).

16 CHAPTER 2. BACKGROUND

2.2.1.2 Embedding

Another way of combining multiple languages is via embedding, or another hybrid combi-

nation of the simulators. Bergero and Kofman (2011) shows how hybrid system modelling

can be done in DEVS and D’Abreu and Wainer (2005) introduces M/CD++ for modelling

and simulating continuous and hybrid systems, based on Modelica and DEVS. We have

embedded CBD in TFSA (and DEVS) in Paredis, Denil, and Vangheluwe (2021).

2.2.1.3 Co-Simulation

Instead of trying to force a formalism onto another, or trying to merge the semantics, the

idea behind co-simulation is that all formalisms are standalone and will have their own

simulator. For each simulator, the interface is known to a common Orchestrator. This

Orchestrator will get the task of instructing the simulators in the right order and at the

right times, whilst also needing to transfer all inputs and outputs correctly.

Camus et al. (2018) developed MECSYCO, a co-simulation middleware that also pro-

vides a mapping onto DEVS (using co-simulation, instead of a hybrid or translational

approach). The most common tool for co-simulation is using Functional Mock-Up Units

(FMUs) (see also Section 2.3.3).

2.2.2 FTG+PM

The Formalism Transformation Graph and Process Model (FTG+PM) consists of an For-

malism Transformation Graph (FTG) and a Process Model (PM) (Mustafiz et al., 2012).

The FTG is a hypergraph that links languages by defining the relations and transforma-

tions between them. The ways in which models are related and combined through both

human and computer-based activities is made explicit using PMs (or workflow models).

The PM is a UML Activity Diagram which describes the ordering of activities (control

flow) as well as their input and output artifacts (data flow). Individual activities are

typed by transformations in the FTG.

An example PM is shown in Figure 2.5. Each activity is represented with a rountangle and

it describes the activity name and its type. Additionally, there can be inputs and outputs

for control flow (as indicated with the blue triangles), or data flow (green triangles).

Bold blue arrows are be used to indicate the direction of the control flow, and slim green

arrows for the data flow. Green rectangles denote the artifacts that are consumed and

produced by activities.

An activity may be hierarchically refined, which will be denoted with a hierarchy symbol

(ú) in the top right, as can be seen in the decomp: SystemDecomposition activity.

When they’re automated (i.e., computer-based), we will give the activity a yellow back-

ground and we will add a gear symbol (Ó) in the top left.

In Paredis et al. (2022), an expansion to the FTG+PM was presented. For each model

used in the FTG, a corresponding meta-model (i.e., a linguistic type model) should also

be present. These meta-models also determine how to Create, Read, Update, or Delete

2.3. MODELLING FORMALISMS 17

system_decomposition
: System Decomposition dout

din

cout

cin1

requirements :
Requirements

system_design :
MCD

...

plant_mdl
: Plant Modelling

cin

cout

plant_eqs :
Equations

eqs

cbd

ctrl_mdl
: Controller Modelling

cin

cout cbd

alg

plant_model :
CBD

ctrl_alg :
Algorithm

ctrl_model :
CBD

...

cin2

Figure 2.5: An example PM.

instances and artifacts. On the other hand, a Process Trace should be added to the

FTG+PM. The Process Trace shows a single execution of the PM, including all timing

information and parallelization specifics. This Process Trace contains all information

about past executed activities and (versions of) generated artifacts. A Process Trace can

be traced back to the PM it is an enactment of. Furthermore, a Process Trace model is

append-only: added elements become immutable and as such provide an archival record

that can be analysed or mined. It will therefore always give the same analysis results,

even if the PM evolves (also in an append-only fashion).

Another extension to the FTG+PM framework is the ability to point to stored files for

meta-models, versioned artifacts, service versions for executed activities, and physical

locations for real-world artifacts (such as a built robot). This will be referred to as

(physical) Storage/Service/Real-World Artifacts. Explicitly storing this information next

to the Process Trace allows a clear, permanent introspection of all required components,

such that the decisions made can be revisited and recalled later.

As a whole, this FTG+PM expansion allows for a lot of querying possibilities and intro-

spection in the overall system creation or maintenance. On a high-level, it is possible to

see relationships between models, but on a lower level, fine-grained traceability can be

executed to answer questions such as “where does this column in my table come from?”

2.3 Modelling Formalisms

To show the applicability of this research, multiple modelling formalisms will be used.

These are not new innovations for this research, but rather a selection based upon the

18 CHAPTER 2. BACKGROUND

MPM methodology, as applied to this work. Note that other formalisms can also be used

to solve the presented problems in later chapters. As will be discussed in Chapter 5, the

choice of formalism is independent of the developed foundation and is, in fact, another

point of variability. This section focuses on Feature Trees, Causal-Block Diagrams (CBDs),

FMUs and DEVS as the basic formalisms in this thesis.

2.3.1 Feature Trees

It is common for multiple variants of a product to exist. These variants share some common
features but do vary in others. In the automotive industry for example, it is common for

every sold car to be (often subtly) different due to small differences in features. Such

variants can often be seen as different configurations.

Feature Modelling (Kang et al., 1990) is widely accepted as a way to explicitly model

variability. One possible representation to capture variability in a product family is by

means of a Feature Tree (also known as a Feature Model or Feature Diagram). It is a

hierarchical diagram that depicts the features that characterize a product in groups of

increasing levels of detail. At each level, constraints in a Feature Tree model indicate

which features are mandatory and which are optional. Traversing a Feature Tree from

its root to the right11, features are selected conforming to the constraints encode in the

Feature Tree model. This leads to a configuration (feature selection) which uniquely

identifies an element of the product family. Note that Feature Trees are not the only

way to model product families. Wizards can be used to traverse a decision tree and, in

case the variability is mostly structural, custom Domain-Specific Languages may be used

(Czarnecki, 2004).

In Figure 2.6, a small, example Feature Tree is shown in order to explain the syntax used

in this thesis. The Feature Tree illustrates 4 different ways of visualizing information: 2D
Animation, Live Plots, 3D Animation, and Augmented Reality (AR)/Virtual Reality (VR)/Mixed
Reality (XR).

Visualization

2D Animation

3D Animation

Mixed Reality
AR / VR / XR

Live Plots

Figure 2.6: Example Feature Tree.

In this example, we assume 2D Animation is a mandatory aspect if we want to visualize.

This is denoted with the filled circle. Both 3D Animation and AR/VR/XR are optional

visualizations, as denoted with the open circle. However, AR/VR/XR implies the need

for 3D Animation, which is denoted with the full arrow. Throughout this thesis, the

decision on whether or not an aspect is mandatory or optional is the result of a personal

11Or downwards, if the tree is oriented differently.

2.3. MODELLING FORMALISMS 19

(and thus biased) analysis of the literature. These therefore can be changed, and are

highly prone to errors.

The red dotted line with a filled circle is a custom notation for this work and indicates that,

ideally, an aspect (like Live Plots) is mandatory, but most of the literature ignores their

importance. In other words: based on the literature, these should be marked optional,

but when thinking critically, these should be mandatory. The striped arrow identifies

that 2D Animation might rely on Live Plots in some instances.

2.3.2 Causal-Block Diagrams

One of the simplest ways to represent a system of multiple interacting components is

to use boxes and arrows. They can be used for many purposes; from schematic system

overview to electrical circuit modelling (Åström et al., 1998). To tackle complexity, blocks

can be nested in hierarchical structures. One specialization of such structures are Causal-

Block Diagrams (CBDs) (Gomes et al., 2020).

The arrows denote signals and the boxes represent mathematical operations over the

input signals, producing an output signal. The denotational semantics of a CBD with

continuous time base (R) is the corresponding set of Algebraic, Ordinary Differential,

or Differential Algebraic Equations (and ultimately, the signals, continuous functions of

time, that satisfy the constraints imposed by these equations). As such, ODEs and CBDs

can be transformed into each other without loss of information.

In their simplest form, Algebraic CBDs consist of blocks that represent algebraic compu-

tations. There is no immediate notion of time and simple systems of algebraic equations

can be represented.

By introducing a discrete notion of time, Discrete-Time CBDs can represent time-varying

dynamics. Their simulation computes, at each discrete time, the value of the output of

each block, based on the values of its inputs. The order in which blocks are traversed

is determined on their dependencies. All blocks’ outputs are computed at the same

(simulated) time as their inputs, with the exception of the Delay Block, which produces

on its output the value of its input at the previous discrete time.

The semantics of Continuous-Time CBD models is given by ODEs. Therefore, they are

widely used to model the behaviour of physical systems. Continuous-Time CBDs are

solved numerically through time-discretization which yields an approximation in the

form of a Discrete-Time CBD. In the limit, for the discretization time-step Δ𝑡 tending to

0, the approximation converges to the exact solution of the ODEs.

2.3.2.1 CBD Simulation

To simulate a discretized CBD model, two nested loops are used. In the outer loop, a

stepping variable 𝑘 is started at 0 and increased for every iteration of the loop. In-between

𝑘 and 𝑘 + 1, a time-delay ℎ𝑘 ∈ R is used to advance the simulated time. The simulation

finishes when some termination condition (a function of current simulation time

∑𝑘
𝑖=0

𝑘𝑖
and the state variables) becomes true. When ℎ𝑘 is independent of 𝑘, the simulation is said

20 CHAPTER 2. BACKGROUND

to have a fixed step size. The smaller ℎ𝑘 , the better the numerical simulation results will

approximate the continuous solution. Adaptive step size algorithms vary ℎ𝑘 throughout the

simulation, to keep the stepwize approximation error within given bounds. A commonly

used adaptive step size discretization is Runge-Kutta-Fehlberg of 4th and 5th order

(RKF45). The difference between the fourth and fifth order approximations is used as an

estimate for the stepwize error, such that ℎ𝑘 can be varied.

The inner loop focuses on the computation of an output signal for a given iteration 𝑘.
Here, a schedule is defined, determining the order in which the blocks of the model will

be traversed. This schedule is typically based on the topological order of the dependency
graph of the model, making sure a block is only visited once all its dependencies have

been computed. Each block has their own definition of what this “computation” may

entail. For instance, the adder block will output the sum of all its inputs.

An algebraic loop occurs when there is a cycle in the dependency graph. The strong
components, i.e., all blocks belonging the algebraic loop, should therefore be computed as

a whole. It’s possible to distinguish two methods for solving a strong component:

1. The blocks are converted to a system of equations, such that a (non-)linear solver

is able to find a solution for the system. For instance, when these equations are all

linear, the Gauss-Jordan Elimination algorithm can be used.

2. Tearing the algebraic loop. Some connections in the strong component are broken

and replaced by initial guesses for the values that are supposed to be signaled over

the connection. When this torn loop has found a solution, the initial guesses are

replaced by this solution and the loop is computed again. This small algorithm is

executed until convergence.

In Figure 2.7, a simple CBD model is shown, representing the algebraic equation 𝑥 = 7𝑥−3.

The inner loop will compute 7, 3 and the negation of 3 (= −3), before arriving at the

algebraic loop containing the Product block and the Adder block. As the equation is

linear, Gauss-Jordan Elimination can be used to find 𝑥 = 0.5.

7 OUT1 ∏ OUT1
IN1

IN2

∑ OUT1
IN1

IN2

3 OUT1 - OUT1IN1

Figure 2.7: Simple CBD model with an algebraic loop.

2.3.3 Functional Mock-Up Units

Multiple formalisms may need to be combined or simulated at the same time. One way

of doing this is by using co-simulation, in which an orchestrator manages interaction

2.3. MODELLING FORMALISMS 21

between multiple formalisms. The industrial standard for co-simulation is the Functional

Mock-Up Interface (FMI). A single instance is called a Functional Mock-Up Unit (FMU).

An FMU is a simple ZIP archive, which consists of the following files and folders:

modelDescription.xml An XML document that describes all the exposed components

of the FMU, as well as the default simulation setup.

sources A folder with an optional set of source files, written in C. They narrowly follow

the FMI specification to ensure a valid execution. If desired, they can be omitted

from the FMU, if there are binaries present instead.

binaries A folder with the set of executables of the FMU. Can be bundled for any

operating system, so sharing FMUs can happen easily.

Other files or folders may be present, but are not of core importance in an FMU. The

interface allows for co-simulation (used for the coupling of simulation tools, and the

coupling of subsystem models), model exchange (exposes an ODE to an external solver

of an importer; the integration algorithm is responsible for advancing time, setting

states, handling events), or scheduled execution12 (allows coupling several FMUs with

one, external scheduler).

2.3.4 DEVS

Discrete EVent system Specification (DEVS) (Zeigler et al., 2018) is a modular discrete-

event formalism introduced by Bernard Zeigler in the ’70s. It consists of basic compo-

nents, called atomic DEVS, which have the following structure: ⟨𝑋,𝑌, 𝑆, 𝛿𝑖𝑛𝑡 , 𝛿𝑒𝑥𝑡 ,𝜆, 𝑡𝑎⟩.
Here, the input set𝑋 denotes the set of admissible input events of the model and output set
𝑌 denotes the same for the output events. When properly structured, 𝑋 and 𝑌 describe a

collection of ports through which a model sends or receives events. 𝑆 is the sequential state
set and indicates the set of sequential states of the model. The internal transition function
𝛿𝑖𝑛𝑡 : 𝑆→ 𝑆 specifies the state the system transitions to after 𝑡𝑎 time, unless interrupted

before. The time advance function 𝑡𝑎 : 𝑆 → R+
0,+∞ specifies how long the system remains

in a state, before 𝛿𝑖𝑛𝑡 takes it to the next sequential state. Prior to the application of 𝛿𝑖𝑛𝑡 ,
the output function 𝜆 : 𝑆→ 𝑌 is called, specifying the output event that is to be produced.

The external transition function 𝛿𝑒𝑥𝑡 : 𝑄 × 𝑋 → 𝑆, where 𝑄 = {(𝑠, 𝑒)|𝑠 ∈ 𝑆, 0 ≤ 𝑒 ≤ 𝑡𝑎(𝑠)}
is called when an external input (i.e., an interrupt) arrives.

Multiple DEVS models can be combined into a network structure. Such a coupled DEVS
is fully characterized by Δ = ⟨𝑋Δ , 𝑌Δ 𝐷, 𝑀𝑖 , 𝐼𝑖 , 𝑍𝑖 , 𝑗 , 𝑠𝑒 𝑙𝑒𝑐𝑡⟩. Similar to atomic DEVS, 𝑋Δ

and 𝑌Δ denote the in- and output sets of the network. The set of component references is

denoted by 𝐷, where 𝑀𝑖 identifies the DEVS model component 𝑖 ,∀𝑖 ∈ 𝐷. 𝐼𝑖 is the set
of influencees of component 𝑖 ,∀𝑖 ∈ 𝐷 ∪ {Δ} (with 𝑖 ∉ 𝐼𝑖). 𝐼 fully specifies the connection

topology of a coupled model. The transfer function 𝑍𝑖 , 𝑗 is defined ∀𝑖 ∈ 𝐷 ∪ {Δ}, 𝑗 ∈ 𝐼𝑖 as

𝑍Δ, 𝑗 : 𝑋Δ → 𝑋𝑗 ; 𝑍𝑖 ,Δ: 𝑌𝑖 → 𝑌Δ; and 𝑍𝑖 , 𝑗 : 𝑌𝑖 → 𝑋𝑗 . It serves to translate events as they

travel along network connections. Finally, the select function (𝑠𝑒𝑙𝑒𝑐𝑡 : 2
𝐷 → 𝐷) allows

the selection of a single component 𝑖 ∈ 𝐷 when multiple models in the network are

12New in FMI version 3.

22 CHAPTER 2. BACKGROUND

simultaneously imminent (i.e., they are due to transition at the same time). As DEVS is

closed under coupling, coupled DEVS models may be nested to any arbitrary depth.

An abstract simulator for DEVS is described in Muzy and Nutaro (2005). Tools such as

PythonPDEVS (Van Tendeloo & Vangheluwe, 2015) and adevs (Nutaro, 2015) implement

these semantics. A simulation step in the algorithm for the classic version of DEVS, as

implemented by these tools, can be summarized as follows:

1. compute the set of atomic DEVS models whose internal transitions are scheduled

to fire (imminent components);

2. select one imminent component with the select tie-breaking function;

3. execute the imminent component’s output function, generating an output event;

4. route events from sending components to receiving components;

5. determine the type of transition to execute for each atomic DEVS model, depending

on it being imminent or receiving input;

6. execute, in parallel, all enabled internal and external transition functions;

7. compute, for each atomic DEVS model, the time of its next internal transition.

Autodesk imagined DesignDEVS (Goldstein et al., 2016), which would allow for mod-

elling in DEVS for non-experts in simulation formalisms. The presented Graphical User

Interface and approaches ensure that programmers can focus on the behaviour, instead

of the formalism specifics (Maleki et al., 2015). Unfortunately, this tool was never actually

realized.

The applicability of DEVS, the vast number of possibilities, the presented tooling, and the

already existing set of transformations of other modelling languages onto DEVS, makes

it stand out as a useful “assemby” language for other formalisms. Vangheluwe (2000)

even showed that DEVS can be used as a common denominator for both continuous-time

and discrete-event languages.

2.3.5 Deployment Diagrams

Deployment Diagrams model the physical architecture of a system. They illustrate how

software is deployed on hardware components, capturing the relationships between soft-

ware artifacts, such as applications, Operating System, or components, and the physical

resources they run on, such as servers, nodes, or devices. Additionally, the communica-

tion paths between them are also considered.

They are commonly represented with hierarchical boxes, layered on top of each other.

The connections are represented with solid lines and striped arrows. The solid lines

identify which components are connected together (either wired, wireless, or due to

being on the same device). The arrows indicate which components communicate to each

other.

2.4. COMMUNICATION PROTOCOLS 23

2.4 Communication Protocols

An important aspect in highly complex CPSs is the inter-communication between com-

ponents. For DTs, this will also be very important. This section will describe the most

prominent communication protocols used within the context of DTs.

2.4.1 MQTT

MQTT13 is an OASIS standard messaging protocol, specifically for IoT systems. It has a

publish-subscribe architecture that allows communication using minimal network band-

width.

The network consists of a series of MQTT clients that are connected through a message

broker. When a client publishes a message to a specific topic, the broker ensures that

all clients that are listening to that topic receive the message. The receiving clients are

considered subscribers of that topic. Each client has its own unique name and must be

connected to a broker to publish or receive data. Whenever a publishing client disconnects

due to a network outage, a last will message will be used to notify all subscribers.

Eclipse Mosquitto14 or EMQX15 will be used as a (localhost) message broker throughout

this research.

2.4.2 DDS

The Data Distribution Service (DDS)16 is a real-time middleware for high-performance

machine-to-machine communication, using a publish-subscribe pattern. It is used in a

lot of CPSs, robotics, and IoT systems.

In a network, there are nodes that publish samples over custom topics. Other nodes are

subscribes to these topics, and they receive these samples. This happens decentralized:

i.e., peer-to-peer, without the need for a message broker.

Whereas both MQTT and DDS are publish-subscribe standards, they are not the same.

MQTT is optimized for data centrality and DDS is optimized for distributed processing.

2.4.3 OPC UA

In the manufacturing domain, OPC UA17 is a commonly used protocol that allows for

cross-platform data exchange. It is structured like a service-oriented architecture. Note

that OPC UA is a standard, and not a middleware (like DDS or MQTT), nor a protocol

13https://mqtt.org/

14https://mosquitto.org/

15https://www.emqx.com/en

16https://www.dds-foundation.org/

17https://opcfoundation.org/about/opc-technologies/opc-ua/

https://mqtt.org/
https://mosquitto.org/
https://www.emqx.com/en
https://www.dds-foundation.org/
https://opcfoundation.org/about/opc-technologies/opc-ua/

24 CHAPTER 2. BACKGROUND

(like TCP/IP). This means that OPC UA can function on top of TCP/IP and MQTT (among

others).

At the core, there is the client-server model. The server manages so-called objects that

are hierarchically created in a tree-like structure. When the object represents a variable,

a value is associated to the object. Clients can read or write a value to specific objects.

Besides this client-server model, there is also a publish-subscribe alternative. This has

been optimized for many-to-many communications and may be inefficient for peer-to-

peer communication.

The RAMI 4.0 (Hankel & Rexroth, 2015) recommends to use OPC UA as a communication

layer. As a consequence, products are only considered Industry 4.0-enabled if they are

OPC UA capable (Ho, 2023).

2.4.4 ROS 2

The Robot Operating System (ROS)18 is more than just a communication protocol. It is

a set of (open-source) software libraries and tools that allow for a good communication

between different robotic machines, ensuring a seemless coordination between sensors,

actuators and software. The current ROS 2 distro is Iron Irwini, and the latest long-term

support Jazzy Jalisco19. Yet, for this research the Humble Hawksbill or even the Foxy Fitzroy
distro were used.

Behind the scenes, ROS 2 uses DDS as its middleware. Hence, all communication happens

via a decentralized publish-susbcribe protocol. The messages that are communicated can

be recorded using ROS bag files or logs for easy testing, training and quality assurance.

While ROS has a lot to offer, within this work, we will mainly be using the communication

capabilities. As Open Robotics describes in their introduction video for ROS: “With ROS,
you can work with a simulated robot, instead of the real thing.” This clearly paves the way

towards DTs.

18https://www.ros.org/

19This is the case at the time of writing – January 2025.

https://www.ros.org/

“To be or not to be – that’s the question.”
– William Shakespeare, Hamlet

Chapter 333
Goals: To Twin or Not To Twin

Given the overwhelming amount of literature on DTs, researchers have started to study

and chart the purposes and methodologies used in the engineering of Twins. Dalibor

et al. (2022) presents a large systematic mapping study and in Van der Valk et al. (2020),

a taxonomy of DTs is constructed, based on 8 different dimensions. Jones et al. (2020)

and Kritzinger et al. (2018) mainly focus on the specific kinds of architectures they have

encountered. Wanasinghe et al. (2020) made a set of business-specific classifications; and

Lim et al. (2020) and Minerva et al. (2020) mainly discuss the kinds of technology and

deployment.

To manage the often vast collection of variants, the notion of a product family is used.

Kang and Lee (2013) separate the Variability Space in a Problem Space and a Solution Space,
as shown in Figure 3.1.

Variability Space (Different Viewpoints)

Problem Space

Goal / Objective

Usage Context

Quality Assurance

Solution Space

Capability

Operating
Environment

Design Feature

Real World
Problem

Artifact Space

Product Line Asset

Subsystem
Architecture

Process
Architecture

Deployment
Architecture

Module Architecture
and Components

Space Variability
Category

Artifact
Category Drive Mapped To Implemented By

Figure 3.1: Variability Modelling Space, adapted from Kang and Lee (2013).

The variability in the Problem Space is broken down into variability of Goals and Objectives,
the Usage Context and the Quality Assurance of the products. Variability in the Solution
Space breaks down into variability in the Capabilities, the Operating Environment and

25

26 CHAPTER 3. GOALS: TO TWIN OR NOT TO TWIN

the Design Features of a solution to the problem. The Capabilities define all different

actors and their uses in a system. Goals and Objectives drive the Capabilities and quality

attributes to be used in Quality Assurance. The results applicable in the Solution Space can

be realized in an Artifact Space, that contains all architectures, workflows, deployment

options, modules and components to be used in the realization (often deployment in the

context of software) of the solution to the problem.

As indicated by the Drive, Mapped To and Implemented By arrows in the figure, there is

a natural flow from a Real World Problem to a solution, by making choices in each of the

variability sub-components. Based on these choices, the transformations indicated by

the arrows can be partially automated. This flow is called a (Software) Product Line in the

context of Generative Product Development (Czarnecki et al., 2002).

Using Dalibor et al. (2022)’s categorization as a starting point, also incorporating insights

from other related research (including our own), a new, non-exhaustive, detailed set

of aspects was constructed that relate to any number of Twinning systems. This set is

categorized according to Kang and Lee (2013)’s Problem Space separation and presented

throughout this chapter using Feature Trees.

3.1 Properties of Interest

Before delving into the exact categorization, it is important to remark the importance of

specific PoIs that exist in parallel to the detailed set of aspects presented later. These PoIs

are attributes (or descriptors) of an artifact that are either logical (i.e., a car has wheels)

or numerical (i.e., a bicycle has 2 wheels). They can be computed (or derived) from other

artifacts, or specified (i.e., defined by a user) (Qamar & Paredis, 2012). These PoIs describe

the specifics of the goals that will solve the problem.

For instance, is the focus on the energy efficiency, or on accuracy? Is the focus on the

power consumption, or the overall operating cost? This will also have an impact on how

the Twin should be constructed.

3.2 Goals, Purposes, and Objectives

First, let us discuss the goals, objectives and purposes w.r.t. (a set of) PoIs. These are

generally goals that focus on the SuS, also known as digital twin capabilities (Ali et al.,

2025). In essence, the SuS is the essential, central component that is to be analysed.

Figure 3.2 shows a non-exhaustive feature tree for this section.

3.2.1 Design

Many literature studies and taxonomies highlight that some twins are created before the

actual SuS. This is either used for Virtual Prototyping (Poppe et al., 2019) to quickly analyse

and verify a prototype version, or as a more iterative approach. This is called Variation

3.2. GOALS, PURPOSES, AND OBJECTIVES 27

Goal
Purpose

Design
Virtual Proptotyping

Variation Analysis
Design Space Exploration

Operation

Data Allocation

Memorization

Data Recording

Knowledge Collection

Data Processing
Data Analysis

Verification & Validation
Consistency Monitoring

State Estimation

Behaviour Prediction
Process Prediction

What-If Simulation
Forecasting

Anomaly Detection
Fault Detection

Fault Diagnosis

Modification Optimalization

Self-*

Control

Visualization

Static Visualization
Console

Dashboard

Dynamic Visualization

2D Animation
Live Plots

3D Animation

Mixed Reality
AR / VR / XR

Maintenance

Predictive Maintenance

Fatigue Testing
Damage Evaluation

Lifecycle Management

Fault Tolerance

Figure 3.2: Feature Tree for the Goals of a Twin

Analysis (Wang et al., 2018) or Design-Space Exploration and it allows engineers to explore

any number of variations to check their accuracy w.r.t. some PoI. While these techniques

may help and enable twinning, in essence, they are normal MBSE techniques that apply

to any SuS (and not just Twins).

3.2.2 Operation

Most purposes for creating a Twin have to do with the operation (i.e., the at-runtime

execution) of the overall system. We can consider a few sub-categories.

Data Allocation / Persistence In order for a Twin to work, data needs to be allocated

from the AO during its lifetime. Some twins only use memorization (e.g., only keeping track

of the current runtime information) (Santillán Martínez, 2019; A. Sharma et al., 2022).

Memorization should be present for any Twin, otherwise it cannot be kept equivalent

to the SuS. The next step is to actually record data for a longer period of time (Brockhoff

28 CHAPTER 3. GOALS: TO TWIN OR NOT TO TWIN

et al., 2021). This maintains historical data and is able to make decisions based on what

happened in the past. According to Padovano et al. (2018), a Twin becomes “intelligent”

as soon as we also maintain the context in which the data was obtained. This knowledge
collection enables inferencing and reasoning on past decisions in order to optimize future

decisions.

Data Processing / Analysis The data that was obtained from the AO can be processed

and analysed in order to gain more insights into the system state (for both the AO and

the TO). The most simplistic analysis is validation. Here, it is verified that the AO and the

TO are accurate and represent the same kind of system (Grinshpun et al., 2016; P. Sharma

et al., 2018). All models should be validly calibrated before their use, so in essence,

validation should already be present in any twin. Based on historical data, we might also

do state estimation in order to try and predict future situations (González et al., 2020).

Some twins monitor the data in order to identify things that may have gone wrong. The

most famously used is anomaly detection (Verriet, 2019; Yacob et al., 2019), where we just

identify a drift between the AO and the TO. Based on this drift, fault diagnosis can be

started to identify the reason thereof (Gonzalez et al., 2019; Jain et al., 2020; Verriet, 2019).

Here, it can be detected that the AO’s health might have decreased (González et al., 2019),

or that some process parameters are throwing a spanner in the works (Brockhoff et al.,

2021).

Forecasting We can go to the next level by also doing forecasting (Gockel et al., 2012;

Kosicka et al., 2017). A common approach here is behaviour or process prediction (Brockhoff

et al., 2021). Mainly using knowledge about the models and current state, we will predict

a future for the system. What-If Simulation is also a common technique that is used to

both explain (Rivera et al., 2022) and predict (Flammini, 2021) situations in the system.

Modification According to Kritzinger et al. (2018), we can only call DTs “Twins” if there

is a control signal from the TO to the AO. In essence, this is where the power of DTs comes

from: having an external process update, optimize or control the AO. The modification

could be used to solve self-adaptation (Bolender et al., 2021; Oreizy et al., 1999; Weyns

et al., 2010), self-control (Graessler & Poehler, 2018), self-healing (X. Feng et al., 2023),

self-reconfiguration (Müller et al., 2021), self-learning (Moya et al., 2020) . . .

3.2.3 Visualization

Most twins have a visual representation, such that a user is able to easily discern the

current state of the system and make decisions based on this. While this visualization

may be just that (i.e., read-only), there could also be a set of controls for a user to make

decisions (i.e., read-and-write).

Console / Dashboard A console is a text-based tool that either logs the current state, or

allows you to browse this state (Lutters & Damgrave, 2019). A dashboard (also known

3.3. QUALITY ASSURANCE 29

as a Digital Cockpit (Brockhoff et al., 2021)) is commonly a Graphical User Interface that

provides the same information, but in a more user-friendly manner. Dashboards may

include plots, figures, tables and potentially a runtime debugger of the TO.

Animation Many systems also show a graphical animation of the current state of the

system. This may be in two dimensions (2D), using a plot (H. Feng et al., 2021), or a map

(Paredis & Vangheluwe, 2021); or in three dimensions (3D) in a virtual world (Höpfner

et al., 2021). 3D animations are commonly combined with AR, VR or XR approaches

(El Saddik, 2018; Utzig et al., 2019).

3.2.4 Maintenance

A Twin evolves over time. Similar to real-world CPSs, there may be wear and tear, changing

requirements, system updates and changing technologies. Hence, it is important for a

Twin to be maintained throughout its lifetime. Additionally, a TO may be able to deduce

all these aspects of the AO and act upon them.

Predictive Maintenance Based on vendor specifications, past experiments and future

predictions, it is possible to predict when a system will fail. Verriet (2019) describes a

smart lighting system for a building in which the twin can predict when the lights will

break. When close to their end-of-life, it will automatically order a new light bulb, such

that it can easily be maintained. Note that this example also shows that this maintenance

process may not be fully automated.

Fatigue Testing / Damage Evaluation Instead of testing the sturdiness or wear and tear

of a physical system, fatigue testing (Gomez-Escalonilla et al., 2020) or damage evaluation
(Utzig et al., 2019) translate this analysis (and its required preventive measures) to the

virtual world.

Lifecycle Management As is the case for any system, the AO has an individual lifecycle

that might have consequences for the state of the TO and all analyses that are happening

(Heithoff et al., 2023; Qin et al., 2022).

3.3 Quality Assurance

Another aspect to study about Twins is the quality they assure. This focuses on how

good the Twinning system works. While most of this has to do with the deployment and

implementation, focusing on this beforehand will result in a system that has a higher

quality. Figure 3.3 shows a Feature Tree for this category.

30 CHAPTER 3. GOALS: TO TWIN OR NOT TO TWIN

Quality Assurance

Consistency
Synchronisation

Execution

Convergence

Timing

Slower-Than-Real-Time

Real-Time

Faster-Than-Real-Time

As-Fast-As-Possible

Ilities

Interoperability
Platform Interoperability

System Interoperability

Fidelity

Modifyability

Testability

...
Extensibility

Elasticity

Reliabilty

Maturity

Trust

Safety & Correctness

Legality
Federal Laws

Possibility
Physical Laws

Human Safety

Privacy (Enhancement)

Company

Continuality
Periodicity

Domain Expertize

Security

Figure 3.3: Feature Tree for the Quality Assurance of a Twin

3.3.1 Consistency

We need to verify that the AO and the TO are continually kept in sync. We can ensure

this using consistency monitoring (Talkhestani et al., 2018) and by defining the allowed

deviation.

Synchronization A TO needs to be continually and continuously be kept in sync with

the AO. While we can (in a perfect world) assume that the AO and the TO are not

drifting, we can commonly not incorporate all aspects that cause drift in the model. In

these situations, we need to re-sync whenever there is some deviation. Alternatively,

some technologies allow re-syncing every 𝑥 time, making sure the AO and TO are kept

up-to-date (Modoni et al., 2019). A downside of this approach is that this will require a

lot of additional computations and that drift may not be detectable.

The AAS (Boss et al., 2020) also identifies information synchronization as an important

aspect for Twinning.

3.3. QUALITY ASSURANCE 31

Convergence Whereas synchronization mainly focuses on the drift between the AO and

the TO, convergence does the opposite by identifying the closeness between the AO and

the TO.

3.3.2 Execution

The timing of a Twinned system can be discussed in multiple dimensions. Either we can

discuss the speed of execution of the TO (which can be slower-than-real-time, real-time,
faster-than-real-time, or as-fast-as-possible) (Diakité & Traoré, 2023). Depending on which

timing the TO needs, the accuracy and precision of the Twin will suffer. Some TOs

cannot be executed in real-time (or faster), whereas others might not be able to slow

down. In general, it is possible to state that the faster the updates can occur, the better the

quality of the system becomes. Unfortunately, real-time simulation still comes with a lot

of caveats (Lugaresi & Matta, 2018), especially when the system configuration changes

during runtime.

Alternatively, we can also discuss the timing of evolution of the overall system. Biological

systems will evolve slowly, but AI systems usually evolve fast.

By definition, the AO and the TO should continually update each other with information.

The periodicity of this update will also define the overall quality of the Twinned system,

albeit highly depending on the exact context. For instance, Twins for historical buildings,

analysing the masonry decay (Angjeliu et al., 2020; Loverdos & Sarhosis, 2023) will have a

much higher periodicity (potentially days or weeks) as opposed to robotics (Bibow et al.,

2020; Walravens et al., 2022) (likely seconds, or milliseconds).

3.3.3 Ilities

The ilities are defined by de Weck et al. (2011) as desired properties of systems, such

as flexibility or maintainability (usually –but not always– ending in “ility”), that often

manifest themselves after a system has been put to use. These properties are not the

primary functional requirements of a system’s performance, but they typically involve

wider system impacts. These ilities usually do not include factors that are always present

in a system. Important ilities that should be discussed (and analysed) within the context

of Twinning are (but not limited to):

Interoperability Describes how the Twinning System can collaborate with other exist-

ing systems and how it may be used in a larger whole (Gross, 1999). In other words, it is

the “degree to which two or more systems, products or components can exchange information and
use the information that has been exchanged” (David et al., 2025). Traoré (2023) describes dif-

ferent kinds of interoperability and how to deal with them. David et al. (2025) highlights

the importance of interoperability in Twinning.

The AAS (Boss et al., 2020) identifies interoperability between different suppliers, man-

ufactures and machine builders as a key concern.

32 CHAPTER 3. GOALS: TO TWIN OR NOT TO TWIN

Fidelity There is no good consensus on what fidelity actually means. Most sources

use it as a synonym for accuracy. Yet, it is also used as “level of polish and preparedness
of a software product” (The Refinery, 2016), “number of parameters transferred between the
physical and virtual entities, their accuracy, and their level of abstraction” (Jones et al., 2020),

“transmission performance” (Shi et al., 2021), “faithfulness” (Oakes et al., 2023; Rakove,

1996), or a “measure of realism” (Gross, 1999). For the purposes of this research, we will

assume fidelity is equivalent to structural validity (i.e., architectural correspondence /

morphism between the model and the SuS) (Qudrat-Ullah & Seong, 2010).

Testability Carnap (1936) defines testablity as “whether or not we know a method for
testing”. Thus, we can ask ourselves if we can stress-test a system or if it can be used to

run any number of scenarios. The main aspect here is to ensure there exists a method for

testing the system within its production environment. Because the AO and the TO need

to be valid and in sync, the TO can be used to test the AO beforehand (H. Zhang et al.,

2023).

Auditablity and Traceability Auditing might require a detailed description of what

happened in the system. It might be required when errors occurred, or to check its

safety (see later). For this, we need to maintain traces of every part of the execution and

keep track of its traceability (which can be course-grained, or fine-grained (Paredis et al.,

2022)).

Extensibility / Expansibility / Scalability / Elasticity / Modifyability How many com-

ponents can be added? Is the twinned system plug-and-play? Can we enlarge the overall

system for a broader use-case? Will the system follow the current required demands?

Do we upscale or downscale online (i.e., at runtime), or offline?

Ferko et al. (2023) tries to increase DT standardisation by separating a Twin in its func-

tional components. Um et al. (2017) shows how the AO can benefit from a modular

decomposition. Similarly, Monteiro et al. (2023) focuses on a scalable AO that the TO has

to accommodate for.

Reliability / Stability Making sure that the system’s execution can be trusted. For

instance, having a large mean time to failure (Maxwell & Corn, 1978). Additionally, one

can analyse how error-prone a system is. Techniques like Fault Injection (Markwirth et al.,

2021; H. Zhang et al., 2023) will help to verify this.

Maturity Which Technology Readiness Level level can be assigned to the created system

(Dalibor et al., 2022)?

Trust Is the person who built the twinned system to be trusted? Is it a domain expert?

Is it okay to add the system into a larger ecosystem of technologies? Can the constructed

system be packaged and distributed to the outside-world? Can the TO trust the input

communications from the AO (El Saddik, 2018)?

3.3. QUALITY ASSURANCE 33

3.3.4 Company

A company, or higher-up management level might also introduce custom requirements

for the Twinning system.

3.3.4.1 Privacy Enhancement

Companies are commonly really interested in their Intellectual Property (IP), hence many

techniques exist to ensure IP protection. A common one is the usage of FMUs1. Ideally,

their system should be considered a black-box that can be used and interacted with, with-

out knowing the actual internal implementation(s). It stands to reason that a company

which builds a Twin wants to keep the internal workings secret for the outside world.

Furthermore, if this Twin is used, you ideally don’t want any hacker or malicious usage

that could break a volatile system.

3.3.4.2 Security

With the ever-increasing usage of Twinning, it is important to ensure they withstand any

number of (cyber-)attacks by malicious parties (Balta et al., 2021).

3.3.4.3 Safety / Correctness

When building a system, sometimes there are conditions that should be considered when

building the TO, whilst not being theoretically required to be there. These include (but

are not limited to):

Legality / Federal Laws When a government or other official instance prevents certain

executions of a system. For instance, Denil et al. (2012) describes a power window that

should stop closing when it gets a counter-force of 5 Newtons (to prevent it from chopping

off limbs).

Possibility / Physical Laws Some situations may be mathematically reachable (in a

simulator), but ignore all laws of physics (e.g., a robotic arm cannot rotate through itself,

or ships cannot sail over land).

Human Safety While some conditions may not be illegal, they should be prevented

because of human safety. For instance, Paredis, Gomes, and Vangheluwe (2021) describes

that a human may not be in an industrial high-oven when it is turned on.

1https://fmi-standard.org/

https://fmi-standard.org/

34 CHAPTER 3. GOALS: TO TWIN OR NOT TO TWIN

3.4 Usage Contexts

Another important aspect to study is when the twin is being used and in which context.

Kang and Lee (2013) defines Usage Context as the set of circumstances where a system is

operated in. It can also be seen as any contextual setting in which a product is deployed

and used (Lee & Kang, 2010). Figure 3.4 gives the Feature Tree for the usage context.

System Type

Simulation
Execution

Experimentation

Usage Context

Liveness of Execution
Online

Offline

Historical Replay

Sustainability
Cost

Footprint

User

Manufacturer

Customer

Machine

Context

Education & Academia

Training

Industry

PLM Stage

Reuse

Repeatability

Replicability

Reproducibility

Design Reuse

System Reconditioning

Bx Connection

Shadow
Tracking

Generation

Figure 3.4: Feature Tree for the Usage Context of a Twin

3.4.1 System Type

How will the Twin be used? Is it mainly a simulation or execution of the TO (Damköhler,

2022), or will there happen some experimentation with the AO (Mahmoud et al., 2023; Z.

Zhang et al., 2022)? Will the TO be used to simply replay some historical traces, or will

it react to the current AO behaviour?

3.4. USAGE CONTEXTS 35

3.4.2 Bx Connection

This part identifies the bi-directionality of the connection between the AO and the TO.

Kritzinger et al. (2018) has identified a Digital Model if there is no immediate connection

between the two, and a Digital Shadow when the AO feeds the TO with sensor and

environmental information. Tekinerdogan and Verdouw (2020) identify the dual of this

as a Digital Generator. When there is an actual bi-directional connection between both the

AO and the TO, Kritzinger et al. (2018) calls this a DT.

