
Translating GPSS to DEVS
Based on a DEVS Building Block Library

Randy Paredis

Promotor: Prof. Hans Vangheluwe

Co-Promotor: Dr. Simon Van Mierlo

Dissertation Submitted in June 2020 to the
Department of Mathematics and Computer Science
of the Faculty of Sciences, University of Antwerp,
in Partial Fulfillment of the Requirements
for the Degree of Master of Science.

Ansymo
Antwerp Systems and Software Modelling



Contents

List of Figures v

List of Tables vii

List of Blocks ix

Abstract xi

Acknowledgements xii

Nederlandstalige Samenvatting xiii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 4
2.1 Modeling Language Engineering . . . . . . . . . . . . . . . . . . . 4

2.1.1 Syntax and Semantics . . . . . . . . . . . . . . . . . . . . 4
2.1.2 World Views . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 DEVS Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Classic DEVS . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Parallel DEVS . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4 Barriers for Non-Programmers . . . . . . . . . . . . . . . . 11
2.2.5 Representation of DEVS Building Blocks . . . . . . . . . . 11
2.2.6 Push and Pull Systems . . . . . . . . . . . . . . . . . . . . 13

i



2.2.7 Time Evaluation in DEVS . . . . . . . . . . . . . . . . . . 13
2.3 GPSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 GPSS Syntax . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.4 Scanning Algorithm . . . . . . . . . . . . . . . . . . . . . 17
2.3.5 Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.6 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.7 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.8 User Chains . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.9 Gathering Statistics . . . . . . . . . . . . . . . . . . . . . 24

3 Tools, Frameworks and Libraries 29
3.1 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 ExtendSim . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.2 SIMUL8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.3 FlexSim . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.4 Enterprise Dynamics . . . . . . . . . . . . . . . . . . . . . 33
3.1.5 LEGO Mindstorms . . . . . . . . . . . . . . . . . . . . . . 33

3.2 DEVS Frameworks and Libraries . . . . . . . . . . . . . . . . . . . 34
3.2.1 Python(P)DEVS . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 DEVSimPy . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.3 JDEVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.4 adevs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.5 DEVS++ and DEVS# . . . . . . . . . . . . . . . . . . . 36
3.2.6 DEVS-Suite . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.7 DesignDEVS . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.8 DEVS-Ruby . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 GPSS Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 HGPSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 GPSS World . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.3 GPSS/H . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.4 JGPSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.5 aGPSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.6 AToM3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 PythonDEVS-BBL 40
4.1 Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Standard Generators . . . . . . . . . . . . . . . . . . . . . 41
4.1.2 Random Number Generators . . . . . . . . . . . . . . . . . 43
4.1.3 Using Stock . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1.4 Firing Single Events . . . . . . . . . . . . . . . . . . . . . 53

ii



4.1.5 Generating in Bulk . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Queueing Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Queueing Theory . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2 Building Blocks for Queues . . . . . . . . . . . . . . . . . 58

4.3 Gathering Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.1 Tableization . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.2 Memory-Efficient Collection . . . . . . . . . . . . . . . . . 65
4.3.3 P 2 Algorithm without Scoring Observations . . . . . . . . . 66
4.3.4 Obtaining Numeric Data from other Items . . . . . . . . . 67
4.3.5 Counting Items . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4.1 General Functionality . . . . . . . . . . . . . . . . . . . . 69
4.4.2 Basic Mathematics . . . . . . . . . . . . . . . . . . . . . . 70
4.4.3 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4.4 Complex Mathematics . . . . . . . . . . . . . . . . . . . . 71

4.5 Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5.1 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5.2 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.5.3 Playing Sounds . . . . . . . . . . . . . . . . . . . . . . . . 78
4.5.4 Listening to External Events . . . . . . . . . . . . . . . . . 79

4.6 Transforming Data . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.6.1 Transforming via Functions . . . . . . . . . . . . . . . . . 80
4.6.2 Lookup Table . . . . . . . . . . . . . . . . . . . . . . . . 81
4.6.3 Packing and Unpacking . . . . . . . . . . . . . . . . . . . 81

4.7 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.7.1 Exiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.7.2 Terminating a Simulation . . . . . . . . . . . . . . . . . . 83
4.7.3 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.7.4 Splitting and Joining . . . . . . . . . . . . . . . . . . . . . 84
4.7.5 Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.7.6 Guards . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.7.7 Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.7.8 Time Manipulation . . . . . . . . . . . . . . . . . . . . . . 90
4.7.9 Syncing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.8 Simulation Tracers . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.8.1 Plot Tracer . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.8.2 Statistics Tracer . . . . . . . . . . . . . . . . . . . . . . . 95
4.8.3 Footprint Tracer . . . . . . . . . . . . . . . . . . . . . . . 95
4.8.4 Profile Tracer . . . . . . . . . . . . . . . . . . . . . . . . 96

4.9 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.10 Implementation Notes . . . . . . . . . . . . . . . . . . . . . . . . 99

4.10.1 Library Specifics . . . . . . . . . . . . . . . . . . . . . . . 99

iii



4.10.2 Documentation . . . . . . . . . . . . . . . . . . . . . . . . 100
4.10.3 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 GPSS2DEVS 102
5.1 General Principles . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1.1 Three Principles of GPSS2DEVS . . . . . . . . . . . . . . 103
5.1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2.1 Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2.2 Scanning Algorithm . . . . . . . . . . . . . . . . . . . . . 104
5.2.3 Time and Flow . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2.4 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2.5 The TRANSFER Block . . . . . . . . . . . . . . . . . . . . 115
5.2.6 User Chains . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2.7 Gathering Statistics . . . . . . . . . . . . . . . . . . . . . 116

5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3.1 Name Mangling . . . . . . . . . . . . . . . . . . . . . . . 119
5.3.2 Python(P)DEVS Formats . . . . . . . . . . . . . . . . . . 120

5.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.4.1 Manufacturing Shop . . . . . . . . . . . . . . . . . . . . . 121
5.4.2 Telephone Exchange . . . . . . . . . . . . . . . . . . . . . 121

6 Wrapping Up 129
6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.3.1 PythonDEVS-BBL . . . . . . . . . . . . . . . . . . . . . . 131
6.3.2 GPSS2DEVS . . . . . . . . . . . . . . . . . . . . . . . . . 133

Appendices 134

Appendix A Distributions 135
A.1 Distribution Overview . . . . . . . . . . . . . . . . . . . . . . . . 135
A.2 Distributions in PythonDEVS-BBL . . . . . . . . . . . . . . . . . 138

Appendix B Building Block Port Information 144

Appendix C GPSS Blocks 159

Bibliography 162

Index 172

iv



List of Figures

2.1 Terminology Language Engineering [VVD19; Van+17] . . . . . . . 5
2.2 Visualization of an Atomic DEVS example [Mal+15] . . . . . . . . 12

4.1 Plots for the Standard Normal Distribution. . . . . . . . . . . . . . 45
4.2 Inverse-Transformation with interpolated values. . . . . . . . . . . 48
4.3 Example on how to handle stock with a combination of building

blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4 Simple Statechart for a Queue. . . . . . . . . . . . . . . . . . . 59
4.5 An overview of a Queue building block with automatic dequeues. . 60
4.6 An example on balking. . . . . . . . . . . . . . . . . . . . . . . . 62
4.7 Creating a randomized delay from the Random and the Timer

blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.8 Example of how to set the select input of the Choose Output

block by default. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.9 Using the Guard, Queue and Single Fire blocks to create a

queue before a critical section. . . . . . . . . . . . . . . . . . . . . 88
4.10 Assigning shifts to sections of the model. . . . . . . . . . . . . . . 89
4.11 Creating the Delayer building block from the Transformer

and the Timer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.12 Issue with messages arriving at a different time. . . . . . . . . . . 92
4.13 Application to Queueing Systems example model concept [Van14;

VV17b]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.14 Implementation of example 4.9.1 in PythonDEVS-BBL, for three

processors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1 The translation of the GENERATE, ADVANCE and TERMINATE blocks
in GPSS2DEVS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

v



5.2 The GPSS2DEVS Advance block as a Coupled DEVS. . . . . . . 109
5.3 Example 5.2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.4 The translation of the TEST and ASSIGN blocks in GPSS2DEVS. . 111
5.5 The translation of the SEIZE and RELEASE blocks in GPSS2DEVS. 112
5.6 The translation of the ENTER and LEAVE blocks in GPSS2DEVS. . 113
5.7 The translation of the LOGIC and GATE blocks in GPSS2DEVS. . . 114
5.8 The GPSS2DEVS Transfer block in conditional mode as a Cou-

pled DEVS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.9 The translation of the TRANSFER block in conditional mode, com-

bined with the SEIZE and RELEASE blocks in GPSS2DEVS. . . . . 116
5.10 The translation of the LINK and UNLINK blocks in GPSS2DEVS. . 117
5.11 The translation of the MARK and TABULATE blocks in GPSS2DEVS. 118
5.12 The translation of the QUEUE and DEPART blocks in GPSS2DEVS. . 119
5.13 Visual Notation in AToM3 for Example 5.4.1 (the manufacturing

shop). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.14 Textual Notation for Example 5.4.1 (the manufacturing shop). . . . 123
5.15 Python(P)DEVS code for Example 5.4.1 (the manufacturing shop). 124
5.16 Visual Notation in AToM3 for Example 5.4.2 (the telephone ex-

change). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.17 Textual Notation for Example 5.4.2 (the telephone exchange). . . . 127
5.18 Python(P)DEVS code for Example 5.4.2 (the telephone exchange). 128

vi



List of Tables

2.1 GPSS “punchcard” fields. . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Overview of the gathered statistics in GPSS by static entities. . . . 26
2.3 Input for example 2.3.1. . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Gathered Statistics for example 2.3.1. . . . . . . . . . . . . . . . . 26

3.1 Default building blocks in DEVSimPy. . . . . . . . . . . . . . . . 35
3.2 Default building blocks in DEVS-Ruby. . . . . . . . . . . . . . . . 37

4.1 Closed-formula form of CDFs (and their inverse). . . . . . . . . . . 47
4.2 The facility code table for syslog messages. . . . . . . . . . . . . . 75
4.3 The severity code table for syslog messages. . . . . . . . . . . . . 76

5.1 Obtained metrics for example 5.4.1. . . . . . . . . . . . . . . . . . 122
5.2 Obtained metrics for example 5.4.2. . . . . . . . . . . . . . . . . . 125

B.1 Ports for the Constant Generator building block. . . . . . . 144
B.2 Ports for the Function Generator building block. . . . . . . . 145
B.3 Ports for the Table Generator building block. . . . . . . . . . 145
B.4 Ports for the Single Fire building block. . . . . . . . . . . . . . 145
B.5 Ports for the Bulk Generator building block. . . . . . . . . . 145
B.6 Ports for the Random Number Generator building block. . . 146
B.7 Ports for the Random Delay Generator building block. . . . 146
B.8 Ports for the Simple Queue building block. . . . . . . . . . . . . 147
B.9 Ports for the Queue Tracker building block. . . . . . . . . . . 147
B.10 Ports for the Queue building block. . . . . . . . . . . . . . . . . 148
B.11 Ports for the Retain building block. . . . . . . . . . . . . . . . . 149
B.12 Ports for the Advance building block. . . . . . . . . . . . . . . . 149
B.13 Ports for the Table Collector building block. . . . . . . . . . 149

vii



B.14 Ports for the Collector and Estimate Collector building
blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

B.15 Ports for the Counter building block. . . . . . . . . . . . . . . . 150
B.16 Ports for the Adder building block. . . . . . . . . . . . . . . . . 150
B.17 Ports for the Multiplier building block. . . . . . . . . . . . . . 150
B.18 Ports for the Equation building block. . . . . . . . . . . . . . . 151
B.19 Ports for the Differentiator building block. . . . . . . . . . . 151
B.20 Ports for the Integrator building block. . . . . . . . . . . . . . 151
B.21 Ports for the Random building block. . . . . . . . . . . . . . . . 151
B.22 Ports for the Logger building block and all its derivatives. . . . . 152
B.23 Ports for the File Writer building block. . . . . . . . . . . . . 152
B.24 Ports for the File Reader building block. . . . . . . . . . . . . 152
B.25 Ports for the Listener building block. . . . . . . . . . . . . . . . 152
B.26 Ports for the Sound building block. . . . . . . . . . . . . . . . . 152
B.27 Ports for the Transformer and Lookup Table building blocks.153
B.28 Ports for the Pack building block. . . . . . . . . . . . . . . . . . 153
B.29 Ports for the Unpack building block. . . . . . . . . . . . . . . . . 153
B.30 Ports for the Finish and Halt building blocks. . . . . . . . . . . 153
B.31 Ports for the Choose Input building block. . . . . . . . . . . . . 154
B.32 Ports for the Choose Output building block. . . . . . . . . . . 154
B.33 Ports for the Pick building block. . . . . . . . . . . . . . . . . . . 154
B.34 Ports for the Guard building block. . . . . . . . . . . . . . . . . 155
B.35 Ports for the Gate building block. . . . . . . . . . . . . . . . . . 155
B.36 Ports for the Timer building block. . . . . . . . . . . . . . . . . . 155
B.37 Ports for the Delayer building block. . . . . . . . . . . . . . . . 156
B.38 Ports for the Sync building block. . . . . . . . . . . . . . . . . . 156
B.39 Ports for the Controller building block. . . . . . . . . . . . . . 157
B.40 Ports for the Hold building block. . . . . . . . . . . . . . . . . . 158

viii



List of Blocks

2.1 General depiction of a DEVS block within this paper. . . . . . . . . 13
2.2 GPSS GENERATE block. . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 GPSS TERMINATE block. . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 GPSS TRANSFER block. . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 GPSS ASSIGN block. . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 GPSS TEST block. . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7 GPSS ADVANCE block. . . . . . . . . . . . . . . . . . . . . . . . . 20
2.8 GPSS SEIZE and RELEASE blocks. . . . . . . . . . . . . . . . . . 21
2.9 GPSS PREEMPT and RETURN blocks. . . . . . . . . . . . . . . . . . 22
2.10 GPSS ENTER and LEAVE blocks. . . . . . . . . . . . . . . . . . . . 23
2.11 GPSS LOGIC and GATE blocks. . . . . . . . . . . . . . . . . . . . 24
2.12 GPSS LINK and UNLINK blocks. . . . . . . . . . . . . . . . . . . . 25
2.13 GPSS TABULATE block. . . . . . . . . . . . . . . . . . . . . . . . 27
2.14 GPSS MARK block. . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.15 GPSS QUEUE and DEPART blocks. . . . . . . . . . . . . . . . . . . 28