3.4.3 Sustainability

The world we live in has a lot of battles left to fight. About 3.5 billion people still live in

poverty2, preventing them the required access to education and employment. There is

water scarcity and global warming ensures polluted air and a lot of greenhouse gasses.

With the popularization of AI for the masses, even more pollution is being generated.

According to Freitag et al. (2021), between 1.8% and 2.8% of global greenhouse gas

emissions is due to ICT and digital computations3. Michael (2023) highlights that the

biggest future for DTs appears when focusing on sustainability. Green IT is on the rise

and twinning should jump on the bandwagon. Some research is already being done

by analysing the energy efficiency of CPS and DTs (Bellis & Denil, 2022; Mohamed et

al., 2019), sustainable manufacturing (He & Bai, 2021), and sustainable decision-making

(Niloofar et al., 2021).

Additionally, we can consider the economical sustainability of having a Twinning System.

It might have a high maintenance cost, or high emissions (i.e., its footprint). Even when it

minimizes the footprint of the AO, the Twin’s cost should be minimized.

3.4.4 Liveness of Execution

The execution of the TO can happen live (e.g., online, given real-time access to sensor

information and state data), or offline (given past system execution traces). An online Twin

is what is commonly desired, but an offline one can help with debugging, calibration and

validation of the model.

3.4.5 User

Who will be using the twin or the twinned system? Commonly, this is a manufacturer
when the Twin is used to create and develop the AO (Bolender et al., 2021; Lutters, 2018;

Mandolla et al., 2019; Rožanec et al., 2021). When used at runtime, the user is a customer
(Biesinger et al., 2018). Alternatively, Twinning ecosystems might ensure that a machine
is using the Twin.

2https://www.worldbank.org/en/topic/poverty/overview, accessed 5th of March 2025

3However, given the recent interest in AI, these numbers might have increased drastically.

https://www.worldbank.org/en/topic/poverty/overview

36 CHAPTER 3. GOALS: TO TWIN OR NOT TO TWIN

3.4.6 Context

Similarly, it should be considered what the context of the Twin itself is. Not all Twins are

being used in an industrial setting.

Some Twinned systems are used for education (Um et al., 2017) or training (Boschert &

Rosen, 2016). They allow people to work with an actual system, whilst still active in a

controlled environment. This makes teaching the usage of (for instance) heavy machinery

a whole lot safer.

In essence, any Twin can be used for education or learning about a complex system, even

when they are not originally designed for it. Having enough data and system knowledge

will enable understanding of a system. Adding a physical toy-system4 to that, kinaesthetic
learners (people who learn by doing (Reese & Dunn, 2007)) can even better understand

the system.

3.4.7 PLM Stage

The origins of DTs can be traced back to PLM (Grieves & Vickers, 2017). It would hence

make sense to maintain the equivalence between PLM and DTs (or Twinning in general).

Many PLM systems are used to allow Twinning communication too (Dalibor et al., 2022).

Note that a Twin is not required to be part of a single stage, but it might span multiple.

Design Section 3.2.1 describes the design stage of PLM. The AO does not exist yet, so

technically we cannot yet consider twins.

Manufacturing The manufacturing stage focuses on how the system is constructed. It

uses a (virtual) prototype in order to start constructing the actual SuS. We can start

considering the prototype as a twin. Twinning is a common practice that appears whilst

manufacturing an AO (Lutters, 2018). Additionally, there exist a plethora of Twins for the

manufacturing process itself (Bolender et al., 2021; Mandolla et al., 2019; Rožanec et al.,

2021).

Distribution The authors are not aware of any twinning examples specifically for the

distribution stage. It may be possible that another company is interested in using the same

Twin, or that twins are sold by a specific company, allowing distribution of Twins. Yet,

this is different from a Twin that is used for the distribution process.

Operation Most twins are used in the operation or usage stage. Here, the AO is running

in parallel to the TO. Maybe the AO starts to deviate (because of its specific usage context),

allowing the TO also to deviate.

4Which is not necessarily a toy, but the actual system.

3.5. CONCLUSIONS 37

End-of-Life Decommissioning is an important part of any SuS. Sometimes parts can be

reused in the same, or a different system. Being able to identify this will reduce waste,

increasing the sustainability of these systems.

Mouflih et al. (2023) discusses the End-of-Life of an internet box. The remanufacturer

has access to the information of the entire life-cycle of the internet box in order to identify

the parts that are still reusable.

3.4.8 Reuse

Some Twinning Systems are created for a very specific use-case, yet others might be able

to be implemented in many different scenarios and contexts. Reuse focuses on how a

Twinning Systems might reappear in different scenarios. This can happen when the TE as

a whole (or subcomponents thereof) are generic enough to be reused in other systems, or

maybe even a future version or variant of the same system. Additionally, it is possible that

such components or models can be shared over the entire life-cycle and can reappear at

different PLM stages. Hong (2021) and Plesser (2018) define repeatability (the same team

can produce the same results with the exact same experimental setup), replicability (a

different team can produce the same results with the exact same experimental setup) and

reproducibility (a different team can produce the same results with a different experimental

setup) in the context of scientific experimentation.

When a Twin is used for optimization of an existing system, allowing the AO to perform

better, system reconditioning5 might occur. Finally, there is also design reuse, in which the

current system design is reused to tackle a different problem (Landahl et al., 2018). Via

a well chosen system architecture, design reuse can be implicitly enabled.

3.5 Conclusions

Research Question 1 asked “What are the most common reasons and definitions for (creating)
DTs?”. This chapter answers this question by outlining a comprehensive breakdown

for understanding the key purposes and requirements involved in the development and

application of DTs, and, by extension, Twinning.

The chapter described the usages and contexts of the Twinning Paradigm and which

problems they can answer, mainly focusing on the individual goals and PoIs. Using

Kang and Lee (2013)’s description of variability in the Problem Space, these require-

ments are categorized into Goals, Quality Assurance, and Usage Contexts. The chapter also

provides a structured approach to address the various needs of DT systems – ranging

from design and operational efficiency to maintenance and visualization. The examina-

tion of goals such as virtual prototyping, state estimation, predictive maintenance, and

anomaly detection highlights the extensive capabilities of DTs in optimizing system per-

formance and decision-making. Furthermore, the emphasis on synchronization, fidelity,

and other ilities ensures that DTs maintain high operational standards and adaptability

in diverse contexts, including industrial, educative, and sustainability efforts. Through

5https://sustainable-eng.com/what-is-retro-commissioning/, accessed 5th of March 2025

https://sustainable-eng.com/what-is-retro-commissioning/

38 CHAPTER 3. GOALS: TO TWIN OR NOT TO TWIN

these detailed explorations, this chapter lays a robust foundation to start implementing

Twinning Systems effectively across multiple domains.

This chapter identifies some (non-exhaustive) pointers for identifying the exact purposes

(i.e., stage A) of building Twinning Systems. Chapter 4 delves into stage B and shows

that certain goals might have an influence on which components are required in this

system. In Chapter 7 and Chapter 8, this categorization will be applied to a few practical

examples.

“When you have eliminated all which is impossible, then
whatever remains, however improbable, must be the truth.”

– Sir Arthur Conan Doyle,

The Case-Book of Sherlock Holmes

Chapter 444
Conceptual Reference Architecture

In the literature, there are a lot of suggested architectures for constructing DTs, as stated

in Research Question 2. Yet, despite the plethora of architectures, the lack of an exact

definition for Digital Twin results in many different interpretations. While some sources

consider only the TO as the Digital Twin, others consider the full Twinning system as

such. Therefore, the Research Question asks if we can unify these. Such a unification

allows researchers to have a common basis to start working on.

In reality, each constructed Twinning system is an experiment that is being executed

short-term, long-term, or indefinitely. We can consider the full experiment as our main

component, e.g., a first-class entity. Here, we consider an experiment an intentional set

of (possibly hierarchically composed) activities, carried out on a specific SuS in order

to accomplish a specific set of goals. Each experiment should have a description, setup

and workflow, such that it is repeatable (Plesser, 2018). We therefore carry out Twinning

Experiments (TEs). A TE contains an AO and a TO, and ensures that both are continually
synchronized. TEs can hence be considered first-class entities in the realisation of a

Twinning architecture.

In this chapter, we will present a conceptual reference architecture, including its many

variations and possibilities. Note that this conceptual architecture can also be seen as a

functional architecture (SEBoK Editorial Board, 2023). It is meant to be a high-level and

abstract representation of the many possibilities of a TE, allowing users to decide on a high

level which components to include in their system. A mapping will be shown between

our architecture and the most common architectures, obtained from the literature.

Note that this architecture model can change throughout the life-cycle of the system. For

instance, it may be used to design and validate a model, after which the model is altered

to get another model (Angjeliu et al., 2020).

4.1 Yet Another Twinning Architecture

Figure 4.1 shows the conceptual architecture that encapsulates the main components

required, as previously defined in the literature (Dalibor et al., 2022; Kritzinger et al.,

2018; Tao & Zhang, 2017). Following the IIRA’s (and the RAMI 4.0’s) functional viewpoint,
the components are conceptualized in this general architecture.

39

40 CHAPTER 4. CONCEPTUAL REFERENCE ARCHITECTURE

Experiment

Twin ObjectActual Object
1 2

5A 5B 6A 6B

8A 8B 8C 8D

Experiment Manager
3

Workflow(s)
4

User Agent
7A

Machine Agent
7B

Figure 4.1: Generic (conceptual) TE architecture with presence conditions.

To further explain the figure, each component has been annotated with specific variation
points, also known as presence conditions (i.e., parts that can be enabled or disabled).

The AO 1 and TO 2 are given a behaviour via the operational semantics of the formalism

in which they are modelled (not pictured). This can be a neural network, the execution

of code, observed or controlled real-world behaviour. . . It is important to note that 1 is

an abstraction of a specific view on the actual world (and the environment) in which the

SuS is active.

3 is the Experiment Manager (EM) (or Orchestrator in the case of black-box components).

It contains a set of Workflows 4 that indicates how the experiment is to be executed.

Because the experiment is created for a specific set of requirements, the requirement’s

logic is contained in 3 . For instance, if we only want to have a dashboard to visualize the

current state, the collection of this state is done by the EM. If instead our goal is anomaly

detection, the EM needs to compute the distance between behaviour observed by the

AO and computed by the TO– typically over a moving time window – and produce a

notification when this distance exceeds a given threshold.

5 and 6 denote the communication between the EM and the AO or TO, respectively.

Note that the downward communication may be interpreted in a really broad manner.

It may consider the instructions that need to be sent to the objects, to launch or halt their

individual executions. Alternatively, it may also send data to update the objects (e.g., for

a Digital Generator, Digital Shadow or Digital Twin (Tekinerdogan & Verdouw, 2020)). The

upward communication can be the data that the sensors in this AO or TO have captured.

The Orchestrator can communicate with a User Agent 7A or Machine Agent 7B . These are

access points for a user or another system to obtain information about this experiment,

or to send new information to this experiment. This communication happens through

an exposed Application Programming Interface (API) of the User Agent and Machine

Agent respectively. The communication 8 between the Agents and the Orchestrator is

bidirectional when 7 can steer the twin, and one-directional in the case of a Digital Model
or a Digital Shadow (Kritzinger et al., 2018).

Note that multiple TEs can be executed at the same time. Chapter 6 goes further into

detail on this topic, yet it is important to already show how the orchestration between

4.2. COMMON ARCHITECTURE VARIATIONS 41

multiple TEs can work. In Figure 4.2, the top-level architecture for the orchestration

of multiple TEs is shown. A top-level Orchestrator receives input (from top-level User

Agents or top-level Machine Agents) and spawns new TEs. Note that these experiments

can be short-running, long-running, or never-ending.

Reasoner
Inferencer

Orchestrator

Twinning Experiments

Historian
(Storage)

User Agents
Machine Agents

Figure 4.2: Orchestration of the conceptual architecture; adapted from Paredis and

Vangheluwe, 2022.

Data gathered from the experiments is stored in the Historian. This is a blackboard

(append-only, to support versioning and traceability) data lake that contains all historical

data of all TEs. Cederbladh et al. (2023) identifies how such a Historian can be used. A

User Agent sends a question 𝑄 to the Orchestrator, which may modify 𝑄 through some

high-level reasoning. Next, the Historian is searched for an answer 𝐴. When no such

answer can be found, a new TE 𝐸 can be spawned, such that 𝐴 can be obtained. Next,

⟨𝑄, 𝐸, 𝐴⟩ is stored in the Historian for later use.

If the experiment that must be spawned was already carried out in the past, the top-

level Orchestrator might (driven by input from the Reasoner) collect the answers from

the Historian instead (Mittal et al., 2023). This is shown as an example on the timeline

in Figure 4.3. Some questions obtained from the User Agent or Machine Agent spawn

Reasoning processes, others launch TEs. Experiment 1 is a short experiment and Experiment
2 is a never-ending experiment that continually shares information with the Orchestrator.

4.2 Common Architecture Variations

Note that each component and connection in Figure 4.1 may be present or absent, de-

pending on the results from the requirement selection. This yields (at a naive first glance)

2
13 = 8192 different variations of this figure. The Workflow(s) component is only present

if the EM is present.

Of course, many of these variations are useless within the context of Twinning. For

instance, removing a component should not yield any dangling edges. And at least the

AO or the TO should be present. They can both be there, but a TE without either does not

make sense. Also, the EM should always be present on a conceptual level. Practically, it

may be empty, but conceptually, the EM controls the full TE. When these constraints are

added, a mere 240 useful variations remain.

Ideally, the results from the goal selection stage provide a subset of acceptable possibilities

in this stage (i.e., the architecture definition stage), which can be further limited by more

42 CHAPTER 4. CONCEPTUAL REFERENCE ARCHITECTURE

Twinning User/Machine Agent

Historian (blackboard storage)

Reasoning

Experiment 1

Experiment 2

Reasoning

time

Orchestrator

Figure 4.3: Timeline of TEs; adapted from Paredis and Vangheluwe, 2022.

custom requirements. Each of the resulting variants should fully represent a conceptual

architecture of the desired TE.

A small analysis of the literature was conducted. After studying the architectures of 95

works related to DTs, there were clearly 4 variations that were used the most often. They

are pictured in Figure 4.4. A fifth variation (Figure 4.4e) appears when we simply focus

on measuring experiments. This architecture is often not considered within the scope of

DTs, but is fairly commonly used in practice. Of course, this is not a detailed analysis to

identify these for certain, but they can help in painting the picture.

Figure 4.4b shows a variation where there is no Machine Agent present, and the user,

nor the EM can influence the AO. This architecture was the most commonly used in the

analysed literature, with over half of the sources using it. It basically represents a Tracking
Simulator, or a Digital Shadow (cfr. Kritzinger et al. (2018)). Note that when there are only

sensors in the AO; this system will be at most a Digital Shadow. If there are also actuators,

we may have a DT.

The other architectures appeared rarely. Variations 120 (Figure 4.4c) and 240 (Figure 4.4d)

are almost the same. All components are present, but in variation 120, the user cannot

influence the TE. Finally, there also appear variations like Figure 4.4a, where there is no

AO. This is clearly indicative of a simulation-only system, with potential user interaction.

Variation 186 (Figure 4.4e) shows a simple human-influenced measuring experiment.

The AO is instructed to behave a certain way, and the user can analyse this behaviour.

This is typical for a calibration or validation experiment.

4.2. COMMON ARCHITECTURE VARIATIONS 43

Experiment
User Agent Machine Agent

Twin ObjectActual Object

Experiment Manager Workflow(s)

(a) Variation 183: without AO and Machine

Agent.

Experiment
User Agent Machine Agent

Twin ObjectActual Object

Experiment Manager Workflow(s)

(b) Variation 69: without Machine Agent, or

influence upon the AO.

Experiment
User Agent Machine Agent

Twin ObjectActual Object

Experiment Manager Workflow(s)

(c) Variation 120: User Agent cannot influence

the TE.

Experiment
User Agent Machine Agent

Twin ObjectActual Object

Experiment Manager Workflow(s)

(d) Variation 240: everything is present.

Experiment
User Agent Machine Agent

Twin ObjectActual Object

Experiment Manager Workflow(s)

(e) Variation 186: without TO and Machine

Agent.

Figure 4.4: Five architectural variations for the conceptual reference architecture.

44 CHAPTER 4. CONCEPTUAL REFERENCE ARCHITECTURE

4.3 Mapping the Architecture

In order to accurately map the presented architecture onto the ones presented in the lit-

erature, a distinction needs to be made between the high-level (also known as conceptual

or functional) architectures, and the realized architectures (i.e., software architectures or

deployment diagrams).

4.3.1 Conceptual/Functional Mapping

Let’s first have a look at the architectures that focus on the full TE as a whole.

Most notably, Kritzinger et al. (2018) has shown a high-level separation into Digital Model,
Digital Shadow and Digital Twin, based on the communication between the AO and the TO.

Tekinerdogan and Verdouw (2020) goes further by also introducing a Digital Generator.
The connections and direction of the data flow in the conceptual architecture define

which categorization can be applied. For instance, if 5B does not exist, we consider it a

Digital Generator. If 5A is omitted, the TE is a Digital Shadow.

In Paredis, Gomes, and Vangheluwe (2021), we have identified that the TO itself should

only be a model of the behaviour of the AO. Any additional processing should be sep-

arated into another component – then erroneously called the External Object, but later

corrected to the Assimilation Object or the EM. Other sources have identified the same

separation of concerns and considered this external component as a set of Services or

Tools (Madni et al., 2019). Llopis et al. (2023) separates these into Service Components and

Analysis Components. In essence, these architectures are all equivalent to the 5D architec-

ture (Tao & Zhang, 2017). Figure 4.5 shows a mapping of the components of Figure 4.1

onto this 5D architecture.

4.3.2 Mapping through Realization

Tekinerdogan and Verdouw (2020) not only introduces the Digital Generator, but also

opens the “boxes” and shows the expected contents of the AO and the TO. For the TO,

a simplified MAPE-k is executed in the modelled space. Bibow et al. (2020), Bolender

et al. (2021), Eramo et al. (2021), and Michael and Wortmann (2021) focus in more depth

on the adoption of the MAPE-k loop in the TO itself. Data collected from sensors of the

AO is sent over 5B , and commands for the actuators over 5A . A comparator or analysis

component and a decision or plan component are part of the EM and the associated

Workflow(s). Runtime knowledge from the current TE execution is also located in the

EM. Overall knowledge of the system can be found in the top-level Historian. Sometimes,

multiple models are referred to. Each of these models is their own TE, which are all

coordinated through the top-level Orchestrator.

Another architectural axis that appears is a layered approach (Kibira et al., 2021; Re-

delinghuys et al., 2019), where the deployed technology stack is included. The same

components can loosely be identified here. Some arrows have become their own layers

4.4. ACTUAL OBJECT AND TWIN OBJECT 45

data

Interaction and Mapping

Physical
Shop-Floor

data

Virtual
Shop-Floor

driving

driving

driving

Shop-Floor
Digital Twin Data

Interaction

Shop-Floor
Service System

dataInteraction

Iterative
Optimization

Iterative
Optim

ization Ite
ra

tiv
e

Op
tim

iza
tio

n

1 2

5A

5B 6A

6B

3

3 3

4
4

4

8A

8C 8D

8B

7A 7B

Figure 4.5: The 5D architecture, based on Tao and Zhang (2017), as shown in Figure 2.3,

annotated with the presence conditions from Figure 4.1.

and the EM might not be deducible, other than through documentation and execution

traces. This highly depends on which components are merged due to realization.

The AAS also has a layered architecture. From the Business Layer, they will only look at

the overall TE, but specifically the Workflow(s) and the behaviour of the EM. The presented

architecture can act as the Functional Layer. The Information Layer is encoded in the EM, as

well as the Historian. The Communication Layer details the Machine Agent, the Integration
Layer is defined by the deployment and the Asset Layer is the physical asset that the AO is

a view of. Notice the relationship between the RAMI 4.0 layers and the IIRA Architecture

Framework (Industry IoT Consortium, 2022).

4.4 Actual Object and Twin Object

The AO and the TO themselves (including their operational semantics) can be separated

into more specific architectures, based on the desired goals w.r.t. their PoIs. This is

illustrated in Figure 4.6. A black box is an input, a white box an output, and a darkgrey

box an inout port. Each inout port is connected over an arrowless connection, implying

an external influence on the components, outside of the control of a user (e.g., the sun is

shining on a sensor). Full arrows indicate an influence relationship between components.

A striped arrow is an observation (when connected to an output), or a manual influence

(when coming from an input). For the AO, the incoming and outgoing arrows in the

subfigures of Figure 4.6 relate to 5 in Figure 4.1. Similarly, for the TO, the incoming and

outgoing arrows represent 6 .

Dalibor et al. (2022) has identified that there also exist Twinning systems that do not link

a physical SuS to a digital model. The authors have identified biological beings, individual

46 CHAPTER 4. CONCEPTUAL REFERENCE ARCHITECTURE

Electromechanical Entity

Environment

Plant

Controller

(a) Electromechanical Entity.

Digital Entity

(Real-Time) Simulator

Modelled Environment

Model

(b) Digital Entity.

Solid Entity

Environment

Object

(c) Solid Entity.

Biophysical Entity

Environment

System

(d) Biophysical Entity.

Social Entity

Environment

Being A

Being B

Being C

(e) Social Entity.

Workflow Entity

Activity

Activity

Activity

Activity

Activity

(f) Workflow Entity.

System-of-Systems

Ecosystem Solver

System Environment

System A
System B

System C

(g) System-of-Systems Entity.

Figure 4.6: Seven different entities that AOs and TOs can be.

systems, processes, products, system of systems, and other counterparts. In fact, we hypothesize

a non-exhaustive list of 7 different kinds of entities to which both the AO and the TO may

conform to (Paredis et al., 2024). Depending on which type of entity the AO and the

TO are, different deployment techniques are required with their own complexities. Of

course, not all AOs and TOs neatly fit into one category. There may be some overlap.

4.4.1 Electromechanical Entity

Commonly, in a DT, the AO is considered physical, which implies that it is a SuS that

is active in the real, physical world. It focuses on CPSs and other industrial machines

(especially within the context of Industry 4.0). These are some mechanical devices that

may have some electronic parts, yet they do not exist in a purely digital world.

When they appear as an AO, they can be cars (Alvarez, 2019; Barosan et al., 2020),

4.4. ACTUAL OBJECT AND TWIN OBJECT 47

machines (Bibow et al., 2020; Mandolla et al., 2019), robots (Marah & Challenger, 2023;

Marion, 2021; Paredis & Vangheluwe, 2021; Walravens et al., 2022) and other large

systems.

A TO Electromechanical Entity may concern analog computers that use mechanics to

mimic real-world behaviour, or physically built training simulators. The Apollo 13 Space

Capsule Training Simulator (Ferguson, 2020) was also this kind of entity.

One possible architecture for such a real-world system, focusing on a plant-controller

feedback loop is given in Figure 4.6a, but other alternatives exist as well. This system is

active in a (subset of) the real-world environment, which implies that this should also be

incorporated in the entity. Additionally, there may be environmental influences we did

not account for. For instance: a really sunny day might yield a sensor to produce invalid

results. The operational semantics of this entity equates to its behaviour in the real-world

(i.e., physics).

4.4.2 Digital Entity

A DT has its TO in the digital world, which is identified as a Digital Entity in Figure 4.6b.

Here, a model in some formalism is given operational semantics by executing a solver

(or a simulator). This may potentially be a real-time simulator, or an as-fast-as-possible

simulator, depending on the chosen goals.

While it is common for a Digital Entity to exist as a TO (X. Feng et al., 2023; Moya et al.,

2020; Paredis & Vangheluwe, 2021; Utzig et al., 2019), there are also occurrences as an

AO. There exist Twins for running software (Heithoff et al., 2023), running simulations,

virtual worlds (i.e., BIM, CAD,. . .) (Angjeliu et al., 2020) and data (i.e., historical traces,

experiment results,. . .).

4.4.3 Solid Entity

A Solid Entity is an arbitrary physical object that has no behaviour on its own. It can be

influenced by users, machines, or the environment, but it does not do anything. This is

illustrated in Figure 4.6c.

Bonney et al. (2021) discusses how a TE of a metal shelf can be constructed and Wang

et al. (2018) focuses on reinforced plastics. The geometrical variation problem in the

construction of sunroofs was analysed by Wärmefjord et al. (2017). Similarly, Mukherjee

and DebRoy (2019) constructed a DT for qualification of metallic 3D printed objects.

Another example is the maintenance of masonry structures and buildings (Doellner et

al., 2023; Domaneschi et al., 2023; Mukherjee & DebRoy, 2019). 3D point clouds for

smart city cases also commonly can be categorized as Solid Entities (Ballouch et al., 2022;

Münzinger et al., 2022).

For the TO, the oldest Solid Entity example is a Sand Table (see also Chapter 10), which

have been used since the antiquity and are still being used (albeit mainly in movies

and entertainment) for military planning and wargaming (D. E. Smith, 1925; Wisher,

2001). Antwerp Zoo teaches children about deforestation and its impact on the tamarin

48 CHAPTER 4. CONCEPTUAL REFERENCE ARCHITECTURE

population using a miniature model of the rainforest and decommissioned fire-hoses

that represent roads or highways. Baalbergen et al. (2023) mentions that civil registration

under Napoleon created Paper Twins. Boletsis (2022) discusses a 3D physical map on

which projectors colour the textures. This is a common installation in museums; as well

as light spectacle tours in cities. Architects build scale models of houses to test their

structural soundness, capacity, light influence, . . . The right mineralogical combination

of soil can even mimic the surface of Mars (Long-Fox et al., 2023).

4.4.4 Biophysical Entity

The Biophysical Entity is at the cross section of biology, chemistry, and physics. It considers

people and animals (as a complex biochemical system), organs, plants, crops, liquids,

chemical processes, medicine, weather phenomena. . . In a way, the Biophysical Entity is

a Solid Entity that has some sort of autonomous behaviour, as can be seen in Figure 4.6d.

While it is generally not easy to act upon Biophysical Entities, they are commonly studied

as AO within the Twinning domain. David et al. (2023) discusses Cyber-Biophysical

systems within the context of DTs. Other sources focus on greenhouses (Howard et al.,

2021), agriculture (R. et al., 2023; Shrivastava et al., 2020; Tekinerdogan & Verdouw,

2020; Verdouw & Kruize, 2017), aquaponics (Mahmoud et al., 2023), chemical reactions

(Silber et al., 2023), the sloshing movement of water (Moya et al., 2020), the perception of

colour on colour-changing materials (Yuan et al., 2022), or life sciences (Antunes, 2023;

El Saddik, 2018; Knibbe et al., 2022). Alternatively, there is also the Earth Digital Twin
(also known as Digital Twin of the Earth), which focuses on meteorology and sustainability

of our planet (Bauer et al., 2021; European Space Agency, 2021).

It is generally close to impossible to influence a Biophysical Entity and use it as a TO.

Yet, Jayed and Carlomagno (2024) focuses on olfactory recovery through 3D structures,

colour and aroma to mimic another perception of taste. In other words: a model of

some food tricks the brain into experiencing the taste of it. Badawi et al. (2021) uses the

idea of DNA structures as unique identifiers in DTs, specifically applied to smart cities.

The field of physics has this notion of Universality, which identifies that “under certain
circumstances behaviour in one physical system is very similar to that in [another]”(Hendy,

2015). This appears, for instance, in the relationship between the Coulomb force and

gravity. While this theoretically fits the Twinning Paradigm, we cannot practically use

this relationship for Twinning.

4.4.5 Social Entity

The Social Entity (Figure 4.6e) considers people and animals within a social context. The

human or animal is not considered biochemically. It mainly focuses on the interaction

between beings, and the behaviour of the individual. Dalibor et al. (2022) identified this

as Biological Beings.

For the AO, examples could be employees in a business structure (Graessler & Poehler,

2018), citizens in a city (Traoré, 2023), sports players (Balachandar & Chinnaiyan, 2019),

South-African wildlife (Fergus et al., 2023), cows in a cattle (Tekinerdogan & Verdouw,

4.5. CONCLUSIONS 49

2020; Verdouw & Kruize, 2017), a swarm of fish (Joordens & Jamshidi, 2018), or actors

and animals using motion capture (Berti et al., 2023).

There also exist TO examples. Both Tero et al. (2010) and Topuzoglu et al. (2019) used

slime molds to construct an optimized railway network, thus modelling a city through

biology. A more imaginative example is acting. Actors that accurately portray historical

figures can technically also be seen as a model. Medical simulants, or people partaking

in family composition activities can also technically be considered Twins.

4.4.6 Workflow Entity

The Workflow Entity concerns all workflow-based systems (i.e., a system in which a se-

quence of activities is studied). Dalibor et al. (2022) calls these Processes. An example is

shown in Figure 4.6f.

Rambow-Hoeschele et al. (2018) have business processes as their AO. Karakra et al. (2018)

focuses on medical processes and Popa et al. (2018) identifies recycling processes.

Looking at TO examples, more imagination is required. A set of model transformation

rules can be considered a model for the behaviour of a model. In the literature on

Twinning, no immediate examples were found of a Workflow Entity as a TO.

4.4.7 System-of-Systems Entity

Figure 4.6g shows a System-of-Systems Entity. For instance, collaboration of multiple

machines in a factory (Biesinger et al., 2018). If this is digital, this will likely be solved

using co-simulation. If it is in the real-world, its behaviour is the union of the sub-system

behaviour, including the communications.

In terms of a TO, we can consider systems like boids as a System of Systems Entity. In the

literature on Twinning, no immediate examples were found of a System-of-Systems Entity
as a TO.

4.5 Conclusions

Research Question 2 poses “Given the large number of existing DTs in the literature, can we
unify?”, and this chapter has mainly focuses on that in terms of the architectures. We

believe it is indeed possible to unify under a common architecture, ensuring the necessary

variability is still possible. This chapter has focused on stage B by presenting a new

conceptual Twinning architecture, using presence conditions, based on the literature, as

stated in the Research Question. A TE is considered a first-class entity, managed by an

EM. Both the AO and the TO can be specific entities, based on their exact behaviour.

This architecture can be linked to numerous existing architectures in the literature. In

fact, there are only a handful of variations that are practically being used. Additionally,

top-level orchestration of multiple TEs is mentioned, but will be discussed in more detail

50 CHAPTER 4. CONCEPTUAL REFERENCE ARCHITECTURE

in Chapter 6. Chapter 7 and Chapter 8 will show how this architecture (and its many

variations) can be used in practice. Chapter 5 will briefly go over stage C .

“God creates dinosaurs, God kills dinosaurs, God creates
man, man kills God, man brings back dinosaurs.”

– Michael Crichton, Jurassic Park

Chapter 555
Technologies and Deployment

In order to fully realize a TE, it still needs to be deployed. However, this is the stage where

the largest number of choices. There is a vast body of research on theoretical frameworks

for DTs, but their practical implementations and deployment is still lacking (Hassan

& Aggarwal, 2023). Jeong et al. (2022) has identified five layers for the deployment

of Twinning Systems. The authors show a step-by-step approach to practically built a

Twinning System, specifically focusing on the deployment and implementation aspect.

It is impossible to chart the full level of variability that appears at the level of deployment.

This chapter analyses the deployment techniques used in the literature, as a rudimen-

tary overview of the plethora of possible variations, as well as an identification of the

most common approaches. This way, it aims to find some common ground for system

engineers to start from.

5.1 State-of-the-Art

The ISO/IEC 12207 international standard (R. Singh, 1996) describes the life-cycle of

software processes, from the initial idea until retirement. Yet, it misses an important

aspect of deployment. Similar as the individual phases for creating software, there are a

lot of phases for actually deploying a system.

The IIRA Architecture Framework (Industry IoT Consortium, 2022) bridges this gap by

introducing the Implementation View. A large issue is that a lot of components are black-

boxes when considering implementation details. There is little to no access to information

about the internal workings. Commonly, this is due to IP protection.

There is hence the question of which components to use, but also “does this component do
what I want it to do?” Additionally, we need to know where the component should be

physically located on the device, or how to link it to other components.

The AAS (Boss et al., 2020) identifies deployment as an entire spectrum in which a lot of

decisions have an impact on the eventual technologies. A minimal latency might imply

using the edge as opposed to the cloud. There are multiple techniques required for

accurately deploying DTs. Schäfer et al. (2021) explored this deployment in the context

of the AAS.

51

52 CHAPTER 5. TECHNOLOGIES AND DEPLOYMENT

Even in the literature, the question of deployment arises, commonly combining IoT with

DTs and blockchain (X. Feng et al., 2023). Daniel Lehner explored multiple deployment

techniques and tools for DTs1. Bellis and Denil (2022) have focused on the sustainability

consequences of actually deploying DTs.

5.2 Literature Analysis

An analysis of 95 papers, focusing on DT technologies helped to identify the most com-

mon technologies used for Twinning. Some papers presented without use-cases, whereas

others discussed multiple use-cases. In total, 560 references to technologies were identi-

fied and a non-exhaustive list of 124 unique technologies2 was constructed. It is important

to note that it is perfectly possible some references were overlooked in this analysis. The

relatively small sample size might not project the most realistic statistics, whilst also be-

ing highly prone to bias. Nevertheless, the obtained results are enough to paint a picture

as to how variability of Twinning appears in the deployment stage. It shows which parts

should be discussed when considering the deployment of Twinning.

We can identify five main categories for these references: Generic Methodologies, Concepts
and Buzzwords (28.34%), Languages (32.44%), Tools, Frameworks and Technologies (17.47%),

Communication Protocols (10.52%), and Hardware (11.23%). Note that the summaries in

the upcoming sections will only focus on identified technologies in their corresponding

category.

5.2.1 Generic Methodologies, Concepts and Buzzwords

This category focuses mainly on generic technology descriptions, oftentimes without

exact details. This either happens as a buzzword, or to provide a generic insight into

the use-case. In Figure 5.1, the distribution of these generic technologies is shown, for

use-cases that mentioned these.

It is not surprising that (Industrial) IoT appears the most often in these solutions (25.2%),

immediately followed by AI solutions (mainly Machine Learning and Reinforcement

Learning) and more generic Big Data approaches (23.3%). Dalibor et al. (2022) has iden-

tified that most DT research is focuses in the manufacturing domain, albeit potentially

biased by the widespread application of DT in manufacturing. Additionally, there is a

lot of data required for constructing and maintaining TEs, enabled by the recent rise in

interest in AI solutions.

15.1% of use-cases in this category explicitly mention the use of a 3D world, either

obtained via a scan, or by 3D modelling, which is closely related to AR, VR, and XR (6.9%).

8.8% clearly indicate the usage of cloud, edge or fog computing and 5.7% mentions using

ontologies.

1https://derlehner.at/my-view-on-digital-twins/, accessed September 5th, 2024.

2Some of these were merged into one because they belong to the same ecosystem, or identify the same

technique or concept, like the Eclipse ecosystem, or the merge of CBDs and MatLab SIMULINK.

https://derlehner.at/my-view-on-digital-twins/

5.2. LITERATURE ANALYSIS 53

Figure 5.1: Distribution of identified generic technologies.

PLM, Geographic Information System (GIS) and blockchain all appear 3.1%. Even though

the latter can be surprising, Banerjee et al. (2023) highly argues the usage of blockchain

for DT solutions. Techniques as Kalman filters (2.5%), co-simulation (1.3%), and publish-

subscribe (1.3%) appear to be relatively popular as well. In fact, there are a lot more

use-cases that use publish-subscribe without mentioning it explicitly. 0.6% identifies the

Metaverse3 as a potential solution.

There is therefore no real consensus on which general technologies work best. However,

it is common to combine IoT, AI and 3D techniques.

5.2.2 Languages

This category encapsulates all (domain-specific) modelling languages, programming

languages, markup languages and general standards. Most of the technological mentions

in the use-cases belong in this category. Figure 5.2 summarises the results, for all use-

cases that had a mention of a language.

Mentions of General Purpose (Programming) Languages appear the most often in these

use-case descriptions – about 28.7%. This category groups Python (6.1%), Java (5.5%),

C# and .NET (3.3%), C and C++ (2.2%), R (1.1%), Ada (0.5%) and G-code (0.5%), but also

XML and JSON (7.2%), and HTML and PHP (2.2%). For readability, the figure omits

these details.

The Domain-Specific Language category (3.9%) identifies smaller languages belonging

to a specific domain. EDI-Teelt, ALISA, PackML, SOIL, SOML++, SystemC AMS, and

Jason all appear once in the data.

Following General Purpose (Programming) Languages, CAD solutions (13.8%) are the

3Not the one from Meta.

54 CHAPTER 5. TECHNOLOGIES AND DEPLOYMENT

Figure 5.2: Distribution of identified languages.

most prominent in the observed papers for this category. This is closely related to the

relatively high 3D model mentions in the previous category.

ODEs and general mathematical models appear in 11.0% of use-cases here. Particle

modelling approaches appear 9.9%. They include Finite Element Modelling and Finite

Element Analysis (7.2%), Computational Fluid Dynamics (1.1%), and Discrete Element

Method (0.6%).

The markup languages make up for 13.5% of these references. The identified mentions

include AutomationML (5.0%), UML (3.3%), SysML (1.7%), MontiCore (1.7%), AADL

(0.6%), Composite Structure Diagram (0.6%), and the Digital Twin Design Language

(DTDL) (0.6%).

Common modelling languages used for the use-cases are CBDs and MatLab SIMULINK

(3.3%), Modelica (2.8%), Petri-Nets (1.1%), DEVS (1.1%), Electrical Schematics (1.1%),

Property Graphs (1.1%), Forrester System Dynamics (0.6%), and Piping and Instrumen-

tation Diagram (0.6%). This totals for 11.7%.

Both BIM and the FMI appear in 2.2% of the cases. OWL and RDF logically appear both

in 1.7% of the cases in this category, and SPARQL in 1.1%.

As a result, we can state that any language that can be used to achieve your goal(s) can

be used in the creation of a Twinning System. There is no golden standard. This solution

highly relates to Multi-Paradigm Modelling (MPM).

5.2.3 Tools, Frameworks and Technologies

There are a lot of mentions on the software-level tooling used to realize the use-case. In

fact, 50 (40.3%) of the unique technologies fall within this category; 30 of which appear

only once in the data. For readability, Figure 5.3 shows a higher-level separation of

5.2. LITERATURE ANALYSIS 55

technologies for mentions in these use-cases.

Figure 5.3: Distribution of identified communication protocols.

Simulators (and General Software) account for 36.1% in this category. These include

(but are not limited to) MatLab SIMULINK (7.2%), AnyLogic (3.1%), Protégé (3.1%),

Abaqus (3.1%), JADE (2.1%), OSATE (2.1%), Ocarina (1.0%), Papyrus (1.0%), Ptolemy II

(1.0%), Rhapsody (1.0%). . . Additionally, R Studio (2.1%) and Visual Studio (1.0%) are

also included here.

Databases and Networking (19.6%) identifies all tools and technologies that ensure com-

munication and the storing of data. Technologies like SCADA (5.1%), Kubernetes (3.1%),

RabbitMQ (3.1%), Kafka (2.1%), MongoDB (2.1%), OpenHAB (1.0%), Redis (1.0%), and

Oracle DB (1.0%) belong to this sub-category.

Ecosystems (17.5%) includes collections of tools that are presented under a common

umbrella. This is usually a software bundle from a specific organisation. It includes

Eclipse (6.2%), Siemens (5.1%), Amazon (3.1%), and Microsoft (3.1%).

3D Software (13.4%) includes all software that has a main focus on 3D visualisation and

computation. Unity 3D (7.2%) is the most commonly used, followed by Simio (2.1%),

Delft3D (1.0%), Grasshopper (1.0%), Verosim (1.0%), and Xsens Studio (1.0%).

Frameworks (9.3%) groups specific addons, plug-ins, libraries, SDKs, SDEs and other

extensions to existing tools and languages. It includes Vuforia SDK (2.1%), ArcGIS

(1.0%), Cesium Map Engine (1.0%), React (1.0%), Web3.js (1.0%), and Flask (1.0%). This

can also include specific APIs like Google Carthographer (2.1%).

Interestingly, merely 4 use-cases explicitly present the Operating System on which their

deployed system runs. Even though it’s possible to rather implicitly obtain this informa-

tion, it is counter-intuitive how little it is mentioned. One would suspect that the choice

of Operating System is a pertinent and highly important variability point in constructing

TEs. Its omission in the literature shows that this variability has become obsolete, or is

often wrongly ignored.

56 CHAPTER 5. TECHNOLOGIES AND DEPLOYMENT

We can conclude that simulators are highly common in the construction of Twinning

Systems4. Additionally, it is useful to maintain databases and focus on the network

connection. These are highly necessary for a continually updating system (as is the case

for systems in the Twinning Paradigm).

5.2.4 Communication Protocols

One of the core aspects of a TE is the communication between the AO and the TO.

Figure 5.4 shows the most common protocols used in the analysed subset of use-cases.

Figure 5.4: Distribution of identified communication protocols.

The most prominent technology used is OPC UA (23.7%), followed by MQTT (18.6%) and

TCP/IP or WiFi (16.9%). RFID communication is used in 10.2% of these cases, however

often not as a communication between the AO and the TO. ROS, MTConnect, and SOAP

or REST appear in 5.1% of these cases.

Less common techniques like BlueTooth (3.4%), Wireless Sensor Network (WSN) (3.4%),

radio communication (1.7%), wired communication via USB (1.7%), Long Range (1.7%),

the Foundation for Intelligent Physical Agents (FIPA) (1.7%) standard, and Z-Wave (1.7%)

are also used.

Hence, there is no real common standard for communications, and all technologies that

accomplish the desired task(s) can be used. Preference is usually given to more common

and heavily supported protocols. They also better ensure the continual communication

between an AO and a TO.

4Or, the papers were biased to the M&S domain.

5.2. LITERATURE ANALYSIS 57

5.2.5 Hardware

This category focuses on the explicit mentions of certain hardware that was used. On

the hardware level, there is an even larger explosion in possibilities, as the number of

specific sensors, brands and mounting details will yield different products in the overall

product family. They were not all individually counted. Figure 5.5 shows an overview

of the cases that mentioned hardware.

Figure 5.5: Distribution of identified hardware.

Almost all use-cases that mentioned hardware, identified a unique technology, with a

very limited intersection in different technologies. This is identified in the Sensors and

Actuators section of the plot (58.7%), which highlights that the use-case used a specific

sensor or actuator.

In 15.9% of the hardware occurrences, a Raspberry Pi or an Arduino was used as a core

computational component. 12.7% used a Programmable Logic Controller (PLC) and

3.2% used LiDAR techniques. Linking to the previously identified AR/VR/XR category,

4.8% has identified to use the Microsoft Hololens.

4.8% of these use-cases used LEGO as hardware, presumably due to its cheap and

universal connectability. This allows fast prototyping and proof-of-concept. The same

reasoning was applied when constructing our original LFR (Paredis & Vangheluwe,

2021).

Given that most hardware mentioned identifies really specific solutions, we can see the

same pattern as in the previous sections: system engineers use the most appropriate

components for their individual use-cases. Sometimes, more common hardware is used,

but this happens rarely.

58 CHAPTER 5. TECHNOLOGIES AND DEPLOYMENT

5.3 DEVS Simulation

The main purpose of this chapter was trying to identify if there exists some common

ground for technologies or deployment concerning Twinning Systems, but as this small

analysis has proven, this is not the case. In fact, mostly the MPM methodology is followed

in using the most appropriate technologies for the specific use-cases. Hence, it might

make more sense to figure out a way to quantitatively support deployment choices –

yielding Research Question 4.

With this many possibilities, selecting specific tools, frameworks, modelling languages

and technologies might seem arbitrary. It is likely that the system engineers make

these selections based on the available technologies, expertise and economical situation.

However, it is likely that the exact technologies first need to be analysed before they can

be applied. Luckily, MBSE offers a solution for this. Assuming that the conceptual system

architecture exists and the desired goals are well defined, a real-world problem can be

transformed to the simulation world, enabling deployment space exploration. This is a

technique that also will be used in Chapter 8.

Multiple technologies can be experimented with in order to obtain the best “theoretical”

solution to the presented problem. The downside of this approach is that it requires a

modelled version of all the desired technologies.

When the technology already exists for simulation purposes, model transformations,

embedding and co-simulation may be used to ensure a valid representation of this

technology in the simulated world. However, when a model for the technology does

not exist yet, this becomes much more difficult and will likely involve a collaboration

between the running simulation and the real technology.

For instance, a communication protocol has an explicit description of its behaviour. This

description can fully be implemented in the simulated world, such that the exact same

logic is used, thus representing the real technology. Unfortunately, this approach is costly

and requires a focus on a specific technology, instead of the total system’s behaviour.

However, communication protocols commonly focus on the transfer of information, as

opposed to its modification. This is why they can be represented with a simple delay

of this information. Much better would be a randomized sample from realistic delays,

which may have been obtained by doing a lot of experiments with the real technology.

5.4 Concusions

This chapter briefly shows an analysis of 95 papers that explicitly mention certain tech-

nologies used for DTs in the literature. While there are a few standards, like the ISO/IEC

12207 international standard (R. Singh, 1996), the IIRA Architecture Framework (Indus-

try IoT Consortium, 2022), the RAMI 4.0 (Hankel & Rexroth, 2015), or the AAS (Boss

et al., 2020) that mention deployment of DTs, very few academic use-cases actually make

use of them. Mostly, DTs are constructed and orchestrated with the tools, frameworks,

and knowledge available for the system engineers. Stage D explicitly focuses on the

deployment, but due to the vast explosion in possibilities, it is impossible to discuss all

options.

5.4. CONCUSIONS 59

Chapter 7 and Chapter 8 show how some use-cases can be practically deployed, using de-

ployment diagrams. The latter chapter will especially focus on how we can do deployment
space exploration, using DEVS (see Section 5.3), on a simplified use-case.

60 CHAPTER 5. TECHNOLOGIES AND DEPLOYMENT

“To every problem, there is a most simple solution.”
– Agatha Christie, The Clocks

Chapter 666
Combining Twinning Architectures

Up to this point, we have assumed a single requirement is used as a core goal for a

Twinning System. However, this is often not the case. Many Twinning Systems are built

to accommodate multiple requirements from the Feature Trees presented in Chapter 3.

Hence, multiple TEs need to collaborate to achieve an overarching set of requirements,

sometimes referred to as a Digital (Twin) Ecosystem (Hofmeister et al., 2024; Nativi et al.,

2021; Rivera et al., 2022; Rosen et al., 2019). As adoption of Twinning increases, the need

to combine TEs arises. The core question here is how to combine, compose, and federate

such systems; effectively yielding Research Question 5: “How can we combine multiple DTs
into a larger system?” Multiple TEs may correspond to different requirements and PoIs;

may correspond to different components in an architecture; may represent a system at

different levels of detail, abstraction, or fidelity; may be used at a type, aggregate or

instance level; etc. Maybe there are even over-arching TEs that combine multiple sub-

TEs. This would not only allow the creation of TEs of systems, but also TEs of Systems

of Systems.

Rivera et al. (2022) describes cooperating DTs within the context of a Smart Urban Transit

Digital Ecosystem. Nativi et al. (2021) discusses DT ecosystems within the scope of DTs

of the Earth, mainly focusing on data integration, whilst remaining abstract in terms of

realisation. In Hofmeister et al. (2024), it is discussed that the interconnection between

these models ensures an ecosystem of connected DTs. Akroyd et al. (2021) delves deeper

and discusses The World Avatar project, which aims to create a Digital Avatar of the world

to model the interoperability of the isolated but conceptually connected domains that

drive our planet. Boschert et al. (2018) and Rosen et al. (2019) introduce NexDT, the next

generation DT, which focuses on semantic technologies and evolution. Additionally,

Rosen et al. (2019) describes how NexDT can be used to create ecosystems. However,

Gallego-García et al. (2022) uses this name to refer to the total set of requirements and

services of a DT.

In essence, the idea of an ecosystem stems from biology, where multiple autonomous

entities share the same environment (Blew, 1996). This was later extended to the business

and software domain. Due to the level of control we have in an overarching system of TEs,

we will call this Twinning Federation, rather than Twinning Ecosystems. Federation takes

care of the interoperability of independently developed and evolving TEs, regarding data,

ownership management, and orchestration of services. This orchestration is of particular

importance when time-management is required as in the case of co-simulation (Gomes

et al., 2018).

61

62 CHAPTER 6. COMBINING TWINNING ARCHITECTURES

Marah and Challenger (2025) discuss federation in a Twinning context, providing the

necessary background and reasoning for this term. They identify Vertical Federation (i.e.,
DT parents that have DT children), Horizontal Federation (i.e., multiple DTs on a same level

that need to collaborate in one way or another), and Hybrid Federation (i.e., a combination

of the two).

Jeong et al. (2022) describes the different technologies required for federation as the next

stage in creating better DTs. The authors identify that different technologies might yield

different TOs. Furthermore, because the large complexities involved, they state that there

should be a step-by-step layered implementation approach.

Arcaute et al. (2021) emphasises that there should be “different kinds of twins”. The authors

identify that each purpose might yield another TO, which need to be organised.

In Oakes et al. (2021), the notion of DT Constellations and DT Slices is introduced. The

former defines the collection of all the functionalities that the overall system is desired

to have, and the latter a specific subset of these functionalities. The overall Twinning

System can therefore be constructed by combining DT Slices.

In this chapter, these various reasons for combining TEs will be explored and some

architectural solutions given.

6.1 Federation of Twinning Systems

As our understanding of Twinning increases, we realise that a single TO is often not

sufficient to provide the desired services such as monitoring and dashboarding, anomaly

detection, fault diagnosis, what-if analysis, optimisation . . . Oftentimes multiple systems

need to collaborate, implying that their TOs should also collaborate. Rather, we need

to consider and support the federation of Twinning. This is characterised by different

types of relationships between the constituent TEs. Additionally, these constituent TEs

and their relationships might evolve over time.

Federation enables data aggregation from multiple sources to form a comprehensive

view of the entire system. In the context of Twinning, combining data from various

interconnected components or systems makes it possible to monitor and analyse the

systems more effectively. For instance, a manufacturing system might have TOs for

individual machines. Federation would allow gathering data from all these TEs to

understand the overall production process. Thus, according to a specific property, as an

example, anomaly detection or fault diagnosis could be applied.

Different kinds of relationships between TEs lead to different dependencies between

these TEs. These dependencies determine the requirements for a family of federation ar-

chitectures. We will hence identify and discuss the most important kinds of relationships

between TEs.

6.1. FEDERATION OF TWINNING SYSTEMS 63

6.1.1 Multiple Properties of Interest

Services provided by a TE such as anomaly detection, optimisation, etc. always pertain

to specific PoIs. PoIs consider the specific system properties that are of concern to certain

stakeholders. PoIs can thus be used in the formalisation of the stakeholders’ require-

ment(s). Typically, different PoIs correspond to different views on a system. Example

PoIs are: safety (a Boolean property), energy efficiency (a numerical property), archi-

tectural feedback (a structural property) and frequency response curve (a behavioural

property). TEs are often constructed specifically to observe and compute a specific PoI

within the context of a set of requirements.

One is often interested in more than one PoI. It hence makes sense to combine multiple

TEs, each providing a service pertaining to a single PoI. Common examples are the

logical combination of multiple Boolean PoIs, and multi-criteria optimisation with the

individual criteria provided by individual PoIs. This is shown graphically for the AOs in

Figure 6.1. Note that we can also combine TOs with multiple PoIs in the same way.

Experiment

Real World
Object

Exp A
User Agent

Twin ObjectActual Object

Experiment Manager

Machine Agent

Experiment Manager (Unification of Information)

Exp B
User Agent

Twin ObjectActual Object

Experiment Manager

Machine Agent

Figure 6.1: Combining TEs with multiple PoIs.

In the figure, two experiments (Exp A and Exp B) are shown, where each experiment

focuses on a different PoI. Their AOs represent the same real-world object, but due to the

difference in PoI, they might focus on a different set of sensors, actuators, or components.

The TOs are constructed to be aligned with the AO, as well as the PoI that must be

analysed. The top EM will likely do a unification of data in order to obtain the desired

(potentially emergent) PoIs.

Figure 6.2 provides an example timeline for the execution of multiple TEs with different

PoIs. Notice how Exp A and Exp B are instructed by a higher-level EM, which in its turn

communicates the collected data to the top-level Orchestrator. Internally, Exp A and Exp

64 CHAPTER 6. COMBINING TWINNING ARCHITECTURES

B both launch their AO and TO, according to the information in their own EMs.

Twinning User/Machine Agent

Historian (blackboard storage)

Experiment

Exp A

Experiment Manager (Exp A)

Actual Object (Exp A)

Twin Object (Exp A)

Exp B

Experiment Manager (Exp B)

Actual Object (Exp B)

Twin Object (Exp B)

time

Orchestrator

Experiment Manager (Experiment)

Figure 6.2: Combining TEs with multiple PoIs timeline.

Also, it is important to notice that the communication rate of Exp A and Exp B are not

related, and may even vary over time. We will assume that the top EM will always

use the latest known information from the experiments to execute upon. An example

implementation for this behaviour can be found in Algorithm 6.1.

Imagine that we would like to build a TE for the movement of vessels in a port. Exp
A here can contain a part of the docks and locks, whereas Exp B contains the physical

movement of the vessels on the water, such that the overall union of Exp A and Exp B
entails the full port. The conceptual architecture presented in Figure 6.1 can then be used

to construct this system.

6.1. FEDERATION OF TWINNING SYSTEMS 65

Algorithm 6.1 Pseudocode for EM with multiple PoIs.

start ExpA and ExpB
while not finished do

𝐴← Collect data from ExpA
𝐵← Collect data from ExpB
yield union of 𝐴 and 𝐵

end while

6.1.2 Multiple Independent TEs

The most simplistic combination of TEs happens when they are in the same environment,

but there is no conceptual relationship between them. They might have the same PoIs,

but due to their lack of relationship, this does not matter. This often does not happen,

given that it makes very little sense to combine independent TEs. Figure 6.3 shows this

visually for the AOs. The same can happen for TOs: two independent models in the

same formalism can co-exist.

Experiment

Real World
Object

Exp A
User Agent

Twin ObjectActual Object

Experiment Manager

Machine Agent

Experiment Manager (Executor)

Exp B
User Agent

Twin ObjectActual Object

Experiment Manager
(Orchestrator)

Machine Agent

Figure 6.3: Combining independent TEs.

An execution timeline of such a system can look incredibly similar to Figure 6.2. However,

given that there is no relationship between Exp A and Exp B, the top EM launches both

experiments and simply collects data. This is also shown in Algorithm 6.2. In an ideal

scenario, Exp A and Exp B run on different threads.

Returning to the port example, we can apply this relationship when Exp A and Exp B
represent ports at the other side of the world from each other, assuming there is no

interaction between them.

66 CHAPTER 6. COMBINING TWINNING ARCHITECTURES

Algorithm 6.2 Pseudocode for EM for independent TEs.

start ExpA and ExpB
while not finished do

𝐴← Collect data from ExpA
yield 𝐴
𝐵← Collect data from ExpB
yield 𝐵

end while

6.1.3 Type vs Multiple Instances

Imagine being a car manufacturer. You create cars and you want to use Twinning to

increase their performance. Let’s say that some of the cars are being used exclusively on

dirt roads, whereas others are used in a city, and even others exclusively on a racing track.

It stands to reason that each of these cars evolves differently and should be orchestrated

differently. Even though each TE of a car might work on an individual (or instance) level,

you might benefit from having a TE of the overall behaviour of the cars. This way, you

can analyse general issues, or identify caveats to solve in the next version of the car.

We make the distinction between the Type and the Instance. The Type is the theoretical

TE (e.g., the general car itself), whereas the Instance is the individual TE in a specific

environment (e.g., the car on the racetrack, or the car on dirt roads). Likely an aggregation

of data is required to obtain the necessary information to analyse the Type. This is shown

for the AOs in Figure 6.4. There can also be multiple TO instances of the same type.

Experiment

Real World
Type

Real World
Instance A

Real World
Instance B

Exp A
User Agent

Twin ObjectActual Object

Experiment Manager

Machine Agent

Experiment Manager (Aggregation of Data)

Exp B
User Agent

Twin ObjectActual Object

Experiment Manager

Machine Agent

Figure 6.4: Aggregating data from multiple Instances of the same Type.

In the figure, two experiments (Exp A and Exp B) are independent experiments of the same

6.1. FEDERATION OF TWINNING SYSTEMS 67

real-world type. However, the environment in which they are used differs (visualised

with the different clouds). Behind the scenes, both Exp A and Exp B are based on the

same abstract TE.

Again, the difference here lies in the behaviour of the EM. Figure 6.2 is still a representative

example. One major difference is that a window of data from both Exp A and Exp B needs

to be maintained, such that we can aggregate the data (possibly by using a filter), as shown

in Algorithm 6.3.

Algorithm 6.3 Pseudocode for EM for instance vs type TEs.

start ExpA and ExpB
while not finished do

𝐴← Collect data from ExpA
𝐵← Collect data from ExpB
𝑇𝑦𝑝𝑒 ← aggregate(𝐴, 𝐵)
yield 𝑇𝑦𝑝𝑒

end while

Tesla aims to have a TO for every build car (H. Zhang et al., 2017), allowing them to do

predictive maintenance on an instance level (Alvarez, 2019). However, they likely also

aggregate all data for their cars in order to update future models.

Similarly, in our port example, the Type can represent our port and Exp A a port in

Belgium and Exp B a similar port in, for instance, Denmark.

6.1.4 Architectures Connecting Multiple Components

If the AO has structure –or is at least modelled as such– in the form of a network of

interacting components, we can construct or re-use the TEs for each of the components.

To provide services of the whole composed system, one approach is to coordinate the

TOs of the individual components or subsystems. This kind of federation assembles

the sub-experiments into a single, composite TE. The top EM encodes how different

components interact with each other and with the environment in which the overall

system operates. This is visualised in Figure 6.5, where each AO represents a system that

depends on another. Similarly, there can be multiple TOs that depend on each other, yet

are executed separately.

For example, consider applying federation in a smart factory context, which might have

TOs for conveyor belts, robotic arms, warehouse control, power consumption, etc. In this

context, federation enables the TO of the entire factory to analyse how these different

aspects of the factory interact and influence each other, based on the TOs of the individual

machines. This idea closely relates to co-simulation (Gomes et al., 2018), where multiple

dependent models are simulated simultaneously. In fact, co-simulation appears if the

TOs are to be combined this way. Visually, a timeline for such an experiment is shown in

Figure 6.6.

Algorithm 6.4 shows some example code for the top EM, using a simple iteration loop

to synchronise Exp A and Exp B. Different co-simulation techniques might yield better

results.

68 CHAPTER 6. COMBINING TWINNING ARCHITECTURES

Experiment

Real World
Object

Exp A
User Agent

Twin ObjectActual Object

Experiment Manager

Machine Agent

Experiment Manager (Aggregation and/or Interleaving of Data)

Exp B
User Agent

Twin ObjectActual Object

Experiment Manager

Machine Agent

Figure 6.5: Aggregating data from multiple dependent TEs.

Algorithm 6.4 Pseudocode for EM for dependent TEs.

start ExpA and ExpB
while not finished do

while fixed point not reached do
𝐴← Collect data from ExpA
Send 𝐴 to ExpB
𝐵← Collect data from ExpB
Send 𝐵 to ExpA

end while
yield aggregate(𝐴, 𝐵)

end while

The port in Antwerp is a port that exists both on the left bank, as well as on the right

bank. When we have a separation of the banks in terms of simulation (e.g., because of

political reasons), it might be the case that Exp A represents the left bank and Exp B
the right bank. The interaction between them is the movement of vessels, as well as a

potential coordination of pilots and tugboats.

6.1.5 Multiple Formalisms/Languages

Even a single PoI may be obtained in many different ways such as a lookup in historical

data traces or through simulation of a set of differential equations. The language to use

is determined by its availability, computational performance constraints, or cognitive

explainability. This type or formalism heterogeneity in TEs thus also needs to be man-

6.1. FEDERATION OF TWINNING SYSTEMS 69

Twinning User/Machine Agent

Historian (blackboard storage)

Experiment

Exp A

Experiment Manager (Exp A)

Actual Object (Exp A)

Twin Object (Exp A)

Exp B

Experiment Manager (Exp B)

Actual Object (Exp B)

Twin Object (Exp B)

time

Orchestrator

Experiment Manager (Experiment)

Exp A Exp AExp B Exp B

Figure 6.6: Combining dependent TEs timeline.

aged, through federation. This may require various kinds of adaptation and in particular

semantic adaptation (Denil et al., 2015).

Figure 6.7 shows this, where two experiments focus on the exact same AO, but have

different TOs. In reality, the AOs do not need to be an exact match, but should at most

differ in PoIs. The top EM should interpolate the information from all experiments and

potentially interleave execution. On the TO’s side, we are basically doing co-simulation,

as visualised in Figure 6.6.

The most simplistic implementation would be a simple aggregation of the data, as shown

in Algorithm 6.5.

The safety of the trajectories in a port might be modelled using Petri-Nets, whereas the

overall movement could be constructed using a Discrete-Event simulation like DEVS

(Zeigler et al., 2018).

70 CHAPTER 6. COMBINING TWINNING ARCHITECTURES

Experiment

Modelled
World B

Modelled
World A

Real World
Object

Exp A
User Agent

Twin ObjectActual Object

Experiment Manager

Machine Agent

Experiment Manager (Aggregation and/or Interleaving of Data)

Exp B
User Agent

Twin ObjectActual Object

Experiment Manager

Machine Agent

Figure 6.7: Combining TEs with multiple formalisms.

Algorithm 6.5 Pseudocode for EM with multiple formalisms.

start ExpA and ExpB
while not finished do

𝐴← Collect data from ExpA
𝐵← Collect data from ExpB
yield aggregate(𝐴, 𝐵)

end while

6.1.6 Multi-Abstraction/Detail/Fidelity

Multiple TOs are often constructed for a single (sub-)system, providing services per-

taining to a single PoI only. These TOs only differ in their level of abstraction, detail,

and fidelity. Franceschini, Challenger, et al. (2019) and Franceschini, Van Mierlo, and

Vangheluwe (2019) showed the usefulness of using multiple abstractions for the same

system by simulating car traffic, with individual cars at a low level of abstraction, and

traffic jams at a higher level of abstraction. Similarly, Badawi et al. (2021) collects data for

cities at a macro and a micro level.

Substitutability of a lower abstraction TO by a higher abstraction TO, while the PoI

remains unaltered, is the main goal when using multiple abstractions. Often, but not

necessarily, lower abstraction is a result of higher detail, at the cost of more computation

power required. A higher abstraction might be computationally inexpensive, but results

in mere approximations of the real scenario. A distance metric for the PoI is then required

to ensure validity of the TO.

The need for (real-time) performance often drives the choice of abstraction, detail, and

6.1. FEDERATION OF TWINNING SYSTEMS 71

fidelity in a TE. This can also be impacted by cognitive performance. Some questions are

namely best answered at a particular abstraction level. For instance, the user may not be

able to comprehend too much detail. Aggregate information is often easier to use as a

basis for logical reasoning and decision-making.

The level of detail, abstraction, and fidelity may be dynamically changed, adapting to

a changing system, environment or to (simulation) performance needs (Franceschini,

Van Mierlo, & Vangheluwe, 2019). This requires transitioning between different TOs.

This can again be achieved through an appropriate federation architecture where an

orchestrator takes care of the transitioning.

Conceptually, this is the same as Figure 6.7. However, Figure 6.8 provides a little bit

more detail on the relationship between the TOs. Furthermore, the top EM has to select

the correct experiment to execute, depending on the choices of adaptive abstraction, as

opposed to aggregating the data.

Experiment

more fidelity/accuracy

Real World
Object

Exp A
User Agent

Twin ObjectActual Object

Experiment Manager

Machine Agent

Experiment Manager (Selection of Most Appropriate Experiment)

Exp B
User Agent

Twin ObjectActual Object

Experiment Manager

Machine Agent

Model n
(detailed)

Model 1
(abstract)

...

more performance

Figure 6.8: Combining TEs with multiple levels of abstraction.

In Figure 6.9, it is shown what a timeline that applies adaptive abstraction may look

like. First, Exp A is called to execute the system according to the abstraction level A.

After a while, Exp B’s abstraction level needs to be used (e.g., due to more efficiency, or

more accuracy). Then, after a while, Exp A is to be used once more. This is also shown

in Algorithm 6.6. Depending on the level of abstraction required, a different result is

obtained.

Just like it is explained by Franceschini, Van Mierlo, and Vangheluwe (2019) with cars

and traffic jams, a similar approach can be taken for water traffic. The main points of

congestion will be when vessels are waiting at the locks.

72 CHAPTER 6. COMBINING TWINNING ARCHITECTURES

Twinning User/Machine Agent

Historian (blackboard storage)

Experiment

Exp A

Experiment Manager (Exp A)

Actual Object (Exp A)

Twin Object (Exp A)

Exp B

Experiment Manager (Exp B)

Actual Object (Exp B)

Twin Object (Exp B)

time

Orchestrator

Experiment Manager (Experiment)

Exp A Exp AExp B

Figure 6.9: Combining TEs with multiple states timeline.

6.1. FEDERATION OF TWINNING SYSTEMS 73

Algorithm 6.6 Pseudocode for EM with multiple abstractions.

start ExpA and ExpB
while not finished do

𝑀𝑜𝑑𝑒 ← Determine level of abstraction

if 𝑀𝑜𝑑𝑒 is “A” then
𝐴← Collect data from ExpA
yield 𝐴

else if 𝑀𝑜𝑑𝑒 is “B” then
𝐵← Collect data from ExpB
yield 𝐵

end if
end while

6.1.7 Multiple Life-Cycle Stages

TOs can be used throughout the entire life of an AO. This may cover different PLM

stages such as design, manufacturing, assembly, operation, maintenance, refurbishing,

etc. of a product with intricate control flow between those stages, often including feedback

loops at different time scales. As drastic changes occur between different life-cycle stages,

changes need to be made to TOs too. Note that those changes may actually be what defines

the stages, as an emergent property. There may be changes in PoIs, in components or

architecture, and in abstraction, detail, or fidelity. A federation architecture can manage

these, as shown in Figure 6.10. Conceptually, the same happens as in Figure 6.7 and

Figure 6.8, only here, the relationship of the models is dependent on the exact life-cycle

stage of the AO.

Experiment

Real World
Object

Exp A
User Agent

Twin ObjectActual Object

Experiment Manager

Machine Agent

Experiment Manager (Selection of Most Appropriate Experiment)

Exp B
User Agent

Twin ObjectActual Object

Experiment Manager

Machine Agent

Model n
(end of life)

Model 1
(origin)

...

life-cycle

Figure 6.10: Combining TEs with multiple life-cycle stages.

74 CHAPTER 6. COMBINING TWINNING ARCHITECTURES

Additionally, an AO always evolves over time. For biological systems this is clearly a

continuous process, as plants keep growing and cells keep multiplying. But even in

industrial contexts, we can identify wear and tear, and replacement of parts. Ensuring

this often coincides with a predictive maintenance PoI requirement. In this sense, we

might identify more stages, such that the full validity range (Van Acker et al., 2024) of all

these stages covers the full behaviour of the AO.

Note the behavioural similarities to the timeline in Figure 6.9. First, Exp A defines the

behaviour of the system, but after a while, the model is not accurate anymore, so Exp B
needs to be used. Ideally, there is a clean transition between the two. Next, maybe another

experiment is needed for the next phase. Note that the timeline shows returning to Exp
A, which is not impossible, but will happen rarely. The example given in Algorithm 6.7

also shows the selection of specific states in the life-cycle.

Algorithm 6.7 Pseudocode for EM with multiple life-cycle stages.

start ExpA and ExpB
while not finished do

𝑆𝑡𝑎𝑡𝑒 ← Determine life-cycle stage

if 𝑆𝑡𝑎𝑡𝑒 is “A” then
𝐴← Collect data from ExpA
yield 𝐴

else if 𝑆𝑡𝑎𝑡𝑒 is “B” then
𝐵← Collect data from ExpB
yield 𝐵

end if
end while

In Wagle et al. (2023), multiple states are used to identify the current behaviour of the

battery of an electric vehicle. This is a very rudimentary implementation of this kind of

federation, and a similar approach can be applied to electric yachts. On a higher level,

a full port can change in business throughout the year, which might result in a different

executional behaviour.

6.1.8 Multiple Copies for Redundancy

In complex systems, redundancy is essential to maintain reliability and availability. Fed-

eration can contribute to redundancy by allowing the creation of multiple TOs for the

same AO. For instance, a simulation model can be deployed in the cloud (because of

the desired computation power), but another model can run at the edge for redundancy

(as a backup, in case the connection is down)1. Redundancy ensures that alternative

TEs can continue executing critical processes or providing services and backup for those

encountering issues. This is particularly valuable for critical systems where downtime

can have severe consequences. However, in such a case, some requirements and crite-

ria should be met to deploy a valid and high degree of redundancy between different

1In Stage A , you identify that you require redundancy, which yields this combination at a conceptual level

in Stage B , and then Stage D is able to deploy one in the cloud, and one on the edge.

6.1. FEDERATION OF TWINNING SYSTEMS 75

TEs. The management of multiple copies of a same TE can be achieved by a federation

architecture, as shown in Figure 6.11

Experiment

Modelled
World

Real World
Object

Exp A
User Agent

Twin ObjectActual Object

Experiment Manager

Machine Agent

Experiment Manager (Aggregation and/or Averaging of Data)

Exp B
User Agent

Twin ObjectActual Object

Experiment Manager

Machine Agent

Figure 6.11: Combining TEs with redundancy.

Again, the timeline in Figure 6.2 can be used as an example execution. There is no

requirement that both experiments communicate at the same rate, but the top EM will

work best if both Exp A and Exp B are at least synchronised in a way. Algorithm 6.8 shows

an example implementation in the top EM for accounting for multiple copies. Of course,

more complicated implementations (for instance by using majority voting, or time-series

analysis) are also possible.

Algorithm 6.8 Pseudocode for EM with multiple copies.

start ExpA and ExpB
while not finished do

𝐴← Collect data from ExpA
𝐵← Collect data from ExpB
yield average(𝐴, 𝐵)

end while

In terms of completeness, we can run two similar simulations of a port to obtain an

average result.

6.1.9 Multiple Combinations of Multi-*

As of now, this section has described different ways of combining TEs, focusing on

specific situations. In reality, many of the presented approaches will likely need to be

76 CHAPTER 6. COMBINING TWINNING ARCHITECTURES

combined, making the top-level EM more complicated, when there are more different

combinations.

Because of the holonic nature of the presented architecture, these combinations may

happen as shown in Figure 6.12. Here, three experiments (Exp A, Exp B and Exp C) are

combined in the over-arching experiment Exp A-C. Similarly, the experiments (Exp D,

Exp E and Exp F) are combined in the over-arching experiment Exp D-F. Exp A-C and Exp
D-F might themselves need to be combined according to another method.

Experiment

Exp A-C

Exp A

Experiment Manager

Experiment Manager

Machine Agent
Exp D-F

Experiment Manager

Machine Agent

horizontal federation

ve
rti

ca
l f

ed
er

at
io

n

Exp CExp B Exp D Exp FExp E

Figure 6.12: Hierarchically combining TEs.

We can keep hierarchically combining TEs using this approach. The TEs on the same

hierarchical level (i.e., experiments Exp A, Exp B and Exp C; or experiments Exp D, Exp E
and Exp F) can be horizontally federated, whereas we can call this hierarchical composition

vertical federation. The combination of the two can be considered hybrid federation (Marah

& Challenger, 2025).

Figure 6.13 shows an example timeline of how the interaction between experiments (and

their managers) may happen. Notice that there is no requirement that all experiments

start and end at the same time.

The topmost EM’s behaviour is dependent on how Exp A-C and Exp D-F relate with each

other. All previously presented solutions apply here. In a similar vain, we can decon-

struct the behaviour of the port into its smallest components, ensuring this hierarchical

conceptual architecture for its TEs.

6.1. FEDERATION OF TWINNING SYSTEMS 77

Twinning User/Machine Agent

Historian (blackboard storage)

Experiment

Exp A-C

Experiment Manager (Exp A-C)

Exp A

Exp B

Exp C

Exp D-F

Experiment Manager (Exp D-F)

Exp D

Exp E

Exp F
time

Orchestrator

Experiment Manager (Experiment)

Figure 6.13: Example timeline for hierarchically combining TEs.

78 CHAPTER 6. COMBINING TWINNING ARCHITECTURES

6.2 White Box vs. Black Box Combinations

The presented architecture and its combinations and variations are still purely conceptual.

They are meant to help define the required components and parts in a Twinning System,

but in practice, it will be inefficient and impractical to work with.

Whenever the exact contents of the AOs or the TOs are known, we can apply a white box

combination. An example is visualized in Figure 6.14. There is an AO with two sensors

(Sensor A and Sensor B) and one actuator (Actuator 1). Another TE (with a different PoI)

has an AO with Sensor B, Sensor C, Actuator 2 (notice the duplicate use of Sensor B). All

sensors and actuators are on the same physical device, yet because of our conceptual

separation into multiple TEs (due to multiple PoIs), they are conceptually separated. In

practice, we want to have a single AO that contains all sensors and all actuators. A white

box combination merges both experiments into a TE with a larger AO (i.e., the union of

all sensors and actuators).

Real World
Object

Sensor B

Sensor C

Actuator 1

Actuator 2

Experiment

Exp A
User Agent

Twin ObjectActual Object

Experiment Manager

Machine Agent

Experiment Manager (Unification of Information)

Exp B
User Agent

Twin ObjectActual Object

Experiment Manager

Machine Agent

Sensor A

Figure 6.14: Combining two White Boxes through merging the contents.

For instance, for the port of Antwerp, there might be one TO focusing on the left bank

and another that focuses on the right bank. From a simulation point of view, it will be

much more efficient to merge these into a single simulation.

Similarly, Twinning systems with multiple life-cycle stages (as shown in Figure 6.10) will

likely be optimised, such that the TO consists of a state machine that selects the correct

life-cycle stage.

6.3. CONCLUSION 79

If the AOs or TOs are obtained via a third party (API, FMU, etc.), it is likely not possible to

do combinations on this level. They are commonly black boxes here, due to IP protection.

Because the exact details are not known, these boxes cannot be combined. Hence, co-

simulation techniques can be used to try and merge these black boxes. This is shown in

Figure 6.15. The same TEs as for the white box example are used, only this time, we have

no access to the individual components, only their interfaces. Merging them requires the

black boxes to co-exist, albeit orchestrated by another component.

Real World
Object

Experiment

Exp A
User Agent

Twin ObjectActual Object

Experiment Manager

Machine Agent

Experiment Manager (Unification of Information)

Exp B
User Agent

Twin ObjectActual Object

Experiment Manager

Machine Agent

Sensors A, B
Actuator 1

Sensors B, C
Actuator 2

Figure 6.15: Combining two Black Boxes through orchestration.

In general, it is likely that all EMs will be merged or interleaved into a single EM. This

optimisation step needs to happen before the actual deployment can be realised, as it

will (often) reduce the workload and the required technologies.

6.3 Conclusion

Research Question 5 stipulates “How can we combine multiple DTs into a larger system?”

Following the notion of a TE as a first-class entity in our conceptual architecture, this

chapter answers this question by focusing on combining multiple TEs. It makes use of

the architecture presented in Chapter 4 and goes a step further by not only focusing

on a single goal (from stage A), but also showing how we can construct a Twinning

System when multiple goals are selected. Different TEs to be combined may correspond

to different requirements, goals and PoIs; may correspond to different components in an

architecture; may represent a system at different levels of detail, abstraction, and fidelity;

may be used at a type or aggregate level, or at instance level; . . . These different cases

80 CHAPTER 6. COMBINING TWINNING ARCHITECTURES

were explored and for each a conceptual architecture was proposed. This combination

of TEs will especially be considered further in the TurtleBot use-case from Chapter 7.

“Never tell me the odds.”
– Han Solo (Harrison Ford),

Star Wars: Episode V - The Empire Strikes Back

Chapter 777
Representative Use-Case:

Automated Guided Vehicle

Automated Guided Vehicles (AGVs) are often used in an industrial context as a replace-

ment for the assembly line (Custodio & Machado, 2020). They are self-driving vehicles

that are used to move materials, tools and sub-assemblies from one location to another,

without taking up as much space (Wu & Ge, 2019).

A Line Following Robot (LFR) is a simple version of an Automated Guided Vehicle (AGV)

with the sole purpose of following a line on the ground. In some contexts, this line might

be an invisible electromagnetic strip, or a virtual path in an internal GPS. Because of their

simplicity, LFRs are often used for Science, Technology, Education, (Arts,) Mathematics

(STE(A)M) educational purposes. Some examples include (but are not limited to)1:

• LEGO Mindstorms/Inventor:

https://education.lego.com/en-us/lessons/mindstorms-ev3/line-detection/

• Edison Robot:

https://meetedison.com/

• Dekimo Challenge:

https://www.dekimo.com/nl/challenge/

• BlueBot 4-in-1:

https://www.homesciencetools.com/product/bluebot-4-in-1-educational-robotics-kit/?aff=SB1

This chapter will apply the stages presented in the previous chapters on two practical

use-cases: a simple LEGO LFR, and a more industrial case of a TurtleBot2. Both can be

seen as an approximation for actual AGVs. The LEGO LFR is meant to be a proof-of-

concept for the overall Twinning idea. Its end goal is to construct a Digital Shadow (cfr.

Kritzinger et al. (2018)’s definition) that is able to accurately follow a line drawn on the

ground.

The TurtleBot use-case focuses more on how multiple TEs could be combined in order

to yield a valid Twinning System, using the logic presented in Chapter 6. There is an

1All urls were last accessed April 22nd 2024.

2https://www.turtlebot.com/, accessed July 15th 2024.

81

https://education.lego.com/en-us/lessons/mindstorms-ev3/line-detection/
https://meetedison.com/
https://www.dekimo.com/nl/challenge/
https://www.homesciencetools.com/product/bluebot-4-in-1-educational-robotics-kit/?aff=SB1
https://www.turtlebot.com/

82 CHAPTER 7. REPRESENTATIVE USE-CASE: AUTOMATED GUIDED VEHICLE

additional focus on how to use the Historian as a blackboard knowledge base for the

system, allowing it to become actual DT (cfr. Kritzinger et al. (2018)).

7.1 LEGO Line Following Robot

As a proof-of-concept for Twinning, we need to design and realize a LFR whose goal it is to

follow a line on the ground as closely as possible whilst moving swiftly, economically and

safely. In the digital world, a simulated copy (i.e., a TO) is created, acting on the same input

from the environment as the real system. The real and the simulated robot should follow

the exact same trajectory. Through comparison of the two trajectories, inconsistencies in

the operation of the robot can be detected. Ideally, the position (and heading) of the AO

and the TO should be sufficiently close at all points in time, independent of the line to

follow. Figure 7.1 shows a PM that can be used to construct such a system.

Note that this is a representative workflow for this system, but may evolve over time.

Additionally, the developed framework and architecture may change as well. Any imple-

mentation of the FTG+PM must support this kind of evolution (Meyers & Vangheluwe,

2011).

Furthermore, this workflow will result in a deployed system and a behaviour trace, on

which some analysis may be done, potentially yielding insights to be used as input in the

development of a new version of this robot.

7.1.1 System Design

The System Design and (implicit) Requirement Elicitation activity returns to the Feature

Trees from Chapter 3. We identify the need for Data Recording, Consistency Monitoring,

Dashboarding, and Live 2D Animation. While we can select many other goals, this chapter

will mainly focus on building a Twinning System that includes but these four goals.

7.1.2 System Decomposition

Next, the (hierarchical) System Decomposition activity focuses on the conceptual system

architecture (see Chapter 4). Our conceptual system architecture will look a bit like

the one shown in Figure 7.2. The AO drives around in its environment, and a TO is

mimicking that behaviour. Optionally, the TO can be given additional control signals to

synchronize better with the AO. The User Agent is a dashboard that incorporates a plot

for the robots, as well as a video stream of the current execution. This way, a user can

identify the consistencies between the AO and the TO.

Additionally, both the AO and the TO are decomposed into three parts: some plant

equations, a control algorithm, and a design sketch. We will first focus on the AO, but

build the models and the logic such that the TO can use them as well.

7.1. LEGO LINE FOLLOWING ROBOT 83

requirements :
MarkDown

bom : Bill of
Material

components :
Hardware

3d_model : CAD

plant_model :
CBD

ctrl_model :
CBD

param_guess :
Constantsagv : AGV

agv_model :
CBD

calib_model :
CBD

trace : Table

agv_dsg :
Sketch

plant_eqs :
Equations

ctrl_alg :
Algorithm

system_design :
MCD

ne
w

 v
er

si
on

system_design
: System Design

cin1

cout

din

dout

cin2

system decomposition
: System Decomposition

agv eqscout

cin req dsg

ctrl

digitization
: Digitization

cin

cout

agv

binst

3d

component_gathering
: Component Gathering

cin

cout

agv

comp

dsg

bom

avg_asm
: Robot Assembly

cin

cout

binst comp

agv cnst

plant_mdl
: Plant Modelling

cin

cout

eqs

cbd

ctrl_mdl
: Controller Modelling

cin

cout

alg

cbd

cbd_comp
: CBD Composition

cin

cout

mdl

plant ctrl

calibration
: Calibration

cnst

mdl2

cout

cin

mdl1

deploy_sim
: Deployment and Simulation

cin

cout

agv

trace

mdl

sys

sys_ana
: System Analysis

cin

cout

req

trace

reqs

sys

cterm acc

deployed : Table

build_inst : Building
Instructions

accuracy :
Percentage

Legend:

typedArtifact: Type

activity

hierarchy

automation

data port

control flow port

control flow start

control flow end

split/join

Figure 7.1: Workflow for the LFR use-case.