4.1 Constant Generator building block. . . . . . . . . . . . . . . 42
4.2 Function Generator building block. . . . . . . . . . . . . . . 42
4.3 Table Generator building block. . . . . . . . . . . . . . . . . 43
4.4 Random Number Generator building block. . . . . . . . . . 52
4.5 Random Delay Generator building block. . . . . . . . . . . 52
4.6 Single Fire building block. . . . . . . . . . . . . . . . . . . . . 54
4.7 Bulk Generator building block. . . . . . . . . . . . . . . . . . 54
4.8 Simple Queue and Queue building blocks. . . . . . . . . . . . 60
4.9 Queue Tracker specialized building block. . . . . . . . . . . . 61
4.10 Retain building block. . . . . . . . . . . . . . . . . . . . . . . . 62
4.11 Advance building block. . . . . . . . . . . . . . . . . . . . . . . 64

ix



4.12 Table Collector building block. . . . . . . . . . . . . . . . . 65
4.13 Collector building block. . . . . . . . . . . . . . . . . . . . . . 66
4.14 Estimate Collector building block. . . . . . . . . . . . . . . 67
4.15 Counter building block. . . . . . . . . . . . . . . . . . . . . . . 69
4.16 Adder building block. . . . . . . . . . . . . . . . . . . . . . . . 70
4.17 Multiplier building block. . . . . . . . . . . . . . . . . . . . . 70
4.18 Equation building block. . . . . . . . . . . . . . . . . . . . . . 71
4.19 Differentiator building block. . . . . . . . . . . . . . . . . . 72
4.20 Integrator building block. . . . . . . . . . . . . . . . . . . . . 72
4.21 Random building block. . . . . . . . . . . . . . . . . . . . . . . 73
4.22 Representation of the Logger building block and its derivatives. . 77
4.23 File Writer building block. . . . . . . . . . . . . . . . . . . . 77
4.24 File Reader building block. . . . . . . . . . . . . . . . . . . . 78
4.25 Sound building block. . . . . . . . . . . . . . . . . . . . . . . . . 79
4.26 Listener building block. . . . . . . . . . . . . . . . . . . . . . . 79
4.27 Transformer building block. . . . . . . . . . . . . . . . . . . . 80
4.28 Lookup Table building block. . . . . . . . . . . . . . . . . . . 81
4.29 Pack building block. . . . . . . . . . . . . . . . . . . . . . . . . 82
4.30 Unpack building block. . . . . . . . . . . . . . . . . . . . . . . . 82
4.31 Finish building block. . . . . . . . . . . . . . . . . . . . . . . . . 83
4.32 Halt building block. . . . . . . . . . . . . . . . . . . . . . . . . 83
4.33 Choose Input and Choose Output building blocks. . . . . . 85
4.34 Pick building block. . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.35 Guard building block. . . . . . . . . . . . . . . . . . . . . . . . 87
4.36 Gate building block. . . . . . . . . . . . . . . . . . . . . . . . . 89
4.37 Timer building block. . . . . . . . . . . . . . . . . . . . . . . . . 90
4.38 Delayer building block. . . . . . . . . . . . . . . . . . . . . . . 91
4.39 Sync building block. . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1 GPSS2DEVS Controller and Hold blocks. . . . . . . . . . . 105

x



Abstract

Models are everywhere. From simple mathematical equations to a schematic
representation of a water filtering plant to a waiting line at the cash registry
in a super market. They’re often used to get a solid understanding of business
flows, system flows, proof-of-concepts, factories...

Different modeling languages within the domain of Modeling and Simula-
tion (M&S) can be used for various purposes. A subset of these languages
describes discrete-event systems and can be further separated based on their
world view: event scheduling, activity scheduling or process interaction.

This thesis will use the modeling formalism of Discrete EVent Systems
(DEVS), a general-purpose event-scheduling language, to create a generic build-
ing block library (BBL). Multiple tools, that are currently used for big systems
by major companies, will be explored as a foundation for this library.

Additionally, the General Purpose Simulation System (GPSS), an example
language in the process interaction world view, will be described and a subset
thereof will be translated onto the DEVS formalism. This way, we benefit from
the advantages that DEVS offers, while still enabling the strengths of GPSS.

Accompanied with this paper, there is a Python-implementation (based on
the Python(P)DEVS kernel) of the building blocks and the translation that will
be discussed in these pages.

xi



Acknowledgements

Firstly, I would like to thank my promotor, Hans Vangheluwe, for mentoring
me and guiding me throughout my internship and master thesis. He helped
me find a passion and interest in simulation and modeling by giving me the
opportunity to work on fascinating research projects.

I also want to thank my co-promotor, Simon Van Mierlo, for guiding me in
the right direction by providing enough resources, ideas and much appreciated
feedback that helped the research.

My final thanks go out to my friends and family that have supported me
and kept me sane throughout my entire study career.

xii



Nederlandstalige Samenvatting

Modellen zijn overal. Van eenvoudige wiskundige vergelijkingen tot schematis-
che voorstellingen van waterfilterinstallaties tot een wachtrij aan de kassa in de
supermarkt. Ze worden vaak gebruikt om een diepgaand overzicht te krijgen
van bedrijfsprocessen, systeemstromen, bewijzen van concepten, fabrieken...

Verschillende modelleertalen binnen het domein van Modellering en Simu-
latie (M&S) kunnen voor verscheidene doeleinden worden gebruikt. Een sub-
set van deze talen beschrijft discrete evenementsystemen en kan verder worden
opgesplitst op basis van hun world view: ofwel evenementplanning, activiteit-
enplanning of procesinteractie.

Deze thesis zal het modeleerformalisme van Discrete EVent Systems (DEVS),
een algemene taal voor evenementplanning, gebruiken om een generische bouw-
blokkenbibliotheek te maken. Verscheidene programma’s, die momenteel ge-
bruikt worden door grote bedrijven voor enorme systemen, zullen worden on-
derzocht als een basis voor deze bibliotheek.

Daarbovenop zal het General Purpose Simulation System (GPSS), een voor-
beeld van een taal in de procesinteractie world view, worden beschreven en een
subset ervan zal worden vertaald naar het DEVS formalisme. Hiermee geni-
eten we van de voordelen die DEVS aanbiedt en behouden we tezelfdertijd de
sterktes van GPSS.

Bijgevoegd aan deze paper is er een Python-implementatie (gebaseerd op
de Python(P)DEVS kernel) van de bouwblokken die in deze pagina’s zullen
worden besproken, net als de benodigde code voor de vertaling van GPSS naar
DEVS.

xiii



CHAPTER 1

Introduction

Be it a waiting line at your local supermarket, or a conveyor belt in a factory.
Be it a telephone switchboard, or a traffic light at the crossroads of train tracks.
Complex systems are everywhere. In an ideal scenario, the analysis of such
systems should happen in an efficient way.

Models can be used to provide an understandable and complete overview
of the problem domain. Ideally, these models can be interpreted at numerous
levels of domain-expertise. Next, simulations are executed on these models to
gather information about the system within a certain context.

Besides a motivation for this research, this chapter will also state the con-
tributions that this thesis will make. Furthermore, the general structure of
this document will be defined.

1.1 Motivation

Massive software-intensive and cyber-physical systems often become complex
quite fast, either when designing them, or when they are deployed. Even trying
to study such systems requires a lot of surrounding knowledge that might
not be widely available. For instance, in designing a system that needs to
interact with real-world scenarios (e.g. a car, a plane...), some of the required
physics and knowledge might only be available as a consequence of numerous
experiments, from which certain conclusions can be used in the system.

The field of Modeling and Simulation (M&S) tries to overcome the com-
plexities that such systems cause, for the benefit of the engineers. M&S makes



1.1. MOTIVATION 2

use of so-called modeling languages (or formalisms) that describe these sys-
tems, both in syntax (what is and isn’t allowed in the language and how it can
be represented) and the semantics (the meaning of the models in the language)
[VVD19; Van+17]. Multiple formalisms can be used to identify different char-
acteristics of a system.

Most of these languages are domain-specific [Ris10], meaning that they
can be used to solve problems within a particular domain. Yet, the creation of
such a domain-specific language can be cumbersome. A better idea is to use a
general-purpose language (that is not linked to a particular domain) to create
libraries of reusable components that can be used within (but are not limited
to) the domain in question.

Multi-Paradigm Modeling (MPM) [MV04; MV14; Syr11; GLV07] encour-
ages the use of the most appropriate language(s) for the most appropriate
level(s) of abstraction. The area of multi-formalism modeling allows the com-
bination of multiple languages for this very purpose [Van08]. Furthermore,
domain experts can make use of (visual) modeling notations they are familiar
with, avoiding so-called accidental complexity when there is too much of a gap
between the domain expert’s knowledge and the modeling notation.

Different modeling languages can be separated into multiple categories,
which help us analyze and study them. This paper will mainly focus on the
discrete-event modeling languages, which have a sub-categorization of three
distinct world views: event scheduling, activity scanning and process interac-
tion [ON04]. A translation between these world views is non-trivial because
implicit assumptions of a world view need to be made explicit in other world
views.

[Van00a; Van00b] introduce the notion that the Discrete EVent Systems
(DEVS) formalism [ZPK00], an example of the event scheduling world view, can
be used as a common denominator for discrete-event simulation formalisms.
This means that it can be used to implement the semantics of many modeling
languages and, as such, their simulators can be coupled.

Hence, it is an interesting and relevant research trying to translate different
formalisms onto DEVS. While the loss of some information in the translation
may be inevitable (due to major differences between formalisms), we can at
least try to identify a model transformation [SK03] that causes the least amount
of loss.

The syntax of discrete-event languages might state the usage of building
blocks . These can be seen as some sort of LEGO bricks that fit closely together
in the creation of a model. Each type of brick has its own functionality and
may react on input, or send out custom outputs, to be interpreted by the user
or other building blocks.

Making use of a Python implementation for DEVS, Python(P)DEVS [Van14;
VV16], we will construct a library of reusable building blocks, focusing on



1.2. CONTRIBUTIONS 3

extensiveness (each block can be used in many models of many domains) and
deficiency (the omission of a block is an indication of the rarity of its use).

Next, small parts of the building block library will be used to translate
GPSS [Gor78b; Gor78a; Sch74], a representative example of the process inter-
action world view, onto DEVS.

1.2 Contributions

In this thesis, ExtendSim [Ima87], SIMUL8 [SIM94], FlexSim [Fle93], Enterprise
Dynamics [INC97] and LEGO Mindstorms [LEG13] will be studied to get an
overall understanding of existing building block libraries within major tools
that are used in industrial (and less industrial) contexts. We will focus on the
functionalities they provide, how they are structured and to what extend they
correspond to the DEVS formalism.

Additionally, existing DEVS modeling tools (e.g. JDEVS [FB04], DEVSimPy
[Cap19; Cap+11], DEVS-Suite [KSE09], DesignDEVS [GBK16]...) will be placed
under the microscope w.r.t. their building block libraries, from which we can
deduce what’s already available.

Given this knowledge, we’ll start creating our own building block library,
based on Python(P)DEVS, including all that’s already provided (by other tools)
and all that is common in professional modeling tools for discrete-event simu-
lation. Finally, we’ll take a look at a subset of GPSS and provide a mapping
onto DEVS. This will be given such that every GPSS block has at least one
corresponding block in the translated DEVS model.

1.3 Structure

Chapter 2 will introduce a background for the remainder of this thesis, includ-
ing a description of the DEVS and the GPSS formalisms. In chapter 3, multiple
discrete-event tools that are used in industry are studied. We will also discuss
tools to model in DEVS and GPSS. With this information, a general idea can
be constructed for what we require in the creation of a new building block
library for Python(P)DEVS, which will be built in chapter 4. Next, chapter 5
will go into detail on a translation from DEVS to GPSS in such a way that the
original models can be extracted again from their translated version. Finally,
chapter 6 will list some conclusions of this thesis, as well as some further work
to be done on this topic.



CHAPTER 2

Background

It is important to be aware of the basis of research. Hence, this chapter will
provide some information on modeling language engineering in section 2.1.
Sections 2.2 and 2.3 will introduce the two main formalisms that are used in
this thesis, namely DEVS and GPSS.

2.1 Modeling Language Engineering

An overplus of modeling languages are used by numerous simulationists in
many different problem domains. Multi-Paradigm Modeling (MPM) [MV04;
MV14; Syr11; GLV07] advocates modeling every relevant aspect of the system
explicitly at the most appropriate level(s) using the most appropriate for-
malism(s). Multi-formalism modeling reinforces this concept by allowing the
combination of multiple modeling languages within a single model [Van08].

2.1.1 Syntax and Semantics

Obviously, we cannot start creating modeling languages “at random”. Each
formalism needs to be precisely defined, with a syntax and a semantics. [Kle07]
states that a modeling language needs to be fully defined by:

• Its abstract syntax, which defines the constructs and combinations thereof
that may occur. It describes what is (or isn’t) allowed by a modeler
using this language. Often a meta-model [Küh06] is used to capture
these constraints.



2.1. MODELING LANGUAGE ENGINEERING 5

Concrete
syntax

Abstract
syntax

Semantic
domain

transformation

Graph

Semantic
mapping

m

M(m)

K(m)

Formalism

Syntax Semantics

Concrete Abstract
Semantic
Mapping

Semantic
Domain

Figure 2.1: Terminology Language Engineering [VVD19; Van+17]

• Its concrete syntax, which specifies the representation of the defined con-
structs. This can be either textual or graphical (using icons).

• The semantics, which defines the meaning of the models that are created
[HR04]. This is comprised of a semantic domain (i.e. what the models
mean) and the semantic mapping (i.e. how the models in the language
can be interpreted). The semantic domain can be seen as the target
domain of the semantic mapping.

For instance, (3 + 4), (+ 3 4) and (3 4 +) are all a textual concrete syntax
for the concept (i.e. abstract syntax) of “the sum of 3 and 4”. The semantic
domain for this example is the set of natural numbers, whereas the semantic
mapping (i.e. the meaning) is 7 (= 3 + 4).

Figure 2.1 shows a definition of the above terminology, as per [VVD19;
Van+17]. Each aspect of a formalism is modeled explicitly, as well as relation-
ships between different formalisms.

Furthermore, there are two types of semantics we can distinguish between:

• The translational semantics, i.e. the semantics for translating a model in
one formalism into a model that follows another in such a way that the
resulting model is equivalent to the original model w.r.t. the properties
under study.

• The operational semantics, i.e. the semantics that define the functionali-
ties of the model. Often this can be seen as an execution or a simulation
of the model.

A language that coheres to these rules and is viable within a specific mod-
eling domain is said to be a domain-specific language (DSL) [Ris10]. Yet, the
creation of new DSLs has downsides.



2.1. MODELING LANGUAGE ENGINEERING 6

• For one, it is a major investment to create new languages that are useful
within a specific domain, while at the same time being usable by domain
experts.

• It is important that the creation of a new DSL does not supersede other,
more prominent languages [Bar+11].

• Certain constructs in the newly created DSL may be useful within other
domains. And, while the other domains could make use of the new DSL,
there might also be constructs in the DSL that cannot be applied within
the context of these other domains.

We can solve this latter issue with sets of reusable artifacts (i.e. libraries)
for a general-purpose language (that is not tied to a specific domain). In this
case, no new language needs to be created and the library can be specialized
for the problem domain.

With the existence of countless different modeling languages, most of whom
DSLs, we require a way to classify them into categories that we can reason
about.

2.1.2 World Views

A time base is a way of ordering the observations in a system [ZPK00]. This
can be logical time, i.e. the abstract order of events that simulate the actual
time; or the physical time, i.e. the real-time (or wall-clock time) in which
the system functions [Ley20]. Depending on the context of your modeling
language, one is preferred above the other. And it is within this context that a
first distinction can be made for classifying the modeling languages [ZPK00].

On the first axis, there are discrete-time modeling languages. They assume
that the state of the system changes at discrete (often equidistant) points in
time. In between these intervals, the system is not defined. Perpendicular
to discrete-time languages, there are the discrete-event modeling languages.
Here, models have a specific, discrete state that can change in every time step,
but remains constant in between these steps. Think, for instance, about a light
bulb that can be on or off. Finally, continuous-time systems have a state which
changes throughout time. In this case, the light bulb does not have an on/off
switch, but rather a dimmer that gradually increases the light’s intensity.

Discrete-event systems (what we’ll be focusing on in this thesis) can be
separated even further by using multiple world views [ZPK00]. [ON04] identi-
fies three such world views, all of whom attempt to capture different notions
of locality:

Event Scheduling provides the locality of time: each event routine in a model
specification describes related actions that should always occur in one
instant.



2.2. DEVS FORMALISM 7

Activity Scanning provides the locality of state: each activity routine in a model
specification describes all actions that should occur due to the model as-
suming a particular state (that is, due to a particular condition becoming
true).

Process Interaction provides the locality of object : each process routine in a
model specification describes the action sequence of a particular model
object.

[ON04] also discusses relationships between these world views and examines
if they can be transformed into one another. Unfortunately, such a transfor-
mation is complicated because implicit assumptions of a world view need to
be made explicit in other world views.

2.2 DEVS Formalism

Discrete-EVent Systems (DEVS) [ZPK00] is actually a pretty elegant and clean
formalism that can be used as a common denominator [Van00a] for numer-
ous other formalisms like Causal Block Diagrams (CBD) [GDV16], Statecharts
(SC) [Har87; BV03; SV11] and Petri Nets (PN) [Pet77; Mur89], as stated in
[VVV18; Van00a; Van00b]. Nevertheless, there are dozens of variants for this
formalism (like PDEVS[CZ94], Dynamic Structure DEVS [Bar95; Bar97; Bar98;
Uhr01], Fuzzy-DEVS [Kwo+96]...), all of whom with interesting aspects and pe-
culiarities, but seeing as most of these are mere extensions of the basic DEVS
formalism, we will assume these formalisms out-of-scope for the purposes of
this paper. Instead, we will be focusing Classic DEVS (the most basic form),
as described in [ZPK00]. The interested reader can extend the information in
these pages towards the DEVS formalism of their liking.

2.2.1 Classic DEVS

Classic DEVS (CDEVS) was first described in [Zei84]. Afterwards, many have
summarized and referenced his work, allowing them to make extensions and
adaptations on it. But in order for this formalism to align itself to the intends
and purposes of this paper and, furthermore, to allow the existing extensions to
be applicable on the descriptions that will be given further on, it’s ought to be
important to return to the basics. In its most simple form, CDEVS consists of
Atomic DEVS that can be coupled together in Coupled DEVS for more complex
structures.



2.2. DEVS FORMALISM 8

Atomic DEVS
The smallest self-supporting element in a model can be called an atom. There-
fore, the DEVS representation of such an atom will go by the name “Atomic
DEVS”. These atoms cannot be further separated into smaller parts, because
its functionality would disintegrate. Similarly to the atoms in chemistry, that,
until the discovery of subatomic particles in 1897, were believed to be the
smallest possible particles in the universe. Hence, the name “atom”, which is
derived from the Greek ατoµoς1, meaning “indivisible”.

An Atomic DEVS model itself is defined as the 7-tuple

M = 〈X, Y, S, δint, δext, λ, ta〉

where X denotes the input set and Y the output set . Both of them can contain
multiple ports, making both X and Y cartesian products of their respective
ports, i.e.

X = ×mi=1Xi Y = ×lj=1Yj

with each Xi the admissible inputs on port i and each Yj the admissible outputs
on port j. Hence, X is the set of all possible inputs and Y the set of all possible
outputs of the model.

S is the state set , meaning S is the structured set that contains all the
possible states M can be in, with s0 ∈ S the initial state. Do note that we
will slightly adapt the original formalism and make this state explicit [VV18].

S = ×ni=1Si

The internal transition function, δint, is a function that defines the next
state, based on the current state. This function will be called when the DEVS
block decides it’s time to act. This is decided via ta, better known as the time
advance function. Based on its current state, ta yields a positive, real number
(or +∞), identifying the amount of time to wait until the next internal event2.

δint : S → S ta : S → R+
+∞

Notice that, when ta equals +∞, we are in a so-called passive state, meaning
that an internal transition will never happen.

δext, the external transition function, is called every time we obtain an
input. Based on this input (∈ X), the current state s and the elapsed time e,
δext determines a new state for M . After δext is called, ta is called once more
to reschedule the previously scheduled internal event.

δext : Q×X → S Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)}
1The α usually has a double accent, which was omitted for readability.
2+∞ identifies that no new event is scheduled.



2.2. DEVS FORMALISM 9

Finally, we have λ, the output function. Based on the current state of M ,
λ returns an output (∈ Y ) or the so-called null event φ.

λ : S → Y ∪ {φ}

Coupled DEVS
When we start combining Atomic DEVS together in a network ∆, we obtain
a Coupled DEVS. It stands to reason that a Coupled DEVS not only allows for
hierarchy and embedding, but also enables the modeler to divide their problem
into smaller sub-problems, yielding quite a powerful formalism.

Similar to Atomic DEVS, a Coupled DEVS model is a 7-tuple, but it has a
slightly different definition to allow for the coupling.

M = 〈X∆, Y∆, D,Mi, Ii, Zi,j, select〉

Here, X∆ and Y∆ respectively represent the input and output set of network
∆, while D are the component references that make up the Coupled DEVS.
Next, Mi is the set of all sub-components , i.e. Mi is the Atomic DEVS model
for component i, for all i ∈ D.

The set of influences , Ii is the set of all blocks whose inputs are linked to
i’s output port(s). Zi,j represents the transfer functions . They are applied
to all messages being passed and allow for reuse, due to their compatibility
features. For all i ∈ D ∪ {∆} and j ∈ Ii:

Z∆,j : X∆ → Xj

Zi,∆ : Yi → Y∆

Zi,j : Yi → Xj

At last, select is the tie-breaking function, which is used to resolve collisions
between multiple components of the model. Such a collision occurs if two
components schedule their δint at the same time.

select : 2D → D

Closure under Coupling
As is proven in [ZPK00], DEVS are closed under coupling. This means that,
for every Coupled DEVS, an equivalent Atomic DEVS can be constructed. So,
instead of only allowing a network of Atomic DEVS to construct a Coupled
DEVS, we can generalize this rule by stating that a Coupled DEVS may also
consist of other Coupled DEVS.

Turning a Coupled DEVS into its Atomic counterpart is called flattening ,
for which an efficient algorithm is given in [CV10]. Another way to specify



2.2. DEVS FORMALISM 10

the semantics of Coupled DEVS is by defining pseudocode for the simulation
(as was done for Atomic DEVS) [ZPK00]. A performance-oriented view thereof
can be found in [Nut10] and, additionally, an example-driven introduction to
DEVS and its abstract simulator is presented in [Wai09].

2.2.2 Parallel DEVS

The CDEVS formalism was extended to Parallel DEVS (PDEVS) in [CZ94].
Nowadays, most simulators use PDEVS instead of CDEVS.

Instead of using a select function to choose which δint to execute, PDEVS
will allow all imminent components to execute their internal transitions at the
same time (hence “parallel”). Obviously, this also means that their λ should
also be executed, creating multiple outputs. In their turn, these multiple
outputs need to be routed to multiple external transition functions. PDEVS
makes use of bags to allow this routing. A bag can be seen as a collection of
messages. All inputs for a specific port are then gathered in such a bag, before
being passed onto the corresponding δext.

Now, whenever an Atomic DEVS model receives a bag of inputs at the
same time as it has scheduled an internal transition function, we don’t know
what should happen first. The confluent transition function δcon solves this
ambiguity by allowing the user to specify what happens in this case. By
default, δint is called before δext.

The formal description for an Atomic DEVS in PDEVS therefore becomes:

M = 〈X,S, Y, δint, δext, δcon, λ, ta〉

For the Coupled DEVS, we can identify the removal of the select function:

M = 〈X∆, Y∆, D,Mi, Ii, Zi,j〉

[CZ94] also proves the closure under coupling in this case.

2.2.3 Simulator

[MN05] describes an abstract simulator for DEVS. Tools for modeling in the
formalism, like Python(P)DEVS [Van14] and adevs [Nut15], implement these
semantics.

A simulation step for CDEVS can be summarized as follows:

1. Compute the imminent components, i.e. the Atomic DEVS models that
have a δint that’s scheduled to fire.

2. Use the select tie-breaking function to choose one of these models.

3. Generate output via executing its λ function.



2.2. DEVS FORMALISM 11

4. Send the outputted events to the correct inputs.

5. For the imminent component, execute its δint. In parallel, all δext func-
tions will be executed for the Atomic DEVS that receive events.

6. Compute the ta for each Atomic DEVS model.

2.2.4 Barriers for Non-Programmers

At Autodesk, they found that the standard DEVS specification was quite dif-
ficult to understand for inexperienced users [Mal+15]. More specifically, the
separation between the model and the simulation can become quite abstract,
especially if a simulator hides this functionality behind a visually appealing
user interface.

Autodesk set out to try and solve this issue, making use of ideas from
Human-Computer Interaction. The result is an Atomic DEVS3, as is shown in
figure 2.2.

The Atomic DEVS is initialized in the Initialization step by a set of pa-
rameters, yielding an initial state (s0). From there, it waits until some time is
passed (ta), but it can be interrupted by an incoming message in a so-called
Unplanned Event (δext), or by the end of the simulation, in which case we go to
a Finalization step where statistics can be gathered from the block. The Un-
planned Event will restart the waiting time after it is done processing. When
no interruption occurs, the block may finish waiting and go to a Planned Event
(δint). Output may be generated from the current state (λ)4 and afterwards,
we restart the timer for the next Planned Event.

2.2.5 Representation of DEVS Building Blocks

In order to create complex DEVS models (mainly in the context of combined
building blocks), these pages will denote each block with a unique, graphical
representation [Moo09], loosely based on [Tra09]. To explain this notation, an
example is given in block 2.1.

The blocks are defined by a few properties, as described below. These are
not absolute truths, but more of a guideline that will be followed throughout
the remainder of this thesis.

The input and output ports. These represent the X and Y sets, as described in
section 2.2.1. For the example given, there are three input ports (in1,
in2 and in3 ); and three output ports (out1, out2 and out3 ). An input
is differentiated from an output by the directionality of the triangle.
Usually, input ports are on the left and output ports are on the right,

3Within the context of a banking example.
4Note that the Planned Event is a representation of both δint and λ.



2.2. DEVS FORMALISM 12

Figure 2.2: Visualization of an Atomic DEVS example [Mal+15]

but depending on the block type and how it’s connected in a network, the
locations of the ports may change to increase readability. Appendix B
contains an overview of the descriptions for all building blocks that this
thesis will introduce.

The color. The background color of the blocks allow us to group them together
by topic. Those that have issues with differentiating between different
colors can still rely on the other properties defined on these blocks. In
chapter 4, it will become clear which category has which color. We’ll use
a light gray to indicate an uncategorized block.

The type. Each block has a specific type. This represents the actual function-
ality of the block in question.



2.2. DEVS FORMALISM 13

block name:
Block Type

out1

out2

out3

in1

in2

in3

Block 2.1: General depiction of a DEVS block within this paper.

The name. The name for the block. This can be used to distinguish between
multiple blocks of the same type. Whenever such a distinction is unnec-
essary, it will be omitted.

Of course, this is just a denotation used within the pages of this paper and
does not represent a must-use representation.

2.2.6 Push and Pull Systems

When talking about push and pull systems, we are talking about how the
messages are being sent. In a push system, the building blocks output a
message as soon as they’re done with it. On the other hand, in a pull system,
each block “sucks” the message from the previous block.

An advantage of push systems over pull systems is that the message only
moves from block to block if it has been processed fully. A disadvantage is that
you sometimes want to indicate you’re ready for new inputs, which is where
pull systems enter the stage.

Combined Systems
Sticking to either push or pull can be constrictive, hence a lot of systems allow
both to work in harmony. Each block is commonly given a special kind of port
that works for pulling and another that handles pushing.

Because DEVS are clearly push systems, it is pertinent we can transform a
push system into a pull system. This is a construction that will be used in a
lot of building blocks discussed further on and allows us to work with DEVS
as if they were a combined system. Instead of having a single in- and output
port, we will use some sort of “request” system. Every time we want to pull a
message, we request the previous block to push the message through. Hence,
we will introduce a request output and a corresponding receive input, for each
pull port.

2.2.7 Time Evaluation in DEVS

CDEVS are evaluated at each event, not at each time instance, meaning that
there can be multiple events happening at the same time. The select function



2.3. GPSS 14

distinguishes an order in which the CDEVS models may fire their δint.
Now, when we have a model A that’s connected to a model C and a model

B that’s connected to C and both A and B have an internal transition function
scheduled at time t, it is dangerous to assume that C will receive A’s output
and B’s output at the same function call for δext.

For the purposes of this paper, we will call each firing of a δint a timeframe.
If A and B have a δint scheduled at the same time, the timeframe belonging to
A will be executed before the timeframe of B’s δint fires (or vice-versa). Each
point in time can therefore consist of multiple timeframes. This notion of time
is also known as superdense time [SS15].

While this issue does not occur in PDEVS, it is pertinent to keep this in
mind when parallelism is not used. See section 4.7.9 for more information on
this issue and on how to prevent/bypass it.

2.3 GPSS

The General Purpose Simulation System (GPSS) [Gor78b; Gor78a; Sch74; Gor75],
originally named “Gordon’s Programmable Simulation System”5, was created by
Gordon at IBM in the 1962. It is a discrete event formalism and while it has
made way for more modern simulation and programming approaches, it is
still a powerful modeling language. Besides being a programming language,
GPSS is also a run-time environment for building and simulating discrete-event
models. After conception, multiple versions were introduced. The two most
popular ones are GPSS/H and GPSS V.

In order to show, as a proof-of-concept that GPSS can be translated to
DEVS, we will only be discussing a subset of GPSS V. The interested reader
can extend the provided functionality to cover the full formalism. [Gor75]
provides a full description of GPSS V and can be used for this purpose.

2.3.1 GPSS Syntax

In GPSS, you create models that you will simulate. These models fully follow
a textual concrete syntax. Additionally, users can also make use of a graphical
concrete syntax, that fully encompasses the same abstract syntax, but provides
a more visual representation of the models. Yet, finding a tool that provides
the operational semantics for these graphical models is rare (at the time of
writing).

Similarly to DEVS, GPSS makes use of building blocks that are connected
in a block diagram. For each of these building blocks, we’ll provide both

5The name changed when the software was released.



2.3. GPSS 15

Position Description

1 A * in this field indicates that the line is a comment.

2-6
Depending on the statement, this is either a required or posi-
tional label.

8-18 Operation to be executed.

19-71
Space-separated parameters, possibly followed by additional
comments.

72-80 Not used and often omitted.

Table 2.1: GPSS “punchcard” fields.

the textual and the graphical concrete syntax. To identify GPSS constructs
(like building blocks, parameters, entities...), we will use a typewriter font

throughout these pages.

Statements
In general, GPSS follows the old punchcard construct, where every line consists
of 80 characters. Table 2.1 lists the definitions of the fields as per [Cla92] and
[Gor75]. Every statement fits in exactly one line.

When a line starts with an asterisk (*), it indicates that the line is a
comment. If required, a positional label can be added in positions 2-6 and
positions 8-18 contain the operation that we want to execute. In positions 19-
71, the parameters and additional comments are to be placed. All parameters
are separated with a comma. When a space is encountered, the remainder of
the line is assumed to be a comment.