84 CHAPTER 7. REPRESENTATIVE USE-CASE: AUTOMATED GUIDED VEHICLE

Experiment
User Agent Machine Agent

Twin ObjectActual Object

Experiment Manager
(Orchestrator) Workflow(s)

Figure 7.2: Conceptual architecture for the AGV use-case.

7.1.3 Component Gathering

We used the (retired) LEGO Mindstorms EV3 Core Set (313131, https://www.lego.com/

nl-be/product/lego-mindstorms-ev3-31313) to construct our LFR. While the hardware

lacks in precision, its variability and simplicity of construction and adaptation made it

a good choice for the purposes of this research. Other literary works have a similar

reasoning to use LEGO for their use-cases (Karaduman et al., 2023; Lugaresi et al., 2020;

Muñoz et al., 2021).

Besides internal odometry, it is important to have an idea of the exact position of the

robot. For this, a testing harness has been built. Above the line to follow, a camera is

mounted to objectively measure the exact position of the robot. The camera is mounted

such that the camera’s field of view is able to capture the entire driving range. Care must

be taken when mounting the camera to a rig, as the USB-C port for data communication

and power is located at the same side as the tripod connector.

In Figure 7.3a, the experimentation setup is shown. This was built in a living room due to

the Covid lockdown. A is the floor on which the robot drives around, following a white

line. B is an H-bar, commonly used to attach photography backdrops. Figure 7.3b gives

a close-up of the camera mount. Finally, C is the laptop on which the control software

runs.

7.1.4 Digitization

To ensure repeatable experiments, a 3D version of this experiment setup was also con-

structed in Unity3D. For each version of the robot, a CAD model was created and imported

into this digital world. Figure 7.4 shows the Unity3D environment running on the server

in room M.G.330, at the University of Antwerp. Figures 7.5 and 7.6 show a screenshot of

the Unity3D environment itself.

Because LEGO was used to construct this robot, the CAD model was constructed with

https://www.lego.com/nl-be/product/lego-mindstorms-ev3-31313
https://www.lego.com/nl-be/product/lego-mindstorms-ev3-31313

7.1. LEGO LINE FOLLOWING ROBOT 85

(a) Components in the setup. (b) LFR topdown camera close-up.

Figure 7.3: LFR experimentation setup.

Figure 7.4: Unity3D version of the robot, running on the server in room M.G.330 at the

University of Antwerp.

Figure 7.5: Unity3D version of the robot.

86 CHAPTER 7. REPRESENTATIVE USE-CASE: AUTOMATED GUIDED VEHICLE

Figure 7.6: Closeup of the Unity3D robot.

LeoCAD3, which integrates with LDraw4 for creating LEGO-esque building instructions

for these robots.

7.1.5 Robot Assembly

Given the bricks from the LEGO Mindstorms EV3 Core Set (313131), together with the

bricks from the LEGO Mindstorms EV3 Education Expansion Set (45560); and the created

building instructions, the actual robot can be built.

7.1.6 Plant Modeling

Wheeled mobile robots are commonly classified as either omnidirectional (also known as

omniwheels, mecanum wheels, or Swedish wheels), or nonholonomic (Lynch & Park, 2017).

The main difference between the two is that omniwheels allow for sideways movement,

whereas nonholonomic wheels are the more conventional wheels that can be found on

cars or bikes.

For the purposes of this research, we will be focusing on a wheeled, nonholonomic

differential-drive robot (Rajamani, 2011), as shown in Figure 7.7.

The differential-drive behaviour emerges from having two equal wheels of radius 𝑟 that

are driven by their own motors. Conceptually, both wheels are aligned on the same axis,

3https://www.leocad.org/

4https://ldraw.org/

https://www.leocad.org/
https://ldraw.org/

7.1. LEGO LINE FOLLOWING ROBOT 87

Figure 7.7: Free-body diagram of a differential-drive robot.

at a distance of 2𝑏 apart (with 𝑏 half the axle length). The position 𝑂 = (𝑥, 𝑦) is located

at the centerpoint between the wheels (i.e., the distance from 𝑂 to any of the wheels is

𝑏). To prevent the robot from tipping over, there can be some additional caster wheels,

ball casters or low-friction sliders. Its linear velocity is identified with 𝑣 and the heading

with 𝜔. Thus both wheels can rotate at a different angular velocity, respectively 𝜓𝐿 and

𝜓𝑅 for the left and right wheels. To rotate the robot clockwise, (i.e., 𝜔 < 0), we should

ensure 𝜓𝑅 < 𝜓𝐿. Similarly, to rotate the robot anticlockwise, (i.e., 𝜔 > 0), we should

ensure 𝜓𝑅 > 𝜓𝐿.

7.1.6.1 Simple Plant

Given ⟨¤𝑣, ¤𝜔⟩, it is mathematically possible to obtain ⟨ ¤𝜓𝐿 , ¤𝜓𝑅⟩. We use Newton’s notation

for time-based derivatives:

¤𝑣 =
𝑑

𝑑𝑡
(𝑣)

For the sake of simplicity, the pure rolling condition is assumed (Torres et al., 2014). That

is, all the torque provided to the robot is used to provide motion to the robot. In other

words, the robot does not skid, nor slide. A simple derivation yields:

¤𝜓𝐿 =
1

𝑟
(¤𝑣 − 𝑏 · ¤𝜔) ¤𝜓𝑅 =

1

𝑟
(¤𝑣 + 𝑏 · ¤𝜔) (7.1)

Odometry (also called dead reckoning in traditional aviation and nautical navigation (Lu-

cas, 2000)) is the process of estimating the state 𝑞 = [𝑥, 𝑦, 𝜔]𝑇 from the wheel motions,

essentially integrating the effect of the wheel velocities (Lynch & Park, 2017). We obtain:

¤𝑞 =

¤𝑥
¤𝑦
¤𝜔

 =

𝑟/2 · cos 𝜔 𝑟/2 · cos 𝜔
𝑟/2 · sin 𝜔 𝑟/2 · sin 𝜔
−𝑟/(2𝑏) 𝑟/(2𝑏)

 ·
[¤𝜓𝐿
¤𝜓𝑅

]
(7.2)

These equations were used and transformed into CBD models, but for the sake of com-

pleteness, the next section will discuss a higher fidelity model.

88 CHAPTER 7. REPRESENTATIVE USE-CASE: AUTOMATED GUIDED VEHICLE

7.1.6.2 Offsets and Center of Mass

Commonly, 𝑂 is the important point on the robot, from where all computations should

happen, but when the robot is a rigid body, any point on the robot can be used as a point

of reference. This is shown in Figure 7.8. Here, the point located at offset (𝑥𝑇 , 𝑦𝑇) in the

robot’s frame (𝑇) has an equivalent offset (𝑥𝑅 , 𝑦𝑅) in the global reference frame (𝑅).

Figure 7.8: Using a different point on the robot.

Because the robot’s Center of Mass (CoM) might not be located at 𝑂, we will expand

Figure 7.7 to Figure 7.9. Here, we assume a single ball caster at location 𝐶. The distance

between 𝑂 and CoM is 𝑑, and 𝑒 is the distance between CoM and 𝐶.

Figure 7.9: Free-body diagram of the robot, with respect to the robot’s mass and a ball

caster.

A sensor is located on position 𝑆. Because we use a single sensor, we can assume 𝑦𝑆 = 0,

but when using multiple sensors, multiple 𝑆𝑖 points can be identified. From virtual

experiments, it was observed that the closer 𝑆 is to 𝑂, the harder it will be to control the

LFR. Logically, this makes sense: 𝑆 represents a future point that the robot will be at, so

controlling values based on 𝑆 allows you to impact a future state of the robot. A caveat

is that we cannot set 𝑥𝑆 too large, as it will act too soon on the robot’s behaviour.

Torres et al., 2014 defines the kinematics under the pure rolling condition as:
¤𝜓𝑅 · 𝑟 = ¤𝑥𝑐𝑐𝜔 + ¤𝑦𝑐𝑠𝜔 + 𝑏 ¤𝜔
¤𝜓𝐿 · 𝑟 = ¤𝑥𝑐𝑐𝜔 + ¤𝑦𝑐𝑠𝜔 − 𝑏 ¤𝜔

0 = ¤𝑦𝑐𝑐𝜔 − ¤𝑥𝑐𝑠𝜔 − 𝑑 ¤𝜔
(7.3)

Where (𝑥𝑐 , 𝑦𝑐) is the position of the CoM, 𝑐𝜔 = cos(𝜔), and 𝑠𝜔 = sin(𝜔). Therefore, we

7.1. LEGO LINE FOLLOWING ROBOT 89

get:

¤𝑞 =

¤𝑥
¤𝑦
¤𝜔

 =

𝑟/2 · cos 𝜔 𝑟/2 · cos 𝜔 −𝑑 · sin 𝜔
𝑟/2 · sin 𝜔 𝑟/2 · sin 𝜔 𝑑 · cos 𝜔
−𝑟/(2𝑏) 𝑟/(2𝑏) 0

 ·

¤𝜓𝐿
¤𝜓𝑅
¤𝜔

 (7.4)

Ideally, ¤𝜔 is computed first (given that the other calculations need it).

7.1.6.3 Limitations

This section has identified certain limitations within the given context, but they will be

summarized below.

• It is assumed that a frictionless ball caster is used to prevent the robot from tipping

over. In reality, this will still introduce a small amount of friction that can influence

the given formulas.

• It is assumed that the robot is a rigid body, without shifting mass. On top of that,

it is assumed that the CoM is aligned in the middle of the wheels (i.e., the robot is

symmetric).

• The pure rolling condition is assumed in all computations. In reality, there is a

linear and lateral force acting on the wheels when the robot is rotating (Sloane,

2018). Torres et al., 2014 solves this by using a Coulomb friction model, but more

complex approaches like Pacejka’s Magic Formula (Pacejka, 1966) are commonly

used in industrial contexts.

• Overspeeding is the physical phenomenon that appears when engines rotate at 100%

power or more for a certain amount of time. The motors will start to overheat, tear

or break. Typical AGVs prevent overspeeding by reducing the maximal allowed

velocity for 𝜓𝐿 and 𝜓𝑅.

When comparing the presented model with the actual system behaviour, an offset due

to friction can (and will) be measured. A DT can here help to counteract the influence of

the friction and still ensure a valid LFR behaviour.

7.1.7 Controller Modelling

Numerous control algorithms exists for controlling a LFR. Their purpose is to yield

⟨¤𝑣, ¤𝜔⟩, based on the sensor input(s). As a result, they are highly dependent on the

number of sensors that are being used. Within the current use-case, we will use a single

sensor, measuring the colour of the underlying surface under the robot. Many alternative

approaches exist. Some use multiple sensors (Erbay et al., 2024; Torres et al., 2014), others

a slightly tilted camera (Sloane, 2018).

90 CHAPTER 7. REPRESENTATIVE USE-CASE: AUTOMATED GUIDED VEHICLE

We will assume a white line on a dark background5: i.e., if the sensor measures a white
value, we are on the line; if it measures a black value, we are not6. We identify a threshold

𝑇 to separate between “black” and “white”. Notice that the line will have some feathering
at the edges where a grey value is measured. Hence, we can set two thresholds: 𝑇1 where

“black” becomes “grey”, and 𝑇2 where “grey” becomes “white”. The measured darkness

𝐵 will be directly proportional to the distance between the sensor and the line 𝑦𝑒 . We get

𝐵 = 𝐾𝑐 · 𝑦𝑒 , with 𝐾𝑐 a constant.

We will assume the robot drives in curvilinear space (Brannon, 2004). This implies the path

of the robot always follows a circular path with radius 𝑅 and curvature 𝜅 (= 1/𝑅). When

𝑅 = ±∞ (i.e., when 𝜅 = 0), the path is straight. When 𝜅 < 0, the path requires a clockwise

motion, and when 𝜅 > 0, the path requires an anticlockwise motion. A small radius

requires a sharp turn and a large radius a gentle turn. As a result estimated curvature �̃�
is a good identification of ¤𝜔. This is visualized in Figure 7.10.

Figure 7.10: Curvilinear space, adapted from Sloane (2018).

The upcoming sections will describe a set of (non-exhaustive) control algorithms that can

be applied to identify ¤𝜔 for the robot. Next, subsection 7.1.7.8 will focus on controlling

the velocity of the robot. Finally, subsection 7.1.7.9 will discuss how the robot can recover

from losing the line.

7.1.7.1 Bang-Bang Controller

Also called a Zig-Zag controller, assumes a closed path without intersections. The robot

rotates left7 with a constant angular velocity Ω. When the sensor identifies black (by

using threshold 𝑇), the robot rotates right, with velocity Ω.

The variable 𝐾𝑐 will be embedded in the choice of Ω. When the path is to be followed in

clockwise motion, the robot will zig-zag over the outer edge. When anticlockwise motion

is preferred, the inner edge will be used. Figure 7.11a shows an example implementation

for this kind of controller. The full blue line is the path to follow, and the striped red line

is the followed path. The code for this example is based on Sloane (2018).

5The same logic can be made for the opposite scenario.

6Under the assumption that the sensor is well calibrated.

7The same logic can be applied when swapping left and right.

7.1. LEGO LINE FOLLOWING ROBOT 91

(a) Bang-Bang controller. (b) Proportional controller.

Figure 7.11: Bang-Bang and Proportional controller for following a closed path.

7.1.7.2 Proportional Controller

Because 𝐵 is directly proportional to 𝑦𝑒 , it would make sense to set ¤𝜔 higher when the

error is larger. We identify constant 𝐾𝑝 as a tunable variable (that accommodates for 𝐾𝑐),
such that:

¤𝜔 = 𝐾𝑝 · 𝐵 (7.5)

Figure 7.11b shows an example implementation for this kind of controller.

Of course, this controller requires 𝐾𝑝 to be tuned to the most optimal value, here 𝐾𝑝 is set

to −1.7. It is possible that a better value can be found for following this trajectory.

7.1.7.3 Proportional-Differential Controller

A proportional and derivative controller (also known as a PD controller) is a common

choice for LFR control. Another tunable constant 𝐾𝑑 will provide the influence of the

derivative of 𝑦𝑒 . This gives

¤𝜔 = 𝐾𝑝 · 𝐵 + 𝐾𝑑 ·
𝑑

𝑑𝑡
(𝐵) = 𝐾𝑝 · 𝐵 + 𝐾𝑑 · ¤𝐵 (7.6)

In order to get
¤𝐵, we could numerically differentiate𝐵, which is impacted by the time delay

between the previous computation and the current one. This is shown in Figure 7.12a

(with 𝐾𝑝 = 𝐾𝑑 = −5). Alternatively, Sloane, 2018 states that the sine of the angle between

the heading and the desired heading (𝜔𝑒) could also be used (as shown in Figure 7.12b,

𝐾𝑝 = 𝐾𝑑 = −5):

¤𝜔 = 𝐾𝑝 · 𝐵 + 𝐾𝑑 · sin (𝜔𝑒) (7.7)

92 CHAPTER 7. REPRESENTATIVE USE-CASE: AUTOMATED GUIDED VEHICLE

(a) Standard PD algorithm. (b) Sine-based PD algorithm.

Figure 7.12: Proportional-Differential controller for following a closed path.

7.1.7.4 PID Controller

The Proportional-Integral-Differential (PID) controller is a PD controller that also adds

an integral part, using the tunable variable 𝐾𝑖 . PID controllers are the most common

control loop mechanisms that try to minimize an error (Åström, 2002).

¤𝜔 = 𝐾𝑝 · 𝐵 + 𝐾𝑖 ·
∫

𝐵 𝑑𝑡 + 𝐾𝑑 · ¤𝐵 (7.8)

The proportional part allows a fast approximation of the setpoint we try to achieve. The

derivative part tries to anticipate the future state, but can introduce a lot of errors. The

integral tries to counteract the errors from the derivative part, whilst also accounting for

the past information about the system. Figure 7.13a shows an example implementation,

where 𝐾𝑝 = −5, 𝐾𝑖 = −1000, and 𝐾𝑑 = −1.

Integral Caveats. A downside of using an integrator is the potential integral windup.

This appears when the limits of the physical system do not coincide with the desired

change from the PID controller. The actuator(s) will remain at their limit(s) and the inte-

gral will continue to account for the error (Åström, 2002). It is a well-known phenomenon

for control manufacturers.

In general, the integral part will have very little impact when applied to LFRs, hence it is

commonly skipped in this context (i.e., by setting 𝐾𝑖 to 0).

7.1. LEGO LINE FOLLOWING ROBOT 93

(a) Normal PID controller. (b) Curvature-aware PID controller.

Figure 7.13: Normal PID and Curvature-aware PID controller for following a closed path.

7.1.7.5 Curvature-aware PID Controller

When the curvature of the path is known, the PID controller can use this to more easily

find the trajectory.

¤𝜔 = 𝐾𝑝 · 𝐵 + 𝐾𝑖 ·
∫

𝐵 𝑑𝑡 + 𝐾𝑑 · ¤𝐵 + 𝜅 (7.9)

¤𝜔 = 𝐾𝑝 · 𝐵 + 𝐾𝑖 ·
∫

𝐵 𝑑𝑡 + 𝐾𝑑 · sin (𝜔𝑒) + 𝜅 (7.10)

Because of the equivalence between ¤𝜔 and 𝜅, can use the previous value of ¤𝜔 for 𝜅. Any

linear difference between the two will be captured by 𝐾𝑝 , 𝐾𝑖 and 𝐾𝑑. Figure 7.13b shows

an example implementation using Equation 7.10, where 𝐾𝑝 = −5, 𝐾𝑑 = −6.5, and 𝐾𝑖 = 0.

Optionally, 𝜅 can also be weighted using a 𝐾𝜅 parameter.

7.1.7.6 PIDD2 Controller

The PIDD2 controller (Kumar & Hote, 2020) is a spectial case of the PID controller that

improves the steady-state approximation by including the second-level derivative of the

error:

¤𝜔 = 𝐾𝑝 · 𝐵 + 𝐾𝑖 ·
∫

𝐵 𝑑𝑡 + 𝐾𝑑 · ¤𝐵 + 𝐾𝑑2
¥𝐵 (7.11)

Mathematically, this accounts for smoothing the inflection points between sequential

sections of paths. Figure 7.14a shows an example implementation, where 𝐾𝑝 = −5,

𝐾𝑖 = 0, 𝐾𝑑 = −0.5, and 𝐾𝑑2 = −0.05.

94 CHAPTER 7. REPRESENTATIVE USE-CASE: AUTOMATED GUIDED VEHICLE

(a) PIDD2 controller. (b) Micaelli-Samson controller.

Figure 7.14: Special PID controllers for following a closed path.

7.1.7.7 Micaelli-Samson Controller

Micaelli and Samson, 1993 derives an alternative curvature-aware PID controller for

unicycle-type and two-steering-wheels mobile robots. However, they define a unicycle

as “a vehicle with two actuated wheels on a common axle and the point 𝑀 at mid-distance of these
wheels”, which actually implies a differential-drive robot. This claim is validated with the

kinematic equations, which corresponds to the plant model presented in Section 7.1.6.1.

The closed-loop PID formula that is obtained is

¤𝜔 = 𝑣𝐶
(
𝑦𝑒𝐶

(
𝑔𝑐 sin 𝜔𝑒 − 𝐾𝑝 cos 𝜔𝑒

)
+ sin 𝜔𝑒

(
𝜅 sin 𝜔𝑒 − 𝐾𝑑 cos 𝜔𝑒 · sign (𝑣𝐶)

)
+ 𝜅

)
(7.12)

Where:

𝐶 =
cos 𝜔𝑒

1 − 𝜅𝑦𝑒
and 𝑔𝑐 is the curvature’s derivative with respect to the path’s curvilinear abscissa. Hence,

we can use the approximation 𝑔𝑐 = 0. Because of how 𝜅 is defined, we can also simplify

sign(𝑣𝐶) = 1. Equation 7.12 can therefore be simplified as (Sloane, 2018):

¤𝜔 = 𝑣𝐶
(
−𝐾𝑝𝑦𝑒𝐶 cos 𝜔𝑒 + sin 𝜔𝑒 (𝜅 sin 𝜔𝑒 − 𝐾𝑑 cos 𝜔𝑒) + 𝜅

)
(7.13)

Figure 7.14b shows an example implementation, where 𝐾𝑝 = 7.5 and 𝐾𝑑 = 16.4. An

advantage of this approach, is that the velocity can easily be increased, without needing

to change the robot’s functionality too much.

7.1.7.8 Velocity Control

The most simplistic control algorithm is by ensuring a constant velocity 𝑣 (i.e., ¤𝑣 = 0).

This has no immediate impact in a simulated context, but when applied to a real LFR,

this can result in understeering in turns (i.e., skidding of the front wheels).

7.1. LEGO LINE FOLLOWING ROBOT 95

For the sake of simplicity, we will allow understeering in our system and use a small,

but constant 𝑣. The interested reader is referred to Sloane, 2018 for identifying specific

velocity control algorithms.

7.1.7.9 Error Recovery

When an LFR has lost the line, it can oftentimes be difficult to find the line again.

Whenever the line has not been identified for 𝜏 time, we can assume the line was lost and

error recovery needs to start. We identify two approaches:

• Driving in an outward spiral (i.e., constantly increasing ¤𝜔). This method will cover

the full plane, allowing the robot to find the line again. Unfortunately, there is no

knowledge of where the LFR returns to the line.

• A continuously increasing sine wave can help return to the closest point on the line,

as explained on StackOverflow8. Unfortunately, this approach does not work well

with sharp turns.

7.1.8 CBD Composition

For the plant, Equation 7.1 was used. The controller was implemented using a simple

PD controller (see Section 7.1.7.3). The equations were taken and transformed into CBD

models, which is a trivial transformation due to the relationship between ODEs and

CBDs. The plant’s CBD model can be seen in Figure 7.15, and the controller’s CBD is

shown in Figure 7.16.

These two CBDs can be coupled together and executed on the LFR itself. However, for

the simulation, a closed loop is required. This topmost CBD is shown in Figure 7.17.

It consists of an Environment component (identified with the four-leaf-clover icon), which

implements a lookup table between the coordinates and the position on the line. The

Control component (identified with Ctrl) sets a new velocity and heading, based on the

colour of the surface. Next, there is the Plant (identified with DD), and finally, the

Odometry component (identified with O) is used to implement Equation 7.2.

7.1.9 Calibration

As mentioned in Section 7.1.7, the controller’s parameters need to be tuned for their best

execution. Furthermore, the real robot’s parameters (i.e., wheel radius 𝑟, half the axle

length 𝑏, and the sensor threshold 𝑇) also need to be set.

This activity is commonly the most time-consuming, as it consists of running a plethora

of experiments in order to identify the best parameter fit for the robot.

8https://stackoverflow.com/questions/40939967/implementing-pid-algorithm-in-line-following-robot/

40966558#40966558, accessed on the 24th of April 2024

https://stackoverflow.com/questions/40939967/implementing-pid-algorithm-in-line-following-robot/40966558#40966558
https://stackoverflow.com/questions/40939967/implementing-pid-algorithm-in-line-following-robot/40966558#40966558

96 CHAPTER 7. REPRESENTATIVE USE-CASE: AUTOMATED GUIDED VEHICLE

DifferentialDrive

steering

∏ OUT1
IN1

IN2

wheel_axis OUT1

0.5 OUT1

∏ OUT1
IN1

IN2

∑ OUT1
IN1

IN2

velocity

∑ OUT1
IN1

IN2

- OUT1IN1

velocity

∏ OUT1
IN1

IN2

∏ OUT1
IN1

IN2

1.0/wheel_radius OUT1

↹ OUT1IN1

↹ OUT1IN1 phiRdot

phiLdot

Figure 7.15: CBD plant model for the LFR use-case.

ControllerPID

v OUT1

color

-T OUT1

∑ OUT1
IN1

IN2

velocity

headingPID OUT1IN1

Figure 7.16: CBD controller model for the LFR use-case.

AGVVirtual

Ctrl
velocity

color

heading
DD

phiLdotvelocity

steering phiRdot

🍀
x

y

color

offset
O

x phiRdot

phiLdotheading

y

Figure 7.17: CBD model for the TO of the LFR.

7.1. LEGO LINE FOLLOWING ROBOT 97

7.1.10 Deployment and Simulation

Internally, the EV3 Brick has an ARM9 TI Sitara AM1x, running a Linux operating system.

Using the micro-SD slot, MicroPython can be used to run more complex software, i.e., a

real-time CBD simulator. The servomotors used for steering the AGV are limited to 170

rotations per minute though precision is not ensured when rotating at maximum speed.

For safety, the motor speeds were limited (clamped) to 85% of their maximal velocity.

The colour sensor is able to measure the amount of reflected red light, in a range from 0

to 100.

The robot communicates through TCP/IP by having an Edimax EW-7811Un V2 WiFi

dongle in the USB port. Note that this dongle is too modern to work out of the box with

the EV3 Brick, so a new WiFi driver had to be installed onto the brick. A small tutorial on

how to do this can be found on http://msdl.uantwerpen.be/people/rparedis/sources/

wifi-dongle-EV3.

The camera mounted above the trajectory is an Intel RealSense D455 Depth Camera (https:

//www.intelrealsense.com/depth-camera-d455/) that is able to measure the depth in

an ideal range of 0.6 to 6 meters, with an accuracy of less than 2% at 4 meters.

The camera was linked to a computer via USB, such that its information could be used.

A Python9 dashboard was created to accurately follow the position of the robot, as

identified from the camera. In Figure 7.18, the dashboard is shown, where the robot is

placed under a cardboard box for better image recognition. A deployment diagram is

given in Figure 7.19.

Figure 7.18: A dashboard for the LFR use-case.

9Using Matplotlib, TkInter, and OpenCV.

http://msdl.uantwerpen.be/people/rparedis/sources/wifi-dongle-EV3
http://msdl.uantwerpen.be/people/rparedis/sources/wifi-dongle-EV3
https://www.intelrealsense.com/depth-camera-d455/
https://www.intelrealsense.com/depth-camera-d455/

98 CHAPTER 7. REPRESENTATIVE USE-CASE: AUTOMATED GUIDED VEHICLE

Lenovo ThinkPad X1 Carbon

Line Following Robot

TI SITARA 1808

ev3dev

Python 3.11

pyCBD

LFR
Model

Servomotor Servomotor

Wheel Wheel

Color
Sensor

7th Gen Intel® Core™ i7-7500U

Windows 10

Python 3.11

pyCBD

LFR
Model

Python 3.11

Dashboard

Harness

Intel® RealSense™
Depth Camera D455

Intel® RealSense™
Vision Processor D4

Python 3.11

OpenCV

Computer
Vision

Figure 7.19: Deployment diagram for the LFR use-case.

7.1. LEGO LINE FOLLOWING ROBOT 99

7.1.11 System Analysis

In Figure 7.20, trajectory data for this system are presented. The blue, full line represents

the line to follow (cfr. the experiment setup), the striped orange line identifies the

simulation results and the dotted green line represents the AO ’s identified position.

Figure 7.20: Example experiment results for the LFR.

From here, a user can identify the consistency between both the AO and the TO.

7.1.12 Robot Versions

As shown in Figure 7.1, the System Analysis activity can yield a termination, based on the

accuracy of the resulting AGV. Alternatively, when the LFR is not good enough, a new

version can be constructed, hence restarting the entire PM. When this happens, most

activities will be shorter or they will reuse past results. For instance, it was identified

through Unity3D that the colour sensor should not be placed in between the wheels, but

further to the front, such that it can “predict” the movement.

Multiple versions of the LFR have been built, both physically, and digitally in a CAD

model. The CAD model allowed a more accurate computation of the weight distribution

and thus the identification of the CoM. This section will discuss the three robot versions.

7.1.12.1 Tracked Treads

The first LFR was based on LEGO Mindstorms’ EV3 “TRACK3R” building instructions

that originally came with the 313131 set. However, this was only followed until building

step 12. From there, the colour sensor was added instead. Figure 7.21 shows what this

version of the robot looks like. The building instructions for this robot can be found on

https://msdl.uantwerpen.be/cloud/public/randy-lfr-1.

https://msdl.uantwerpen.be/cloud/public/randy-lfr-1

100 CHAPTER 7. REPRESENTATIVE USE-CASE: AUTOMATED GUIDED VEHICLE

Figure 7.21: LFR with tracked threads.

Instead of focusing on weight distributions, it was assumed that tracked threads would

work similarly. Unfortunately, it was quickly discovered that there were a lot of hidden

difficulties introduced by using tracked threads (e.g., What is the wheel radius? Where

is the centre of rotation? How is slipping and skidding applied to threads? . . .).

7.1.12.2 Frictionless Ball Caster

The robot was altered to use two normal wheels, a frictionless ball caster, and a free-

spinning helper wheel. The colour sensor was placed as close as possible to 𝑂, and

the CoM was designed to be above the wheel axle. It is visualized in Figure 7.22a. The

building instructions for this robot can be found on https://msdl.uantwerpen.be/cloud/

public/randy-lfr-2.

(a) Version 2, with helper wheel. (b) Final version.

Figure 7.22: LFR versions with a frictionless ball caster.

7.1.12.3 Final Version

The final version of this robot ensures a colour sensor at the front middle, about 7

centimeters before the wheel axle. This was identified as having a better result during

a random experiment in Unity3D. An image of this final robot is shown in Figure 7.22b

https://msdl.uantwerpen.be/cloud/public/randy-lfr-2
https://msdl.uantwerpen.be/cloud/public/randy-lfr-2

7.2. TURTLEBOT 101

and the building instructions for this robot can be found on: https://msdl.uantwerpen.

be/cloud/public/randy-lfr-3.

7.2 TurtleBot

The TurtleBot10 is an open-source robotics platform, meant for education and research.

It is, in essence, a Roomba vacuum cleaner with additional sensors, but without the

vacuuming possibilities. Onboard sensors include (but are not limited to) 2D LiDAR,

optical floor tracking sensor, wheel encoders, infrared, and cliff detection. It can be fully

controlled through a ROS 2 API. It is pictured in Figure 7.23.

Figure 7.23: The TurtleBot driving around in the lab.

Therefore, it stands to reason that the TurtleBot is a more professional and more precise

use-case, compared to the LEGO LFR. To further enhance its practical usability, official

digital models of the robot and its behaviour have been built for the Gazebo simulator11.

Whereas the LEGO LFR was a Digital Shadow, we would like to use this use-case to

construct a DT (cfr. Kritzinger et al. (2018)’s definitions). In order to do so, possible

combinations of TEs are highlighted, as presented in Chapter 6. Additionally, the concept

of a Historian (from Chapter 4) will be discussed in much more detail. It is this Historian
and the higher-level logic that allows the TurtleBot use-case to actually become a DT.

7.2.1 Requirements

When building a DT for this system, we can use the real robot as the AO and the Gazebo

simulator as the TO. However, the question of why we are building a DT remains. Obstacle

avoidance, path planning, odometry, and navigation are out-of-the-box features of the

TurtleBot, and therefore the Gazebo simulation as well.

10https://www.turtlebot.com/

11https://gazebosim.org/home

https://msdl.uantwerpen.be/cloud/public/randy-lfr-3
https://msdl.uantwerpen.be/cloud/public/randy-lfr-3
https://www.turtlebot.com/
https://gazebosim.org/home

102 CHAPTER 7. REPRESENTATIVE USE-CASE: AUTOMATED GUIDED VEHICLE

This is why we have opted to create a Tracking Simulator. This requires us to have

a Dashboard that shows the robot’s current position, the projected trajectory and the

observed world. If we click somewhere on the map, we will request the TurtleBot to

drive to this new location, and the Tracking Simulator should follow.

Additionally, the simulator will also do some State Estimation by means of Dead Reckoning.

This way, if the network between the AO and the TO fails, the TO can still somewhat

do Behaviour Prediction of what it suspects the AO is doing. In term, this ensures both

Reliability and Stability of the system. This gives us a Digital Shadow (using the definition

of Kritzinger et al. (2018)).

In order to be able to consider it a full DT (again, using the definition of Kritzinger et al.

(2018)), we need to go a bit further. Even though the TurtleBot itself has built-in path

planning and navigation, we will also allow the TO to send the full desired path to the

TurtleBot, thus bypassing the extra computations on the robot itself.

Furthermore, we will use this use-case to illustrate how the (blackboard) Historian works

in the overall architecture. To do this, we will first instruct the robot to discover the full

world it is driving in (this world can be stored offline, even if the robot is turned off).

Next, when we instruct the robot to go to a new position, we will either:

• search the Historian for an existing (i.e., previously computed) path between the

current position and the new target; or

• use A* in the discovered world to find the best path from its current position to its

new target.

Meanwhile, the robot keeps updating its world, in case obstacles are added or removed.

7.2.2 Conceptual Architecture

Based on the previous explanation, we can actually identify three main TEs (each with

their own PoIs) for this use-case, as shown in Figure 7.24.

1. A Tracking Simulator (TO) will continuously be updated with the position and

future path from the AO. Additionally, it will apply some dead reckoning in order

to ensure stability when the connection drops. We will call this TE Exp T (with the

“T” from “Tracking”).

2. A dashboard is displaying the positions from both the AO and the TO, as well as

their predicted paths. The user can click on a new position on the map to make the

robot drive towards this new target. We will call this TE Exp E (with the “E” from

“Exploration”).

3. Instead of exploring the world, we may need to find a suitable navigation path in

the known world. This path can be stored, such that later experiments can reuse

the same path without the need for complex pathfinding. Note that this does not

necessarily need to yield the shortest path. We will call this TE Exp P (with the “P”

from “Pathfinding”).

7.2. TURTLEBOT 103

Reasoner
Inferencer

obtain
existing path

Orchestrator

Twinning Experiments

do pathfinding
on known world

Historian
(Storage)

drive to target
and explore world

drive to
target

User Agents
Machine Agents

store
explored

world

Exp E

store
new path

Exp P

Exp T

Figure 7.24: TEs for the TurtleBot use-case.

Exp T runs indefinitely, independent of the other experiments. Here, the TO continuously

tracks the AO, and applies some dead reckoning for reliability/stability. Its conceptual

architecture can be represented with Figure 7.25a.

A top-level User Agent sends a new target request to the Orchestrator, which has a choice

to make. If the world is not fully explored yet, the request is forwarded to Exp E, such

that the TurtleBot starts driving towards the new position. In the meantime, the Historian
is also updated with the observed world information. In essence, for Exp E, we can

identify the AO as the world in which its sensor (i.e., the TurtleBot) moves around freely.

The TO is a virtualization of the world map, persisted through multiple executions. Its

conceptual architecture can be represented with Figure 7.25b.

Alternatively, the Orchestrator may decide to query the Historian for a path between

the current location, the desired target, and its knowledge of the world. If no such a

path is found, a new instance of Exp P is launched. The experiment will run some

pathfinding and store the identified path in the Historian. The Orchestrator then ensures

that the TurtleBot drives according to this path. The conceptual architecture of Exp P
can be represented with Figure 7.25c. Note that this logic follows the one described in

Cederbladh et al. (2023): a question is queried (Q), and a potential answer (A) will be

returned. If no such answer exists, a new experiment (E) is launched to answer Q.

This entire logic can also be identified from the timeline view of this architecture. This

can be seen Figure 7.26.

104 CHAPTER 7. REPRESENTATIVE USE-CASE: AUTOMATED GUIDED VEHICLE

Experiment
(Exp T)User Agent Machine Agent

Twin ObjectActual Object

Experiment Manager Workflow(s)

(a) Exp T.

Experiment
(Exp E)User Agent Machine Agent

Twin ObjectActual Object

Experiment Manager Workflow(s)

(b) Exp E.

Experiment
(Exp P)User Agent Machine Agent

Twin ObjectActual Object

Experiment Manager Workflow(s)

(c) Exp P.

Figure 7.25: Conceptual architecture for the TurtleBot’s TEs.

7.2.3 Formalisms and Models

We can identify a few models and formalisms that we can use to build this system. Firstly,

we need a Tracking Simulator, that updates its current position (𝑥, 𝑦) and predicted path

𝑃, based on its input. Additionally, we assume the velocity 𝑣 is known. When it does not

receive an input, we can compute the current location with:

¤𝜔 = arctan

(
𝑦 − 𝑃0𝑦

𝑥 − 𝑃0𝑥

)
(7.14)

¤𝑥 = cos(𝜔) · 𝑣 · Δ𝑡 (7.15)

¤𝑦 = sin(𝜔) · 𝑣 · Δ𝑡 (7.16)

Where 𝜔 is the heading, (𝑃0𝑥 , 𝑃0𝑦) the first waypoint in 𝑃 and Δ𝑡 the time since the last

update. When the robot is close enough (i.e., the distance 𝐷 is less than threshold 𝐷𝑚𝑖𝑛)

to 𝑃0 = (𝑃0𝑥 , 𝑃0𝑦), we assume that this waypoint is reached, and we remove it from 𝑃.

We can encode this logic into a TFSA with embedded ODEs, as shown in Figure 7.27.

The dotted lines indicate different processes that happen at the same time. The first

“block” identifies the internal state variables. The zero-crossing symbol (↘) identifies

that this transition should happen when𝐷 becomes less than𝐷𝑚𝑖𝑛 . In Paredis, Denil, and

Vangheluwe (2021), we discussed how such a model could be simulated through DEVS.

For Exp E and Exp P, we need a grid-based map. The TurtleBot itself uses a LiDAR sensor

and runs a Simultaneous Localization and Mapping (SLAM) algorithm for identifying

7.2. TURTLEBOT 105

Twinning User/Machine Agent

Historian (blackboard storage)

time

Orchestrator

Exp T

Experiment Manager (Exp T)

Actual Object (Exp T)

Twin Object (Exp T)

Exp E

Experiment Manager (Exp E)

Actual Object (Exp E)

Twin Object (Exp E)

Exp P

Experiment Manager (Exp P)

Twin Object (Exp P)

Figure 7.26: Example timeline for the TurtleBot TEs.

the world it is driving in. This results in a grayscale image, where white represents

accessible regions and black obstacles. Gray is used to identify uncertainty. An example

map is given in Figure 7.28.

This map is given additional metadata, such as the origin (i.e., the location of the bottom-

left corner in world space) and the resolution (in meters/pixels). Because the robot moves

around, the origin will also change and needs to be taken into account. We can use a

matrix to represent this data in Exp E and Exp P. The latter can then make use of an

algorithm like A* to find the best path in this map.

7.2.4 Deployment

Before we can start constructing this system, we must identify how all these components

need to be merged together. Luckily, Chapter 6 describes the possibilities for merging

these TEs.

Exp E and Exp T can share the same AO, as this represents the real TurtleBot driving in

its world. The main difference is that Exp T looks at the movement of the robot, and Exp
E at the construction of the world. Therefore, they have different, yet similar PoIs. We

can combine the AOs as discussed in Section 6.1.1 and Figure 6.1.

106 CHAPTER 7. REPRESENTATIVE USE-CASE: AUTOMATED GUIDED VEHICLE

MOVE

RECEIVED

after 0.1 s

NEXT

remove
new_data

RECEIVING

Figure 7.27: TFSA with embedded ODEs for the TurtleBot’s tracking simulator.

Figure 7.28: Example map for the TurtleBot.

Exp E’s TO maintains a map that is also accessible by Exp P and the Historian. The PoI

for Exp E is exploration, for Exp P, this is pathfinding. Both PoIs are incredibly similar, and

can use the same model for their individual purposes. Hence, we can combine these TOs

also as discussed in Section 6.1.1 and Figure 6.1.

Exp T’s TO is a completely separate formalism that ensures tracking. Hence, we have mul-

tiple formalisms (i.e., a grid and TFSA) that may be combined as discussed in Section 6.1.5

and Figure 6.7.

The main logic of the overall system lies in the Orchestrator and dashboard, which is either

in exploration mode, or in pathfinding mode. The former closely interacts with Exp E, and

the latter with Exp P.

Figure 7.29 shows a deployment diagram for this use-case. Note that this is not the

only possible way of deploying this system. For instance, each process could have been

deployed on a different machine. Also notice that there is no AO in this system. This is

because the AO is purely a conceptual interface to the real system and therefore cannot

be represented here.