Alternatively, some implementations allow GPSS to be more freely con-
structed, but the above description also provides a clean readability.

2.3.2 Entities

During a GPSS simulation, certain state changes happen by the execution
of actions on primitive entities . The actions are represented by the building
blocks , whereas the collection of entities represent the current system state.

Transactions
Seeing as GPSS is a block diagram, we can state that “items” flow from one
place to another, through several blocks. The flowing “items” are called “trans-
actions” in GPSS. Such a transaction contains a set of parameters, which can
be user-defined, or set by the system. Every transaction has a priority (PRI)
and a mark time (M1). The priority identifies the importance of the transaction
(the higher, the more important) and the mark time is set to the creation time
of the transaction. These parameters can be altered by the ASSIGN and MARK



2.3. GPSS 16

blocks. During execution, at most one transaction can be active at any given
time, and it is the task of the simulator to update the state of the transaction
w.r.t. the current state of the model.

Standard Numerical Attributes
Besides the creation of certain building blocks, GPSS also allows the construc-
tion of specific constructs. These constructs are called non-mobile entities and
provide a global data structure of functionality. The most explicit usage of
these entities are standard numerical attributes (SNAs). They can be seen as
a global reference to a specific value. E.g. N5 represents the number of trans-
actions that have entered block 5 and XH$var contains the contents of halfword
savevalue with name var.

Often, the FUNCTION statement is used in combination to a random number
generator (RNG) SNA (RN1, RN2, ..., RN8)6 to provide the inverse cumulative
distribution function (CDF) for a randomized distribution. For more informa-
tion on RNG, see section 4.1.2.

2.3.3 Chains

With transactions flowing through our system, we require a way to coordinate
this behaviour. GPSS has a set of so-called chains on which transactions may
find themselves. Each transaction must be on exactly one of:

• The future events chain (FEC), which contains all transactions that are
due to move at some point in the future. They are kept in chronological
order of departure time. Transactions that need to depart at the same
time are kept in order of arrival.

• The current events chain (CEC), which consists of all transactions that
should have moved, but cannot due to some blocking condition. The
transactions are sorted by priority and in order of arrival

• A user chain, which is a chain that is defined by the user. Moreover in
section 2.3.8.

• The interrupt chain, which is the chain that holds all transactions that
are due to have control of a facility (see section 2.3.7), but were inter-
rupted by another transaction.

• The match chain, which will not be discussed in our GPSS subset.

Additionally, whenever a transaction is on the CEC, it may also be simul-
taneously on a delay chain. Such a chain indicates the specific condition for a

6These generators generate values in (0, 1000), unless used in combination with the
FUNCTION statement, where they generate values in (0, 1).



2.3. GPSS 17

transaction to be blocked. Delay chains are associated with resource allocation
(see section 2.3.7).

2.3.4 Scanning Algorithm

The beating heart of GPSS is its scanning algorithm. It defines which trans-
actions are allowed to move when and how. It can be summarized as follows:

1. All transactions in the system are sorted by priority on the CEC.

2. The first unblocked transaction on the CEC is marked as “active” and
will travel as far as possible (within the current clock time) through
a sequence of blocks. Whenever a blocking condition prevents it from
moving, it is copied to a delay chain. A transaction that is scheduled
to move at some point in the future (due to a GENERATE or an ADVANCE

block) is moved to the FEC.

3. Step 2 is repeated until there are no unblocked transactions to be found
on the CEC. When a transaction leaves a FEC, it is placed on the CEC
and we return to step 2, as long as the termination counter is not zero.

Hence, only a single transaction moves at a certain point in time. Note that
this may cause undefined behaviour when two transactions of the same priority
are required to move at the same point in time. The modeler is encouraged to
explicitly set priorities on transactions to prevent such issues. Furthermore,
each transaction should be made unique to ensure a valid execution of the
scanning algorithm in practice.

2.3.5 Flow

A transaction flows from a source (a GENERATE block, see block 2.2) to a
sink (a TERMINATE block, see block 2.3). The GENERATE block generates the
transactions, depending on a set of parameters. Let’s ignore A, B and C for
now. D indicates the amount of messages to be generated and E identifies the
priority of the generated transactions.

The TERMINATE block removes transactions from the simulation. Next, it
reduces the termination counter of the simulation with A units. Whenever this
counter reaches 0, the simulation finishes.

In the graphical representation, we identify the flow in the model with
arrows. In the textual notation, the normal block output flows into the input
of the block on the following line. For instance, the following code creates 5
transactions with priority 3 that flow into the terminate block.

GENERATE 10,0,,5,3

TERMINATE 1



2.3. GPSS 18

C, D, E
A, B

(a) Visual Notation

GENERATE A,B,C,D,E

(b) Textual Notation

Block 2.2: GPSS GENERATE block.

A

(a) Visual Notation

TERMINATE A

(b) Textual Notation

Block 2.3: GPSS TERMINATE block.

Obviously, a system like this is not too impressive. The TRANSFER block
(see block 2.4) allows the splitting and joining of multiple flows, causing more
complex systems. A identifies the mode of this block and the meaning of B, C
and D is dependent on which mode is chosen. Within our subset, we’ll only
consider the unconditional (A is blank), conditional (A = BOTH) and all (A =
ALL) modes.

Possibly, you’d like to change certain parameters of a transaction, depend-
ing on the branch that is taken. This can be done with the ASSIGN block, as
depicted in block 2.5.

Finally, a TEST block (see block 2.6) can be used to test the values of two
SNAs, A and B. Within our subset, we’ll assume C is always set to the fallback
location if the condition X evaluates to be false.

2.3.6 Time

In GPSS, there is no definition of a specific time-unit. Instead, it is up to the
user to create and analyze a model with respect to the correct time unit.

Let’s revisit the GENERATE block with this in mind. A and B identify the
time delay between transactions. That is, when a transaction is created, the
next transaction will be outputted A± B time later, where A equals a mean



2.3. GPSS 19

B   C

A

D

(a) Visual Notation

TRANSFER A,B,C,D

(b) Textual Notation

Block 2.4: GPSS TRANSFER block.

A, B, C, D

(a) Visual Notation

ASSIGN A,B,C,D

(b) Textual Notation

Block 2.5: GPSS ASSIGN block.

time and B the spread around this value. In fact, this corresponds to creating
a random integer in [A− B, A+ B]. If B is a function SNA, A will be multiplied
with the result of B. This way, more complex distributions can be used. C is
some offset time for the first transaction.

There is one more block that can influence the time in GPSS, which is the
ADVANCE block (see block 2.7). It determines a randomized delay (in the same
manner as the GENERATE block) and delays an incoming transaction for that
amount of time. Here you can sort of recognize the Advance block from our
BBL (see section 4.2.2, block 4.11).

2.3.7 Resources

Resource allocation is a major aspect in GPSS. It allows for more complex and
flexible systems. Let us identify a critical section in our models as the submodel
in which only a limited amount of transactions can gain access to. Henceforth,
we have an amount of resources that can be claimed by transactions. If there
are enough resources left, access is granted. If there aren’t, the transaction that
requested access is blocked until enough resources become available once again.
We identify three kinds of resources: facilities , storages and logic switches .



2.3. GPSS 20

A X B C

(a) Visual Notation

TEST X A,B,C

(b) Textual Notation

Block 2.6: GPSS TEST block.

A, B

(a) Visual Notation

ADVANCE A,B

(b) Textual Notation

Block 2.7: GPSS ADVANCE block.

Up to this point, all transactions were able to flow directly through the
model without any issues. Unfortunately, this is thwarted by resource al-
location. Whenever a transaction is blocked, it is moved to a delay chain,
indicating that it waits at the block that caused a blocking condition. Mul-
tiple transactions can therefore be waiting in a single block. If the GENERATE

block is followed immediately by a block that caused a blocking condition, the
GENERATE block is halted until further notice.

Facilities
Facilities are single-access resources, meaning that only a single transaction
can gain access to the resource (and therefore enter the critical section) at the
same time. To access a facility, a transaction must enter a SEIZE block. Access
can be relinquished using a RELEASE block. Both the SEIZE and the RELEASE

blocks are represented in block 2.8.
Argument A identifies the name of the facility that is requested or released.

A transaction that enters a RELEASE block must have previously gained access
to the facility. Note that it’s up to the modeler to release a facility eventually7.

Alternatively, access to a facility can be obtained via a PREEMPT block. In

7Notice the similarity to pointers.



2.3. GPSS 21

A

(a) Visual Notation of SEIZE

SEIZE A

(b) Textual Notation of SEIZE

A

(c) Visual Notation of RELEASE

RELEASE A

(d) Textual Notation of RELEASE

Block 2.8: GPSS SEIZE and RELEASE blocks.

GPSS, this block is one of the most complex building blocks. We will be using
a simplification of this block that only contains two arguments: A (the facility)
and B (the mode).

When B is not set (i.e. interrupt mode) and a transaction enters this
block, requesting access to a facility A, it will interrupt the transaction that
has obtained access through a SEIZE block. If the facility is already being
controlled by a preemptive transaction, all new transactions will be blocked.
If B equals PR (i.e. priority mode), all incoming transactions may interrupt
the transactions that have a lower priority. Such an interruption moves the
transaction that used to have access to the interrupt chain. Notice how this
can only happen when the first transaction is on the FEC.

A RETURN block simply releases access to the resource back to the last
transaction that had access. The PREEMPT and RETURN blocks are shown in
block 2.9. [Gor75] states that, when access is released or returned, the scanning
algorithm needs to restart immediately.

Storages
Storages are resource pools of a predefined size. The size is determined with
the STORAGE statement (where NAME identifies the storage name and A the
capacity):

NAME STORAGE A



2.3. GPSS 22

B

A

(a) Visual Notation of PREEMPT

PREEMPT A,B

(b) Textual Notation of PREEMPT

A

(c) Visual Notation of RETURN

RETURN A

(d) Textual Notation of RETURN

Block 2.9: GPSS PREEMPT and RETURN blocks.

These resource pools allow transactions to occupy (using an ENTER block)
or surrender some of that capacity (using a LEAVE block). Both blocks are
represented in block 2.10. A is the name of the storage to gain access to and B

identifies the capacity that is requested or relinquished.
Furthermore, the space that was taken up using the ENTER block does

not have to be the space that is freed via a LEAVE block. Additionally, a
transaction that enters a storage does not need to be the one that leaves the
storage, contrary to facilities, where the leaving transaction must have entered
beforehand8.

Logic Switches
Logic switches are resources that can either be set (true) or reset (false).
By default, all logic switches are in reset mode. A LOGIC block updates the
state of logic switch A.

GPSS also has a GATE block that is able to test certain states of the re-
sources. While [Gor75] identifies four types of GATE blocks, we will only be
discussing the block w.r.t. logic switches within the subset under study. Both
the LOGIC block and the corresponding GATE block are given in block 2.11.

8This also identifies the most apparent difference between facilities and storages.



2.3. GPSS 23

B

A

(a) Visual Notation of ENTER

ENTER A,B

(b) Textual Notation of ENTER

A

B

(c) Visual Notation of LEAVE

LEAVE A,B

(d) Textual Notation of LEAVE

Block 2.10: GPSS ENTER and LEAVE blocks.

2.3.8 User Chains

Besides the CEC, FEC, and delay chains, GPSS also allows for custom user
chains. A single process flow can put transactions on a chain using a LINK

block and another process can take a transaction out of the chain using an
UNLINK block (both blocks are shown in block 2.12). While user chains might
be seen as lists, their data structure is slightly more complex.

A LINK block can add a transaction onto a chain that’s identified by argu-
ment A. The order in which the transaction is added is identified by argument
B, which is unset if it must be added to the front. When B equals BACK, it
needs to be added to the back. Finally, B may also identify a parameter of
the transaction, in which case the transactions need to be added in ascending
order of that parameter. The UNLINK block may remove any number (C) of
transactions from the chain. Again, this can be from the front, from the BACK,
or by matching a transaction parameter, as is identified in field D. An UNLINK

block can have three outputs:

• The normal output, to which all unlinking transactions9 need to be sent.

• The location to which the unlinked transaction10 is to be send (B). Usu-
ally, if the LINK block has an argument C (i.e. a location where to send

9The transactions that enter the UNLINK block.
10The transaction that is removed from the user chain.



2.3. GPSS 24

(X) A

(a) Visual Notation of LOGIC

LOGIC X A

(b) Textual Notation of LOGIC

A

B

X

(c) Visual Notation of GATE

GATE X A,B

(d) Textual Notation of GATE

Block 2.11: GPSS LOGIC and GATE blocks.

the transactions if the chain is empty), it represents the same location
as the UNLINK’s B parameter identifies.

• An optional location (F) to send the unlinking transaction if there are
no transactions on the chain and therefore the UNLINK failed.

2.3.9 Gathering Statistics

More often than not, we might be interested in certain aspects of our models.
Be it the transit time, the average waiting time, the rate of transactions at
a certain point, or the amount of transactions that passed through a certain
block.

Some statistics are gathered automatically, like the amount of items that
entered a specific block. In the case of static entities (like resources, user
chains...), table 2.2 provides an overview of the information that is gathered
in those systems. Note that, depending on the entity, the interpretation of
the statistics may vary. As you can see, besides resources, there are also other
entities that may gather statistics.

11Depending on the entity, it may have another meaning.
12Transactions that had a transit time of zero.



2.3. GPSS 25

C

A

B

(a) Visual Notation of LINK

LINK A,B,C

(b) Textual Notation of LINK

A
C
D
E

B                F

(c) Visual Notation of UNLINK

UNLINK A,B,C,D,E,F

(d) Textual Notation of UNLINK

Block 2.12: GPSS LINK and UNLINK blocks.

Tabulation
When we’re interested in the transit time of a path in our model, we might want
to make use of the TABLE statement and the corresponding TABULATE block.
The TABLE statement creates a table that, besides the mean and standard
deviation of all gathered values, consists of multiple “buckets”. These buckets
represent a range in which the obtained values fall. Possibly, the obtained
values need to be weighted, because they represent a larger (variable) amount
of objects. To illustrate this, let’s take a look at an example from [Gor75].

Example 2.3.1 (Job Lots).
Suppose that a transaction represents a job lot, where the number of parts in
the job lot is placed in halfword parameter 5 (PH5). The model represents a
system that processes parts by the job lot and the time to measure a job lot
can be measured with the transit time. It may be necessary to recognize the
different lot sizes in order to tabulate the transit time by part.

Let table 2.3 identify the input the table receives. Table 2.3 shows the
gathered statistics of the table for the corresponding input.



2.3. GPSS 26

Statistic
Static Entity

Facility Storage Logic Switch User Chain Queue Table

Utilization X X

Transit Time X X X

Current / Contents11 X X X X

Capacity X

Remaining Capacity X

Maximum X X X

Average Content X X X

Number of Entries X X X X X X

Number of Zero Entries12 X

Status X

Mean X

Standard Deviation X

Table 2.2: Overview of the gathered statistics in GPSS by static entities.

Transaction Transit Time Lot Size

1 250 5

2 320 8

3 30 2

4 150 4

5 220 6

Table 2.3: Input for example 2.3.1.

Nonweighted Weighted

Number of Entries 5 25

Mean 194.0 231.6

Standard Deviation 110.1 84.9

100 1 2

200 1 4

300 2 11

400 1 8

Table 2.4: Gathered Statistics for example 2.3.1.