7.2. TURTLEBOT 107

TurtleBot 4

HP Precision 7680

13th Gen Intel® Core™ i7-13850Hx

Ubuntu 22.04.5 LTS

Python 3.11 (Exp P)

Python 3.11 (Dashboard + Exp E)

Paho-MQTT

Python 3.11 (Exp T)

Paho-MQTT

Python 3.11 (ROS2MQTT)

RclPyPaho-MQTT

MQTT Node

MQTT Node

MQTT Node

EM
X

M
Q

TT
 B

ro
ke

r

iRobot® Create® 3

Raspberry Pi 4B 4GB

RPLIDAR
A1M8

ROS 2 Humble

ROS2 Node ROS2 Node

Pathfinding

SLAM

Tracking
Simulator

WorldBuilderHistorian

Orchestrator

Dashboard

ROS 2 Humble

Odometry

ROS2 Node

Figure 7.29: Deployment diagram for the TurtleBot.

The top-level User Agent (i.e., the dashboard) was created using Python12. A button

allows the user to switch between exploration and pathfinding mode.

The map of the world is persisted over multiple executions and can be accessed as a file

through shared memory. The dashboard also visualizes this map by accessing it in the

same way.

The TurtleBot communicates all its data through ROS 2. For convenience, a bridge was

created between ROS 2 and MQTT, allowing all other communication to happen over

MQTT. The following topics are used:

• turtle_real/pose The position (𝑥, 𝑦) of the AO.

• turtle_real/plan The predicted plan 𝑃 of the AO.

12With TkInter and Matplotlib

108 CHAPTER 7. REPRESENTATIVE USE-CASE: AUTOMATED GUIDED VEHICLE

• turtle_real/speed The velocity 𝑣 of the AO.

• turtle_sim/pose The position of the TO.

• turtle_sim/plan The predicted plan of the TO.

• new_target The new target position for the AO to drive towards.

• new_plan A full plan for the AO to drive over. Notice that the TurtleBot auto-

matically does path planning, based on the current world knowledge. In order to

execute a new plan, the TurtleBot will receive the intermediate waypoints of the

path individually, forcing it to follow that exact plan.

The Historian keeps track of all trajectories executed when the Orchestrator is in pathfinding
mode. It can be searched in a smart way:

1. Paths can be followed in both directions.

2. We can use any sub-path of all the paths we have stored.

3. The starting position does not have to match an existing waypoint exactly; i.e., we

can look in a (small) radius around each waypoint.

Additionally, due to the map being persisted, we can fill the Historian with a set of

predefined paths by running A* in an offline mode.

7.3 Conclusions

This chapter has showed how to use the workflow presented in the previous chapters

(i.e., stage A - D) on two practical use-cases. First, a simple LEGO LFR (or AGV)

was constructed, following a given PM. This PM closely resembles the different stages

presented in this thesis. The end goal of the LEGO LFR was to construct a Digital Shadow

(using Kritzinger et al. (2018)’s definition) that was able to accurately follow a line drawn

on the ground. This use-case acted as a proof-of-concept for the overall Twinning idea.

Secondly, there is the more industrial TurtleBot use-case that mainly focused on how

multiple TEs could be combined in order to yield a valid Twinning System, as was

discussed in Chapter 6. Additionally, it focused on the Historian that was introduced in

Chapter 4. It can practically be used for maintaining knowledge about the overall system.

Both use-cases show that Twinning Systems can easily be built using the presented

workflow(s) for “toy” systems, as well as more industrial use-cases. Chapter 8 will focus

on two other use-cases, in completely different domains. This shows the overall validity

of the presented approach.

“Wisdom comes from experience. Experience is often a
result of lack of wisdom.”

– Terry Pratchett

Chapter 888
Representative Use-Case:

Port of Antwerp

Starting from 2022, AnSyMo partook in the COOCK project called “Smart Port 2025: im-
proving and accelerating the operational efficiency of a harbour ecosystem through the application
of intelligent technologies”. Here, there was a focus on nautical chain optimization of the

tugboats and pilots behind the locks. This project was a collaboration between imec-

UAntwerpen, TPR – University of Antwerp, AnSyMo – University of Antwerp, and the

Port of Antwerp-Bruges.

The results of this project are mainly used in-house at the port, in conjunction with their

APICS system. Port of Antwerp-Bruges was able to give us precise insights in the full

nautical chain and the exact behaviour of the Senior Fleet Controller. This information

yielded the DEVS and Modelica the assignments of the Modelling of Software-Intensive

Systems (MoSIS) course in 2022-2023. The full specification of the original assignments

can be found on the MoSIS course webpage:

DEVS: http://msdl.uantwerpen.be/people/hv/teaching/MoSIS/202223/assignments/DEVS

Modelica: http://msdl.uantwerpen.be/people/hv/teaching/MoSIS/202223/assignments/Modelica

This chapter will expand these assignments to use-cases in the Twinning domain. First,

an expansion of the DEVS assignment will be discussed, followed by the expansion of

the Modelica assignment.

For the DEVS use-case, we focus on the highly common combination of anomaly detec-

tion and fault isolation (through fault injection). We allow vessels to travel through a

simulated port and identify what could have happened when the dock occupancy differs

between the AO and the TO. This use-case aims to show how multiple goals (from the

Feature Trees in Chapter 3) can be used in Twinning.

For the Modelica use-case, we will show that the presented conceptual architecture

(see Chapter 4) can be used to identify the best implementation and deployment for a

Twinning System. For simplicity, we downscale the context to a 1D movement of a ship.

This allows us to construct a small proof-of-concept for deployment space exploration in the

Twinning domain.

109

http://msdl.uantwerpen.be/people/hv/teaching/MoSIS/202223/assignments/DEVS
http://msdl.uantwerpen.be/people/hv/teaching/MoSIS/202223/assignments/Modelica

110 CHAPTER 8. REPRESENTATIVE USE-CASE: PORT OF ANTWERP

8.1 Port of Antwerp

In this use-case, the main focus will be on “anomaly detection” and how to solve these

anomalies, similar to the Witte Dame building in Eindhoven (Verriet, 2019). Yet, to show

the broadness of our approach, a larger proof-of-concept was selected as application

domain.

We present a highly simplified model of the Port of Antwerp-Bruges in which vessels

travel from the North Sea, over the Scheldt river, through canals and locks toward docks,

and back. These locks and docks have a finite capacity and rivers and canals have certain

sailing constraints.

Figure 8.1 shows a (highly) simplified map of the Scheldt through the city of Antwerp.

For the sake of simplicity, we highlight the equivalence to road traffic. In the figure,

circles indicate junctions where multiple trajectories merge and diverge. The three large

squares (A, B, and C) are the locks and the small diamonds are the docks. The red,

dotted lines identify sections of sailing routes on the river. Canals are represented with

full red lines. Generally, these are two-way connections, except for the connection from

the loodskotter source (identified with K) and to the sea endpoint (identified with S).

Next to all river sections and all canals, their length is denoted.

Ships that arrive from K are given a target dock to sail to, where they will stay for

some time, before departing towards S . Each ship type is given its own unique velocity

distribution, based on real-world information. The docks can hold at most 50 vessels and

the locks are area-constrained (i.e., we will ignore the rectangle packing problem; if the

remaining area of a lock is more than or equal to the surface area of a vessel, it is allowed

to enter). As an additional constraint, ships cannot overtake each other on canals.

This system is clearly an abstraction of the real-world scenario, with a very small number

of ships. The presented map is also an oversimplification of the real world. All distances,

nodes and trajectories are an approximation of the real world scenario. This is mainly

such that we can more easily explain what is going on inside. We will use this model

as the TO for the port. Port of Antwerp-Bruges has provided their internal map from

APICS, allowing us to use a more correct and highly detailed map. For the sake of

simplicity, this detailed map will not be discussed. The full model is based on the data

(e.g., vessel velocity profiles, lock washing time, and distance information) we received

from the Port of Antwerp-Bruges.

Unfortunately, we do not have access to the real port in order to verify our approach.

Hence, to make this idea more interesting and fit within the context of Twinning, we will

use another simulation of this very same system, with slightly different parameters. This

way, we can analyse the impact of different properties as well. This second simulation

will be considered the AO and the “source of truth” that we want the TO to conform to.

In reality the real port should be used instead of a simulation.

8.1.1 Requirements

The main purpose of this use-case is trying to identify the impact of issues due to capacity

constraints. If a lock or a dock becomes unavailable, we should allow a change in the

8.1. PORT OF ANTWERP 111

30.85 km

47.52 kmK

S

2.10 km

4.70 km

CP

68.54 km

0.80 km
A

3.14 km

0.89 km

B

1.08 km
C1.24 km

2.40 km

1.37 km
6

1.07 km

7

8

1

1.89 km

2.39 km

2

1.86 km
3

4

5

1.30 km

1.68 km

1.13 km

5.70 km

5.16 km

Figure 8.1: Simplified map of the Port of Antwerp.

112 CHAPTER 8. REPRESENTATIVE USE-CASE: PORT OF ANTWERP

ships’ trajectory, or destination.

In order to identify the requirements, we will refer back to Chapter 3. We would like to

do Anomaly Detection in this system, such that we can identify issues and hopefully solve

them. Ideally, this requires Fault Diagnosis, which can be enabled through Fault Injection.

Additionally, we would like to visualise the current state of our model in a Dashboard
(using 2D Animations on a map). The full trajectory of the vessels should be made visible

in this animation. The PoI for this new requirement is the trajectory progress of each

vessel. In this dashboard, we also would like to show the occurrences of anomalies.

8.1.2 Conceptual Architecture

Figure 8.2 shows the architecture setup for this example case. The AO and the TO are

the models of the port (note that the AO should be the real port, but we do not have

access). The Orchestrator listens to the dock occupancy values and visualizes those in a

dashboard, represented by User Agent.

Experiment
User Agent Machine Agent

Twin ObjectActual Object

Experiment Manager
(Orchestrator) Workflow(s)

Figure 8.2: Architectural view for the example case.

8.1.3 Formalisms and Models

We can model the port example in DEVS by using PythonPDEVS (Van Tendeloo &

Vangheluwe, 2015). This model will be used in both the AO and the TO. We identify the

following Atomic DEVS components:

Generator Generates vessels to populate the port with.

Anchorpoint The loodskotter named K on the map. When a vessel arrives here, it

communicates with the Senior Fleet Controller to obtain an exact route for the

vessel to sail.

Sea Collector of vessels at the end of the journey, to allow for statistics. Marked with S

on the map.

8.1. PORT OF ANTWERP 113

ControlTower Acts like the Senior Fleet Controller and identifies which destination in

the port each vessel should go to.

WaterwaySingle Single-direction section of river where vessels can overtake each other.

CanalSingle Single-direction section of canals where vessels cannot overtake.

Confluence Acts like a junction in this network. When vessels enter, they are output on

the desired output (as per their desired trajectory).

Dock Area at which a limited number of vessels may lie. Each vessel stays here for a

while, before starting the journey back.

Lock Mimics the behaviour of a lock, linking the docks to the river: it allows access from

the river into the lock while the gates are open if there is enough surface area left.

After a while, the gates will close, the lock will start washing (i.e., shift up or down)

and open its gates on the other side, so the vessel may exit the lock and enter the

canals. The same logic applies in the other direction.

For instance, the Confluence may be implemented in PythonPDEVS, as shown in Fig-

ure 8.3.

8.1.4 Deployment

Of course, to allow communication between the AO and the TO, some additional compo-

nents were added on the AO’s side to communicate the generation of vessels; and on the

TO’s side to mimic the exact behaviour. It was decided that this communication happens

over MQTT.

When deploying this architecture, we get four main processes: the AO, the TO, the

dashboard (User Agent) and the communication process. A deployment diagram is

shown in Figure 8.4.

8.1.5 Anomaly Detection

One of the main purposes of this experiment setup is to do Anomaly Detection. Here, we

define an anomaly as a major difference between the predicted port occupancy and the

actual occupancy. When this absolute error exceeds a threshold 𝜏 for a minimal duration

of 𝜃, we assume an anomaly has happened.

This error can be measured in many ways. Because of the AO also being a DEVS simula-

tion, we can easily use trace alignment. The Needleman-Wunch algorithm (Needleman

& Wunsch, 1970) is used in bioinformatics to align protein or nucleotide sequences and

compute the similarity between them. Muñoz et al. (2022) recommends using this algo-

rithm with Fréchet-distances to measure the similarity between traces. This approach is

highly similar to the Dynamic Time Warping (DTW) algorithm for measuring the simi-

larity between temporal sequences. Gong et al. (2022) uses this to measure the similarity

between a person and a robotic arm. A related algorithm, the Smith-Waterman algorithm

114 CHAPTER 8. REPRESENTATIVE USE-CASE: PORT OF ANTWERP

1 class Confluence(AtomicDEVS):
2 def __init__(self, name, segments, quays_out):
3 super(Confluence , self).__init__(name)
4 self.ins = [self.addInPort("in%i" % x) for x in range(segments)]
5 self.outs = [self.addOutPort("out%i" % x) for x in range(segments)]
6

7 self.enc = self.addOutPort("enc")
8

9 # reverse the mapping for better lookup
10 self.quay_mapping = {}
11 for output_idx , quays in quays_out.items():
12 for quay_id in quays:
13 self.quay_mapping[quay_id] = output_idx
14

15 self.state = {
16 "vessels": []
17 }
18

19 def timeAdvance(self):
20 if len(self.state["vessels"]) > 0:
21 return 0.
22 return INFINITY
23

24 def extTransition(self, inputs):
25 for inp in self.ins:
26 if inp in inputs:
27 vessel = inputs[inp]
28 vessel.source = vessel.trajectory.pop(0)
29 self.state["vessels"].append(vessel)
30 return self.state
31

32 def outputFnc(self):
33 if len(self.state["vessels"]) > 0:
34 vessel = self.state["vessels"][0]
35 output = self.quay_mapping[vessel.trajectory[0]]
36 return {
37 self.outs[output]: vessel
38 }
39 return {}
40

41 def intTransition(self):
42 self.state["vessels"].pop(0)
43 return self.state

Figure 8.3: PythonPDEVS example implementation for a Confluence.

8.1. PORT OF ANTWERP 115

Lenovo ThinkPad X1 Carbon

7th Gen Intel® Core™ i7-7500U

Windows 10

Python 3.8 (Dashboard)

Paho-MQTT

MQTT Node

Geoplotlib

Dashboard

EM
X

M
Q

TT
 B

ro
ke

r Python 3.11 (TO)

Paho-MQTT

MQTT Node

Python(P)DEVS

PoAB Model

Python 3.11 (AO)

Paho-MQTT

MQTT Node

Python(P)DEVS

PoAB Model

Figure 8.4: Deployment for the Port of Antwerp-Bruges use-case.

(T. F. Smith, Waterman, et al., 1981) could be used to find a local alignment (Zaki et al.,

2009). The Levenshtein distance has also been recommended to compare traces (Leroy

et al., 2018).

Alternatively, Worden et al. (2020) proposes to measure the similarity between two groups

of simulations using the Kullback-Liebler Divergence. A similar approach recommends

the Jensen-Shannon Distance (Bojarczuk et al., 2021).

However, we are not looking for a complicated alignment, as we can tweak the traces

through DEVS. The main difference will be due to the random number generators – or

an anomaly, hence a simple (absolute) point-wise difference can be used as error.

In this system, multiple anomalies may occur: ships might stop entering the port, com-

munication delays could yield inconsistencies, locks or berths may shut down, etc.

Suppose the Port of Antwerp-Bruges has a dashboard that keeps track of the current

number of vessels that are docked at any time. At the same time, a virtual simulation

keeps track of the expected number of vessels docked. This is visualized in Figure 8.5a.

The full blue line shows the situation in the AO, whereas the striped green line shows

the TO’s prediction.

The curves on this plot mostly align, with some small deviations due to unknown ran-

116 CHAPTER 8. REPRESENTATIVE USE-CASE: PORT OF ANTWERP

(a) Docking occupancy anomaly trace plot. (b) Docking anomaly absolute error curve,

smoothened by a Savitzky-Golay filter.

Figure 8.5: Docking occupancy anomaly trace and absolute error.

domness. Then, suddenly, somewhere after 3000 minutes, the real port’s value suddenly

drops below the simulated port’s prediction and stays there for quite a while. The dash-

board notifies us that an anomaly has occurred. We can verify this event in the absolute

error plot, as shown in Figure 8.5b.

The red line is the error curve between the AO and the TO, after being smoothened by

a Savitzky-Golay filter. The black line indicates the drop-off point. If the error is above

this line for too long, an anomaly is raised. This drop-off is chosen (and calibrated) such

that everything above this line is accepted as valid execution.

The anomaly detection algorithm is given in Algorithm 8.9. Notice that this is a naive

point-wise comparison that suffices for our use-case, but other algorithms might be better

suited, as mentioned earlier.

In order to identify which anomaly has occurred, a set of new, “mutated” TOs can be

spawned. These mutations use the same simulation setup, but apply Fault Injection.

These faults represent some potential identified reasons why the anomaly might have

happened. We have identified five distinct cases where an anomaly might occur. We

will verify the injected faults both visually and mathematically, using DTW. Note that,

instead of DTW, an altered Needleman-Wunch algorithm could be used as well (Muñoz

et al., 2022; 2024).

8.1.5.1 Limited Ships

One potential reason for the plot mismatch is a lack of arriving ships. The impact of

this situation is shown in Figure 8.6. The beginning of the anomaly lines up with the

results from this injected fault, with a similar drop-off rate. Yet, as soon as all vessels have

arrived (and spent some time in the port), the simulated port empties, which is visualised

with the striped green line reaching 0. This is clearly not the anomaly we observe. When

we compare both traces using DTW, a distance of 461 was observed.

8.1. PORT OF ANTWERP 117

Algorithm 8.9 Simple anomaly detection algorithm.

𝐷 ← Drop-off value for the error.

𝑀 ←Maximal allowed time above 𝐷.
𝑝𝑟𝑒𝑣 ← −1 ⊲ Stores when the error exceeds 𝐷.

while system is running do
𝑜𝑐𝑐𝐴 ← Occupancy value of the AO.

𝑜𝑐𝑐𝑇 ← Occupancy value of the TO.

𝑇 ← Current execution time.

𝑒𝑟𝑟𝑜𝑟 ← |𝑜𝑐𝑐𝐴 − 𝑜𝑐𝑐𝑇 |
if 𝑝𝑟𝑒𝑣 > 0 and 𝑇 − 𝑝𝑟𝑒𝑣 > 𝑀 then

Raise an anomaly.

end if
if 𝑒𝑟𝑟𝑜𝑟 > 𝐷 then

if 𝑝𝑟𝑒𝑣 < 0 then
𝑝𝑟𝑒𝑣 ← 𝑇

end if
else

𝑝𝑟𝑒𝑣 ← −1

end if
end while

8.1.5.2 Broken Berendrecht-Zandvliet Lock

A second attempt was made by disabling the usage of one of the locks. For this anomaly,

the Berendrecht-Zandvliet Lock was chosen. As can be seen in Figure 8.7, this fault is

closer to the actual behaviour in the real port. The observed DTW distance comes to 317,

which is significantly lower than the previous scenario, thus yielding a higher possibility

that this is the error.

8.1.5.3 Broken Kieldrecht Lock

Given the significant correlation between the traces in the previous attempt, we will

analyse the impact of another lock. We will disable the usage of the Kieldrecht Lock,

thus cutting off the left bank of the river (within this example). As can be seen in

Figure 8.8, both the actual port’s situation and the injected simulation are incredibly

close, with some deviation that can easily be caused by unaccounted randomness. The

DTW distance here is 288, again lower than the previous scenario. We have indeed

verified that there is an issue with the locks.

8.1.5.4 Broken Boudewĳn-Van Cauwelaert Lock

When we test the third and final lock, the Boudewĳn-Van Cauwelaert Lock, we identify

a DTW distance of 252. As can be seen in Figure 8.9, both the actual port’s situation and

the injected simulation are even closer than in the previous scenario.

118 CHAPTER 8. REPRESENTATIVE USE-CASE: PORT OF ANTWERP

Figure 8.6: Limiting the arrival of ships fault injection.

Figure 8.7: Broken Berendrecht-Zandvliet Lock fault injection.

8.1.5.5 Two Broken Locks

Whilst we now can assume the issue is in the locks, we do not know if the issue caused by

a single lock. To check this, we will disable both the Berendrecht-Zandvliet Lock, as well

as the Kieldrecht Lock. As can be seen in Figure 8.10, around the time of the anomaly,

there is a clear mismatch in both plots. Furthermore, the DTW distance has increased to

399. We now know there is likely not an issue with multiple locks.

8.1.5.6 Verification

From the injected faults, we have deduced a hypothesis of where the issue may lie: a

lock has broken down. Most likely, this will be the Bouwdewĳn-Van Cauwelaert Lock,

8.1. PORT OF ANTWERP 119

Figure 8.8: Broken Kieldrecht Lock fault injection.

Figure 8.9: Broken Boudewĳn-Van Cauwelaert Lock fault injection.

but the Kieldrecht Lock is also a possibility. We would expect that the occupancies of the

docks also decreases, as their traffic is related to the locks. Hence, we can narrow down

the problem by verifying the occupancy in the docks. Figure 8.11 shows docks 6, 7, and

8 empty after the anomaly has occurred. We can conclude that it is very likely that the

Kieldrecht Lock did indeed stop working.

Unfortunately, this issue is not easily fixed, but it is important for the port to be made

aware as fast as possible, such that a broken lock can be fixed. In reality, there is another

lock on the left bank (the Kallo Lock), making sure that the port can continue to function

in the meantime. The simplified example we’ve used ignores this lock.

Of course, these are way to few experiments to know for certain that this is the exact

issue that occurred. In that sense, we cannot truly “verify” this solution. Additionally,

it is important to denote that these statistics are not meant to improve the behaviour of

the port. It is rather a proof-of-concept that you can use this information to analyse the

120 CHAPTER 8. REPRESENTATIVE USE-CASE: PORT OF ANTWERP

Figure 8.10: Broken Berendrecht-Zandvliet Lock and broken Kieldrecht Lock fault injec-

tion.

yielded anomalies.

8.2 1D Movement of a Vessel

When building a Twinning System, the selection of the right formalisms (in stage C)

and the exact technologies and tools (in stage D) might be quite ad-hoc. If stage B

yielded a lot of viable alternatives, it might be unclear which alternative architecture is

the most appropriate. Similarly, the choice of a certain technology might have a large

impact on the behaviour of the overall Twinning architecture’s performance. This will

only be known upon deployment. Maybe at one point, a user would also like to change

a modelling formalism, or a communication protocol to check its influence on the whole

system. Instead of needing to re-deploy and invest in this potential negative change, it

would be useful for the user to be able to verify this beforehand. This is where we wanted

to answer Research Question 4: “How to quantitatively support deployment choices?”.

Architecture space exploration and deployment space exploration are needed, where multiple

solutions for all twin variants can be compared objectively. Doing this using fully realized

implementations can easily become prohibitively expensive.

MBSE is meant to support designing (complex) CPS. Following the MBSE paradigm, it

stands to reason that we construct a simulatable model of the system’s architecture and

its deployment. We can easily modify this architecture/deployment model to verify the

influence of changes on overall system performance.

In order to illustrate the proposed modelling and simulation of Twinning architectures,

a small example of a ship and its 1D motion is used. This use-case is meant as a proof-

of-concept and does not provide an exhaustive identification of all possible variants.

8.2. 1D MOVEMENT OF A VESSEL 121

(a) Occupancy of dock 1. (b) Occupancy of dock 2.

(c) Occupancy of dock 3. (d) Occupancy of dock 4.

(e) Occupancy of dock 5. (f) Occupancy of dock 6.

(g) Occupancy of dock 7. (h) Occupancy of dock 8.

Figure 8.11: Occupancy check of broken Lock fault injection.

122 CHAPTER 8. REPRESENTATIVE USE-CASE: PORT OF ANTWERP

8.2.1 Requirements

We consider a ship that only sails in a single direction (i.e., turning is not part of this

example nor are pitch and yaw taken into account). We assume that the ship’s motion

is not influenced by external factors such as currents, wind, tides, etc. We know the

length 𝐿 (21.54 𝑚) of the ship, the estimated dry mass 𝑚 (32, 000 𝑘𝑔), and the estimated

submerged surface area 𝑆 (261 𝑚2
) of the vessel (based on earlier parameter estimation

experiments). Experiments were carried out in water with a temperature of 15
◦𝐶 (which

makes the density of the water 𝜌 approximately 1025 𝑘𝑔/𝑚3
).

Given that we do not have access to a real-world AO, we used a simulation for this, in

the form of an FMU. The FMU is a black-box that produces a measured velocity 𝑣𝐴𝑂 at

each point in time. As an external input, the ship receives a time-varying desired target

velocity 𝑣𝑡 . In this instance, the FMU also produces this 𝑣𝑡 at each point in time. This

desired target velocity will also be input to the TO.

Instead of merely constructing a simulation of this system, we would like to construct a

Twinning System, however, we have very little ideas about which technologies would be

best applicable.

From our Feature Trees (see Chapter 3), we select the requirements that are necessary

for this use-case. We would like to monitor the current (and past) states, supporting

data allocation. This way we can visualize a (historical) plot of the system state, which

is animated during a real-time, live execution. When looking at this plot, a human may

assess the consistency and reliability of the constructed twin. Furthermore we can observe

whether (1) the velocity of the ship stays within legal bounds (legal safety), (2) the ship’s

engine can produce enough torque to reach the desired velocities (physical laws), and (3)

passengers do not fall due to excessive acceleration or deceleration (human safety). Finally,

we may want to reproduce such an experiment, also for different ships.

8.2.2 Architecture

The above helped us identify which components are required (and which can be omitted)

in the conceptual reference architecture presented earlier in Chapter 4, Figure 4.1.

The black-box model is the AO and our ideal model is simulated in the TO. The AO cannot

be controlled, but does provide information (i.e., the 𝑣𝑡) to the TO. A co-simulation

orchestrator, interleaving the time-stepping of the AO and TO, is required for correct

results. A Machine Agent is not needed, but a simple visualization dashboard is required

in the User Agent. These considerations result in the architectural variant shown in

Figure 8.12.

8.2. 1D MOVEMENT OF A VESSEL 123

Experiment
User Agent Machine Agent

Twin ObjectActual Object

Experiment Manager
(Orchestrator) Workflow(s)

Figure 8.12: Conceptual architecture variant for the ship use-case.

8.2.3 Formalisms and Models

Moving to stage C , we can start concretizing this system. In the TO, we use a simple

model for physical plant and controller. The plant model consists of the following ODE:

𝐹𝑅 =
1

2

· 𝜌 · 𝑣2

𝑇𝑂
· 𝑆 · 𝐶 𝑓

𝐶 𝑓 =
0.075(

log
10
(𝑅𝑒) − 2

)
2

𝑅𝑒 = 𝑣𝑇𝑂 · 𝐿/𝑘
𝑑𝑣𝑇𝑂

𝑑𝑡
=
𝐹𝑇 − 𝐹𝑅
𝑚

(8.1)

𝐹𝑅 is the resistive force the ship experiences when sailing at velocity 𝑣. This results in

friction value 𝐶 𝑓 . As introduced earlier, 𝜌, 𝑆, and 𝐿 are the density of the water, the

submerged surface area, and the length of the hull. 𝑅𝑒 is the Reynolds number for the

ship in water, which indicates the nature (laminar or turbulent) of the fluid flow. 𝑘
is the dynamic viscosity of the water (1.188 · 10

−6 𝑘𝑔/(𝑚 · 𝑠)). 𝐹𝑇 is the traction force,

as determined by a PID controller which minimizes the difference between the actual

velocity 𝑣𝑇𝑂 and the desired (or target) velocity 𝑣𝑡 . The target velocity profile is an

external input to the system which in this case is produced by the AO. Our PID controller

mimics the controller implemented in the real-world SuS. The PID controller’s parameters

were estimated during previous experiments. We have modelled the controller equations

combined with the plant equations in Modelica. OpenModelica was used to generate an

FMU simulation unit.

8.2.4 Deployment

In an ideal scenario, the plot shown in Figure 8.13 should be obtained. It shows the

velocity of the real ship 𝑣𝐴𝑂 (full orange line) and that of its twin 𝑣𝑇𝑂 (dashed green line)

as they try to reach the varying target velocity 𝑣𝑡 (dotted blue line), as they are displayed

in the dashboard. From the plot, it is clear that, as was to be expected, 𝑣𝐴𝑂 contains

sensor noise. The behaviour seems normal however. If some event were to prevent the

124 CHAPTER 8. REPRESENTATIVE USE-CASE: PORT OF ANTWERP

Figure 8.13: Velocity of the real ship (AO) versus that of its twin (TO) as they try to reach

the varying target velocity 𝑣𝑡 .

velocity of the ship to change as expected, such as being stuck on a sand bank, or the

engine failing, this anomaly can easily be identified in the dashboard.

8.2.5 DEVS Model

Note that we have not fully completed stage D as we did not discuss actual deployment.

Suppose that we don’t know which communication protocol to use in order to get the

results of Figure 8.13. Instead of testing the system with a large number of technologies,

we propose to use MBSE techniques to explore the deployment space. Different deploy-

ment architecture will be simulated. As we are simulating Twinning architectures, these

will themselves include simulations (of the ship in this case).

According to MPM principles, we we need to select a most appropriate formalism to

model the architecture. Vangheluwe (2000) shows that the DEVS formalism can be used

as a modular assembly language to which a plethora of other existing languages can

be mapped, preserving behaviour. Given the heterogeneity of Twinning architectures,

and as open modelling and simulation tooling exist, DEVS seems the most appropriate

formalism to date.

Hence, DEVS will be used to simulate the exact architecture, using specific technologies.

For simplicity, a FMURunner atomic component is constructed that can simulate a given

FMU for a single time-step (upon receiving an input). The orchestrator can then easily

be used for co-simulation between the AO and the TO. The PythonPDEVS code for the

orchestrator is shown in Figure 8.14.

There exist DEVS performance models for specific communication protocols and tech-

nologies (Burger et al., 2019; Maruyama et al., 2016). However, in many situations this

may not be the case. For those instances, we do have access to the exact technologies

themselves. We manipulate the DEVS components to make use of the actual technologies,

instead of them being an abstraction thereof. This ensures the usage of the actual system

8.2. 1D MOVEMENT OF A VESSEL 125

1 class Orchestrator(AtomicDEVS):
2 def __init__(self, name, stepsize=0.1, stoptime=1.0):
3 super().__init__(name)
4 self.stepsize , self.stoptime = stepsize , stoptime
5 self.modules = ["AO", "TO"]
6 self.state = {
7 "data": { m:[] for m in self.modules },
8 "current": 0, "must_output": True,
9 "time": { m: 0.0 for m in self.modules }

10 }
11 self.inputs = { m: self.addInPort("%s-data" % m) for m in self.modules }
12 self.outputs = { m: self.addOutPort("%s-action" % m) for m in self.modules }
13

14 def get_cur(self):
15 return self.modules[self.state["current"]]
16

17 def timeAdvance(self):
18 if self.state["must_output"]:
19 return 0.0
20 return INFINITY
21

22 def extTransition(self, inputs):
23 if self.inputs[self.get_cur()] in inputs:
24 cur = self.get_cur()
25 data = inputs[self.inputs[cur]][0]
26 if round(data[0] - self.state["time"][cur], 6) >= self.stepsize:
27 self.state["current"] = (self.state["current"] + 1) % len(self.modules)
28 self.state["must_output"] = True
29 self.state["time"][cur] = data[0]
30 self.state["data"][cur].append(data)
31 return self.state
32

33 def outputFnc(self):
34 if self.get_cur() == self.modules[0]:
35 return {
36 self.outputs[self.modules[0]]: ["doStep"]
37 }
38 elif self.get_cur() == self.modules[1]:
39 last, prev = None, None
40 for time, value in self.state["data"][self.modules[0]]:
41 if time == self.state["time"][self.get_cur()]:
42 last = time, value
43 break
44 elif time > self.state["time"][self.get_cur()]:
45 last = time, value
46 if prev is not None:
47 last = lerp(prev, last, time)
48 break
49 prev = time, value
50

51 return {
52 self.outputs[self.modules[1]]: [last]
53 }
54 return {}
55

56 def intTransition(self):
57 self.state["must_output"] = False
58 return self.state

Figure 8.14: Orchestrator in PythonPDEVS.

126 CHAPTER 8. REPRESENTATIVE USE-CASE: PORT OF ANTWERP

components, including their hidden complexities and unknown influences to the envi-

ronment. This makes later conversion of the simulation into a realization easier. A similar

approach was used in Denil et al. (2017) to explore design and deployment alternatives

for a car power window. Syriani and Vangheluwe (2013) applied this approach to evalu-

ate implementations of graph transformation schedules. This is a common approach for

calibrating simple black-box systems.

We know that a communication protocol introduces network delays, but does not alter

the data that is transferred. Running multiple experiments with the actual system in

place will allow us to construct a distribution for the expected time delays, which can

subsequently be used in a pure simulation context.

8.2.6 Analysis of Alternatives

Before actually building a working DEVS model of the presented architecture, it is imper-

ative that the conceptual architecture is concretised. But, to do so, we would need to know

some additional information about the components. For instance, which communication

protocol, such as polling or publish-subscribe, best fits our needs. Or, alternatively, when

a communication protocol is chosen, which technology is most appropriate? When ex-

perimenting with different technologies, we use the traces in Figure 8.13 to verify correct

behaviour.

8.2.6.1 Different Publish-Subscribe Implementations

As a first attempt in finding the most ideal implementation for this system, we will try

a publish-subscribe approach. However, given that there exist multiple possibilities to

realise this, we need to compare multiple publish-subscribe alternatives. Note that this

is by no means a general analysis of these technologies, but rather a use-case-specific

comparison on which one works the best in this case.

We compare the latency of ROS 21, MQTT, and OPC UA’s publish-subscribe system

(running on top of TCP/IP). All these technologies will use Figure 8.15 as a concrete

system architecture.

Figure 8.16 shows a bar plot of the latency obtained after running the publish-subscribe

experiments on the same system, using three different technologies. The plot shows

the average latency after 10 runs. The simulation was executed using PythonPDEVS,

on a Lenovo Thinkpad X1 Carbon with a Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz

processor with 16GB of memory available. The Operating System was Windows 10 Pro.

Out of the three options, MQTT appears to be best suited for this task, followed by ROS

2 and OPC UA respectively.

1https://www.ros.org/

https://www.ros.org/

8.2. 1D MOVEMENT OF A VESSEL 127

Experiment (PubSub)

Actual Object
(FMURunner)

Publisher
channel: "target"

Publisher
channel: "AO/v"

Twin Object
(FMURunner)

Publisher
channel: "TO/v"

instruct target

Subscriber
channel: "target"

Subscriber
channel: "AO/v"

Subscriber
channel: "TO/v"

AO TO

User Agent
(Data Collector)

Experiment Manager
(Orchestrator)

Su
bs

cr
ip

tio
n

H
an

dl
er

D
as

hb
oa

rd

Workflow(s)

Figure 8.15: Publish Subscribe DEVS model (MQTT).

Figure 8.16: Average latency of different publish-subscribe technologies.

8.2.6.2 Different Communication Protocol Tests

The publish-subscribe approach is not the only possible solution. Maybe we would like

to use a different technology, or maybe we would like the Twinning System to work

online. This means that we will analyse the system during runtime, such that we can

detect anomalies in the ship’s velocity as soon as they occur. As a result, we need

a communication protocol that is able to process information as-fast-as-possible, with

minimal network delays.

As an example, we will compare a publish-subscribe setup, using MQTT2, with a polling

setup, using OPC UA3, running on top of TCP/IP. A shared memory implementation is

used as a baseline implementation. In Figure 8.17, a deployment diagram for the MQTT

setup is shown.

2https://mqtt.org/

3https://opcfoundation.org/about/opc-technologies/opc-ua/

https://mqtt.org/
https://opcfoundation.org/about/opc-technologies/opc-ua/

128 CHAPTER 8. REPRESENTATIVE USE-CASE: PORT OF ANTWERP

Windows 10

Python 3.11

FMPy

Paho-MQTT

Actual Object
FMU

MQTT Client

M
os

qu
itt

o
(M

Q
TT

 M
es

sa
ge

 B
ro

ke
r)

Python 3.11

FMPy

Paho-MQTT

Twin Object
FMU

MQTT Client

Figure 8.17: Deployment Diagram for MQTT experiment setup.

For each of the alternatives, a DEVS simulation model of the deployed architecture is con-

structed and evaluated. Figure 8.15 shows the publish-subscribe alternative, Figure 8.18

the polling alternative, and Figure 8.19 the shared memory alternative DEVS coupled

model.

Experiment (Polling)

Actual Object
(FMURunner)

Publisher
channel: "target"

Publisher
channel: "AO/v"

Twin Object
(FMURunner)

Publisher
channel: "TO/v"

instruct target

Poller
channel: "target"

Poller
channel: "AO/v"

Poller
channel: "TO/v"

AO TO

User Agent
(Data Collector)

Experiment Manager
(Orchestrator)D

at
a

La
ke

D
as

hb
oa

rd

Workflow(s)

Figure 8.18: Polling DEVS model (OPC UA on top of TCP/IP).

The Dashboard is a process that introspects the state of the Data Collector and plots the

data every 𝑥 time.

In Figure 8.19, the Requesters send a request message to access a variable in the Memory
component. The latest value of the variable will be returned. In Figure 8.15, the Publishers
publish data on a communication channel and a Subscription Handler process applies a

real-time interrupt in the Subscribers of the same channel(s). Figure 8.18 is similar, but

combines the variable request from Figure 8.19 and the external process from Figure 8.15.

Notice that we chose to let the orchestrator communicate directly with both AO and TO.

An alternative would be to let this communication also happen via a resource-constrained

communication channel.

Figure 8.20 shows a bar plot of the latency performance metric obtained after running the

three different TEs on the same system, using the different communication technologies.

8.3. CONCLUSIONS 129

Experiment (Shared Memory)

target
AO/v Actual Object

(FMURunner)

TO/v

Twin Object
(FMURunner)

instruct target

Requester
variable: "target"

Requester
variable: "AO/v"

Requester
variable: "TO/v"

AO TO

User Agent
(Data Collector)

Experiment Manager
(Orchestrator)

D
as

hb
oa

rd

Memory Workflow(s)

Figure 8.19: Shared Memory DEVS model.

Again, the plot shows the average latency after 10 runs. The simulation was executed

using PythonPDEVS, on a Lenovo Thinkpad X1 Carbon with a Intel(R) Core(TM) i7-

7500U CPU @ 2.70GHz processor with 16GB of memory available. The Operating System

was Windows 10 Pro.

Figure 8.20: Average latency of different communication protocols.

As can be seen, using shared memory will be the most efficient approach, followed by

polling. Publish-subscribe is thus the slowest of the three.

8.3 Conclusions

This chapter focuses on two specific use-cases in the nautical domain. They are a result

of the COOCK SmartPort 2025 project, emphasising the practical need for Twinning in

this domain. They are not mere “toy” examples, as in Chapter 7, but are highly relevant

as they are rooted in practical application. Both use-cases follow the workflow presented

130 CHAPTER 8. REPRESENTATIVE USE-CASE: PORT OF ANTWERP

in Chapter 1 and discussed in detail in the sequential chapters.

Firstly, we focus on the idea of anomaly detection within a Twinned port context. Ships

travel through this system and we keep track of the occupancy of the docks. Suddenly,

we notice a discrepancy between the AO and the TO. The provided example can easily be

extended to much more detailed systems, but already shows the importance of having

similar techniques available. Next, we have shown how fault injection can be used in

conjunction with anomaly detection to identify the specific reasons behind the anomaly

that occurred. This use-case clearly pictures how multiple goals can be used to benefit

the overall system.

Typically, deployment has the largest impact on the cost for constructing a Twinning

System. Ideally, this can be quantified, as posed by Research Question 4. This brings us to

the second use-case presented here: the simple 1D motion of a ship. It proposes a MBSE

approach to deployment space exploration. In particular, architectural and technological al-

ternatives are explicitly modelled using the DEVS formalism. Simulation of these models

allows for quantitative evaluation and comparison of these alternatives. An example is

the choice between ROS 2 and MQTT for communication between components. The sim-

ulation model may even be used as a basis for the ultimate realization of the Twinning

System.

These use-cases focus on a completely different domain (and scale), compared to Chap-

ter 7, thus allowing us to generalize the presented approach.

“I may not have gone where I intended to go, but I think I
have ended up where I needed to be.”

– Douglas Adams,

The Long Dark Tea-Time of the Soul

Chapter 999
Conclusions and Future Work

The Twinning Paradigm appears everywhere, in a plethora of domains, and applied to

any number of research questions. Combined with the ever-increasing size of complex

CPS, the growth of AI, Big Data, and IoT; the Twinning Paradigm is an undoubtable

pillar of Industry 4.0.

There is a lot of variability in the exact purposes for which TEs are built, as well as

their internal architectures – either conceptual or realised. Additionally, the vast number

of formalisms, languages, algorithms, technologies, and tools to choose from when

creating such a system yields a large product family of possible solutions for any one of

the problems that the Twinning Paradigm aims to solve.

9.1 Conclusions

There exist many different usages and applications of DTs in the literature, most of them

are built quite ad-hoc with a lot of implicit (design) choices. The Twinning Paradigm is

increasingly seen as a solution enabler for a host of problems in engineering and science.

The variety of problems leads to many different solutions. Hence, a vast product family of

twinning experiments appears. To tackle this variability, this thesis proposes a four-stage

workflow, which will be applicable for engineering Twinning Systems. In each stage,

variability may appear and choices have to be made by the Twinning System engineer.

A – Problem Space We can construct a large feature tree based on existing sets of goals

(Dalibor et al., 2022; Paredis et al., 2024). Based on these choices, a lot of imple-

mentation details are already made explicit. Kang and Lee (2013) identifies the

individual requirements as Goals, Usage Contexts, and Quality Assurance. These are

key purposes for which a Twinning System might be built. Additionally, there are

the specific PoIs (Qamar & Paredis, 2012) that need to be considered. Chapter 3

delved deeper into these requirements and provided a non-exhaustive Feature Tree

for them. This Feature Tree provides an answer to RQ1 (What are the most common
reasons to build DTs?).

B – Conceptual Architectures A lot of conceptual architectures already exist. Some

focus on the connectivity (Kritzinger et al., 2018), others emphasize on the system

131

132 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

flow (Eramo et al., 2021), whereas others mainly focus on the internal components

of the TO itself (Bolender et al., 2021). Chapter 4 showed a conceptual architecture

with presence conditions that is used for all applications in the full scope of the

Twinning Paradigm. Specific features could be enabled or disabled to yield a vast

number of possibilities, yet only a handful are practically used. This provides

an answer to RQ2 (Given the large number of existing DTs in the literature, can we
unify?): we can unify at a high, conceptual level, but need to be aware of the level of

variability in solutions. The chapter also shows the different kinds of AOs and TOs

that exist. The chapter revolves around TEs as first-class entities in the architecture.

As the use of Twinning increases, the need to combine TEs arises. Hence, Chapter 6

showed how not only a single goal can be converted into a conceptual architecture,

but multiple goals as well. It describes possible combinations for TEs, in turn

answering RQ5 (How can we combine multiple DTs into a larger system?).

C – Formalisms and Models This stage mainly identifies the application of MBSE in

this overall approach. MPM (Mosterman & Vangheluwe, 2004) can be used to

reduce the scope of possible modelling languages.

D – Deployment A large explosion of possibilities happens here, as there are many

tools, frameworks and technologies that exist for creating DTs already. Chapter 5

provided an outline of these technologies, based on a small-scale analysis of the

literature. Ideally, one would like to do some deployment space exploration and find

the best possible set of solutions for deploying a Twinning System, i.e., RQ4 (How to
quantitatively support deployment choices?). A proof-of-concept for this was discussed

in Chapter 8.

This full timeline aims to answer RQ3 (What is the relationship between specific DT require-
ments, the system architecture, the used models, and the eventual deployment?). Ideally, the

decision procedure at every stage of the presented workflow can be automated or guided

for a better construction of DTs. The hypothesis is that this thesis provides a foundation

for doing this.

The power of this workflow and its usages is shown in Chapters 7 and 8 with a couple

of example, yet representative, use-cases. As a whole, each use-case has focused on a

different aspect that may be important when constructing a Twinning System: the LFR

showed a generic workflow (in the form of an FTG+PM); the TurtleBot focused on the

combination of TEs and the use of the Historian; the Port of Antwerp-Bruges use-case

identified the need for combining multiple goals; and the 1D ship identified deploy-

ment space exploration. By using multiple domains, we can assume that the presented

approach in this work is generalizable to the full scope of the Twinning Paradigm.

Over the entire discussion of these four stages, RQ3 has been kept in mind, and the

use-cases (Chapters 7 and 8) practically show how this over-arching relationship can be

maintained as well.

9.2 Limitations and Threats to Validity

Most of this research is based on the academic literature. It is assumed there exist a lot

of industrial cases that could have valuable insights into this framework, however, they

9.3. IN PREPARATION 133

might not have been published about (due to IP protection etc.). Chapter 6 has mainly

been the result of high-level discussions, and are not compared to the literature, nor to

individual proofs-of-context. As discussed in Section 9.4, this is still open research.

The presented proofs-of-context show a practical implementation of the individual com-

ponents of the presented framework. By selecting these to be far apart, we postulate that

this framework is applicable to the wide range in-between, however this is not proven,

nor can it be proven. In reality, the literature should be (re-)analysed within the context

of this framework to gain more certainty to this statement.

9.3 In Preparation

There are some papers currently in preparation. There is no guarantee that these will be

published, but it is important to remark that these journal papers are only made possible

because of the extensive research in this thesis.

The COOCK SmartPort 2025 project with Port of Antwerp-Bruges has its results and

research outlined already in a format for a journal paper. This paper is submitted to the

journal of Transportation Engineering.

A combination of Chapter 6 and the TurtleBot use-case presented in the second half of

Chapter 7 is being marked up for a journal, as the practical combination of TEs would

benefit the scientific community. Having a practical and verified way of combining

TEs will allow academia to focus on single TEs, thus leaving more room for scientific

breakthroughs on a low level.

9.4 Future Work

This thesis has used research from the DT domain and has hypothesised it could be

applied to the full spectrum of possibilities in the Twinning Paradigm. However, this

hypothesis has not yet been verified. Hence, for a full understanding of the unification

potential (i.e., RQ2), the literature needs to be re-studied with this work in mind.

Furthermore, in Chapter 4, a non-exhaustive list of seven entities is presented to categorize

the AO and the TO. This allows us to construct a matrix stating which combinations exist

and which do not. It would be highly interesting to identify why certain combinations

do (not) make sense. It would also be good to find situations where we can reap massive

benefits from ATs; potentially through analog computers.

Chapter 4 introduces the top-level conceptual architecture for managing TEs, and Chap-

ter 8 goes further into detail by applying it to a practical example. Yet, only the Historian
is discussed. Having a detailed research on both the Orchestrator, as well as the Reasoner
is still required.

While this thesis shows a workflow for constructing Twinning Systems, there is a gap

in linking each stage of the process together (i.e., RQ3). Ideally, a Knowledge Graph is

134 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

constructed that allows a (partial) automation or guidance of (the decision procedure in)

the workflow.

Chapter 6 discusses a high-level conceptual idea of how the presented architectures can

be combined (i.e., RQ5). These combinations have not been verified against the full scope

of the literature, nor by creating a detailed proof-of-concept. The TurtleBot use-case

(Chapter 7) makes a first attempt at practically combining TEs, but this research still

needs to be expanded on.

However, most of the future work of this thesis comes from the overly simplistic use-case

scenarios in Chapters 7 and 8. In the future, the presented methodology can be applied to

different application domains: robotics, production processes, waste water treatment, etc.
Hence, more complicated (and real-world) use-cases need to be used to show and verify

the validity of the provided workflow. There is a need for collaborating with companies to

start focusing on actual real-world scenarios, as opposed to the academic cases presented

in this thesis. Especially the combination of TEs (see also Chapter 6) needs to be verified

and tested against all literature cases, as opposed to anecdotal examples.

Finally, given the possibilities of combining TEs, one situation has not been discussed

in this thesis. This is the idea of Higher-Order Twinning Hierarchies (HOTH). HOTH

focuses on building Twinning Systems of Twinning Systems; i.e., investigating the useful-

ness (and practicality) of having a DT of a DT (DT-DT); or maybe an AT of an AT (AT-AT);

or anything in-between. Note that this differs from the vertical federation identified in

Chapter 6, but rather focuses on Twinning a fully deployed Twinning System as a whole.

This idea might help the Twinning Paradigm to exist in a sustainable environment.

Chapter 10
Anecdotes

During one of the many meetings with prof. Hans Vangheluwe, we discussed the idea

that the twin of a system does not always exist in the virtual world, “like those images where
Napoleon is moving pieces on a map in a war room”. This birthed the idea of an Analog Twin

(AT) (where the TO also exists in the physical world) and consequentially the Twinning
Paradigm as a whole.

Additionally, that single quote sparked a well of interesting historical research into that

topic, without any specific academic contributions. This appendix summarizes that

research, as well as describing other anecdotes that were encountered whilst researching

the origins of DTs.

10.1 Sand Tables

Etymologically, the word “abacus” comes from the ancient Greek word ἄβαξ (pronounced

/ávaks/1, meaning “board” or “slab”) (Fernandes, 2014), which might come from the

Semitic אבק! (pronounced /avak/2, meaning “dust”). Other etymologies have also been

suggested (D. E. Smith, 1925).

During the middle ages in Western Europe, both abax and abacus were used to refer to

a counting device. Nowadays, we commonly associate this with a counting board, but

originally, it seems to have referred to a table covered with sand or fine dust (D. E. Smith,

1925).

The ancient Greek, Romans, Babylonians, and ancient Egyptians used this Sand Table (also

known as a Dust Abacus) to learn how to write, draw, and do mathematics (specifically for

geometry). A picture on the famous Darius Vase (created around 400-500 B.C., located

in the Museum at Naples) is supposed to depict a Sand Table being used3. Medieval

sources from Europe also mention the abax being used to help understand geometry and

astrology. Surprisingly, multiple sources from that time indicate that Sand Tables were

covered with green dust or sand (D. E. Smith, 1925).

1According to https://www.greek2ipa.com/.

2According to Google Translate for Hebrew.

3Even though there is some speculation about this.

135

https://www.greek2ipa.com/

136 CHAPTER 10. ANECDOTES

At some point during the antiquity, armies started to use the Sand Table to draw maps

of their battlefields and they used pebbles to represent their troops. If we consider the

battlefield with troops as the SuS, we can identify the Sand Table as an abstracted model.

The action on the battlefield influences the changes on the Sand Table, and from there,

the generals can plan their next course of action. Within this context, we can consider an

Sand Table as an AT.

The Sand Table has been used for military purposes throughout history, albeit using

another name. War Table, Map Table, War Room, Plotter, Tactical Map, Wargaming, or

War-Planning Table are all synonyms.

Sadly, no sources were found to indicate that Napoleon actually used a Sand Table, but

it is extremely likely given his quote “There is no man more pusillanimous than I when I
am planning a campaign.” Additionally, detailed maps and tabletop map models were

commonly used during that time (as hinted at in some sources of the American Civil

War).

A Sand Table Excercise is still a common term in the military and pictures of Sand Tables

can be found from the First and Second World War. The Battle of Britain Bunker, a control

room near London, used numbered blocks on a “map table” in the Plotting Room4 to

indicate the positions of planes.

Modern versions of Sand Tables have embraced virtualization (Wisher, 2001), and es-

pecially AR5. Board games (like Risk, Stratego, Battleships, chess and checkers) are likely

influenced by Sand Tables. Movies, series, and video games also easily show a Sand

Table when depicting wars.

But even outside the context of war, Sand Tables are also still being used. Either in their

original context (to learn how to draw and write), or in a more creative context as is the

case for Antwerp Zoo. There, children are taught about deforestation and its impact on

the tamarin population using a miniature model of the rainforest and decommissioned

fire-hoses that represent roads or highways.

In short, the abax is the most common twin that is still being used to this day.

10.2 Apollo 13

On April 13th, 1970, James Arthur Lovell Jr. spoke the famous words “Houston, we’ve
had a problem here”. The crew of the Apollo 13 was 330,000 km away from Earth as an

explosion in the oxygen tanks critically damaged their main engine: an issue that seemed

almost impossible to solve from Earth. Fortunately, the National Aeronautics and Space

Administration (NASA) was quick on the draw. The 15 training simulators for astronauts

were recalibrated to match the oxygen tank explosion and resulting drift of the capsule.

This way, experienced astronauts and engineers were able to come up with a solution

for the issue and bring home the crew of the spacecraft. Many researchers (including

NASA themselves) consider this feat the first DT6 (Allen, 2021; Boschert & Rosen, 2016;

4https://battleofbritainbunker.co.uk/virtual-resources/

5https://en.wikipedia.org/wiki/Augmented_Reality_Sandtable

6Called “Virtual Digital Fleet Leader” at the time.

https://battleofbritainbunker.co.uk/virtual-resources/
https://en.wikipedia.org/wiki/Augmented_Reality_Sandtable

10.3. ALAN ALDA MEETS ALAN ALDA 2.0 137

Ferguson, 2020).

In actuality, this twin was not really digital, but rather electromechanical. The training

simulators were used to physically twin the spacecraft (even though some components

might have been digital, the twin itself was not). This is therefore an example of an AT

instead.

10.3 Alan Alda meets Alan Alda 2.0

The term Digital Twin in its current context dates back to 2002 (Grieves & Vickers, 2017).

However, this was not the first usage of that term. That is attributed to the media and

entertainment business, as can be seen in Figure 10.1.

Figure 10.1: Worldwide Google Trends for the Digital Twin term in the Media and Enter-
tainment category, as obtained on February 7th 2024.

Hodgins (1998) describes how physics simulations can be used to mimic human motion

within the 3D (movie) animation industry. At that point in time, this was a relatively novel

concept. A sidebar of that story, written by Alden M. Hayashi, was used as marketing

for Scientific American Frontiers, season 8, episode 4: “The Art of Science”.

In the episode, host and Emmy-award-winning actor Alan Alda wonders what it would

take for 3D animation (as used in Hollywood) to be indistinguishable from reality, with

the technology that was available at the time. The goal of the project was to make a

“digital facsimile of [Alan Alda’s] head that can talk – doing and saying things that the real
[actor] has never done or said.”

Viewpoint DataLabs made a 3D scan of Alan Alda’s face, which was given to animation

studio Lamb & Company (nowadays called Lamb.com)7 to provide facial expressions.

Next, ATR Research8 sampled the actor’s voice and combined it with Text to Speech. This

7https://lamb.com/

8https://www.atr.jp/

https://lamb.com/
https://www.atr.jp/

138 CHAPTER 10. ANECDOTES

was then merged with the animation at Lamb & Company to get a 1-minute conversation

between Alan Alda and Alan Alda 2.0.

The project, code-named Alan 2.0, called the animated head a Digital Twin in the sidebar

and during the episode.

10.4 Industrial Revolutions

We are currently at the forefront of the fourth major Industrial Revolution, also referred

to as Industry 4.0. Yet, in order to understand why DTs form the major backbone for

Industry 4.0, this section briefly summarizes the previous Industrial Revolutions as well.

10.4.1 First Industrial Revolution – Mechanization

English economic historian Arnold Toynbee popularized the term Industrial Revolution
by referring to the British economic development from 1760 to 1840 (The Editors of

Encyclopaedia Britannica, 2024b).

The drive force behind the First Industrial Revolution is the invention of a brand new

energy source: steam power. Thomas Savery invented the Miner’s Friend in 1698 (Jenkins,

1936), which eventually lead to the steam engine (generally accredited to James Watt, but

numerous other inventors also had a hand in its conception).

This new energy source, together with a new general understanding of machinery and

mechanization set the stage for a plethora of new machines. Most notably in the textile

industry: Richard Arkwright’s spinning jenny (1769) inspired Edmund Cartwright to

invent the infamous power loom in 1784 (The Editors of Encyclopaedia Britannica, 2024a).

In their turn, the power loom, spinning jenny, and similar inventions allowed industry

to skyrocket. New inventions for the iron industry (e.g., automated bellows) allowed for

more heat and therefore more iron production.

Steam-powered inventions filled the industrial landscape, solving increasingly larger and

more complicated tasks. Engineers from Great Britain started inventing train locomotives

and in 1835, l’Eléphant (the Elephant), la Flèche (the Arrow), and the Stephenson were the

first passenger trains to travel the European mainland between Brussels and Mechelen

(Canon Van Vlaanderen, 2024).

10.4.2 Second Industrial Revolution – Industrialization

While the concept of electricity has been around since the antiquity, it was mostly un-

obtainable until Alessandro Volta invented the first “battery” in 1800 (Routledge, 1881).

Whereas most engineers still focused on steam power during that time, a new generation

of inventors gradually switched to electrical power.

10.4. INDUSTRIAL REVOLUTIONS 139

The introduction of the Bessemer process in 1856 (Bessemer, 1856), as well as other

chemical processes allowed the iron industry to get yet another large update: the manu-

facturing of steel, which in turn also helped the large-scale manufacturing of steam trains

and railroads.

Thomas Edison stole and bought a lot of new inventions, such that he could patent them.

He acquired the idea of the light bulb in 1879 and was able to distribute these, thanks to

“his” Direct Current lightning system (Kennedy, 2016). A year later, in 1870, a Cincinnati

slaughterhouse used the very first automated production line, an idea that Henry Ford

would reuse in 1913 for the first assembly lines (Nibert, 2011). Factories started to appear,

which enabled mass-production and caused a ginormous economical influx, resulting in

the Roaring Twenties.

10.4.3 Third Industrial Revolution – Digitization

Up to this point, inventions were purely mechanical, analog devices, facilitated by math-

ematics, chemistry, and the laws of physics. As a result, large-scale computations were

slow and prone to many errors. But all of that changed with Turing et al. (1936) and Shan-

non (1938). Whereas Turing focused on automation and countability, Shannon worked

on logical circuits and information theory. Their combined works formed the basis for

current-day computers.

Turing was involved in the creation of the Automatic Computing Engine (ACE) in 1945,

after having cracked the Enigma code. Meanwhile, the Americas were building the

Electronic Numerical Integrator and Computer (ENIAC), generally considered the first

computer.

The end of the war showed the power of nuclear fission, which paved the way to yet

another new power source. On December 20th, 1951, the first electricity was generated

using nuclear power (Hearst Magazines, 1952). This gradually caused the world to start

building nuclear power plants to harness even more electricity.

1969 brought the inventions of the ARPANET (predecessor of the internet) and the PLC.

In the 1980s, recorded music switched from cassettes and vinyl to CDs. Additionally,

more people started using fax over telex. The world had fully entered the digital era.

10.4.4 Fourth Industrial Revolution – Robotization

Multiple countries have started to focus on their industrial productivity. In France and

Italy, this is called the Factory of the Future (Davies, 2015). The UK focuses its Catapult

centers within the context of Made Smarter (Davies, 2015; Yan & Li, 2020). In China, there

is Made in China 2025 (Tao & Zhang, 2017), as well as Intelligent Manufacturing (Yan & Li,

2020). The US focuses mainly on Industrial Internet (Yan & Li, 2020) and Digital Engineering
(Mohamed et al., 2019; Rivera et al., 2022). Japan has its Society 5.0 and Canada its Digital
Government (Rivera et al., 2022). Famously, in Germany the term Industrie 4.0 appeared

around 2015 (Davies, 2015; Hankel & Rexroth, 2015).

This global shift in mentality is generally considered Industry 4.0, a term that mostly

140 CHAPTER 10. ANECDOTES

overlaps with similar movements and therefore has been adapted worldwide. While

there is no clear new source of energy, we are globally shifting towards the usage of

Green Energy (e.g., windmills, solar panels, . . .), which allows for a better and cleaner

overall industry. Together with IoT, DTs and newer AI techniques, it is predicted that the

economy marked will increase once more.

10.4.5 A Note on Industry 5.0

An Industrial Revolution can be defined as “a rapid major change in an economy marked by
the general introduction of power-driven machinery or by an important change in the prevailing
types and methods of use of such machines” according to Merriam Webster9.

This definition provides a clear line throughout the previous sections: new power

sources, developments, and inventions caused an increase in industry, positively im-

pacting the global Gross Domestic Product (GDP), as can be seen in Figure 10.2.

Around 1700 (Figure 10.2a), we can clearly see a steady impact of the First Industrial

Revolution. Second Industrial Revolution also benefited from the momentum of the

First, but it still introduced a new power source (e.g., electricity), new machines (e.g.,
trains, light bulbs, production lines, . . .) and an additional increase in GDP (visible

around 1850).

The Third Industrial Revolution profited from a plethora of wartime inventions, with its

GDP increase visible around 1960 (Figure 10.2b). Finally, around 1990, the GDP increases

even more, indicating the beginning of the Fourth Industrial Revolution.

Industry 5.0 is the odd one out. It is seen as the step beyond Industry 4.0 (Yao et al., 2022),

with a main focus on society, sustainability and human-robot interactions (e.g., cobots).

In 2021, the European Union proposed Industry 5.0 to complement Industry 4.0, with a

main emphasis to take humans into account in this digitization craze. Yet, on its own it

is still lacking the notion of an actual revolution. It should more accurately be described

as Industry 4.1, or Industry 4.5. Raja Santhi and Muthuswamy (2023) argues to use

Industry 4.0S as a name instead (i.e., Industry 4.0 + Sustainability). Both Industry 4.0 and

Industry 5.0 complement each other and should be seen as a whole when considering an

industrial revolution.

Following the trends set out by the past, C. Zhang et al. (2023) describes that Industry

5.0 should better be seen as a “future revolution”, as opposed to one happening now.

Chourasia et al. (2022) even discusses Industry 6.0 as an interesting avenue for researchers

to start exploring. And, whereas it is good to look towards the future, this concept might

still be too premature to consider.

9https://www.merriam-webster.com/dictionary/industrial%20revolution

https://www.merriam-webster.com/dictionary/industrial%20revolution

10.4. INDUSTRIAL REVOLUTIONS 141

(a) Global GDP between 1600 and 1920.

(b) Global GDP between 1900 and 2021.

Figure 10.2: Global GDP between 1600 and 2021, based on data from Bolt and van Zanden

(2020) and The World Bank (2023), with major data processing by Our World in Data

(2023).

142 CHAPTER 10. ANECDOTES

Chapter 11
pyCBD

In order to allow modelling using CBDs, a custom CBD simulator (pyCBD) was con-

structed, written in Python. The architecture and parallel execution of this simulator was

based on the PythonPDEVS framework (Van Tendeloo & Vangheluwe, 2015).

Because CBDs are a graphical formalism, a https://www.draw.io (Draw.IO)1 library was

constructed for pyCBD and a corresponding model transformation tool was created. This

way, models can be constructed in Draw.IO and then transformed to equivalent Python

code. For instance, the CBD model shown in Figure 11.1a will yield the code shown

in Figure 11.1c (excluding the bounce function). As a whole, the expected behaviour is

shown in Figure 11.1b.

11.1 Simulator Features

The pyCBD simulator has a lot of interesting features and Quality of Life aspects. An

interested reader is referred to the detailed documentation of this framework, but some

interesting aspects are summarized below.

Standard Library The most common CBD blocks are included in a standard library.

Most of these are “atomic” (i.e., they provide a single mathematical function), such that

composition is easy. This ensures that users do not need to re-create the same blocks

over and over again.

Additionally, a backwards Euler IntegratorBlock and DerivatorBlock is included, as

well as the commonly used AddOneBlock. These last three are coupled CBD blocks, made

up of the other mathematical functions. Chapter 11 shows a detailed list of all the blocks

that can be found in this library.

Hierarchical Composition and Flattening Because a CBD model encapsulates a sin-

gle mathematical function, it can easily embedded in another CBD model, thus yield-

ing hierarchy in the model structure. Figure 11.2a shows the top-level of a simple

1Formerly known as https://www.diagrams.net

143

https://www.draw.io
https://www.diagrams.net

144 CHAPTER 11. PYCBD

BouncingBall : CBD

height

velocity

-9.81 OUT1

3 OUT1 100 OUT1

∫ OUT1
IC

IN1 ∫ OUT1
IC

IN1

(a) CBD model of the Bouncing Ball, using Draw.IO. (b) Plot of the “bounce”.

1 class BouncingBall(CBD):
2 def __init__(self, k=0.7, v0=3, y0=100):
3 super().__init__("BouncingBall", output_ports=["height", "velocity"])
4 self.k = k # The elasticity of the bounce
5

6 self.addBlock(ConstantBlock("g", -9.81))
7 self.addBlock(ConstantBlock("v0", v0))
8 self.addBlock(ConstantBlock("y0", y0))
9 self.addBlock(IntegratorBlock("v"))

10 self.addBlock(IntegratorBlock("y"))
11

12 self.addConnection("g", "v")
13 self.addConnection("v", "y")
14 self.addConnection("v", "velocity")
15 self.addConnection("y", "height")
16 self.addConnection("v0", "v", input_port_name="IC")
17 self.addConnection("y0", "y", input_port_name="IC")
18

19 def bounce(self):
20 v_pre = self.getSignalHistory("velocity")[-1].value
21 v_new = -v_pre * self.k
22 self.getBlockByName("v0").setValue(v_new)
23 self.getBlockByName("y0").setValue(0.0)

(c) Generated Python code for the Bouncing Ball model.

Figure 11.1: BouncingBall example CBD model.

11.1. SIMULATOR FEATURES 145

EvenNumberGenerator. The AddOneBlock (i.e., the component marked with “+1”) is in

itself another CBD block that has the structure shown in Figure 11.2b. The Draw.IO to

CBD exporter allows these compositions by defining multiple custom blocks (i.e., defining

both Figure 11.2a and Figure 11.2b), or by the “syntactic sugar” Quality of Life approach

shown in Figure 11.2c.

The hierarchical blocks can be trivially flattened as shown in Figure 11.2d. The small

dashed circles2 indicate the ports that were “dissolved” during flattening. In order to

maintain the same behaviour, an internal lookup table is used to keep references to these

ports.

Scaled Real-Time Simulation Besides the standard as-fast-as-possible simulation, it is

possible to run the simulator in (scaled) real-time. This is interesting if we want to use

a dashboard, or plot the change over time in a longer simulation. This feature was fully

based on PythonPDEVS.

Tracing Another feature based on PythonPDEVS is tracing. Sometimes it is useful to

log the behaviour of the model. Arguably, for CBDs it might be more useful to have a

visual debugger than a tracer.

Publish-Subscribe Architecture The CBD simulator has a Publish-Subscribe architec-

ture that allows users to hook custom functions on events. For instance, it is possible

to change the value of a ConstantBlock after every iteration, or signal a user that a

simulation has ended.

Dashboarding Just like in PythonPDEVS, TkInter3 can be used to construct complex

dashboards. These can make use of tracers, or the Publish-Subscribe hooks that are

included.

Live Plotting Framework An additional module in the CBD framework appears to work

well with PythonPDEVS, which is a Live Plotting Framework. By using the hooks and

some wrappers aroundmatplotlib4, seaborn5 andbokeh6, (scaled) real-time simulations

can visualize their internal signals during runtime.

Adaptive Step-Size Also known as varying step-size, adaptive step-size varies the time

interval between computations. Normally, a fixed Δ𝑡 is used as the time delay between

two sequential computations. All values in-between are assumed using interpolation.

This method is called the fixed step-size approach. Using a high Δ𝑡, a lot of precision is

lost, but the computational power required is minimal. A lowΔ𝑡 maintains the precision,

2Which are not part of the Draw.IO library.

3https://docs.python.org/3/library/tkinter.html

4https://matplotlib.org/

5https://seaborn.pydata.org/

6https://docs.bokeh.org/en/latest/index.html

https://docs.python.org/3/library/tkinter.html
https://matplotlib.org/
https://seaborn.pydata.org/
https://docs.bokeh.org/en/latest/index.html

146 CHAPTER 11. PYCBD

EvenNumberGenerator : CBD

+1 OUT1IN1 D OUT1
IC

IN1

0 OUT1

∑ OUT1
IN1

IN2

2 OUT1

OUT

(a) CBD model of an EvenNumberGenerator, using

Draw.IO.

AddOneBlock : CBD

IN1

1 OUT1

∑ OUT1
IN1

IN2
OUT1

(b) Contents of the AddOneBlockmodel,

using Draw.IO.

EvenNumberGenerator : CBD

D OUT1
IC

IN1

0 OUT1

∑ OUT1
IN1

IN2

2 OUT1

OUT

AddOneBlock : CBD

IN1

1 OUT1

∑ OUT1
IN1

IN2
OUT1

(c) Quality of Life version of the EvenNumberGenmodel, using Draw.IO.

EvenNumberGenerator : CBD

D OUT1
IC

IN1

0 OUT1

∑ OUT1
IN1

IN2

2 OUT1

OUT

addOne.IN1

1 OUT1

∑ OUT1
IN1

IN2 addOne.OUT1

(d) Flattened version of the EvenNumberGenerator, using Draw.IO.

Figure 11.2: EvenNumberGenerator example CBD model.

11.2. VISUAL SYNTAX IN DRAWIO 147

but requires a lot of (potentially unnecessary) computations. A slowly evolving function

is therefore ideally computed with a high Δ𝑡, and a highly fluctuating function needs a

low Δ𝑡. Sometimes, a function is both highly fluctuating in certain domains and slowly

evolving in another domain. This requires us to vary the Δ𝑡 through time7.

By default, a fixed step-size is used (where the user sets a Δ𝑡). This results in a fixed-rate

clock to be added to the model during its simulation. However, the clock’s ℎ value can

be altered to change the time in-between computations, based on the signal values of a

certain computation.

A Runge-Kutta preprocessor is included that allows the full family of Runge-Kutta al-

gorithms (including, but not limited to) RKF45 (Fehlberg, 1969), by using their Butcher

Tables (Butcher, 1964).

Hybrid Simulations The simulator can be easily embedded into DEVS, as was shown

in Paredis, Denil, and Vangheluwe (2021). Other embeddings should work as well (but

are not tested, or verified).

State-Event Location The core feature of hybrid simulations is called State-Event Lo-

cation. This is because certain state changes might happen when a signal falls below a

certain value. For instance, in the bouncing ball example, we want to know exactly when
the ball hits the floor, not if it has gone through the floor between the current and the

previous iteration.

To accomplish this task, a simple linear translation can be combined with a root-finding

algorithm in order to know the exact point in time of when the state-event has occurred.

The CBD simulator will iteratively jump forwards and backwards through time (thus

solving the root-finding algorithm) until it has found the exact point in time when this

happened. If this moment is found, a potential manipulation may happen to the model

(e.g., adding new blocks, or reversing the velocity) before the simulation is restarted.

Exports Because of the equivalence between ODEs and CBDs, it stands to reason that

CBD models can be transformed into systems of ODEs. The generic algorithm for this was

discussed in Gomes et al. (2020). An export module is included in the framework to allow

models to be transformed into LAT
E
X math equations. Either the full set of equations can

be generated, or a (simplified) minimized set can be yielded. For educational purposes,

all intermediary simplification steps can also be returned.

Additionally, it is also possible to export to FMU.

11.2 Visual Syntax in DrawIO

The standard CBD library that is included in the CBD simulator framework, including all

visual block representations, was made with Draw.IO. All blocks are shown in Table 11.1.

7A varying Δ𝑡 is often called ℎ in the mathematical literature on this topic.

148 CHAPTER 11. PYCBD

Table 11.1: Standard library for the CBD framework, including the graphical notations,

created in Draw.IO.

Block Representation Name Description

ConstantBlock
Constructed with a value 𝑣.

Outputs 𝑣.

DeltaTBlock Outputs the current Δ𝑡.

TimeBlock Outputs the current time.

LoggingBlock
Prints a message to the console with a

certain priority, based on the received

input.

DelayBlock
Delays the input for one iteration. In the

first iteration, the value of IC is output.

NegatorBlock Outputs -IN1.

InverterBlock Outputs 1/IN1.

AdderBlock
Constructed with 𝑛 inputs.

Outputs the sum of all inputs.

ProductBlock
Constructed with 𝑛 inputs.

Outputs the product of all inputs.

ModuloBlock Outputs IN1 mod IN2.

RootBlock Outputs
𝐼𝑁2

√
𝐼𝑁1.

PowerBlock Outputs 𝐼𝑁1
𝐼𝑁2

.

11.2. VISUAL SYNTAX IN DRAWIO 149

Table 11.2: Standard library for the CBD framework (cont.).

Block Representation Name Description

AbsBlock Outputs the absolute value of its input.

IntBlock
Outputs the (floored) integer value of

its input.

GenericBlock
Allows a user to set a mathematical

function that will be executed on the

input.

MinBlock Outputs the smallest value of its inputs.

MaxBlock Outputs the largest value of its inputs.

ClampBlock
Clamps the input between a minimum

and a maximum.

BlendBlock

“Blends” both the inputs, i.e., it per-

forms a linear interpolation between

IN1 and IN2, using IN3 to weight them.

This function is known as the “mix”
function in most shader languages. It

outputs (𝐼𝑁3 · 𝐼𝑁1) + ((1 − 𝐼𝑁3) · 𝐼𝑁2).

SplitBlock
Constructed with 𝑛 outputs.

Produces the input on all outputs.

LessThanBlock Outputs 1 if 𝐼𝑁1 < 𝐼𝑁2, otherwise 0.

LessThan-
OrEqualsBlock

Outputs 1 if 𝐼𝑁1 ≤ 𝐼𝑁2, otherwise 0.

EqualsBlock Outputs 1 if 𝐼𝑁1 = 𝐼𝑁2, otherwise 0.

150 CHAPTER 11. PYCBD

Table 11.2: Standard library for the CBD framework (cont.).

Block Representation Name Description

NotBlock
Outputs 0 if the input is “truthy”, oth-

erwise 1.

OrBlock
Constructed with 𝑛 inputs.

Outputs 1 if one of the inputs is

“truthy”, otherwise 0.

AndBlock
Constructed with 𝑛 inputs.

Outputs 1 if all of the inputs are

“truthy”, otherwise 0.

AddOneBlock
Hierarchical CBD.

Outputs the input increased by one.

IntegratorBlock

Hierarchical CBD.

Applies the backwards Euler integra-

tion function. Outputs IC during the

first iteration.

DerivatorBlock

Hierarchical CBD.

Applies the backwards Euler derivation

function. Outputs IC during the first

iteration.

Acronyms

AAS Asset Administration Shell 12, 13, 30,

31, 45, 51, 58

ACE Automatic Computing Engine 139

AGV Automated Guided Vehicle iv, ix,

xxvi, 81, 84, 89, 97, 99, 108

AI Artificial Intelligence iii, vii, xiii, 2, 13,

31, 35, 52, 53, 131, 140

AnSyMo Antwerp Systems and software

Modelling xiii, xvi, 8, 109

AO Actual Object iii, vii, xxvi, xxviii, 5, 10,

11, 27–32, 34–37, 39–49, 56, 63–67, 69, 73,

74, 78, 79, 82, 99, 101–103, 105–110, 112,

113, 115, 116, 122–124, 128, 130, 132, 133

API Application Programming Interface

40, 79, 101

AR Augmented Reality 18, 29, 52, 57, 136

AT Analog Twin 10, 133–137

CBD Causal-Block Diagram xii, xvi, xxvii,

xxviii, 16, 18, 19, 52, 54, 87, 95–97, 143–150

CoM Center of Mass 88, 89, 99, 100

CPS Cyber-Physical System iii, vii, 1, 2, 13,

23, 29, 35, 46, 120, 131

DDS Data Distribution Service iv, viii, 23,

24

DEVS Discrete EVent system Specification

iv, v, viii, ix, xii, xiii, xxviii, 15, 16, 18, 21,

22, 54, 59, 69, 104, 109, 112, 113, 115, 124,

126–130, 147

Draw.IO https://www.draw.io 143–148

DT Digital Twin iii, vii, xxv, xxviii, 2–5, 7,

9–14, 23–25, 28, 32, 35–37, 39, 42, 46–49, 51–

53, 58, 61, 62, 79, 82, 89, 101, 102, 131–138,

140

DTDL Digital Twin Design Language 54

DTW Dynamic Time Warping 113, 116–118

EM Experiment Manager 40–42, 44, 45, 49,

63–71, 73–76, 79

ENIAC Electronic Numerical Integrator

and Computer 139

FIPA Foundation for Intelligent Physical

Agents 56

FMI Functional Mock-Up Interface 21, 54

FMU Functional Mock-Up Unit 16, 18, 21,

33, 79, 122–124, 147

FTG Formalism Transformation Graph

xxv, 7, 14–16

FTG+PM Formalism Transformation

Graph and Process Model xi, 14, 16, 17,

82, 132

GDP Gross Domestic Product xxviii, 140,

141

GIS Geographic Information System 53

GPSS General Purpose Simulation System

xiii, 15

HOTH Higher-Order Twinning Hierar-

chies 134

IoT Internet of Things iii, vii, 4, 23, 52, 53,

131, 140

IP Intellectual Property 33

LFR Line Following Robot iv, ix, xi, xxvi,

xxvii, 8, 57, 81–85, 88, 89, 91, 92, 94–101,

108, 132

M&S Modelling & Simulation iii, vii, 1, 3–5,

14, 56

MBSE Model-Based Systems Engineering

iv, viii, 1, 7, 14, 27, 58, 120, 124, 130, 132

MoSIS Modelling of Software-Intensive

Systems 109

MPM Multi-Paradigm Modelling iii, iv, vii,

viii, 1, 2, 7, 9, 13, 14, 18, 54, 58, 124, 132

NASA National Aeronautics and Space Ad-

ministration 136

151

https://www.draw.io

152 Acronyms

ODE Ordinary Differential Equation xxvii,

15, 19, 21, 54, 95, 104, 106, 123, 147

PID Proportional-Integral-Differential 92–

94, 123

PLC Programmable Logic Controller 57,

139

PLM Product Lifecycle Management xxv,

9, 36, 37, 53, 73

PM Process Model xxv, 14, 16, 17, 82, 99,

108

PoI Property of Interest iii, iv, vii, viii, xxvi,

5, 8, 26, 27, 37, 45, 61, 63–65, 68–70, 73, 74,

78, 79, 102, 105, 106, 112, 131

RAMI 4.0 Reference Architecture Model

for Industry 4.0 2, 12, 24, 39, 45, 58

RKF45 Runge-Kutta-Fehlberg of 4th and

5th order 20, 147

ROS Robot Operating System 24, 56, 101,

107, 126, 130

SLAM Simultaneous Localization and

Mapping 104

STE(A)M Science, Technology, Education,

(Arts,) Mathematics 81

SuS System under Study iii, vii, 4, 5, 10, 26,

27, 32, 36, 37, 39, 40, 45, 46, 123, 136

TE Twinning Experiment iv, viii, ix, xiv,

xxv–xxvii, 5, 37, 39–45, 47, 49, 51, 52, 55, 56,

61–81, 101–105, 108, 128, 131–134

TFSA Timed Finite State Automata xxvii,

15, 16, 104, 106

TO Twin Object iii, vii, xxvi–xxviii, 5, 10–

12, 28–36, 39–41, 43–49, 56, 62–67, 69–71, 73,

74, 78, 79, 82, 96, 99, 101–103, 106, 108–110,

112, 113, 115, 116, 122–124, 128, 130, 132,

133, 135

TPR Department of Transport and Re-

gional Economics xiii, xvi, 8, 109

VR Virtual Reality 18, 29, 52, 57

WSN Wireless Sensor Network 56

XR Mixed Reality 18, 29, 52, 57

Bibliography

Ackoff, R. L. (1971). Towards a system of systems concepts. Management science, 17(11),

661–671.

Akroyd, J., Mosbach, S., Bhave, A., & Kraft, M. (2021). Universal digital twin-a dynamic

knowledge graph. Data-Centric Engineering, 2, e14.

Ali, S., Arcaini, P., & Arrieta, A. (2025). Foundation Models for the Digital Twins Cre-

ation of Cyber-Physical Systems. In T. Margaria & B. Steffen (Eds.), Leveraging
applications of formal methods, verification and validation. application areas (pp. 9–26).

Springer Nature Switzerland.

Allen, B. (2021). Digital Twins and Living Models at NASA [Keynote]. https://ntrs.nasa.

gov/citations/20210023699

Alvarez, S. (2019). Tesla cars can now order parts for itself when in need of service repair

[Accessed: June 24th 2024]. https://www.teslarati.com/tesla-repairs-service-

automatic-pre-order-parts/

Angjeliu, G., Coronelli, D., & Cardani, G. (2020). Development of the simulation model

for Digital Twin applications in historical masonry buildings: The integration

between numerical and experimental reality. Computers & Structures, 238, 106282.

https://doi.org/10.1016/j.compstruc.2020.106282

Antunes, A. (2023). Designing a Digital Twin for Adaptive Serious Games-based Therapy.

Proceedings of the 22nd International Conference on Mobile and Ubiquitous Multimedia,

574–576.

Arcaute, E., Barthelemy, M., Batty, M., Caldarelli, G., Gershenson, C., Helbing, D.,

Moreno, Y., Ramasco, J. J., Rozenblat, C., & Sánchez, A. (2021). Future cities:

Why digital twins need to take complexity science on board. ResearchGate.
Åström, K. J. (2002). Control System Design: Lecture Notes for ME 155A [Accessed: 24th

of April 2024]. https://www.cds.caltech.edu/~murray/courses/cds101/fa02/

caltech/astrom.html

Åström, K. J., Elmqvist, H., & Mattsson, S. E. (1998). Evolution of Continuous-Time

Modeling and Simulation. Proc. of the 12th European Simulation Multiconference,
ESM’98, 9–18.