2.3. GPSS 27

Example 2.3.1 can be written in GPSS as follows:

MARK

...

TABULATE TRTM,PH5

...

TRTM TABLE M1,100,100,A6

The TABULATE block (as is shown in block 2.13) allows us to obtain the
inputs, based on a parameter of the incoming transactions. When the mark
time (M1) is used, this value is subtracted from the current time and its result
is tabulated. If you only want to obtain the information about a small part
of the model (and not from GENERATE to TABULATE), you may indicate the
starting position with a MARK block (see also block 2.14), which resets the M1

parameter value13 of the transaction to that time. Obviously, the TABULATE

block may also track other statistics.

B
 A

(a) Visual Notation

TABULATE A,B

(b) Textual Notation

Block 2.13: GPSS TABULATE block.

    A

(a) Visual Notation

MARK A

(b) Textual Notation

Block 2.14: GPSS MARK block.

13Or any parameter value that is required.



2.3. GPSS 28

Alternatively, we might be interested in identifying a bottleneck in our
system and henceforth, we use the TABLE in rate mode. Here, the statistic is
the amount of items that entered a TABULATE block over a certain time period.

Queues
When blocks deny access to a resource (as seen in section 2.3.7), the transac-
tions will wait in the block that denied the access. Because of this, implicit
FIFO queues can start to form within the model.

By default, exact information about these queues is not retained, but some-
times this information is quite useful. If we want to obtain the exact informa-
tion about such a queue, we can surround the block in which the transactions
are waiting by a QUEUE and a DEPART block. This makes the queue explicit
and allows us to reason about what happens inside. The QUEUE and DEPART

blocks are shown in block 2.15.

B A

(a) Visual Notation of QUEUE

QUEUE A,B

(b) Textual Notation of QUEUE

B A

(c) Visual Notation of DEPART

DEPART A,B

(d) Textual Notation of DEPART

Block 2.15: GPSS QUEUE and DEPART blocks.

Notice that the QUEUE and a DEPART blocks do not need to surround a single
block, but in fact may surround a submodel instead. Therefore, these queues
may be nested14.

14And a transaction can therefore be in multiple explicit queues at the same time.



CHAPTER 3

Tools, Frameworks and Libraries

Before we dive into the creation of the building block library, it is important
to get a solid understanding of the libraries and software that already exists.
Section 3.1 provides an overview of five tools that will help us get a solid
understanding of the requirements for production system models. They define
which functionalities are useful in a practical context, preventing us from the
need to create a building block for every single function that comes to mind.
Section 3.2 will discuss some already existing DEVS frameworks, and more
specifically, the libraries of building blocks they provide. Here, we will get a
solid understanding on what is already out there and what we can compare
our library against. At last, section 3.3 will discuss some software that can be
used to model in GPSS.

3.1 Tools

In order to make sure the building blocks we create are useful in practice, we’ll
look at existing tools and the functionality they provide. In this section, we
will see an overview of five tools that will help us get a solid understanding of
the requirements for production system models. Chapter 4 will delve deeper
into the actual building blocks and their functionality by referring back to
these tools. For the purposes of our library, we will make sure most features
that these tools provide will also be available in our set of building blocks.
Yet, we still have to keep the design of DEVS in the back of our head. This
inherently implies that not all functionality can be represented.



3.1. TOOLS 30

3.1.1 ExtendSim

In 1987, Imagine That, Inc. released the software Extend for Macintosh. It
originally only allowed for continuous modeling, but in the subsequent years
discrete-events, hierarchy, interactivity and many more features were added1.
In 2007, they changed the name of the software from Extend to ExtendSim,
which is what it is known as today.

ExtendSim is used by Stanford University, Pitney Bowes, P&G, Northrop
Grumman, the Canadian army, Boeing and many more. It has a clean and
logical user interface that optimizes user experience.

Most of the knowledge on this tool will be inspired upon the manual for
Extend v5 [Dia+00], but all provided functionality is still available to this day,
which is why all citations for this tool will fall under [Ima87].

Building Blocks and Functionality
ExtendSim provides about one hundred building blocks by default, separated
in unique libraries that flawlessly describe their overarching functionalities.
Additionally, it is possible to add more libraries (and thus more blocks) and
create custom blocks. This makes the tool flexible, expandable and incredibly
useful to work with. On top of that, ExtendSim comes with a debugger that
allows users to easily find issues in their models.

Does ExtendSim map to DEVS?
It is hard to fully create an unambiguous and straightforward mapping between
an ExtendSim building block and an Atomic or Coupled DEVS model. Most of
the blocks themselves map quite flawlessly, i.e. they optionally take inputs,
analyze and/or transform them and output the (new) values. Yet, not all
blocks follow this structure.

If we look at the blocks in the Report Library (among others), we can
clearly see that these blocks provide an analysis over the entire model or a
submodel thereof. They do not take any input ports, but instead use an inter-
nal knowledge of all blocks in the model. While they might not be represented
by blocks in a DEVS library, we can still provide the required functionality by
making use of some simulation tracers2. Alternatively, in some cases, adding
a collector (see section 4.3) might provide the required functionality.

On top of that, the ports of these building blocks are either push or pull
ports (see also section 2.2.6). It has been described before that DEVS uses
push ports and pull ports can be transformed as such.

Long story sort: most ExtendSim functionality maps onto DEVS, either by
specified building blocks, (additional) connections and/or simulation tracers
and manipulators.

1Including a release for Windows in 1995.
2These are possible in Python(P)DEVS.



3.1. TOOLS 31

3.1.2 SIMUL8

Whereas ExtendSim’s main purpose lies within assembly lines and factories,
SIMUL8 [SIM94] can be used to model full business processes. It’s a tool
that’s be used for planning, design, optimization and reengineering of such
processes. This can be done using their own building blocks, Statecharts3,
Buisiness Process Model and Notation (BPMN) and Value Stream Mapping
(i.e. Lean Manufacturing).

To quote their own website:

“Launched in 1994, SIMUL8 was quickly embraced by organiza-
tions across a wider range of industries beyond manufacturing -
from healthcare, to call centers and even government bodies.”

SIMUL8 is used by Nokia, Coca-Cola, McDonalds, Cisco, Unilever, Dell...

Building Blocks and Functionality
What SIMUL8 lacks in a building block library (a mere 25 blocks) is made up
by their numerous menus and tools.

The building blocks contain the basics of any kind of simulation on top
of the most common blocks for BPMN, Work Item State Charts and Lean’s
Value Stream Mapping. Surprisingly, this is enough for a multitude of different
models.

On top of that, SIMUL8 has (what they call) “Ribbon Tabs”. These are
some tabs on top of the screen that allow for analysis, logic and configuration
of certain blocks, the simulation and the overall system.

Does SIMUL8 map to DEVS?
Yes, it does. If we ignore the Kaizen and Manual Information blocks (which
are technically only graphical elements as far as SIMUL8 is concerned), each
block takes inputs, processes them and outputs them. The Routing Arrows
are simple connections if we assume all ports are push ports. As far as the
provided functionality is concerned, most of them can be solved by adding a
tracer to the simulation. The others may be implemented as building blocks.

3.1.3 FlexSim

FlexSim [Fle93] is a 3D simulation tool that allows users to build their own
factories, assembly lines, business processes... in an actual 3D world. It was
originally released in 1993 by F&H Simulations. In 1998, F&H Holland developed
a first generation simulation engine for 3D objects. When F&H Holland was
acquired in 2000, the development for a new tool FlexSim started, with its first
release in 2003.

3While called “State Charts”, the blocks correspond more to a glorified version of FSA.



3.1. TOOLS 32

The tool allows for analysis, visualization and improvement for real-world
processes. It is used by Ford, Amazon, Michelin, FedEx, Apple, ABInBev and
many, many more. On top of that, FlexSim is currently aiming towards Industry
4.0 and, in fact, it even supports VR/AR, autonomous systems and digital
twins.

Building Blocks and Functionality
Anyone that has ever worked with 3D modeling and animation engines, like
Blender [Ble98], Maya [Aut98], 3DS Max [Aut96], Cinema 4D [Max90], Unity
[Uni05], Unreal Engine [Epi98]... will immediately understand the controls and
functions of FlexSim. Yet, because of the easy-to-use interfaces, extensive user
manual and numerous tutorials, 3D experience is no necessity and anyone can
get started with this tool.

There are about seventy building blocks that come with FlexSim (excluding
the ones available for process flows), most have an accompanied 3D model,
making it perfect for you to create a digital model of any system under study.
If your machines don’t look like the ones provided, you can also use your own
3D models.

Does FlexSim map to DEVS?
Before this question will be answered, it is important to note that FlexSim is
3D-oriented software, whereas DEVS is a basic concept and ideology. There-
fore, any building block that is purely for visual purposes can be ignored from
the question. For instance, the Visual section of building blocks, among others,
can be excluded.

With that out of the way, there are two major remaining sections in the
list of building blocks. For starters, the industrial blocks do map onto DEVS.
They take a set of inputs, process them (possibly with a delay) and outputs
them via one of the output ports. An issue there is here is the flexibility of
these ports. Any block can have any number of inputs and outputs, all of
whom do exactly the same thing. It’s up to some internal delay or condition
to determine block specific results. This includes routing to particular output
ports.

A main caveat in this comparison is the fact that the connections and
building blocks can “back up”, meaning they can start overflowing when to
much items arrive. We may ignore this issue if we make use of the pull/push
structure, described in section 2.2.6 and when we introduce a building block
that can store all the overflowing information (see the Queue block, section
4.2, block 4.8b).

Secondly, there are the blocks that handle artificial intelligence (AI) within
the model. FlexSim offers a way to also program certain paths agents4 can take.
It brings life to your models, now you can actually see the staff working and

4people (customers, staff...) or vehicles



3.1. TOOLS 33

transporting items outside of some conveyors, machines, pipes... In [KK00],
Jae-Hyun Kim and Tag Gon Kim define MDEVS, which is an extension of the
DEVS formalism for mobile agents. Hence, it is possible to extend DEVS to
work with user agents, yet, we will ignore it for the purposes of this thesis.

3.1.4 Enterprise Dynamics

Introduced in 1998, Enterprise Dynamics (ED) [INC97] was developed by S&F
Simulations5 as Taylor Enterprise Dynamics. In 2000, when F&H Simulations
was acquired, the company changed their name to INCONTROL Simulation
Solutions, separating from FlexSim Software Products.

ED is a discrete-event based simulation software platform that is applied in
numerous fields. It is used by Philips, KNAPP AG, Volvo, Schiphol Amsterdam
Airport, Integrate, JDE...

Building Blocks and Functionality
The tool is object-oriented and models follow a clean workflow. Similar to
FlexSim, any block (in ED called “atoms”), there are multiple input and output
ports possible. In total, there are roughly sixty atoms available to suffice your
modeling need.

Given the history between FlexSim and ED, it is difficult not to see ED as
the (more theoretical and abstract) little sister of FlexSim. They both provide
the same modeling functionalities and even the 3D-view ED provides, while by
far inferior6, can be made to show the same information.

Does ED map to DEVS?
If we use the same logic as we did for [Fle93] and ignore all AI-oriented build-
ing blocks, we can clearly see that the remaining functionality is somewhat
mappable to DEVS.

Atoms are connected via channels that can be open or closed. It is not
possible for items to flow over closed channels, making the model revert to an
error state when such an event occurs. DEVS does not have error states by
default, yet they can be seen as an event that fires, which can be captured
elsewhere.

3.1.5 LEGO Mindstorms

The odd one out, LEGO Mindstorms [LEG13] was conceptualized in the 1980’s
from a collaboration between the Massachusetts Institute of Technology (MIT)
and the LEGO Group as a way to do research and learn. In 1998, LEGO released
the Robotics Invention System as LEGO Mindstorms.

5Yes, the very same that created FlexSim’s precursor.
6ED is not a 3D-tool, in comparison to FlexSim, so this is to be expected.



3.2. DEVS FRAMEWORKS AND LIBRARIES 34

Besides it being a reconfigurable robot made out of LEGO building blocks,
LEGO Mindstorms has a programmable core that can understand any number
of languages, yet they also provide some sort of Scratch [Res+09] interface for
programming. It is this programming interface that we will discuss as a tool.

Building Blocks and Functionality
Most of the building blocks are technically the same: they send and receive
signals to and from external actors or sensors. The other blocks allow for
simple routing, visuals and mathematics. There is not too much to it, yet
their flexibility for each block is desirable.

LEGO Mindstorms comes with a Random block, which has only two kinds
of distributions: a uniform integer distribution and a Bernoulli distribution.
Most other tools provide a more expansive set of distribution functions. See
also section 4.1.2.

Does LEGO Mindstorms map to DEVS?
From the provided blocks, it is quite clear that the tool works like a Flowchart
[Eur+66] editor, which is translated to machine instructions behind the scenes.
Luckily, Flowcharts can be easily mapped onto DEVS.

Furthermore, [LEG13] provides a way to read and write variables for later
use, which is a feature that normal DEVS can obtain via using additional input
ports and a well thought-out set of connections.

3.2 DEVS Frameworks and Libraries

DEVS is not brand new, so it stands to reason that there are already some
frameworks and libraries out there that provide an implementation of DEVS.
In fact, we will be using such a library (Python(P)DEVS, [Van14]) to implement
our building blocks.

[VV17a] provides a comparison between different DEVS tools. The inter-
face, features and performance is analyzed. [Ris+17] provides an in-depth
comparison of performance. Hence, we will not be focusing on performance,
but mainly on which building block libraries (BBLs) are already offered within
the context of DEVS. Furthermore, building blocks that are provided within
examples of the tools will be considered case-specific and, therefore, these
blocks will not under discussion.

3.2.1 Python(P)DEVS

The framework on which we will be building our BBL is Python(P)DEVS
[Van14]. It is a Python implementation that supports both CDEVS, PDEVS
and Dynamic Structure DEVS [Bar95]. Additionally, it is efficiency-oriented



3.2. DEVS FRAMEWORKS AND LIBRARIES 35

[VV14] and distributed [VV15]. A tutorial for modeling with Python(P)DEVS,
following the CDEVS formalism is given in [VV17b].

A major drawback for possible users is the lack of a building block library,
forcing them to write their own blocks for the use cases they’re trying to
model. While this provides flexibility, often, blocks need to be remade within
the context of a new system. Hence, this thesis fills this gap.

3.2.2 DEVSimPy

Built on Python(P)DEVS, DEVSimPy [Cap19; Cap+11] aims to provide a GUI
for the modeling and simulation of DEVS. It comes with 8 building blocks
and users may add more (presumably starting from the PowerSystem blocks
they refer to in their tutorials). In table 3.1, the basic building blocks are
listed, together with the category they belong to. Note that these are only the
building blocks that work right off the bat.

Category Block Function

G
en

er
at

or
s FileGenerator

Extracts data from a standard CSV file
and uses it with the DEVS formalism.

RandomGenerator Outputs a random integer in a range.

XMLGenerator
Extracts data from a standard XML file
and uses it with the DEVS formalism.

C
ol

le
ct

or
s

MessagesCollector Writes messages to a file.

Plotly For Class
Plot classification results as a graph for
plot.ly

QuickScope Plots the data results in a window.

To Disk Writes results to a text file.

To Pusher Pushes results to a web socket.

Table 3.1: Default building blocks in DEVSimPy.

From here it becomes clear we need to provide the functionality to create
both random numbers (see section 4.1.2) as well as read messages from tables
and files (see sections 4.1.1 and 4.5). Furthermore, we require the functionality
to obtain results (see section 4.3).

3.2.3 JDEVS

JDEVS [FB04] is a DEVS framework, written in Java and was (at the time of
writing) last updated in 2001. Despite a simple example that comes bundled
with the project, this framework does not provide any building blocks for users
to start from.



3.2. DEVS FRAMEWORKS AND LIBRARIES 36

3.2.4 adevs

A discrete-event system simulator (adevs, [Nut15]) is a C++ library for con-
structing models according to the PDEVS and Dynamic Structure DEVS [Bar95]
formalisms. It is not a framework and should therefore be linked correctly to
C++ code that uses it, but, nevertheless it is a powerful library that provides
full control to the user. Because it is a library, the only associated building
blocks it provides are example-specific and can therefore not be extended to
our concept of a BBL.

3.2.5 DEVS++ and DEVS#

Both DEVS++ [Hwa07b] and DEVS# [Hwa07a; Hwa07c] are libraries for the
DEVS formalism, written respectively in C++ and C#. With the former
being the original version and the latter a port to C#, which is preferred by
the author. This allows us to look at both libraries as one within the provided
context.

Unfortunately, neither of these libraries come with a set of predefined build-
ing blocks and therefore they still require all users to build their own, similar
to adevs and Python(P)DEVS.

3.2.6 DEVS-Suite

The successor of DEVSJava [SZ98], DEVS-Suite [KSE09], is a tool that allows
for the visualization of Coupled model simulation, event injection and simula-
tion tracking. Both Atomic and Coupled DEVS models need to be written in
Java and compiled, before loaded in the tool. By default, no building blocks
are provided with the tool. Yet, when downloading all tools as mentioned in
[VV17a], the building blocks required to create the sample models are included.

3.2.7 DesignDEVS

Created by Autodesk as a thought-experiment, DesignDEVS [GBK16] is an idea
for a software application, specifically designed to help researchers collaborate
on simulation projects. The main goal of the concept was to create a way
to represent DEVS in such a way that it became easily understandable for
non-programmers [Mal+15].

It would have allowed for visual coupling of complex models and the cre-
ation of new Atomic DEVS models, using Lua. Important to note is that it
would not fully follow the DEVS formalism, i.e. the δint and λ functions were
merged into a single function that is allowed to change its state and generate
output. This was done for efficiency purposes7. Autodesk never disclosed any
ideas for a building block library.

7Yet, its correspondence to CDEVS or PDEVS can be easily proven.



3.3. GPSS TOOLS 37

3.2.8 DEVS-Ruby

DEVS-Ruby [Fra+14] is a DEVS simulator, written in Ruby. Currently, it is re-
placed by Quartz [Fra+18], written in Crystal. Whereas the original simulator
had some common building blocks available (see table 3.2), Quartz does not.

Category Block Function

G
en

er
at

or
s

CosinusGenerator
Generates values according to a co-
sine function.

SinusGenerator
Generates values according to a sine
function.

CSVRowGenerator
Reads a standard CSV file row by
row and outputs its data.

RandomGenerator
Generates random integers in a
range.

SequenceGenerator
Generates a sequence of integers in a
range.

C
ol

le
ct

or
s

AsyncTempfileCollector Writes a trace to a file.

CSVCollector
Writes messages to a file, following
the CSV format.

DatasetCollector Writes messages to a dataset.

HashCollector
Collects the messages in a hashmap
(time, message).

PlotCollector
Creates a Gnuplot [WK04] from the
arriving messages.

TempfileCollector Writes messages to a temporary file.

Table 3.2: Default building blocks in DEVS-Ruby.

As you can see, we can make the same conclusions as we did in section
3.2.2. We need at least the generation of events (section 4.1) and collection
thereof (section 4.3).

3.3 GPSS Tools

Despite being somewhat out of fashion, there are still a few tools that still
provide a possibility to model in GPSS. Note that the focus lies on the tools
that are still readily available and can be downloaded, at the time of writing.



3.3. GPSS TOOLS 38

Whereas [St̊a+11] also mentions GPSS/H, STX and Proof Animation as
valid GPSS tools, they were created by the Wolverine Software Corporation,
which seems to have gone out of business8. Similarly, GPSS V and GPSS/360
[Gou69] are not supported by IBM anymore.

In appendix C, there is an overview of which GPSS blocks are available in
which tools. This table is an expansion of table 1 from [CC09].

3.3.1 HGPSS

In [Cla92], the GPSS formalism has been extended to HGPSS, which intro-
duces hierarchy. Therefore, a hierarchical description that corresponds to this
formalism can be simulated with the corresponding C++ code.

3.3.2 GPSS World

GPSS World [Min10] is a lightweight GPSS simulator, created by Minuteman
Software in 2010. It implements a powerful simplification of the GPSS formal-
ism that is introduced in [Gor75]. Despite being somewhat rough around the
edges9, it is quite user-friendly and provides an extensive documentation.

3.3.3 GPSS/H

Developed by Wolverine Software, GPSS/H [Cra97] is a command line interface
(CLI) for modeling in GPSS10. It allows you to enter a filename, which contains
a full GPSS description and creates a *.LIS file, which contains the report of
the simulation. Because Wolverine Software does not seem to exist anymore,
there is not much documentation on the usage of this tool.

3.3.4 JGPSS

JGPSS [CC09] is a Java-based framework that is intended to teach GPSS to
students. It allows users to graphically create a set of processes by linking
blocks together. The tool does not implement all functionality that is described
in [Gor75], but nevertheless it is a useful tool for modeling in GPSS.

3.3.5 aGPSS

aGPSS [St̊a99] claims to be the most modern version of GPSS and provides
modeling in both the visual and the textual concrete syntax. There is an
extensive documentation and focuses mainly on making GPSS accessible for
students.

8Nevertheless, GPSS/H will still be discussed.
9Some features have been “under development” for over a decade.

10Technically, GPSS/H allows modeling in a superset of GPSS.



3.3. GPSS TOOLS 39

When compared to [Gor75], aGPSS makes use of a different, smaller, set of
blocks. For instance, the TRANSFER block is replaced by a GOTO block that
provides less possibilities. This is the reason we will not be using this tool as
a baseline for GPSS.

3.3.6 AToM3

AToM3 [LV02a; LV02b] is A Tool for Multi-formalism and Meta-Modelling
that’s under development at the Modelling, Design and Simulation Lab (MSDL).
It’s the precursor of AToMPM [Syr+13]. Besides being quite powerful in nu-
merous formalisms, meta-modeling [Küh06] and model transformations [Küh+10],
it also provides a graphical user interface for modeling in GPSS. From such a
graphical representation, a textual denotation is generated, which can be sim-
ulated by other tools to get the required results.



CHAPTER 4

PythonDEVS-BBL

As is shown in section 3.2, there are quite some DEVS frameworks out there,
but most of them are lacking a building block library (BBL) for new users
to start modeling right off the bat. Often, there is a required overhead of
creating the building blocks that are necessary within the context of your
problem domain. Section 3.1 in its turn provided a general idea of building
blocks that are used in professional contexts for discrete-event modeling.

This chapter will describe a set of building blocks, based upon the informa-
tion gathered from the tools, frameworks and libraries that were described in
chapter 3. These blocks will follow the formal CDEVS formalism, but may be
expanded to PDEVS by the interested reader. Additionally, we want to make
sure the described BBL is both extensive (i.e. many building blocks can be
used for many problems in numerous domains), as well as deficient (i.e. we
cannot possibly present building blocks that span the full semantic domain, so
we will provide a set of blocks that can be used in many areas of this domain,
omitting rare constructs and functions).

Furthermore, the BBL will be written specifically for Python(P)DEVS and
can therefore exploit some subtleties that Python has to offer. Furthermore,
it will make use of some initialization features, as in [VV18], by making use
of some class constructor arguments. Within the pages of this paper, building
blocks are identified with the Small Capitals font style.

Throughout this chapter, we will discuss Generators (4.1), Queueing Sys-
tems (4.2), Collection Techniques (4.3), Mathematical Blocks (4.4), I/O Han-
dling (4.5), Data Transformations (4.6) and Routing (4.7).



4.1. GENERATORS 41

4.1 Generators

Whether you’re modeling a business process, a factory, a flow system, or a
waiting line in a store, more often than not you will be needing a generator.
Generators are small building blocks the generate either items, or numbers
that can be used by the rest of the system. We identify two categories of
generators for numbers: standard generators (see section 4.1.1) and random
number generators (RNG; see section 4.1.2).

Alas, we do not always want to generate a number, but we might need an
actual item. While we could introduce an item generator, we would lose the
multitude of possibilities presented with standard generators and RNG. If you
really need an item, one could transform a number to an item (moreover in
section 4.6).

4.1.1 Standard Generators

Standard generators is the category of generators where the generated results
are incredibly predictive and reusable, because items are generated according
to a mapping of a time t to a value v. This can be either a function f(t), or a
table with columns t and v.

Functional Generators
Our function f(t) can be as simple or as complex as we’d like, depending
on what we need in our model. The simplest case is a Constant block, as
it is known in [Ima87] and [LEG13], that continuously outputs a predefined
value. We will define a Constant Generator (see block 4.1), where f(t)
continuously outputs the constant value c. A generator like this can be useful
for a constant flow of items.

The Constant Generator has two inputs: dt and value that respec-
tively allow for updating the time delay between outputs and the value that’s
being outputted. Note that a change in dt should keep the already passed
time in mind. This may lead to strange behaviour when dt is smaller than
the already passed time1. The output is sent periodically over the out output
port.

A more complex, but presumable often used version of f(t) is the following:

f(t) =

{
IC if t = 0

f(t− 1) · c+ v otherwise

Where we have IC as our initial condition for f , i.e. the very first value to
start from, c a multiplier to allow for both arithmetic and geometric progres-

1To prevent ambiguity, we will assume that the next output must be sent immediately.



4.1. GENERATORS 42

Constant
Generator

output

dt

value

Block 4.1: Constant Generator building block.

sions; and v a value to increase our output with. When using this version of
f(t), we talk about an Incrementor that basically allows for mathematical
progressions. In its most rudimentary form, we have f(t) = t (when IC = 0
and v = c = 1, assuming our time delay also equals 1).

Function
Generator

outputdt

Block 4.2: Function Generator building block.

Now, of course, it does not have to end there. A Function Generator
(see block 4.2) allows the user to precisely identify which function f(t) to use.
This way all kinds of standard generators can be represented. The dt input
provides a way for the user to change the delay between outputs.

We will classify the Incrementor as a special case of the Function
Generator.

Generating from Tables
But what when the input data cannot be represented with a function? Simple,
we can use a Table Generator (see block 4.3) that has a lookup table of
all values v, for all times t. Additionally, some complex functions may take
too much time, or may require more memory than the hardware supports.
This is usually the case for complex recursive functions. Anyhow, in those
cases one might consider generating a table of all the values and use a lookup
table instead, similar to sine wave (or other function) implementations in old
calculators. For unknown values, different interpolation mechanisms may be
used. Whenever the simulation time reaches t, v will be outputted.

[SIM94] allows tables that generate items to repeat as soon as they have
outputted all their values. For instance, if we know that we have a certain
number of customers arriving for each hour, which remains consistent over
several days (e.g. every day, at 8 a.m., there arrive 3 customers, at 9 a.m.
there arrive 10 customers and at 10 a.m. there arrives no one), we can put
this into a table and make the table repeat itself at the end.



4.1. GENERATORS 43

Table
Generator

output

Block 4.3: Table Generator building block.

Henceforth, our Table Generator also has a constructor argument in-
dicating its repetitiveness.

4.1.2 Random Number Generators

To illustrate the use of randomization in models, imagine the following sce-
nario:

Example 4.1.1 (Sportswear Store).
You are the owner of a big sportswear store and a heatwave has been announced.
From your experience, you know, due to the warm weather, more people will
come by and buy some material they need to cool down. Now, you want to hire
more staff to man the cope with the demand of customers, but you have no
idea when best to put them to work. And then you remember this is a problem
you can model.

You boost off, modeling your store when it hits you: you don’t know how
many and when customers will arrive, so you need to guess. Only you know
this cannot be a constant stream, because of the realism you want in your
model. It’s also probably not predictable with a mathematical progression, or a
function at all.

So you decide you need a table. The first day of the heatwave, you record
when customers arrive and when they leave. But the second day comes by and
soon you realize that the table you created does not match that day’s customers
at all. You realize it’s random. Probably predictable with some sort of statistical
analysis, but random nonetheless.

Admittedly, the context of the above-mentioned problem is quite specific,
but the problem is not. In modeling contexts, randomness occurs incredibly
often, mainly because it also introduces realism into our models. And this
randomness can be obtained via random number generators (RNG).

RNG are generators that have one simple job: generating a random num-
ber. “Random” being the operative word, because what is random?

Imagine throwing a fair six-sided die six times. No matter what you threw,
the outcome must always classify as random, theoretically that is. There is no
formula, no correlation between each of the throws and every result has as much



4.1. GENERATORS 44

chance as any other for appearing. But what if you threw 2− 2− 2− 2− 2− 2
or 1− 2− 3− 4− 5− 6 ? The result is still random, only we do not seem to
perceive it as being random [LEc01].

Within those sequences, we can easily see a pattern. In fact, the human
mind is, albeit subconsciously, always doing pattern recognition2. Sometimes
we see faces and shapes where there are none (pareidolia), or, as we have here,
we identify patterns within randomness (patternicity, [She08]).

Would the occurrence of these sequences in a RNG make for bad random-
ness in a system? Probably. It depends on the context in which the user
decides to use the generators. Are some generators better at overcoming this
problem? Definitely! The quality of an RNG is therefore dependent on its
predictiveness .

Pseudo-Randomness
Before we go into detail on different kinds of RNG, it is important we are
aware of some additional concepts, which, in return, will yield a good enough
set of criteria to test our RNG.

Let’s say you have a perfect, flawless RNG that reduces the above-mentioned
predictiveness massively. And now you want to conduct an experiment that
uses an RNG, but in such a way our experiment always yields the same results.
Even though this seems to reduce its randomness, the usefulness of the possi-
bility to do this is massive. Many statistical tests and simulations require us
to have reproducibility in our system. This way, if you conduct an experiment,
and require its outcome to be the same, you can do so.

But we can’t actually speak of “random” anymore, because it’s random-
ization is set to be constant. This is why, when we talk about RNG, what
we actually mean is pseudo-RNG . The most common generators are the linear
congruential generator (LCG) and the multiplicative congruential generator
(MCG), which is a special case of the LCG.

Another issue we have with randomness is the fact that computers are not
good at it. This is mainly due to the fact that any generation of random-
ized data from a computer follows a static algorithm or mathematical formula,
which is predefined. While the randomness can be introduced via a physical
device, like noise from electrical diodes, computer-generated RNGs aren’t ac-
tually made to be random, but merely appear to be. This is yet another reason
we call them pseudo-RNG or algorithmic RNG [LS07].

Randomized Distributions
Within the domain of computational statistics, we might be interested in hav-
ing an RNG that generates numbers according to some distribution; i.e. the

2This is even a branch within psychology and cognitive neuroscience! And its existence
is not even a bad thing either. It allows us to draw, recognize (emot)icons and determine
that the black camouflaged face in the bushes is, in fact, a panther.