Autiosalo, J., Vepsäläinen, J., Viitala, R., & Tammi, K. (2019). A feature-based framework

for structuring industrial digital twins. IEEE access, 8, 1193–1208.

Aydt, H., Turner, S. J., Cai, W., & Low, M. Y. H. (2008). Symbiotic simulation systems: An

extended definition motivated by symbiosis in biology. 2008 22nd Workshop on
Principles of Advanced and Distributed Simulation, 109–116.

Baalbergen, E. H., de Marchi, J. A., & Klerx, R. (2023). Unleashing the potentials of digital

twinning in the production of composite aircraft components. Journal of Physics:
Conference Series, 2526(1), 012046.

Badawi, H. F., Laamarti, F., & El Saddik, A. (2021). Devising Digital Twins DNA Paradigm

for Modeling ISO-Based City Services. Sensors, 21(4). https://doi.org/10.3390/

s21041047

153

https://ntrs.nasa.gov/citations/20210023699
https://ntrs.nasa.gov/citations/20210023699
https://www.teslarati.com/tesla-repairs-service-automatic-pre-order-parts/
https://www.teslarati.com/tesla-repairs-service-automatic-pre-order-parts/
https://doi.org/10.1016/j.compstruc.2020.106282
https://www.cds.caltech.edu/~murray/courses/cds101/fa02/caltech/astrom.html
https://www.cds.caltech.edu/~murray/courses/cds101/fa02/caltech/astrom.html
https://doi.org/10.3390/s21041047
https://doi.org/10.3390/s21041047

154 BIBLIOGRAPHY

Bader, S., Barnstedt, E., Bedenbender, H., Berres, B., Billmann, M., & Ristin, M. (2022).

Details of the asset administration shell-part 1: The exchange of information

between partners in the value chain of industrie 4.0 (version 3.0 rc02).

Balachandar, S., & Chinnaiyan, R. (2019). Reliable digital twin for connected footballer.

International Conference on Computer Networks and Communication Technologies: IC-
CNCT 2018, 185–191.

Ballouch, Z., Hajji, R., Poux, F., Kharroubi, A., & Billen, R. (2022). A prior level fusion

approach for the semantic segmentation of 3d point clouds using deep learning.

Remote Sensing, 14(14), 3415. https://doi.org/10.3390/rs14143415

Balta, E. C., Pease, M., Moyne, J., Barton, K., & Tilbury, D. M. (2021). Digital Twin

based cyber-attack detection for manufacturing systems. 2021 Winter Simulation
Conference, 2021.

Banerjee, S., Das, D., Chatterjee, P., & Ghosh, U. (2023). Blockchain-enabled digital twin

technology for next-generation transportation systems. 2023 IEEE 26th Interna-
tional Symposium on Real-Time Distributed Computing (ISORC), 224–229.

Barosan, I., Basmenj, A. A., Chouhan, S. G. R., & Manrique, D. (2020). Development of a

Virtual Simulation Environment and a Digital Twin of an Autonomous Driving

Truck for a Distribution Center. European Conference on Software Architecture, 542–

557.

Batty, M. (2021). Multiple models.

Bauer, P., Stevens, B., & Hazeleger, W. (2021). A digital twin of Earth for the green

transition. Nature Climate Change, 11(2), 80–83.

Becker, F., Bibow, P., Dalibor, M., Gannouni, A., Hahn, V., Hopmann, C., Jarke, M., Koren,

I., Kröger, M., Lipp, J., et al. (2021). A conceptual model for digital shadows in

industry and its application. Conceptual Modeling: 40th International Conference,
ER 2021, Virtual Event, October 18–21, 2021, Proceedings 40, 271–281.

Bellis, S., & Denil, J. (2022). Challenges and possible approaches for sustainable digital

twinning. Proceedings of the 25th International Conference on Model Driven Engineer-
ing Languages and Systems: Companion Proceedings, 643–648.

Bergero, F., & Kofman, E. (2011). PowerDEVS: a Tool for Hybrid System Modeling and

Real-Time Simulation. Simulation, 87, 113–132.

Berti, N., Finco, S., Guidolin, M., & Battini, D. (2023). Towards Human Digital Twins to

enhance workers’ safety and production system resilience. IFAC-PapersOnLine,
56(2), 11062–11067.

Bessemer, H. (1856). Improvement in the manufacture of iron and steel [Patent].

Bibow, P., Dalibor, M., Hopmann, C., Mainz, B., Rumpe, B., Schmalzing, D., Schmitz, M.,

& Wortmann, A. (2020). Model-driven development of a digital twin for injection

molding. International Conference on Advanced Information Systems Engineering, 85–

100.

Biesinger, F., Meike, D., Kraß, B., & Weyrich, M. (2018). A Case Study for a Digital

Twin of Body-in-White Production Systems General Concept for Automated

Updating of Planning Projects in the Digital Factory. 2018 IEEE 23rd International
Conference on Emerging Technologies and Factory Automation (ETFA), 19–26. https:

//doi.org/10.1109/ETFA.2018.8502467

Blew, R. D. (1996). On the definition of ecosystem. Bulletin of the Ecological Society of
America, 77(3), 171–173.

Bojarczuk, K., Gucevska, N., Lucas, S., Dvortsova, I., Harman, M., Meĳer, E., Sapora, S.,

George, J., Lomeli, M., & Rojas, R. (2021). Measurement challenges for cyber cyber

digital twins: Experiences from the deployment of Facebook’s ww simulation

https://doi.org/10.3390/rs14143415
https://doi.org/10.1109/ETFA.2018.8502467
https://doi.org/10.1109/ETFA.2018.8502467

BIBLIOGRAPHY 155

system. Proceedings of the 15th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), 1–10.

Bolender, T., Bürvenich, G., Dalibor, M., Rumpe, B., & Wortmann, A. (2021). Self-adaptive

manufacturing with digital twins. 2021 International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems (SEAMS), 156–166.

Boletsis, C. (2022). The Gaia System: A tabletop projection mapping system for raising

environmental awareness in islands and coastal areas. Proceedings of the 15th
International Conference on PErvasive Technologies Related to Assistive Environments,
50–54.

Bolt, J., & van Zanden, J. L. (2020). The Maddison Project: Maddison style estimates of the evo-
lution of the world economy. A new 2020 update (tech. rep.). University of Groningen.

Bonney, M. S., de Angelis, M., Wagg, D., & Dal Borgo, M. (2021). Digital Twin Operational

Platform for Connectivity and Accessibility using Flask Python. 2021 ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems Com-
panion (MODELS-C), 237–241.

Borland, S., & Vangheluwe, H. (2003). Transforming statecharts to devs. Proceedings of the
2003 Summer Simulation Conference, 154–159.

Boschert, S., Heinrich, C., & Rosen, R. (2018). Next generation digital twin.

Boschert, S., & Rosen, R. (2016). Digital Twin – the Simulation Aspect. In Mechatronic
futures (pp. 59–74). Springer.

Boss, B., Malakuti, S., Lin, S. W., Usländer, T., Clauer, E., Hoffmeister, M., & Stojanovic,

L. (2020). Digital twin and asset administration shell concepts and application

in the industrial internet and industrie 4.0. Industrial Internet Consortium: Boston,
MA, USA.

Brannon, R. M. (2004). Curvilinear analysis in a Euclidean space. University of New Mexico.

Brockhoff, T., Heithoff, M., Koren, I., Michael, J., Pfeiffer, J., Rumpe, B., Uysal, M. S., Van

Der Aalst, W. M. P., & Wortmann, A. (2021). Process prediction with digital twins.

2021 ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems Companion (MODELS-C), 182–187.

Burger, A., Koziolek, H., Rückert, J., Platenius-Mohr, M., & Stomberg, G. (2019). Bot-

tleneck identification and performance modeling of OPC UA communication

models. Proceedings of the 2019 ACM/SPEC International Conference on Performance
Engineering, 231–242.

Butcher, J. C. (1964). On Runge-Kutta processes of high order. Journal of the Australian
Mathematical Society, 4(2), 179–194. https://doi.org/10.1017/S1446788700023387

Camus, B., Paris, T., Vaubourg, J., Presse, Y., Bourjot, C., Ciarletta, L., & Chevrier, V. (2018).

Co-simulation of cyber-physical systems using a DEVS wrapping strategy in the

MECSYCO middleware. SIMULATION, 94(12), 1099–1127.

Canon Van Vlaanderen. (2024). De eerste treinrit - Het spoor ontsluit het land [Accessed:

29th of March 2024]. https://www.canonvanvlaanderen.be/events/de-eerste-

treinrit/

Carnap, R. (1936). Testability and meaning. Philosophy of science, 3(4), 419–471.

Carreira, P., Amaral, V., & Vangheluwe, H. (2020). Multi-Paradigm Modelling for Cyber-

Physical Systems: Foundations. In Foundations of multi-paradigm modelling for
cyber-physical systems (pp. 1–14). Springer International Publishing. https : / /

doi.org/10.1007/978-3-030-43946-0_1

Cavalieri, S., & Salafia, M. G. (2020). Insights into mapping solutions based on OPC

UA information model applied to the industry 4.0 asset administration shell.

Computers, 9(2), 28.

https://doi.org/10.1017/S1446788700023387
https://www.canonvanvlaanderen.be/events/de-eerste-treinrit/
https://www.canonvanvlaanderen.be/events/de-eerste-treinrit/
https://doi.org/10.1007/978-3-030-43946-0_1
https://doi.org/10.1007/978-3-030-43946-0_1

156 BIBLIOGRAPHY

Cederbladh, J., Cleophas, L., Kamburjan, E., Lima, L., & Vangheluwe, H. (2023). Symbolic

Reasoning for Early Decision-Making in Model-Based Systems Engineering. 2023
ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems Companion (MODELS-C), 721–725.

Charette, R. N. (2009). This car runs on code. IEEE spectrum, 46(3), 3.

Choppy, C., Klai, K., & Zidani, H. (2011). Formal verification of UML state diagrams: a

petri net based approach. ACM SIGSOFT Software Engineering Notes, 36(1), 1–8.

Chourasia, S., Tyagi, A., Pandey, S. M., Walia, R. S., & Murtaza, Q. (2022). Sustainability

of Industry 6.0 in Global Perspective: Benefits and Challenges. MAPAN, 37(2),

443–452. https://doi.org/10.1007/s12647-022-00541-w

Custodio, L., & Machado, R. (2020). Flexible automated warehouse: A literature review

and an innovative framework. The International Journal of Advanced Manufacturing
Technology, 106, 533–558.

Czarnecki, K. (2004). Overview of generative software development. In J. Banâtre, P.

Fradet, J. Giavitto, & O. Michel (Eds.), Unconventional programming paradigms, in-
ternational workshop UPP, revised selected and invited papers (pp. 326–341, Vol. 3566).

Springer. https://doi.org/10.1007/11527800_25

Czarnecki, K., Helsen, S., et al. (2003). Classification of model transformation approaches.

Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the Context of
the Model Driven Architecture, 45(3), 1–17.

Czarnecki, K., Østerbye, K., & Völter, M. (2002). Generative programming. In J. H. Núñez

& A. M. D. Moreira (Eds.), Object-oriented technology, ECOOP 2002 workshops and
posters (pp. 15–29, Vol. 2548). Springer. https://doi.org/10.1007/3-540-36208-

8_2

D’Abreu, M. C., & Wainer, G. A. (2005). M/CD++: Modeling continuous systems using

Modelica and DEVS. 13th IEEE International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems, 229–236.

Dalibor, M., Jansen, N., Rumpe, B., Schmalzing, D., Wachtmeister, L., Wimmer, M., &

Wortmann, A. (2022). A Cross-Domain Systematic Mapping Study on Software

Engineering for Digital Twins. Journal of Systems and Software, 193, 111361. https:

//doi.org/10.1016/j.jss.2022.111361

Damköhler, F. (2022). Mastering the Nordschleife with hydrogen [Accessed: 31st of

May 2024]. https://newsroom.porsche.com/en/2022/innovation/porsche-

engineering-simulation-hydrogen-combustion-engines-nuerburgring-nordschleife-

29401.html

David, I., Archambault, P., Wolak, Q., Vu, C. V., Lalonde, T., Riaz, K., Syriani, E., &

Sahraoui, H. (2023). Digital Twins for Cyber-Biophysical Systems: Challenges

and Lessons Learned. ACM/IEEE 26th International Conference on Model-Driven
Engineering Languages and Systems (MODELS). IEEE, 1–12.

David, I., & Bork, D. (2024). Infonomics of Autonomous Digital Twins. Advanced Infor-
mation Systems Engineering - 36th International Conference, CAiSE 2024, Limassol,
Cyprus, 2024, Proceedings.

David, I., Shao, G., Gomes, C., Tilbury, D., & Zarkout, B. (2025). Interoperability of

Digital Twins: Challenges, Success Factors, and Future Research Directions. In T.

Margaria & B. Steffen (Eds.), Leveraging applications of formal methods, verification
and validation. application areas (pp. 27–46). Springer Nature Switzerland.

Davies, R. (2015). Industry 4.0: Digitalisation for productivity and growth.

https://doi.org/10.1007/s12647-022-00541-w
https://doi.org/10.1007/11527800_25
https://doi.org/10.1007/3-540-36208-8_2
https://doi.org/10.1007/3-540-36208-8_2
https://doi.org/10.1016/j.jss.2022.111361
https://doi.org/10.1016/j.jss.2022.111361
https://newsroom.porsche.com/en/2022/innovation/porsche-engineering-simulation-hydrogen-combustion-engines-nuerburgring-nordschleife-29401.html
https://newsroom.porsche.com/en/2022/innovation/porsche-engineering-simulation-hydrogen-combustion-engines-nuerburgring-nordschleife-29401.html
https://newsroom.porsche.com/en/2022/innovation/porsche-engineering-simulation-hydrogen-combustion-engines-nuerburgring-nordschleife-29401.html

BIBLIOGRAPHY 157

Denil, J., Meulenaere, P. D., Demeyer, S., & Vangheluwe, H. (2017). DEVS for AUTOSAR-

based system deployment modeling and simulation. SIMULATION, 93(6), 489–

513. https://doi.org/10.1177/0037549716684552

Denil, J., Meyers, B., De Meulenaere, P., & Vangheluwe, H. (2015). Explicit Semantic Adap-

tation of Hybrid Formalisms for FMI Co-Simulation. Proceedings of the Symposium
on Theory of Modeling & Simulation: DEVS Integrative M&S Symposium, 99–106.

Denil, J., Vangheluwe, H., De Meulenaere, P., & Demeyer, S. (2012). Calibration of deploy-

ment simulation models: A multi-paradigm modelling approach. Proceedings of
the 2012 Symposium on Theory of Modeling and Simulation-DEVS Integrative M&S
Symposium, 1–8.

Denis, H., Paredis, R., Albertins, P., Vangheluwe, H., Farzadmehr, M., Carlan, V., Vanels-

lander, T., Luong, N.-Q., & Mercelis, S. (2025). Towards Smart Port of the Future:

Harnessing Ai and Simulation Models for Nautical Chain Optimization. Trans-
portation Engineering.

de Weck, O. L., Roos, D., Magee, C. L., & Vest, C. M. (2011). Life-Cycle Properties of

Engineering Systems: The Ilities. In Engineering Systems: Meeting Human Needs in
a Complex Technological World (pp. 65–96). MIT Press.

Diakité, M., & Traoré, M. K. (2023). Formal Approach to Digital Twin Specification. 2023
Annual Modeling and Simulation Conference (ANNSIM), 233–244.

Doellner, J., Merino Cordoba, S., Guzman Navarro, F., Martinez, J., De Dios Lara, J., &

Guzman, R. (2023). Towards concepts for climate and energy-oriented digital

twins for buildings. The 28th International ACM Conference on 3D Web Technology,

1–9. https://doi.org/10.1145/3611314.3616066

Domaneschi, M., Mitoulis, S. A., Cucuzza, R., Villa, V., Di Bari, R., Siva, G., et al. (2023).

Restoration of a landmark balanced cantilever bridge considering different re-

silience and sustainability strategies. In Compdyn proceedings (pp. 3339–3356,

Vol. 2). National Technical University of Athens.

El Saddik, A. (2018). Digital Twins: The Convergence of Multimedia Technologies. IEEE
MultiMedia, 25(2), 87–92. https://doi.org/10.1109/MMUL.2018.023121167

Eramo, R., Bordeleau, F., Combemale, B., van Den Brand, M., Wimmer, M., & Wortmann,

A. (2021). Conceptualizing digital twins. IEEE Software.
Erbay, O., Doğan, A., & Devecioğlu, E. (2024). Line Follower Robot with PID Control.

European Space Agency. (2021). Working towards a Digital Twin of Earth [Accessed:

February 23h 2025]. https://www.esa.int/Applications/Observing_the_Earth/

Working_towards_a_Digital_Twin_of_Earth

Fehlberg, E. (1969). Classical fifth-and seventh-order runge-kutta formulas with stepsize

control. Computing, 4, 93–106.

Feng, H., Gomes, C., Thule, C., Lausdahl, K., Sandberg, M., & Larsen, P. G. (2021). The In-

cubator Case Study for Digital Twin Engineering. arXiv preprint arXiv:2102.10390.

Feng, X., Wu, J., Wu, Y., Li, J., & Yang, W. (2023). Blockchain and digital twin empow-

ered trustworthy self-healing for edge-AI enabled industrial Internet of Things.

Information Sciences, 642, 119169. https://doi.org/10.1016/j.ins.2023.119169

Fergus, P., Chalmers, C., Longmore, S., Wich, S., Warmenhove, C., Swart, J., Ngongwane,

T., Burger, A., Ledgard, J., & Meĳaard, E. (2023). Empowering Wildlife Guardians:

An Equitable Digital Stewardship and Reward System for Biodiversity Conser-

vation Using Deep Learning and 3/4G Camera Traps. Remote Sensing, 15(11),

2730. https://doi.org/10.3390/rs15112730

Ferguson, S. (2020). Apollo 13: The First Digital Twin [Accessed: February 7th 2024].

https://blogs.sw.siemens.com/simcenter/apollo-13-the-first-digital-twin/

https://doi.org/10.1177/0037549716684552
https://doi.org/10.1145/3611314.3616066
https://doi.org/10.1109/MMUL.2018.023121167
https://www.esa.int/Applications/Observing_the_Earth/Working_towards_a_Digital_Twin_of_Earth
https://www.esa.int/Applications/Observing_the_Earth/Working_towards_a_Digital_Twin_of_Earth
https://doi.org/10.1016/j.ins.2023.119169
https://doi.org/10.3390/rs15112730
https://blogs.sw.siemens.com/simcenter/apollo-13-the-first-digital-twin/

158 BIBLIOGRAPHY

Ferko, E., Berardinelli, L., Bucaioni, A., Behnam, M., & Wimmer, M. (2024). Towards

Interoperable Digital Twins: Integrating SysML into AAS with Higher-Order

Transformations. 3rd International Workshop on Digital Twin Architecture (TwinArch)
and Digital Twin Engineering (DTE).

Ferko, E., Bucaioni, A., Pelliccione, P., & Behnam, M. (2023). Standardisation in digital

twin architectures in manufacturing. 2023 IEEE 20th International Conference on
Software Architecture (ICSA), 70–81.

Fernandes, L. (2014). The Abacus: A Brief History. https://www.ecb.torontomu.ca/

~elf/abacus/history.html

Flammini, F. (2021). Digital twins as run-time predictive models for the resilience of

cyber-physical systems: A conceptual framework. Philosophical Transactions of the
Royal Society A, 379(2207), 20200369.

Franceschini, R., Challenger, M., Cicchetti, A., Denil, J., & Vangheluwe, H. (2019). Chal-

lenges for automation in adaptive abstraction. 2019 ACM/IEEE 22nd Interna-
tional Conference on Model Driven Engineering Languages and Systems Companion
(MODELS-C), 443–448.

Franceschini, R., Van Mierlo, S., & Vangheluwe, H. (2019). Towards Adaptive Abstraction

in Agent Based Simulation. Winter Simulation Conference (WSC), 2725–2736. https:

//doi.org/10.1109/WSC40007.2019.9004843

Freitag, C., Berners-Lee, M., Widdicks, K., Knowles, B., Blair, G. S., & Friday, A. (2021). The

real climate and transformative impact of ICT: A critique of estimates, trends, and

regulations. Patterns, 2(9), 100340. https://doi.org/10.1016/j.patter.2021.100340

Gallego-García, S., Ren, D., Gallego-García, D., Pérez-García, S., & García-García, M.

(2022). Dynamic Innovation Information System (DIIS) for a New Management

Age. Applied Sciences, 12(13). https://doi.org/10.3390/app12136592

Gelernter, D. (1993). Mirror worlds: Or the day software puts the universe in a shoebox... how
it will happen and what it will mean. Oxford University Press.

Giese, H. (2006). Software Engineering for Software-Intensive Systems: I Introduction (tech.

rep.). University of Paderborn.

Glaessgen, E., & Stargel, D. (2012). The digital twin paradigm for future NASA and US Air

Force vehicles. 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics
and materials conference 20th AIAA/ASME/AHS adaptive structures conference 14th
AIAA, 1818.

Gockel, B., Tudor, A., Brandyberry, M., Penmetsa, R., & Tuegel, E. (2012). Challenges

with Structural Life Forecasting Using Realistic Mission Profiles. 53rd AIAA/AS-
ME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. https:

//doi.org/10.2514/6.2012-1813

Goldstein, R., Breslav, S., & Khan, A. (2016). DesignDEVS: Reinforcing Theoretical Prin-

ciples in a Practical and Lightweight Simulation Environment. Proceedings of the
2016 Spring Simulation Multiconference, 1–8.

Gomes, C., Denil, J., & Vangheluwe, H. (2020). Causal-Block Diagrams: A family of

languages for causal modelling of cyber-physical systems. In Foundations of multi-
paradigm modelling for cyber-physical systems (pp. 97–125). Springer International

Publishing. https://doi.org/10.1007/978-3-030-43946-0_4

Gomes, C., Thule, C., Broman, D., Larsen, P. G., & Vangheluwe, H. (2018). Co-Simulation:

A Survey. ACM Comput. Surv., 51(3).

Gomez-Escalonilla, J., Garĳo, D., Valencia, O., & Rivero, I. (2020). Development of ef-

ficient high-fidelity solutions for virtual fatigue testing. ICAF 2019–Structural
Integrity in the Age of Additive Manufacturing: Proceedings of the 30th Symposium of

https://www.ecb.torontomu.ca/~elf/abacus/history.html
https://www.ecb.torontomu.ca/~elf/abacus/history.html
https://doi.org/10.1109/WSC40007.2019.9004843
https://doi.org/10.1109/WSC40007.2019.9004843
https://doi.org/10.1016/j.patter.2021.100340
https://doi.org/10.3390/app12136592
https://doi.org/10.2514/6.2012-1813
https://doi.org/10.2514/6.2012-1813
https://doi.org/10.1007/978-3-030-43946-0_4

BIBLIOGRAPHY 159

the International Committee on Aeronautical Fatigue, June 2-7, 2019, Krakow, Poland,

187–200.

Gong, L., Chen, B., Xu, W., Liu, C., Li, X., Zhao, Z., & Zhao, L. (2022). Motion similarity

evaluation between human and a tri-co robot during real-time imitation with a

trajectory dynamic time warping model. Sensors, 22(5), 1968.

Gonzalez, M., Salgado, O., Croes, J., Pluymers, B., & Desmet, W. (2019). Model-Based State

Estimation for the Diagnosis of Multiple Faults in Non-linear Electro-Mechanical

Systems. In A. Fernandez Del Rincon, F. Viadero Rueda, F. Chaari, R. Zimroz, &

M. Haddar (Eds.), Advances in condition monitoring of machinery in non-stationary
operations (pp. 77–89). Springer International Publishing.

González, M., Salgado, O., Croes, J., Pluymers, B., & Desmet, W. (2020). Application of

state estimation to the monitoring of multiple components in non-linear electro-

mechanical systems. Applied Acoustics, 166, 107371. https://doi.org/10.1016/j.

apacoust.2020.107371

González, M., Salgado, O., Hernandez, X., Croes, J., Pluymers, B., & Desmet, W. (2019).

Model-based condition monitoring of guiding rails in electro-mechanical sys-

tems. Mechanical Systems and Signal Processing, 120, 630–641. https://doi.org/10.

1016/j.ymssp.2018.10.044

Graessler, I., & Poehler, A. (2018). Intelligent control of an assembly station by integra-

tion of a digital twin for employees into the decentralized control system [4th

International Conference on System-Integrated Intelligence: Intelligent, Flexible

and Connected Systems in Products and Production]. Procedia Manufacturing, 24,

185–189. https://doi.org/10.1016/j.promfg.2018.06.041

Grieves, M. (2008, September). Back to the Future: Product Lifecycle Management and the

Virtualization of Product Information. In Product realization (pp. 1–13). Springer

US. https://doi.org/10.1007/978-0-387-09482-3_3

Grieves, M. (2014). Digital twin: Manufacturing excellence through virtual factory repli-

cation. White paper, 1(2014), 1–7.

Grieves, M., & Vickers, J. (2017). Digital twin: Mitigating unpredictable, undesirable

emergent behavior in complex systems. In Transdisciplinary perspectives on complex
systems (pp. 85–113). Springer.

Grinshpun, G., Cichon, T., Dipika, D., & Rossmann, J. (2016). From Virtual Testbeds to

Real Lightweight Robots: Development and deployment of control algorithms

for soft robots, with particular reference to industrial peg-in-hole insertion tasks.

Proceedings of ISR 2016: 47st International Symposium on Robotics, 1–7. https://api.

semanticscholar.org/CorpusID:57601202

Gross, D. C. (1999). Report from the fidelity implementation study group. Fall Simulation
Interoperability Workshop Papers.

Hankel, M., & Rexroth, B. (2015). The reference architectural model industrie 4.0 (RAMI

4.0). Zvei, 2(2), 4–9.

Hassan, A. A., & Aggarwal, G. (2023). Sustainable Manufacturing: Digital Twinning for a

Mechanical Assembly Production Line. 2023 IEEE Smart World Congress (SWC),
758–763. https://doi.org/10.1109/SWC57546.2023.10449295

He, B., & Bai, K.-J. (2021). Digital twin-based sustainable intelligent manufacturing: A

review. Advances in Manufacturing, 9, 1–21.

Hearst Magazines. (1952). Atomic Reactor Makes Electricity. In Popular mechanics (p. 105).

Hendy, S. (2015). Professor Nicola Spaldin – cosmic strings. https://www.macdiarmid.

ac.nz/news-and-events/news/interface-magazine-archive/professor-nicola-

spaldin-cosmic-strings/

https://doi.org/10.1016/j.apacoust.2020.107371
https://doi.org/10.1016/j.apacoust.2020.107371
https://doi.org/10.1016/j.ymssp.2018.10.044
https://doi.org/10.1016/j.ymssp.2018.10.044
https://doi.org/10.1016/j.promfg.2018.06.041
https://doi.org/10.1007/978-0-387-09482-3_3
https://api.semanticscholar.org/CorpusID:57601202
https://api.semanticscholar.org/CorpusID:57601202
https://doi.org/10.1109/SWC57546.2023.10449295
https://www.macdiarmid.ac.nz/news-and-events/news/interface-magazine-archive/professor-nicola-spaldin-cosmic-strings/
https://www.macdiarmid.ac.nz/news-and-events/news/interface-magazine-archive/professor-nicola-spaldin-cosmic-strings/
https://www.macdiarmid.ac.nz/news-and-events/news/interface-magazine-archive/professor-nicola-spaldin-cosmic-strings/

160 BIBLIOGRAPHY

Heithoff, M., Hellwig, A., Michael, J., & Rumpe, B. (2023). Digital Twins for Sustainable

Software Systems. Int. Workshop on Green and Sustainable Software (GREENS 2023),
19–23.

Ho, A. K. (2023). Understanding the OPC Unified Architecture (OPC UA) Protocol. Control
Automation.

Hodgins, J. K. (1998). Animation Human Motion. Scientific American, 278, 46–51. http:

//www.sciam.com/1998/0398issue/0398hodgins.html

Hofmeister, M., Brownbridge, G., Hillman, M., Mosbach, S., Akroyd, J., Lee, K. F., & Kraft,

M. (2024). Cross-domain flood risk assessment for smart cities using dynamic

knowledge graphs. Sustainable Cities and Society, 101, 105113.

Hong, N. P. C. (2021). Reproducibility Badging And Definitions: A Recommended Practice Of
The National Information Standards Organization (tech. rep.). University of Edin-

burgh. National Information Standards Organization (NISO).

Höpfner, A., Poenicke., O., Blobner., C., & Winge., A. Use of a Virtual Twin for Dy-

namic Storage Space Monitoring in a Port Terminal. In: In Proceedings of the
2nd international conference on innovative intelligent industrial production and logis-
tics - in4pl. INSTICC. SciTePress, 2021, 116–122. isbn: 978-989-758-535-7. https:

//doi.org/10.5220/0010676800003062

Horizon Grand View Research. (2024). Global Digital Twin Market Size & Outlook, 2023-

2030 [Accessed: July 8th 2024]. https://www.grandviewresearch.com/horizon/

outlook/digital-twin-market-size/global

Howard, D. A., Ma, Z., Veje, C., Clausen, A., Aaslyng, J. M., & Jørgensen, B. N. (2021).

Greenhouse industry 4.0 – digital twin technology for commercial greenhouses.

Energy Informatics, 4(2), 1–13.

Industry IoT Consortium. (2022). The Industrial Internet Reference Architecture [Ac-

cessed: April 5th 2024]. https://www.iiconsortium.org/IIRA/

Jain, P., Poon, J., Singh, J. P., Spanos, C., Sanders, S. R., & Panda, S. K. (2020). A Digital

Twin Approach for Fault Diagnosis in Distributed Photovoltaic Systems. IEEE
Transactions on Power Electronics, 35(1), 940–956. https://doi.org/10.1109/TPEL.

2019.2911594

Jayed, I., & Carlomagno, M. (2024). Sensory design for enhancing perceptual experience.:

80/20 olfactory training kit. a project for the recovery and rehabilitation of the

sense of olfaction. Convergences-Journal of Research and Arts Education, 17(33), 19–

30.

Jenkins, R. (1936). Savery, Newcomen and the Early History of the Steam Engine. In Links
in the history of engineering and technology from Tudor times: the collected papers of
Rhys Jenkins – Comprising articles in the professional and technical press mainly prior
to 1920 and a catalogue of other published work (pp. 48–72). Newcomen society at

the University Press.

Jeong, D.-Y., Baek, M.-S., Lim, T.-B., Kim, Y.-W., Kim, S.-H., Lee, Y.-T., Jung, W.-S., & Lee,

I.-B. (2022). Digital twin: Technology evolution stages and implementation layers

with technology elements. Ieee Access, 10, 52609–52620.

Jones, D., Snider, C., Nassehi, A., Yon, J., & Hicks, B. (2020). Characterising the Digital

Twin: A systematic literature review. CIRP Journal of Manufacturing Science and
Technology, 29, 36–52. https://doi.org/10.1016/j.cirpj.2020.02.002

Joordens, M., & Jamshidi, M. (2018). On the development of robot fish swarms in vir-

tual reality with digital twins. 2018 13th Annual Conference on System of Systems
Engineering (SoSE), 411–416.

http://www.sciam.com/1998/0398issue/0398hodgins.html
http://www.sciam.com/1998/0398issue/0398hodgins.html
https://doi.org/10.5220/0010676800003062
https://doi.org/10.5220/0010676800003062
https://www.grandviewresearch.com/horizon/outlook/digital-twin-market-size/global
https://www.grandviewresearch.com/horizon/outlook/digital-twin-market-size/global
https://www.iiconsortium.org/IIRA/
https://doi.org/10.1109/TPEL.2019.2911594
https://doi.org/10.1109/TPEL.2019.2911594
https://doi.org/10.1016/j.cirpj.2020.02.002

BIBLIOGRAPHY 161

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., & Peterson, A. S. (1990). Feature-oriented
domain analysis (FODA) feasibility study (tech. rep.). Carnegie Mellon University.

Kang, K. C., & Lee, H. (2013). Variability modeling. In Systems and software variability
management (pp. 25–42). Springer.

Kannoth, S., Hermann, J., Damm, M., Rübel, P., Rusin, D., Jacobi, M., Mittelsdorf, B.,

Kuhn, T., & Antonino, P. O. (2021). Enabling SMEs to Industry 4.0 Using the

BaSyx Middleware: A Case Study. Software Architecture, 277–294. https://doi.

org/10.1007/978-3-030-86044-8_19

Kapos, G.-D., Dalakas, V., Nikolaidou, M., & Anagnostopoulos, D. (2014). An Integrated

Framework for Automated Simulation of SysML Models Using DEVS. Simulation,

90(6), 717–744.

Karaduman, B., Tezel, B. T., & Challenger, M. (2023). Rational software agents with

the BDI reasoning model for Cyber-Physical Systems. Engineering Applications of
Artificial Intelligence, 123, 106478. https://doi.org/https://doi.org/10.1016/j.

engappai.2023.106478

Karakra, A., Fontanili, F., Lamine, E., Lamothe, J., & Taweel, A. (2018). Pervasive comput-

ing integrated discrete event simulation for a hospital digital twin. 2018 IEEE/ACS
15th international conference on computer systems and Applications (AICCSA), 1–6.

Kassiakoff, A., Sweet, W. N., Seymour, S. J., & Biemer, S. M. (2010). Systems Engineering
Principles And Practice (A. P. Sage, Ed.; second). John Wiley & Sons, Inc.

Kennedy, A. (2016). Edison: Inventing the Modern World. CreateSpace Independent Pub-

lishing Platform.

Kibira, D., Shao, G., & Weiss, B. A. (2021). Buiding a digital twin for robot workcell

prognostics and health management. 2021 Winter Simulation Conference (WSC),
1–12.

Knibbe, W. J., Afman, L., Boersma, S., Bogaardt, M.-J., Evers, J., van Evert, F., van der

Heide, J., Hoving, I., van Mourik, S., de Ridder, D., & de Wit, A. (2022). Digital

twins in the green life sciences. NJAS: Impact in Agricultural and Life Sciences, 94(1),

249–279. https://doi.org/10.1080/27685241.2022.2150571

Kosicka, E., Kozłowski, E., & Mazurkiewicz, D. (2017). Intelligent Systems of Forecasting

the Failure of Machinery Park and Supporting Fulfilment of Orders of Spare

Parts. Proceedings of Intelligent Systems in Production Engineering and Maintenance
– ISPEM 2017, 54–63. https://api.semanticscholar.org/CorpusID:115479060

Kritzinger, W., Karner, M., Traar, G., Henjes, J., & Sihn, W. (2018). Digital Twin in Manufac-

turing: A Categorical Literature Review and Classification. IFAC-PapersOnLine,
51(11), 1016–1022.

Kumar, M., & Hote, Y. V. (2020). Robust pidd2 controller design for perturbed load

frequency control of an interconnected time-delayed power systems. IEEE Trans-
actions on Control Systems Technology, 29(6), 2662–2669.

Landahl, J., Panarotto, M., Johannesson, H., Isaksson, O., & Lööf, J. (2018). Towards adopt-

ing digital twins to support design reuse during platform concept development.

Proceedings of NordDesign 2018. https ://api . semanticscholar.org/CorpusID:

58180294

Lee, K., & Kang, K. C. (2010). Usage context as key driver for feature selection. Software
Product Lines: Going Beyond: 14th International Conference, SPLC 2010, Jeju Island,
South Korea, September 13-17, 2010. Proceedings 14, 32–46.

Leroy, D., Bousse, E., Megna, A., Combemale, B., & Wimmer, M. (2018). Trace compre-

hension operators for executable dsls. Modelling Foundations and Applications: 14th

https://doi.org/10.1007/978-3-030-86044-8_19
https://doi.org/10.1007/978-3-030-86044-8_19
https://doi.org/https://doi.org/10.1016/j.engappai.2023.106478
https://doi.org/https://doi.org/10.1016/j.engappai.2023.106478
https://doi.org/10.1080/27685241.2022.2150571
https://api.semanticscholar.org/CorpusID:115479060
https://api.semanticscholar.org/CorpusID:58180294
https://api.semanticscholar.org/CorpusID:58180294

162 BIBLIOGRAPHY

European Conference, ECMFA 2018, Held as Part of STAF 2018, Toulouse, France, June
26-28, 2018, Proceedings 14, 293–310.

Lim, K. Y. H., Zheng, P., & Chen, C.-H. (2020). A state-of-the-art survey of Digital Twin:

techniques, engineering product lifecycle management and business innovation

perspectives. Journal of Intelligent Manufacturing, 31, 1313–1337.

Llopis, J., Criado, J., Iribarne, L., Muñoz, P., Troya, J., & Vallecillo, A. (2023). Modeling and

Synchronizing Digital Twin Environments. 2023 Annual Modeling and Simulation
Conference (ANNSIM), 245–257. https://doi.ieeecomputersociety.org/

Long-Fox, J. M., Landsman, Z. A., Easter, P. B., Millwater, C. A., & Britt, D. T. (2023).

Geomechanical properties of lunar regolith simulants lhs-1 and lms-1. Advances
in Space Research, 71(12), 5400–5412.

Loverdos, D., & Sarhosis, V. (2023). Geometrical digital twins of masonry structures for

documentation and structural assessment using machine learning. Engineering
Structures, 275, 115256. https://doi.org/10.1016/j.engstruct.2022.115256

Lu, J., Zheng, X., Gharaei, A., Kalaboukas, K., & Kiritsis, D. (2020). Cognitive twins for

supporting decision-makings of internet of things systems. Proceedings of 5th
International Conference on the Industry 4.0 Model for Advanced Manufacturing, 105–

115.

Lucas, G. W. (2000). A Tutorial and Elementary Trajectory Model for the Differential

Steering System of Robot Wheel Actuators [Accessed: 24th of April 2024]. http:

//rossum.sourceforge.net/papers/DiffSteer/

Lúcio, L., Mustafiz, S., Denil, J., Meyers, B., & Vangheluwe, H. (2012). The formalism

transformation graph as a guide to model driven engineering. School Comput.
Sci., McGill Univ., Tech. Rep. SOCS-TR2012, 1.

Lugaresi, G., Frigerio, N., & Matta, A. (2020). A new learning factory experience exploiting

LEGO for teaching manufacturing systems integration. Procedia Manufacturing,

45, 271–276.

Lugaresi, G., & Matta, A. (2018). Real-time simulation in manufacturing systems: Chal-

lenges and research directions. 2018 Winter Simulation Conference (WSC), 3319–

3330.

Lutters, E. (2018). Pilot production environments driven by digital twins. South African
Journal of Industrial Engineering, 29(3), 40–53. https://api.semanticscholar.org/

CorpusID:115677639

Lutters, E., & Damgrave, R. (2019). The development of pilot production environments

based on digital twins and virtual dashboards. Procedia CIRP, 84, 94–99.

Lynch, K. M., & Park, F. C. (2017). Modern Robotics: Mechanics, Planning and Control.
Cambridge University Press.

Ma, J., Wang, G., Lu, J., Vangheluwe, H., Kiritsis, D., & Yan, Y. (2022). Systematic Literature

Review Of MBSE Tool-Chains. Applied Sciences, 12(7), 3431/1–21. https://doi.

org/10.3390/app12073431

Madni, A. M., Madni, C. C., & Lucero, S. D. (2019). Leveraging digital twin technology

in model-based systems engineering. Systems, 7(1), 7.

Mahmoud, M. M. M., Darwish, R., & Bassiuny, A. M. (2023). Development of a Smart

Aquaponic System Based on IoT. 2023 23rd International Conference on Control,
Automation and Systems (ICCAS), 1592–1597.

Maleki, M., Woodbury, R., Goldstein, R., Breslav, S., & Khan, A. (2015). Designing devs

visual interfaces for end-user programmers. Simulation, 91(8), 715–734.

https://doi.ieeecomputersociety.org/
https://doi.org/10.1016/j.engstruct.2022.115256
http://rossum.sourceforge.net/papers/DiffSteer/
http://rossum.sourceforge.net/papers/DiffSteer/
https://api.semanticscholar.org/CorpusID:115677639
https://api.semanticscholar.org/CorpusID:115677639
https://doi.org/10.3390/app12073431
https://doi.org/10.3390/app12073431

BIBLIOGRAPHY 163

Mandolla, C., Petruzzelli, A. M., Percoco, G., & Urbinati, A. (2019). Building a digital

twin for additive manufacturing through the exploitation of blockchain: A case

analysis of the aircraft industry. Computers in Industry, 109, 134–152.