4.1. GENERATORS 45

outcome is distributed according to a probability density function (PDF). Do
we create a new RNG for each PDF we want to sample from? Obviously not.
So how do we solve this then? Luckily the problem of creating an RNG can
be simplified:

1. Generate imitations of independent and identically distributed (i.i.d.)
random variates, having a uniform distribution over the interval (0, 1).

2. Apply transformations to these variates, so they match up to arbitrary
distributions.

If we define the first step (generation i.i.d. U(0, 1)) as being the RNG itself,
we just need a set of transformations that apply, no matter which RNG was
used. As mentioned in [LEc12; Dev86; Law14], the simplest way of generating
a random variate X with cumulative distribution function (CDF) F from a
U(0, 1) random variate U is to apply the inverse of F to U :

X = F−1(U)
def
= min{x|F (x) ≥ U} (4.1)

For completeness’ sake, we can prove this theorem as follows:

P [X ≤ x] = P
[
F−1(U) ≤ x

]
= P [U ≤ F (x)] = F (x)

3 2 1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

(a) Cumulative Distribution Function,
F (x)

0.0 0.2 0.4 0.6 0.8 1.0

3

2

1

0

1

2

3

(b) Inverse Cumulative Distribution
Function, F−1(x)

Figure 4.1: Plots for the Standard Normal Distribution.

Take a look at figures 4.1a and 4.1b. In the former, the CDF of the stan-
dard normal distribution function is shown. The same CDF, with its axes
swapped, is displayed in the second figure. Basically, what the proof says is:
we generate a random value, which we use as the x-value of the inverse CDF
of our distribution. This value will be in the range of (0, 1), per definition of



4.1. GENERATORS 46

the CDF. Seeing as our CDF will always be a bijection3, the inverse CDF will
always yield a corresponding y-value for each input.

If we now generate a sequence of random values in the range (0, 1) and, for
each of these, we return their inverse CDF F−1, then the resulting sequence
will be distributed according to the original PDF.

Thus, we’ve restricted our problem domain for finding good RNG to finding
a good RNG that generates numbers i.i.d. U(0, 1). Please be aware that both
0 and 1 are exclusive within this context, seeing that F−1(U) is often infinite
when U is 0 or 1. However, within the analysis in the RNG, one may assume 0
is admissible, because this allows for major simplifications, while having close
to no difference in the mathematical structure of the generator [LEc12].

Inverse of the CDF
We’re left with one single question in this problem: how to find the inverse of
the CDF F , called F−1? [Law14] discusses seven different techniques on how
to do this4, all of whom will be summarized below. We will also discuss some
advantages and disadvantages for all methods. Additionally, one more method
will be added, that was not mentioned in [Law14], but is the core behind the
code from [LS07].

Closed-Form Formula. Depending on your expertise and algebraic pro-
ficiency, you might want to create the equation(s) for F−1. And while this
method will yield the best results and is the most precise, there are a few
caveats.

As anyone with a lot of experience with problems like this will tell you, an
error is easily made and often F has pre- and postconditions. Even if they
seem simple and often logical, it is important to also transform these into the
pre- and postconditions of F−1. If you don’t, you might turn a blind eye for
certain edge cases, which may yield invalid results, but are hidden behind the
randomness of the RNG.

Also keep in mind not all CDF can be defined under a closed-form formula.
Even if they can be, F might become so complex, the computation thereof can
be such an overhead we might want to take a different approach. In table 4.1,
you can find a list of some commonly used distributions and their inverse CDF,
under a closed-formula (based on [Law14] and [Hek16]).

Inverse-Transform Method. Also called Smirnov transform [Fau19], the
inverse-transformation method is based on the intuition that the PDF f of

3Which can be easily proven via the fact that a CDF is a continuous, increasing function
4The first of which he does not denote individually, but was added in this paper for

completeness.



4.1. GENERATORS 47

Distribution F F−1

Continuous

Uniform
F (x) =

x− a
b− a

F−1(x) = a+ (b− a) · x

Exponential F (x) = 1− e−λx F−1(x) = − ln(x)

λ
Weibull F (x) = 1− e−(x−v

λ
)k F−1(x) = v + λ k

√
− ln(x)

Log-Logistic F (x) =
(
1 + (x/α)−β

)−1
F−1 = α

(
y

1− y

)1/β

Discrete

Uniform
F (x) = (bxc − a+ 1) /n F−1(x) = a+ b(b− a+ 1) · xc

Geometric F (x) = (1− p)x F−1(x) = blog1−p(x)c

Table 4.1: Closed-formula form of CDFs (and their inverse) of commonly used
distributions in modeling. See also appendixes A.1 and A.2.

a random variable can also be interpreted as the relative chance of observing
variates on different parts of the range.

Therefore, we know that if we sample f in n equally sized samples, where
its x-values {x0, x1, x2, ..., xn} cover the entirety of f ’s domain and its y-values
{y0, y1, y2, ..., yn} the corresponding function-values of f(xi), the corresponding
value in the CDF F can be approximated as follows:

F (xi) =
i∑

k=0

f(xi) =
i∑

k=0

yi

Our F−1 can now be identified in 3 ways:

1. F−1(u) is the first value xi where F (xi) exceeds u

2. F−1(u) is the last value xi where F (xi) does not exceed u

3. F−1(u) is an interpolation between the last value xi−1 where F (xi−1)
does not exceed u and the first value xi where F (xi) exceeds u

An algorithm for the first of the options is given in algorithm 1, but can be
easily and logically expanded to the other options. The third option is illus-
trated in figure 4.2. The blue line identifies the standard normal distribution
and the orange area shows the area that’s being computed.

This method is especially useful if there is no known closed formula to be
found for a certain CDF. Unfortunately, this algorithm merely calculates an
estimate of the value and on top of that, we need to keep in mind this algo-
rithm needs to run on a computer. If our f is precise and incredibly complex,



4.1. GENERATORS 48

3 2 1 0 1 2 3
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Figure 4.2: Inverse-Transformation with interpolated values.

it is perfectly possible there are rounding errors and computational errors. Ad-
ditionally, assuming f(x) can be computed in O(1) time, the algorithm takes
O(n) time in a worst case scenario.

Algorithm 1 Compute an estimate of the inverse of CDF F , based on PDF
f , using inverse transform sampling.

1: procedure Inverse Transform(u)
2: s← 0.001 . Step size s. The smaller the more precise.
3: x← 0
4: p← f(x)
5: while u > p do
6: x← x+ s
7: p← p+ f(x) . p contains the estimate of F (x)
8: end while
9: return x

10: end procedure

Composition. In the rare case our distribution F can be expressed via a
convex combination of other distributions F1, F2, ..., we might want to use
composition. Of course this is only useful if the other distributions are less
complex. We assume that for all x, F (x) can be written as

F (x) =
∞∑
j=1

pjFj(x)



4.1. GENERATORS 49

where all pj are probabilities5.
An algorithm that follows this formula can be summarized in one sentence:

we choose a Fj with probability pj that corresponds to the area you’re looking
at. Intuitively, you just divide your CDF into different areas that correspond
to the set of distributions. Depending where the random variable in (0, 1) falls,
we choose the corresponding distribution for its computation.

Convolution. If the desired random variable X can be expressed as a sum
of other variables Y1, Y2, ... convolution can be used. All we have to do is
generate all Yi and return their sum. It’s a clean algorithm, but rarely used
and incredibly inefficient (as described in [Law14]).

Acceptance-Rejection. When the other methods fail or are inefficient, the
acceptance-rejection method might just work out. We require a special function
t (the majorizing function), which is an upper limit for f . From this t, we
will generate a new density function r which we will use to determine an
approximation for F . Nevertheless, this method is an excellent use case when
you want to simplify your distribution.

Ratio of Uniforms. Based on a strange property between random variables
and their ratio, the inverse CDF can be computed. The interested reader is
referred to [Law14] for the proof and mathematical explanation of this method.
It uses two uniformly distributed variables that lie around the distribution to
approximate its value.

Special Properties. Last but not least, it is also possible to make use of
special correspondences between different distributions. For instance: if n
and p are large enough, a binomial distribution can be approximated using a
normal distribution.

Table Method. Last but not least, there is an incredibly simple method
for finding the inverse F−1. We sample our F at equal ranges and for each
sample, we store (x, y) in a table. If we want to know F−1, all we have to
do is read the table the other way around. All values we do not find in our
table can be interpolated6 from the surrounding values. In order not to lose
performance, our table lookup algorithm must be fast. Again, this approach
is not problem-free.

No matter which interpolation method is chosen, this will always be a mere
approximation of the actual value. The larger the sample size, the less precise

5Meaning they sum up to 1 and are all larger than or equal to zero.
6Either linearly, or using more complex methods.



4.1. GENERATORS 50

this estimate. We also have to keep in mind that, depending on the sample
size, the table can be tiny or massive. The bigger the table, the more pre-
cise F−1, but also the more memory we require for storing this table. If it’s
smaller, we lose precision, but gain in memory. Additionally, many distribu-
tions have additional attributes. Sizes, probabilities for success, degrees of
freedom, shapes, rates... There are a lot of different possibilities, especially
if they are combined. Our table therefore can become (m + 1)-dimensional
if we have m different attributes. Furthermore, most of these attributes have
actually an infinite range, making it close to impossible to cover all grounds.

Checking the Inverse
Let’s say we have a valid inverse F−1 of our CDF F , but how do we make
sure we’re right? It is not enough to state that both functions are each others
inverse, seeing as there are many errors to be had, in all possible ways to
compute our F−1. Of course, this is an issue that’s only of importance for
statistical analysis or within the domain of Software Testing.

Either way, we can use a goodness of fit test for comparing distributions
with known and tested datasets or software. The most common goodness
of fit tests are the Kolmogorov-Smirnov test, the Anderson-Darling test, the
Shapiro-Wilk test, the Chi-squared test and the Normality test.

Which Distributions to use?
Given the tools described in section 3.1, we can determine a set of all the
distributions that should be under consideration. A table summarizing all
distributions w.r.t. these tools and [Law14] is given in appendix A.1.

Whenever there are at least two tools7 that provide a certain distribu-
tion, we consider it important enough to add to our library. Additionally, the
Student’s t, the Fisher-Snedecor (or simply “F ”) and the Zipf distributions
were also added to this list. In appendix A.2, you will find an overview of all
provided distributions, their uses and how F−1 can be obtained.

RNG Quality Criteria
Before we go take a look at different types of RNG, let’s first identify some
requirements for “goodness”. As mentioned before, we want it to generate
a good imitation of a sequence of independent uniform random variables. We
also want to decrease the predictiveness of such a sequence. Another important
condition, especially within the context of real-time events, is for the RNG to
be efficient (i.e. a low time and space complexity).

Some RNG need to be repeatable in order to better determine results and
edge-cases. And we also want it to be portable over different software/hardware
environments.

Let’s say our RNG is i.i.d. U(0, 1) and generates the sequence u1, u2, ..., un

7Including [Law14] as a tool for these purposes.



4.1. GENERATORS 51

before repeating itself. If our n is too small, we get a predictive sequence by
repetition, i.e. by remembering all the ui and reproducing it. In a professional
casino, counting cards can get you thrown out and banned, so having RNG
that make this easy, for, say, a card game, does not seem logical. This is
why we want to have a long period within our algorithms. Finally, there is
also the requirement of efficient jump-ahead methods that allow for a quick
computation of any ui based upon a uj (j < i).

In total, we have seven requirements to test for any given RNG. From
these results, we can deduce the best fit for our problem. Dependent from our
context, we might want other requirements to perform better. For instance,
cryptology-related applications or casinos might want a higher unpredictability
and have no need for a jump-ahead. Arrivals of trains in a simulation might
not need such a high unpredictability, but might instead prefer repeatability
to determine and identify bottlenecks.

All these requirements can be identified via statistical tests, many of which
described in [LS07]. As this paper states, please be aware that no universal
test or battery of tests can guarantee, when passed, that a given generator is
fully reliable for all kinds of simulations. All we need is a testing framework
and a set of RNG. Luckily, TestU01 [LS07] and RngStreams [LEc+02; LS03;
Kar+14] provide both.

Do note that RngStreams makes use of multiple streams to ensure better
randomness, which may not be preferred by some users. In order to allow
a model in PythonDEVS-BBL to yield the same results as another model in
Python(P)DEVS that did not use RngStreams, it is made possible in the library
to choose one of three RNG stream generators8:

• RngStreams

• Python’s builtin random module [Pyt]

• Numpy’s random module [Oli+95]

Whenever RngStreams cannot be found, a warning is shown and Python’s
random module will be used instead.

RNG Building Block
With all this knowledge in mind, we can define a Random Number Gen-
erator building block (see block 4.4). The RNG is constructed with a few
attributes that defined the generator: the seed that’s used and the distribution
to which it must map. Additionally, the block holds internally the delay until
next generation, which can be altered with the dt input.

8Take a look at the documentation on how to do this.



4.1. GENERATORS 52

Random
Number
Generator

outputdt

Block 4.4: Random Number Generator building block.

Randomizing the Delay
Whereas the Random Number Generator generates random numbers as
input for a model, often it is useful to generate messages in a model with a
randomized delay. The Random Delay Generator, or RDG, allows for
this functionality. It is graphically represented in block 4.5.

The generator outputs a number k over the output port, according to the
values of the internal RNG, unless it was halted, which is indicated by the
boolean value entering on the halt input. The value of k is indicative of the
amount of messages the generator has created, minus some base B; i.e. if c
represents the amount of generated messages, k equals B+ c. Additionally, we
will provide a max attribute to the block, indicative of the amount of messages
it must generate before termination.

Random Delay
Generator

output

halt

Block 4.5: Random Delay Generator building block.

4.1.3 Using Stock

If you’re modeling a supermarket, you probably don’t have an infinite supply
of items. Especially if your model is meant to determine when the shelves
need to be refilled or when a truck with new products needs to arrive. The
products you have available for sale are called the “stock”. Even production
lines of factories might need to use stock if they work with batches of specific
items.

Whereas it would be perfectly possible to introduce a custom building block
for tracking stock, it can also be created by a valid chaining of other building
blocks like generators, queues (see section 4.2), transformers (see section 4.6)



4.1. GENERATORS 53

and guards (see section 4.7.6). Because of the uniqueness of stocks within
certain scenarios, no Coupled DEVS was created for this purpose. Instead, an
example for such a stock is given in figure 4.3.

Function
Generator

outputdt
Guard

guarded

input

blocked
leave

unguarded

transformer 2:
Transformer

input

transformed

original

transformer 1:
Transformer

input

transformed

original

Figure 4.3: Example on how to handle stock with a combination of building
blocks.

In the figure, transformer 1 will always output infinity (∞) on its trans-
formed output9, whereas transformer 2 will output zero on its transformed
output10. For both blocks, the original output port will be ignored. The
Function Generator is used as a general example of generators.

Let’s start in our Function Generator with a dt of 0. Immediately,
there will be a set of items, determined by the Guard block that can enter
the system over the guarded output, possibly linked to a Queue. When the
maximal capacity was reached, the Function Generator will be halted.
When the stock is updated (i.e. when an input arrives on the leave port), the
Function Generator will automatically create new items until the stock
is filled once more.

4.1.4 Firing Single Events

Whereas the generators we have discussed so far continuously fire events, it
might be useful to have a block that only fires once. Similar to the Table

9Halts the generator.
10Restarts the generator.