Marah, H., & Challenger, M. (2023). MADTwin: A Framework for Multi-agent Digital

Twin Development: Smart Warehouse Case Study. Annals of Mathematics and
Artificial Intelligence. https://doi.org/https://doi.org/10.1007/s10472-023-

09872-z

Marah, H., & Challenger, M. (2025). (Re-)Engineering Digital Twins Towards Federation:

Vision and Roadmap. In T. Margaria & B. Steffen (Eds.), Leveraging applications of
formal methods, verification and validation. software engineering methodologies (pp. 60–

81). Springer Nature Switzerland.

Marah, H., Paredis, R., Challenger, M., & Vangheluwe, H. (2023). A Multi-Robot Ware-

house System: An Exemplar. Proceedings of the 2023 ACM/IEEE International Con-
ference on Model Driven Engineering Languages and Systems Companion (MODELS-
C), 530–538.

Marion, P. (2021). How Boston Dynamics makes Atlas run, flip & vault [Accessed: Septem-

ber 18th 2024]. https ://www. therobotreport . com/how- boston - dynamics -

makes-atlas-run-flip-vault/

Market Research Future. (2017). Global Digital Twin Market Is Estimated to Grow at

a CAGR of 37% from 2017 to 2023 [Accessed: July 8th 2024]. https ://www.

marketresearchfuture.com/press-release/digital-twin-market

Markwirth, T., Jancke, R., & Sohrmann, C. (2021). Dynamic fault injection into digital

twins of safety-critical systems. 2021 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), 446–450.

Maruyama, Y., Kato, S., & Azumi, T. (2016). Exploring the performance of ROS2. Proceed-
ings of the 13th international conference on embedded software, 1–10.

Maxwell, F. D., & Corn, B. C. (1978). The determination of measures of software reliability
(tech. rep.). NASA.

Meyers, B., Deshayes, R., Lucio, L., Syriani, E., Vangheluwe, H., & Wimmer, M. (2014).

ProMoBox: a framework for generating domain-specific property languages. Soft-
ware Language Engineering: 7th International Conference, SLE 2014, Västerås, Sweden,
September 15-16, 2014. Proceedings 7, 1–20.

Meyers, B., & Vangheluwe, H. (2011). A Framework For Evolution Of Modelling Lan-

guages. Science of Computer Programming, 76(12), 1223–1246.

Micaelli, A., & Samson, C. (1993). Trajectory tracking for unicycle-type and two-steering-wheels
mobile robots [Doctoral dissertation, INRIA].

Michael, J. (2023, October). Unlocking Potential: Rocking the Sustainable Future with

Digital Twins [Keynote]. https://judithmichael.github.io/assets/pdfs/23.10.

01.ModDiT.Keynote.JudithMichael.pdf

Michael, J., & Wortmann, A. (2021). Towards Development Platforms for Digital Twins:

A Model-Driven Low-Code Approach. IFIP International Conference on Advances
in Production Management Systems, 333–341.

Minerva, R., Lee, G. M., & Crespi, N. (2020). Digital Twin in the IoT Context: A Survey on

Technical Features, Scenarios, and Architectural Models. Proceedings of the IEEE,

108(10), 1785–1824. https://doi.org/10.1109/JPROC.2020.2998530

Mitchell, M. (2009). Complexity: A guided tour. Oxford University Press.

Mittal, R., Eslampanah, R., Lima, L., Vangheluwe, H., & Blouin, D. (2023). Towards an

Ontological Framework for Validity Frames. 2023 ACM/IEEE International Confer-

https://doi.org/https://doi.org/10.1007/s10472-023-09872-z
https://doi.org/https://doi.org/10.1007/s10472-023-09872-z
https://www.therobotreport.com/how-boston-dynamics-makes-atlas-run-flip-vault/
https://www.therobotreport.com/how-boston-dynamics-makes-atlas-run-flip-vault/
https://www.marketresearchfuture.com/press-release/digital-twin-market
https://www.marketresearchfuture.com/press-release/digital-twin-market
https://judithmichael.github.io/assets/pdfs/23.10.01.ModDiT.Keynote.JudithMichael.pdf
https://judithmichael.github.io/assets/pdfs/23.10.01.ModDiT.Keynote.JudithMichael.pdf
https://doi.org/10.1109/JPROC.2020.2998530

164 BIBLIOGRAPHY

ence on Model Driven Engineering Languages and Systems Companion (MODELS-C),
801–805.

Modoni, G. E., Caldarola, E. G., Sacco, M., & Terkaj, W. (2019). Synchronizing physical

and digital factory: Benefits and technical challenges [12th CIRP Conference on

Intelligent Computation in Manufacturing Engineering, 18-20 July 2018, Gulf of

Naples, Italy]. Procedia CIRP, 79, 472–477. https://doi.org/10.1016/j.procir.2019.

02.125

Mohamed, N., Al-Jaroodi, J., & Lazarova-Molnar, S. (2019). Leveraging the Capabilities

of Industry 4.0 for Improving Energy Efficiency in Smart Factories. IEEE Access,
7, 18008–18020. https://doi.org/10.1109/ACCESS.2019.2897045

Monteiro, J., Barata, J., Veloso, M., Veloso, L., & Nunes, J. (2023). A scalable digital twin for

vertical farming. Journal of Ambient Intelligence and Humanized Computing, 14(10),

13981–13996.

Mosterman, P. J., & Vangheluwe, H. (2004). Computer automated multi-paradigm mod-

eling: An introduction. Simulation, 80(9), 433–450. https://doi.org/10.1177/

0037549704050532

Mouflih, C., Gaha, R., Durupt, A., Bosch-Mauchand, M., Martinsen, K., & Eynard, B.

(2023). Decision support framework using knowledge based digital twin for

sustainable product development and end of life. Proceedings of the Design Society,

3, 1157–1166.

Moya, B., Alfaro, I., Gonzalez, D., Chinesta, F., & Cueto, E. (2020). Physically sound,

self-learning digital twins for sloshing fluids. PLoS One, 15(6), e0234569.

Mukherjee, T., & DebRoy, T. (2019). A digital twin for rapid qualification of 3D printed

metallic components. Applied Materials Today, 14, 59–65.

Müller, T., Lindemann, B., Jung, T., Jazdi, N., & Weyrich, M. (2021). Enhancing an In-

telligent Digital Twin with a Self-organized Reconfiguration Management based

on Adaptive Process Models. CoRR, abs/2107.03324, 786–791. https://arxiv.org/

abs/2107.03324

Muñoz, P., Troya, J., & Vallecillo, A. (2021). Using UML and OCL Models to Realize High-

Level Digital Twins. 2021 ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C), 212–220.

Muñoz, P., Troya, J., & Vallecillo, A. (2024). Towards measuring digital twins fidelity at

runtime. Proceedings of the ACM/IEEE 27th International Conference on Model Driven
Engineering Languages and Systems, 507–512.

Muñoz, P., Wimmer, M., Troya, J., & Vallecillo, A. (2022). Using trace alignments for

measuring the similarity between a physical and its digital twin. Proceedings of
the 25th international conference on model driven engineering languages and systems:
Companion proceedings, 503–510.

Münzinger, M., Prechtel, N., & Behnisch, M. (2022). Mapping the urban forest in detail:

From LiDAR point clouds to 3D tree models. Urban Forestry &; Urban Greening,

74, 127637. https://doi.org/10.1016/j.ufug.2022.127637

Mustafiz, S., Denil, J., Lúcio, L., & Vangheluwe, H. (2012). The FTG+PM Framework For

Multi-Paradigm Modelling: An Automotive Case Study. Proceedings of the 6th
International Workshop on Multi-Paradigm Modeling, 13–18.

Muzy, A., & Nutaro, J. J. (2005). Algorithms for efficient implementations of the DEVS

& DSDEVS abstract simulators. 1st Open International Conference on Modeling and
Simulation, 273–279.

Nativi, S., Mazzetti, P., & Craglia, M. (2021). Digital ecosystems for developing digital

twins of the earth: The destination earth case. Remote Sensing, 13(11), 2119.

https://doi.org/10.1016/j.procir.2019.02.125
https://doi.org/10.1016/j.procir.2019.02.125
https://doi.org/10.1109/ACCESS.2019.2897045
https://doi.org/10.1177/0037549704050532
https://doi.org/10.1177/0037549704050532
https://arxiv.org/abs/2107.03324
https://arxiv.org/abs/2107.03324
https://doi.org/10.1016/j.ufug.2022.127637

BIBLIOGRAPHY 165

Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search

for similarities in the amino acid sequence of two proteins. Journal of molecular
biology, 48(3), 443–453.

Negrin, D. A. M., Cleophas, L., & Van Den Brand, M. (2021). Using Ptolemy II as a

Framework for Virtual Entity Integration and Orchestration in Digital Twins.

2021 ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems Companion (MODELS-C), 233–236.

Nezhad, S. N., Paredis, R., Van Acker, B., & Vangheluwe, H. (n.d.). Combining exper-

iments and a Historian for building Twinning systems, applied to a TurtleBot

use-case.

Nibert, D. (2011). Origins and Consequences of the Animal Industrial Complex. In S.

Best, R. Kahn, A. J. Nocella II, & P. McLaren (Eds.), The Global Industrial Complex:
Systems of Domination (pp. 197–209). Lexington Books.

Niloofar, P., Francis, D. P., Lazarova-Molnar, S., Vulpe, A., Vochin, M.-C., Suciu, G.,

Balanescu, M., Anestis, V., & Bartzanas, T. (2021). Data-driven decision support

in livestock farming for improved animal health, welfare and greenhouse gas

emissions: Overview and challenges. Computers and Electronics in Agriculture,
190, 106406.

Nutaro, J. J. (2015). Adevs [Accessed 10
𝑡ℎ

May.].

Oakes, B., Gomes, C., Larsen, P., Denil, J., Deantoni, J., Cambeiro, J., & Fitzgerald, J.

(2023). Examining Model Qualities and Their Impact on Digital Twins. 2023
Annual Modeling and Simulation Conference (ANNSIM), 220–232.

Oakes, B. J., Parsai, A., Meyers, B., David, I., Mierlo, S. V., Demeyer, S., Denil, J., Meu-

lenaere, P. D., & Vangheluwe, H. (2021). A digital twin description framework

and its mapping to asset administration shell. Companion Proceedings of the In-
ternational Conference on Model-Driven Engineering and Software Development, 1–

24.

Object Management Group. (2017). Omg® unified modeling language® (omg uml®)

2.5.1. https://www.omg.org/spec/UML/2.5.1/PDF

Oreizy, P., Gorlick, M. M., Taylor, R. N., Heimhigner, D., Johnson, G., Medvidovic, N.,

Quilici, A., Rosenblum, D. S., & Wolf, A. L. (1999). An architecture-based ap-

proach to self-adaptive software. IEEE Intelligent Systems and Their Applications,
14(3), 54–62.

Our World in Data. (2023). Economic Growth - all charts [Accessed: March 27th 2024].

https://ourworldindata.org/economic-growth#all-charts

Pacejka, H. B. (1966). The wheel shimmy phenomenon: A theoretical and experimental investiga-
tion with particular reference to the non-linear problem [Doctoral dissertation, Delft

University of Technology].

Padovano, A., Longo, F., Nicoletti, L., & Mirabelli, G. (2018). A Digital Twin based Service

Oriented Application for a 4.0 Knowledge Navigation in the Smart Factory [16th

IFAC Symposium on Information Control Problems in Manufacturing INCOM

2018]. IFAC-PapersOnLine, 51(11), 631–636. https://doi.org/10.1016/j. ifacol.

2018.08.389

Paredis, R., Denil, J., & Vangheluwe, H. (2021). Specifying and Executing the Combination

of Timed Finite State Automata and Causal-Block Diagrams by Mapping onto

DEVS. Proceedings of the 2021 Winter Simulation Conference (WSC).
Paredis, R., Exelmans, J., & Vangheluwe, H. (2022). Multi-Paradigm Modelling for Model-

Based Systems Engineering: Extending the FTG+PM. Proceedings of the 2022 An-
nual Modeling and Simulation Conference (ANNSIM), 461–474.

https://www.omg.org/spec/UML/2.5.1/PDF
https://ourworldindata.org/economic-growth#all-charts
https://doi.org/10.1016/j.ifacol.2018.08.389
https://doi.org/10.1016/j.ifacol.2018.08.389

166 BIBLIOGRAPHY

Paredis, R., Gomes, C., & Vangheluwe, H. (2021). Towards a Family of Digital Model /

Shadow / Twin Workflows and Architectures. Proceedings of the 2nd International
Conference on Innovative Intelligent Industrial Production and Logistics (IN4PL 2021),
174–182.

Paredis, R., Gomes, C., & Vangheluwe, H. (2023). A Family of Digital T Workflows and

Architectures: Exploring Two Cases. In A. Smirnov, H. Panetto, & K. Madani

(Eds.), Innovative intelligent industrial production and logistics (pp. 93–109). Springer

Nature Switzerland.

Paredis, R., Van Mierlo, S., & Vangheluwe, H. (2020). Translating Process Interaction

World View Models to DEVS: GPSS to (Python(P))DEVS. In K.-H. Bae, B. Feng, S.

Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, & R. Thiesing (Eds.), Proceedings
of the 2020 winter simulation conference (pp. 2221–2232). Institute of Electrical;

Electronics Engineers, Inc.

Paredis, R., & Vangheluwe, H. (2021). Exploring a Digital Shadow Design Workflow

by Means of a Line Following Robot Use-Case. Proceedings of the 2021 Annual
Modeling and Simulation Conference (ANNSIM), 1–12.

Paredis, R., & Vangheluwe, H. (2022). Towards a Digital Z Framework Based on a Family

of Architectures and a Virtual Knowledge Graph. Companion Proceedings of the
25th International Conference on Model Driven Engineering Languages and Systems
(MODELS-C), 491–496.

Paredis, R., & Vangheluwe, H. (2024a). Exploring Twinning Variability [Poster]. Proceed-
ings of the 4th Conference on Machines, Vehicles and Production Technology (CMVPT).

Paredis, R., & Vangheluwe, H. (2024b). Modelling and Simulation-Based Evaluation of

Twinning Architectures and Their Deployment. Proceedings of the 14th Interna-
tional Conference on Simulation and Modeling Methodologies, Technologies and Appli-
cations (SIMULTECH), 170–182. https://doi.org/10.5220/0012865300003758

Paredis, R., Vangheluwe, H., & Albertins, P. A. R. (2024). COOCK project Smart Port
2025 D3.1: “To Twin Or Not To Twin” (tech. rep.) (ArXiv preprint). University of

Antwerp.

Parezys, J., Paredis, R., & Vangheluwe, H. (2023). CLAVS/ODVS: Combining Class/Ob-

ject Diagrams and DEVS. Proceedings of the 2023 Winter Simulation Conference
(WSC), 2591–2602.

Plesser, H. E. (2018). Reproducibility Vs. Replicability: A Brief History Of A Confused

Terminology. Frontiers in neuroinformatics, 11, 76.

Popa, C. L., Cotet, C. E., Popescu, D., Solea, M. F., Şaşcîm, S. G., & Dobrescu, T. (2018).

Material flow design and simulation for a glass panel recycling installation. Waste
Management & Research, 36(7), 653–660.

Poppe, A., Farkas, G., Gaál, L., Hantos, G., Hegedüs, J., & Rencz, M. (2019). Multi-domain

modelling of LEDs for supporting virtual prototyping of luminaires. Energies,
12(10), 1909.

Qamar, A., & Paredis, C. (2012). Dependency Modeling And Model Management In

Mechatronic Design. Proceedings of the ASME Design Engineering Technical Confer-
ence, 2, 1–12. https://doi.org/10.1115/DETC2012-70272

Qin, Y., Wu, X., & Luo, J. (2022). Data-Model Combined Driven Digital Twin of Life-

Cycle Rolling Bearing. IEEE Transactions on Industrial Informatics, 18(3), 1530–

1540. https://doi.org/10.1109/TII.2021.3089340

Quadrini, W., Cimino, C., Abdel-Aty, T. A., Fumagalli, L., & Rovere, D. (2023). Asset

Administration Shell as an interoperable enabler of Industry 4.0 software archi-

tectures: a case study. Procedia Computer Science, 217, 1794–1802.

https://doi.org/10.5220/0012865300003758
https://doi.org/10.1115/DETC2012-70272
https://doi.org/10.1109/TII.2021.3089340

BIBLIOGRAPHY 167

Qudrat-Ullah, H., & Seong, B. S. (2010). How to do structural validity of a system dynam-

ics type simulation model: The case of an energy policy model [Greater China

Energy: Special Section with regular papers]. Energy Policy, 38(5), 2216–2224.

https://doi.org/10.1016/j.enpol.2009.12.009

R., R., Prahalad, H., Kumar, H. S., & Hoslok, A. (2023). Exploring Digital Twins for Plant

Growth Monitoring. 2023 7th International Conference on Computation System and
Information Technology for Sustainable Solutions (CSITSS), 11, 1–6. https://doi.org/

10.1109/csitss60515.2023.10334087

Raja Santhi, A., & Muthuswamy, P. (2023). Industry 5.0 or industry 4.0S? Introduction

to industry 4.0 and a peek into the prospective industry 5.0 technologies. Inter-
national Journal on Interactive Design and Manufacturing (ĲIDeM), 17(2), 947–979.

https://doi.org/10.1007/s12008-023-01217-8

Rajamani, R. (2011). Vehicle Dynamics and Control. Springer Science & Business Media.

Rakove, J. N. (1996). Fidelity through History (Or Do It). Fordham L. Rev., 65, 1587.

Rambow-Hoeschele, K., Nagl, A., Harrison, D. K., Wood, B. M., Bozem, K., Braun, K.,

& Hoch, P. (2018). Creation of a Digital Business Model Builder. 2018 IEEE
International Conference on Engineering, Technology and Innovation (ICE/ITMC), 1–

7. https://api.semanticscholar.org/CorpusID:52018061

Redelinghuys, A. J. H., Basson, A. H., & Kruger, K. (2019). A six-layer architecture for the

digital twin: A manufacturing case study implementation. Journal of Intelligent
Manufacturing, 31(6), 1383–1402. https://doi.org/10.1007/s10845-019-01516-6

Reese, V. L., & Dunn, R. (2007). Learning-Style Preferences of a Diverse Freshmen Pop-

ulation in a Large, Private, Metropolitan University by Gender and GPA. Jour-
nal of College Student Retention: Research, Theory & Practice, 9(1), 95–112. https:

//doi.org/10.2190/N836-888L-2311-2374

Rivera, L. F., Jiménez, M., Villegas, N. M., Tamura, G., & Müller, H. A. (2022). The Forging

of Autonomic and Cooperating Digital Twins. IEEE Internet Computing, 26(5), 41–

49. https://doi.org/10.1109/MIC.2021.3051902

Rosen, R., Fischer, J., & Boschert, S. (2019). Next generation digital twin: An ecosystem

for mechatronic systems? IFAC-papersonline, 52(15), 265–270.

Routledge, R. (1881). Physics of the Nineteenth Century – Electricity. In A Popular History
of Science (pp. 548–594). G. Routledge and sons.

Rožanec, J. M., Lu, J., Rupnik, J., Škrjanc, M., Mladenić, D., Fortuna, B., Zheng, X., & Kirit-

sis, D. (2021). Actionable cognitive twins for decision making in manufacturing.

International Journal of Production Research, 1–27.

Rumpe, B. (2021, October). Modelling for and of Digital Twins [Keynote].

Russell, N., Van Der Aalst, W. M. P., & Ter Hofstede, A. H. M. (2016). Workflow Patterns:
The Definitive Guide. MIT Press.

Santillán Martínez, G. (2019). Simulation-based Digital Twins of Industrial Process Plants: A
Semi-Automatic Implementation Approach [Doctoral dissertation, Aalto University].

Aalto University.

Sanz, V., Urquia, A., & Dormido, S. (2007). DEVS Specification and Implementation of

SIMAN Blocks Using Modelica Language. Proceedings of the 2007 Winter Simula-
tion Conference, 2374–2374.

Schäfer, S., Schöttke, D., Kämpfe, T., Ralinovski, K., Tauber, B., & Lehmann, J. (2021).

Design and Deployment of Digital Twins for Programmable Logic Controllers

in Existing Plants. 2nd International Conference on Innovative Intelligent Industrial
Production and Logistics (IN4PL).

https://doi.org/10.1016/j.enpol.2009.12.009
https://doi.org/10.1109/csitss60515.2023.10334087
https://doi.org/10.1109/csitss60515.2023.10334087
https://doi.org/10.1007/s12008-023-01217-8
https://api.semanticscholar.org/CorpusID:52018061
https://doi.org/10.1007/s10845-019-01516-6
https://doi.org/10.2190/N836-888L-2311-2374
https://doi.org/10.2190/N836-888L-2311-2374
https://doi.org/10.1109/MIC.2021.3051902

168 BIBLIOGRAPHY

SEBoK Editorial Board. (2023). The Guide to the Systems Engineering Body of Knowledge

(SEBoK) (N. Hutchison, Ed.) [Accessed: 11th of April 2024]. www.sebokwiki.org

Segers, B. (2024). “Zelf atomen en moleculen bouwen zonder risico’s”: leerlingen PITO

Stabroek leren fysica en chemie met herwerkte Minecraft-game [Accessed: Octo-

ber 4th 2024]. VRT Nieuws. https://www.vrt.be/vrtnws/nl/2024/10/04/zelf-

atomen-en-moleculen-bouwen-zonder-risico-s-leerlingen-pi/

Shaikh, R., & Vangheluwe, H. (2011). Transforming uml2.0 class diagrams and state-

charts to atomic devs. Proceedings of the 2011 Symposium on Theory of Modeling &
Simulation, 205–212.

Shannon, C. E. (1938). A symbolic analysis of relay and switching circuits [Master’s thesis,

Massachusetts Institute of Technology (MIT), Dept. of Electrical Engineering].

Sharma, A., Kosasih, E., Zhang, J., Brintrup, A., & Calinescu, A. (2022). Digital Twins:

State of the art theory and practice, challenges, and open research questions.

Journal of Industrial Information Integration, 30, 100383. https://doi.org/10.1016/

j.jii.2022.100383

Sharma, P., Knezevic, D. J., Huynh, P., & Malinowski, G. (2018). Rb-fea based digital

twin for structural integrity assessment of offshore structures. Proceedings of the
Offshore Technology Conference, D031S037R003. https://api.semanticscholar.org/

CorpusID:116856513

Shi, G., Gao, D., Song, X., Chai, J., Yang, M., Xie, X., Li, L., & Li, X. (2021). A new

communication paradigm: From bit accuracy to semantic fidelity. arXiv preprint
arXiv:2101.12649.

Shrivastava, C., Berry, T. M., Crone, J., & Defraeye, T. (2020). Digital twins to map the key

quality attributes in fresh-produce supply chains. https://doi.org/10.18462/

IIR.ICCC.2020.292336

Silber, K., Sagmeister, P., Schiller, C., Williams, J. D., Hone, C. A., & Kappe, C. O. (2023).

Accelerating reaction modeling using dynamic flow experiments, part 2: Devel-

opment of a digital twin. Reaction Chemistry & Engineering, 8(11), 2849–2855.

Singh, M., Fuenmayor, E., Hinchy, E. P., Qiao, Y., Murray, N., & Devine, D. (2021). Digital

twin: Origin to future. Applied System Innovation, 4(2), 36.

Singh, R. (1996). International Standard ISO/IEC 12207 software life cycle processes.

Software Process Improvement and Practice, 2(1), 35–50.

Sloane, A. (2018). Fast line-following robots [Accessed: 24th of April 2024]. https://www.

a1k0n.net/2018/11/13/fast-line-following.html

Smith, D. E. (1925). Mechnaical Aids to Calculation. In History of Mathematics Vol 2
(pp. 156–178). Ginn And Company.

Smith, T. F., Waterman, M. S., et al. (1981). Identification of common molecular subse-

quences. Journal of molecular biology, 147(1), 195–197.

Stachowaik, H. (1973). Allgemeine Modelltheorie. Springer-Verlag.

Stark, J. (2022). Product lifecycle management (plm). In Product lifecycle management (vol-
ume 1): 21st century paradigm for product realisation (pp. 1–32). Springer Interna-

tional Publishing. https://doi.org/10.1007/978-3-030-98578-3_1

Steindl, G., Stagl, M., Kasper, L., Kastner, W., & Hofmann, R. (2020). Generic digital twin

architecture for industrial energy systems. Applied Sciences, 10(24), 8903.

Steinmetz, C., Rettberg, A., Ribeiro, F. o. G. C., Schroeder, G., & Pereira, C. E. (2018).

Internet of Things Ontology for Digital Twin in Cyber Physical Systems. 2018
VIII Brazilian Symposium on Computing Systems Engineering (SBESC), 154–159.

https://doi.org/10.1109/SBESC.2018.00030

www.sebokwiki.org
https://www.vrt.be/vrtnws/nl/2024/10/04/zelf-atomen-en-moleculen-bouwen-zonder-risico-s-leerlingen-pi/
https://www.vrt.be/vrtnws/nl/2024/10/04/zelf-atomen-en-moleculen-bouwen-zonder-risico-s-leerlingen-pi/
https://doi.org/10.1016/j.jii.2022.100383
https://doi.org/10.1016/j.jii.2022.100383
https://api.semanticscholar.org/CorpusID:116856513
https://api.semanticscholar.org/CorpusID:116856513
https://doi.org/10.18462/IIR.ICCC.2020.292336
https://doi.org/10.18462/IIR.ICCC.2020.292336
https://www.a1k0n.net/2018/11/13/fast-line-following.html
https://www.a1k0n.net/2018/11/13/fast-line-following.html
https://doi.org/10.1007/978-3-030-98578-3_1
https://doi.org/10.1109/SBESC.2018.00030

BIBLIOGRAPHY 169

Syriani, E., & Vangheluwe, H. (2013). A modular timed graph transformation language

for simulation-based design. Software & Systems Modeling, 12, 387–414.

Talkhestani, B. A., Jazdi, N., Schloegl, W., & Weyrich, M. (2018). Consistency check to syn-

chronize the digital twin of manufacturing automation based on anchor points

[51st CIRP Conference on Manufacturing Systems]. Procedia CIRP, 72, 159–164.

https://doi.org/10.1016/j.procir.2018.03.166

Tao, F., Xiao, B., Qi, Q., Cheng, J., & Ji, P. (2022). Digital twin modeling. Journal of Manu-
facturing Systems, 64, 372–389.

Tao, F., & Zhang, M. (2017). Digital twin shop-floor: A new shop-floor paradigm towards

smart manufacturing. IEEE Access, 5, 20418–20427.

Tekinerdogan, B., & Verdouw, C. (2020). Systems architecture design pattern catalog for

developing digital twins. Sensors, 20(18), 5103.

Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D. P., Fricker, M. D., Yumiki, K., Kobayashi,

R., & Nakagaki, T. (2010). Rules for Biologically Inspired Adaptive Network

Design. Science, 327(5964), 439–442. https://doi.org/10.1126/science.1177894

The Editors of Encyclopaedia Britannica. (2024a, February). Edmund Cartwright [Ac-

cessed: March 29th 2024]. https://www.britannica.com/biography/Edmund-

Cartwright

The Editors of Encyclopaedia Britannica. (2024b, February). Industrial Revolution [Ac-

cessed: March 25th 2024]. https ://www.britannica . com/event/ Industrial -

Revolution

The Refinery. (2016). The Dangers, and Benefits, of Software Fidelity [Accessed: February

7th 2024]. https://the-refinery.io/blog/the-dangers-and-benefits-of-software-

fidelity

The World Bank. (2023). World Development Indicators.

Topuzoglu, T., Köktürk, G., Altun, D. A., Sendemir, A., Cakır, O. A., Tokuc, A., & Ozkaban,

F. A. (2019). Finding the Shortest Paths in Izmir Map by Using Slime Molds

Images. 2019 International Conference on Control, Artificial Intelligence, Robotics &
Optimization (ICCAIRO), 202–206.

Torres, E. O. C., Konduri, S., & Pagilla, P. R. (2014). Study of wheel slip and traction forces

in differential drive robots and slip avoidance control strategy. 2014 American
Control Conference, 3231–3236.

Traoré, M. K. (2023). High-Level Architecture for Interoperable Digital Twins. Preprints.
https://doi.org/10.20944/preprints202310.0659.v1

Turing, A. M., et al. (1936). On computable numbers, with an application to the Entschei-

dungsproblem. Proceedings of the London Mathematical Society, 58(345-363), 5.

Um, J., Weyer, S., & Quint, F. (2017). Plug-and-Simulate within Modular Assembly Line

enabled by Digital Twins and the use of AutomationML. IFAC-PapersOnLine,
50(1), 15904–15909.

Utzig, S., Kaps, R., Azeem, S. M., & Gerndt, A. (2019). Augmented Reality for Remote

Collaboration in Aircraft Maintenance Tasks. 2019 IEEE Aerospace Conference, 1–

10. https://doi.org/10.1109/AERO.2019.8742228

Van Acker, B., Meulenaere, P. D., Vangheluwe, H., & Denil, J. (2024). Validity frame-

enabled model-based engineering processes. Simulation, 100(2), 185–226. https:

//doi.org/10.1177/00375497231205035

Van der Valk, H., Haße, H., Möller, F., Arbter, M., Henning, J.-L., & Otto, B. (2020). A

taxonomy of digital twins. AMCIS, 1–10.

Van Tendeloo, Y., Paredis, R., & Vangheluwe, H. (2020). An Introduction To Modular

Modeling And Simulation With PythonPDEVS And The Building-Block Library

https://doi.org/10.1016/j.procir.2018.03.166
https://doi.org/10.1126/science.1177894
https://www.britannica.com/biography/Edmund-Cartwright
https://www.britannica.com/biography/Edmund-Cartwright
https://www.britannica.com/event/Industrial-Revolution
https://www.britannica.com/event/Industrial-Revolution
https://the-refinery.io/blog/the-dangers-and-benefits-of-software-fidelity
https://the-refinery.io/blog/the-dangers-and-benefits-of-software-fidelity
https://doi.org/10.20944/preprints202310.0659.v1
https://doi.org/10.1109/AERO.2019.8742228
https://doi.org/10.1177/00375497231205035
https://doi.org/10.1177/00375497231205035

170 BIBLIOGRAPHY

PythonPDEVS-BBL. Proceedings of the 2020 Winter Simulation Conference (WSC),
1152–1166.

Van Tendeloo, Y., Paredis, R., & Vangheluwe, H. (2023). An Introduction to Discrete-Event

Modeling and Simulation with DEVS. Proceedings of the 2023 Winter Simulation
Conference (WSC), 1531–1545.

Van Tendeloo, Y., & Vangheluwe, H. (2015). PythonPDEVS: a Distributed Parallel DEVS

simulator. Proceedings of the 2015 Spring Simulation Multiconference, 844–851.

Vangheluwe, H. (2000). DEVS as a Common Denominator for Multi-Formalism Hybrid

Systems Modelling. IEEE International Symposium on Computer-Aided Control Sys-
tem Design, 129–134.

Verdouw, C. N., & Kruize, J. W. (2017). Digital twins in farm management: illustrations

from the FIWARE accelerators SmartAgriFood and Fractals. Proceedings of the
7th Asian-Australasian Conference on Precision Agriculture Digital, Hamilton, New
Zealand, 16–18.

Verriet, J. (2019). From Virtual Prototype to Digital Twin [Accessed: February 7th 2024].

https ://a .storyblok .com/f/74249/x/063ff220fa/s1- verriet - from- virtual -

prototype-to-digital-twin.pdf

Wagle, M., Agnihotri, A., Bhangale, P., Patare, A., & Murali, M. (2023). Estimation of State

of Charge in Electric Vehicle using the Battery Digital Twin. 2023 3rd International
Conference on Intelligent Technologies (CONIT), 1–7.

Walravens, G., Muctadir, H. M., & Cleophas, L. (2022). Virtual Soccer Champions: A Case

Study on Artifact Reuse in Soccer Robot Digital Twin Construction. Proceedings of
the 25th International Conference on Model Driven Engineering Languages and Systems:
Companion Proceedings, 463–467. https://doi.org/10.1145/3550356.3561586

Wanasinghe, T. R., Wroblewski, L., Petersen, B. K., Gosine, R. G., James, L. A., De Silva, O.,

Mann, G. K. I., & Warrian, P. J. (2020). Digital twin for the oil and gas industry:

Overview, research trends, opportunities, and challenges. IEEE access, 8, 104175–

104197.

Wang, H., Zhou, M., & Liu, B. (2018). Tolerance allocation with simulation-based digital

twin for CFRP-metal countersunk bolt joint. ASME International Mechanical Engi-
neering Congress and Exposition, 52019, V002T02A108. https://doi.org/10.1115/

IMECE2018-86645

Wärmefjord, K., Söderberg, R., Lindkvist, L., Lindau, B., & Carlson, J. S. (2017). Inspec-

tion data to support a digital twin for geometry assurance. ASME international
mechanical engineering congress and exposition, 58356, V002T02A101.

Weyns, D., Malek, S., & Andersson, J. (2010). Forms: A formal reference model for self-

adaptation. Proceedings of the 7th international conference on Autonomic computing,

205–214.

Wisher, R. A. (2001). The virtual sand table: Intelligent tutoring for field artillery training. US

Army Research Institute for the Behavioral; Social Sciences.

Worden, K., Cross, E. J., Barthorpe, R. J., Wagg, D. J., & Gardner, P. (2020). On digital

twins, mirrors, and virtualizations: Frameworks for model verification and val-

idation. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part
B: Mechanical Engineering, 6(3), 030902.

Wu, Y., & Ge, D. (2019). Key technologies of warehousing robot for intelligent logistics.

The First International Symposium on Management and Social Sciences (ISMSS 2019),
79–82.

https://a.storyblok.com/f/74249/x/063ff220fa/s1-verriet-from-virtual-prototype-to-digital-twin.pdf
https://a.storyblok.com/f/74249/x/063ff220fa/s1-verriet-from-virtual-prototype-to-digital-twin.pdf
https://doi.org/10.1145/3550356.3561586
https://doi.org/10.1115/IMECE2018-86645
https://doi.org/10.1115/IMECE2018-86645

BIBLIOGRAPHY 171

Yacob, F., Semere, D., & Nordgren, E. (2019). Anomaly detection in Skin Model Shapes

using machine learning classifiers. The International Journal of Advanced Manufac-
turing Technology, 105(9), 3677–3689.

Yan, J., & Li, B. (2020). Research hotspots and tendency of intelligent manufacturing.

Chinese Science Bulletin, 65(8), 684–694. https://doi.org/10.1360/n972019-00125

Yao, X., Ma, N., Zhang, J., Wang, K., Yang, E., & Faccio, M. (2022). Enhancing wisdom

manufacturing as industrial metaverse for industry and society 5.0. Journal of
Intelligent Manufacturing, 35(1), 235–255. https://doi.org/10.1007/s10845-022-

02027-7

Ye, X., Hong, S. H., Song, W. S., Kim, Y. C., & Zhang, X. (2021). An industry 4.0 as-

set administration shell-enabled digital solution for robot-based manufacturing

systems. Ieee Access, 9, 154448–154459.

Yuan, C., Yeung, L., Zhang, X., & Qiu, S. (2022). Smart-Color: Color-Interactive Device

Design Based on Programmable Physical Color-Changing Materials and Motion

Capture Technique. HCI International 2022 – Late Breaking Papers: Ergonomics and
Product Design, 542–551. https://doi.org/10.1007/978-3-031-21704-3_38

Zaki, N., Lazarova-Molnar, S., El-Hajj, W., & Campbell, P. (2009). Protein-protein interac-

tion based on pairwise similarity. BMC Bioinformatics, 10(1). https://doi.org/10.

1186/1471-2105-10-150

Zeigler, B. P., Muzy, A., & Kofman, E. (2018). Theory of Modeling and Simulation (3rd).

Academic Press.

Zhang, C., Wang, Z., Zhou, G., Chang, F., Ma, D., Jing, Y., Cheng, W., Ding, K., & Zhao, D.

(2023). Towards new-generation human-centric smart manufacturing in Industry

5.0: A systematic review. Advanced Engineering Informatics, 57, 102121. https :

//doi.org/10.1016/j.aei.2023.102121

Zhang, H., Wei, Y., & Li, Z. (2023). Research on the establishment and simulation method

of testability model based on digital twin. In X. Yuan & G. Wu (Eds.), Third
international conference on mechanical, electronics, and electrical and automation control
(metms 2023) (127223A, Vol. 12722). SPIE. https://doi.org/10.1117/12.2679714

Zhang, H., Liu, Q., Chen, X., Zhang, D., & Leng, J. (2017). A digital twin-based approach

for designing and multi-objective optimization of hollow glass production line.

Ieee Access, 5, 26901–26911.

Zhang, Z., Wen, F., Sun, Z., Guo, X., He, T., & Lee, C. (2022). Artificial Intelligence-

Enabled Sensing Technologies in the 5G/Internet of Things Era: From Virtual

Reality/Augmented Reality to the Digital Twin. Advanced Intelligent Systems, 4(7),

2100228. https://doi.org/10.1002/aisy.202100228

https://doi.org/10.1360/n972019-00125
https://doi.org/10.1007/s10845-022-02027-7
https://doi.org/10.1007/s10845-022-02027-7
https://doi.org/10.1007/978-3-031-21704-3_38
https://doi.org/10.1186/1471-2105-10-150
https://doi.org/10.1186/1471-2105-10-150
https://doi.org/10.1016/j.aei.2023.102121
https://doi.org/10.1016/j.aei.2023.102121
https://doi.org/10.1117/12.2679714
https://doi.org/10.1002/aisy.202100228

	Acknowledgements
	Abstract
	Nederlandstalige Samenvatting
	Publications
	Activities
	Introduction
	Motivation
	Contributions and Gaps
	Roadmap

	Background
	Digital Twins: State-of-the-Art
	Digital Twin Architectures
	Asset Administration Shell
	Existing Tools and Frameworks

	Multi-Paradigm Modelling
	Language Combinations
	FTG+PM

	Modelling Formalisms
	Feature Trees
	Causal-Block Diagrams
	Functional Mock-Up Units
	DEVS
	Deployment Diagrams

	Communication Protocols
	MQTT
	DDS
	OPC UA
	ROS 2

	Goals: To Twin or Not To Twin
	Properties of Interest
	Goals, Purposes, and Objectives
	Design
	Operation
	Visualization
	Maintenance

	Quality Assurance
	Consistency
	Execution
	Ilities
	Company

	Usage Contexts
	System Type
	Bx Connection
	Sustainability
	Liveness of Execution
	User
	Context
	PLM Stage
	Reuse

	Conclusions

	Conceptual Reference Architecture
	Yet Another Twinning Architecture
	Common Architecture Variations
	Mapping the Architecture
	Conceptual/Functional Mapping
	Mapping through Realization

	Actual Object and Twin Object
	Electromechanical Entity
	Digital Entity
	Solid Entity
	Biophysical Entity
	Social Entity
	Workflow Entity
	System-of-Systems Entity

	Conclusions

	Technologies and Deployment
	State-of-the-Art
	Literature Analysis
	Generic Methodologies, Concepts and Buzzwords
	Languages
	Tools, Frameworks and Technologies
	Communication Protocols
	Hardware

	DEVS Simulation
	Concusions

	Combining Twinning Architectures
	Federation of Twinning Systems
	Multiple Properties of Interest
	Multiple Independent TEs
	Type vs Multiple Instances
	Architectures Connecting Multiple Components
	Multiple Formalisms/Languages
	Multi-Abstraction/Detail/Fidelity
	Multiple Life-Cycle Stages
	Multiple Copies for Redundancy
	Multiple Combinations of Multi-*

	White Box vs. Black Box Combinations
	Conclusion

	Representative Use-Case: Automated Guided Vehicle
	LEGO Line Following Robot
	System Design
	System Decomposition
	Component Gathering
	Digitization
	Robot Assembly
	Plant Modeling
	Controller Modelling
	CBD Composition
	Calibration
	Deployment and Simulation
	System Analysis
	Robot Versions

	TurtleBot
	Requirements
	Conceptual Architecture
	Formalisms and Models
	Deployment

	Conclusions

	Representative Use-Case: Port of Antwerp
	Port of Antwerp
	Requirements
	Conceptual Architecture
	Formalisms and Models
	Deployment
	Anomaly Detection

	1D Movement of a Vessel
	Requirements
	Architecture
	Formalisms and Models
	Deployment
	DEVS Model
	Analysis of Alternatives

	Conclusions

	Conclusions and Future Work
	Conclusions
	Limitations and Threats to Validity
	In Preparation
	Future Work

	Anecdotes
	Sand Tables
	Apollo 13
	Alan Alda meets Alan Alda 2.0
	Industrial Revolutions
	First Industrial Revolution – Mechanization
	Second Industrial Revolution – Industrialization
	Third Industrial Revolution – Digitization
	Fourth Industrial Revolution – Robotization
	A Note on Industry 5.0

	pyCBD
	Simulator Features
	Visual Syntax in DrawIO

	Acronyms
	Bibliography