4.1. GENERATORS 54

Generator (as discussed in section 4.1.1), but with a single record in its
table. Because the Table Generator might contain a lot of overhead for
such a feature, we will provide a Single Fire block (see block 4.6) that does
just that.

Single Fire
output

Block 4.6: Single Fire building block.

The block takes an item and an absolute time t in the constructor. The
t-value defines when to send the item over the out output port.

4.1.5 Generating in Bulk

While the currently provided generators already allow for a lot of functionality,
there is a single concept that is not yet supported: creating a customizable
amount of messages. In [SIM94], you can ask the Start Point to generate n
messages at the current time frame, which is incredibly useful in a context
where you want to create n customers every time unit.

In order for us to still support random number generation and all other
methodologies, let’s create a Bulk Generator (see block 4.7) that takes n
as an input and spews out n unique customers. These customers basically
correspond to the amount of items the block has outputted at that time.

Bulk
Generator

output

dt

input

Block 4.7: Bulk Generator building block.

Similar to the Constant Generator, this block has a dt input where
the delay between the messages can be altered at runtime. Whenever there is
an input when the Bulk Generator still has items to generate, the set of
messages to generate is increased with the new size.



4.2. QUEUEING SYSTEMS 55

4.2 Queueing Systems

A queue is a container in which an ordered collection of items is stored. Items
can enter this queue via a so-called enqueue operation and they can leave via
a dequeue. Think for instance about the waiting line before the cash register
at your local supermarket, or when you’re waiting in line for an attraction at
an amusement park. Colloquially, we call these waiting lines “queues”, hence
the name of this data structure.

The example of a waiting line appears all over. From modeling simple stores
to factories, where items need to wait before being processed via a machine.
From office clerks that need to process a stack of papers to call centers that
need to assign callers to an employee. From scheduling problems to traffic
jams. They appear everywhere and for good reason. Queues are very powerful
and elegant structures for complex systems, which is also why we can clearly
identify queues in [Ima87], [SIM94], [Fle93] and [INC97]. On top of that, the
latter two also provide numerous different ways for stockpiling items in racks,
warehouses, reservoirs (all of whom can be associated with a queue)...

First, let’s take a look at some definitions and properties of queues and
queueing systems. Afterwards, we will use this information to construct a
valid mathematical model (i.e. a DEVS building block).

4.2.1 Queueing Theory

Queueing theory is the mathematical study of queues. We will define a queue-
ing system as a set of multiple queues, combined with a queue selector.

Kendall’s Notation
In [Ken53], Kendall defines a queueing system with three properties: the input,
the service-mechanism and the number of service channels (i.e. the number
of queues). The input defines how “customers”11 arrive. More specifically,
it defines which distribution the customers follow. The service-mechanism
assumes the service time for successive customers is statistically independent
from one another. In the same paper, Kendall also introduces a way to denote
queueing systems:

A/S/c

where A describes the arrival distribution, S the service-mechanism used and
c the number of service channels. For both A and S, the notations D (deter-
ministic or regular) and M (random or Poissonian) are commonly used. For
S, G (generic or “nothing special”) is also a common notation.

Since the publication of Kendall’s paper in 1953, this notation has been
extended to also include K (capacity of the system, i.e. maximum number of

11Ships, airships, people, items...



4.2. QUEUEING SYSTEMS 56

customers allowed), N (the calling source, i.e. the size of the population from
where the customers come) and D (the queue-discipline):

A/S/c/K/N/D

If omitted, these final three are respectively assumed to be +∞, +∞ and
FIFO.

Queue-Discipline
Most waiting lines follow a very simple discipline: first-come-first-served (FCFS),
which is better known as first-in-first-out (FIFO). Such a strategy describes
the behaviour of the customers in a queue. For FIFO, the first customer that
entered the queue will also be the first to leave.

Another famous discipline is the opposite, last-in-first-out (LIFO), which
describes that the very last item to enter the queue will also be the first to
leave. Within programming, this kind of queue is called a stack, because it
acts like a stack of papers. You add a new paper to the top of the stack and
when you’re ready to process an item, you will start with the top-most paper
first.

More generally, we can talk about a priority queue. Instead of defining a
specific queue-discipline, a priority queue will assign a priority to each item
that’s enqueued. Dequeueing an item will dequeue the item with the highest
priority first. The assigning of such a priority will be done via a comparison
function fc. Based on two inputs, the time t (t ∈ R+) and a customer c12, fc
will determine the priority for c.

For instance, the priorities in a normal LIFO queue are the index (or times-
tamps) of the arrived items. For FIFO, we merely have to negate this value13,
i.e.

FIFO(t, c)→ −t LIFO(t, c)→ t

The generalization of the priority queue allows us to alter Kendall’s nota-
tion for a general queueing system to the following:

A/S/c/K/N/fc

Balking
Let’s revisit the waiting line example. Nowadays most supermarkets have
multiple cash registers where you can checkout your groceries. So there is a
lot of choice in picking which waiting line to wait in. While there is an entire

12Since we want to be as inclusive as possible, c does not have to be a number, but can
be any object that we want to enqueue.

13Note that this is because we dequeue the highest priority first. If we were to dequeue
the lowest priority first, these implementations must be swapped.



4.2. QUEUEING SYSTEMS 57

branch of psychology as to why you’d better pick one queue above another,
most shoppers will just pick the shortest queue.

Balking is the making of a decision not to join a queue if it’s too long.
Furthermore, the selection of a queue in a multi-queue system can be identified
via Liao’s balking index [Lia11]. See also figure 4.6.

Reneging
You’re calling tech support because you have issues with your internet provider.
Unfortunately, it’s an issue on their side, causing a lot of people also to decide
to call tech support. Every employee they have working there is currently
taking a call, so you’ve been put on hold (i.e. you’ve been added to their
queue).

Chances are, if you’re impatient, after a while, you hang up before being
processed. You basically leave the queue after a certain time delay, before
being “processed”. This principle is known as reneging.

Within our DEVS model, reneging will be an additional output from where
items will exit the block. To decide which items need to be reneged, we can
do one of three things:

1. Check the contents of the queue every once in a while. Even though this
is the easiest solution, it is the least precise.

2. Assuming your model runs in seconds, you can check every second if
there are items to renege. Alas, items that need to be reneged after, for
instance, half a second will be reneged too late, presumable causing the
system to experience unexpected behaviour.

3. The best solution (and also the one we will be using in our BBL) is to set
our time advance ta to the time delayren, when the next element should
renege14. The reneging itself can then be implemented in δint.

Jockeying
As some sort of combination between balking and reneging, jockeying enters
the stage. Imagine you’re waiting in line for cash register A, but suddenly you
realize the clerk at cash register B works faster. So you switch from queue A to
queue B in the hope of being able to leave the store faster. It’s this principle,
switching a queue if the other one is shorter, that is called jockeying.

Basing ourselves on the jockeying implementation that ExtendSim intro-
duces in [Dia+00], we will allow the last customer in our queue to jockey when
it learns another queue in our system is preferred over the current one.

14If you allow elements to dequeue after a time delay ∆t, you must set ta to the minimum
of ∆t and tr.



4.2. QUEUEING SYSTEMS 58

Faffing
In supermarkets, you do more than just follow the queue. There are some
waiting times to be had because of human interaction, payment and the faffing
afterwards. Faffing is the name that was given to the time delay of gathering
your things after paying at a checkout. According to [Kna10], this averages at
about 3.17 seconds, but [Mel16] notes that Dan Meyer, chief academic officer
at Desmos, puts this average at 41 seconds per person15. Either way, while we
will not include this in our Atomic DEVS of a Queue, faffing must be taken
into account for realistic simulations of supermarket models16.

Cutting Lines
When waiting in line, it’s pertinent the natural order (FIFO) is being held.
When others disregard this order via cutting the line, this feels unjust and often
allows arguments to be fueled. From your point of view, you are victimized by
a slip, while we talk about skipping the line for the perpetrator (see [Lar87]).
Within our model, we can use fc to implement this feature. For instance,
instead of using pure FIFO, we might increase our priority at random in fc,
placing us at another location, closer to the front of the queue.

On the other hand, we can control which items may skip ahead. Think
for instance about a cash register that prioritizes elderly people and pregnant
women. Again, this may be implementing via manipulation of fc.

Queue Chunking
Most amusement parks make their waiting lines interesting and visually pleas-
ing. This is done because nobody likes to wait and it prevents jockeying and
reneging. Often, queue chuncking is also added, where they seemingly break
up the queue into smaller parts via the usage of walls. A person waiting in line
will believe that their end goal is immediately behind this wall, which gives
them hope and reduces the boredom of waiting. Once they reach the wall,
they realize they were wrong, but see another possible end of the line.

Of course, in a purely mathematical model, this does not need to be added,
but nevertheless it remains an interesting point of view for modelers that want
realistic human psychology in queues. In fact, Walt Disney amusement parks
go up and beyond to study waiting times and improve the user experience
[Pri19]. Queue chuncking is one of the many tricks they employ to prevent
reneging.

4.2.2 Building Blocks for Queues

We now have a good idea of what queueing systems look like and what they
should do. Let’s take a look at the building blocks we can create.

15In this case, it also includes saying hello and paying.
16Faffing can be obtained via using Delay blocks.



4.2. QUEUEING SYSTEMS 59

Queue
In figure 4.4, you can find a small Statechart for a simple queue (without
reneging and jockeying). Each of the three states (Enqueue, Dequeue and
DequeueTimer) can be seen as an orthogonal state, meaning they’re executed
in parallel.

Figure 4.4: Simple Statechart for a Queue.

The first state, Enqueue, handles all enqueueing in our queue. As soon as
we obtain an enqueue input event, the item will be appended if the current
queue capacity cap is less than K. Otherwise, an overflow output event will be
fired that passes on the item that needed to be enqueued. The Dequeue state
is quite similar to the Enqueue state in that it will wait for a requestdequeue
input (denoted as ?dequeue in the figure) before dequeueing. This will only
happen if cap > 0, ensuring that a requestdequeue on an empty queue will be
remembered until the next item enters.

Finally, the DequeueTimer state will make sure the ?dequeue event is trig-
gered automatically after every dd time units. Obviously, this needs to be
handled internally by the DEVS by linking the !dequeue to ?dequeue within
the block. This implies making use of a Coupled DEVS as shown in figure 4.5.

Now, let’s delve deeper into the reneging part. Let’s annotate each item i
that is enqueued with its absolute time of arrival ai. From this value and dr,
the reneging delay, we can easily determine the absolute time until the item
needs to renege ai + dr.



4.2. QUEUEING SYSTEMS 60

Simple
Queue

overflow

dequeue

renege

requestdequeue

enqueue

requestrenege

dr

(a) SimpleQueue

Queue

overflow

dequeue

renege

requestdequeue

enqueue

requestrenege

dr

dd count

(b) Queue

Block 4.8: Simple Queue and Queue building blocks.

Let’s say T represents the current absolute time. The ta function can now
be defined as the minimal value of all dr−T+ai, if our queue is not empty, we’re
not overflowing and if no special item was requested17. The internal transition
function, δint, will handle the actual dequeueing and reneging, based on the
current context.

Putting it all together, we will make two blocks: the Simple Queue (block
4.8a) and the Queue (block 4.8b). The former is a queue without automatic
dequeueing (making use of dd), whereas the latter will implement figure 4.5 as
a Coupled DEVS.

Constant
Generator

output

dt

value
Simple
Queue

overflow

dequeue

renege

requestdequeue

enqueue

requestrenege

dr

requestdequeue drdd

requestrenegeenqueue

Figure 4.5: An overview of a Queue building block with automatic dequeues.

The value input for the Constant Generator will be ignored, because
it does not matter which kind of message is inputted in the requestdequeue
input of the Simple Queue.

The requestrenege input will request the queue to renege the last item in the
queue (w.r.t. fc). This mechanism is used in [Dia+00] to allow for jockeying.

17With a message on the requestdequeue or requestrenege input.



4.2. QUEUEING SYSTEMS 61

Now, if we look at the Holding Tank from [Ima87], we notice this block is
able to output a variable amount of items. This can be simply implemented by
changing the requestdequeue and requestrenege ports to integer ports, where
the arriving message indicates the amount of items there are requested for
output. Obviously, this is a seldom occurrence and this functionality must be
mutable.

Finally, the Queue has one last issue that should be solved. Because of
the way the Constant Generator works, the block will keep on running
indefinitely. Because this does not make too much sense for a queue, let’s
use a brand new, specialized block: the Queue Tracker (see block 4.9).
It will replace the Constant Generator in figure 4.5 and will be linked
accordingly.

Queue
Tracker

enter
dt

size

leave

Block 4.9: Queue Tracker specialized building block.

The Queue Tracker basically tracks the current size of the Simple
Queue, which is outputted on the size output every time interval dt. An item
that arrives on the enter input enqueues, whereas an item that arrives on the
leave input leaves the queue via dequeueing, overflowing or reneging.

When the queue is empty, it will pause until the next item arrives. In
Python(P)DEVS, this corresponds to setting the ta to +∞.

Remember that we said that the Simple Queue could have a number of
items requested on its requestdequeue or requestrenege input ports? We have
to keep that in mind when using the size output of the Queue Tracker for
a dequeue request. There are two options:

1. Either we say that no such functionality applies for a Queue,

2. or we say that the Queue Tracker may also output a predefined value
instead of the size.

The latter option provides the more generic functionality. When looking at
the Queue Tools block from [Ima87] and the Queue from [SIM94], we can see
that some models might require the queue to be partially filled on startup.
Those contents could be provided via a constructor argument.



4.2. QUEUEING SYSTEMS 62

Balking
Because the Queue block has a count output port, we can easily implement
a basic balking example, as shown in figure 4.6. Whenever our Queue has
more than 10 customers, all new customers leave the system on finish 1 (see
section 4.7.1, block 4.31). Otherwise, the customers will leave the system on
finish 2. See also section 4.1, block 4.1; section 4.7.5, block 4.33b and section
4.6, block 4.27.

Constant
Generator

output

dt

value
Choose
Output

input

out1

out2

select

Queue

overflow

dequeue

renege

requestdequeue

enqueue

requestrenege

dr

dd count

finish 1:
Finish

input

finish 2:
Finish

input

Transformer
input

transformed

original

Figure 4.6: An example on balking.

Remembering Items
Often, it can be useful for your model to remember certain items that passed
through until the next cycle. Imagine you want to detect an infinite loop by
counting how often the same item is being forwarded. This can be done using
the Retain block (see block 4.10).

Retain
input

current

previous

Block 4.10: Retain building block.

Its functionality is quite simple: every item that enters the input port, will
be held until the next item arrives on this port. At the same time, when an



4.2. QUEUEING SYSTEMS 63

item arrives at this block, it will be outputted immediately on the current
output and the previous item (if one exists) will be outputted on the previous
output. Additionally, we will provide this block with two modes, that can be
set upon block construction:

individual: Will act as described above for each item that arrives at this block.

collection: Will capture all messages that arrived within the same time unit,
e.g. when telapsed = 0. The set of messages will be cleared when this is
not the case. For each message that arrives, a list of messages will be
outputted on the previous port.

Advancing
While already incredibly powerful, the Queue building block still lacks some
functionalities. Let’s take a look at an example to see what we’re missing.

Example 4.2.1 (Animal Rescue Service).
In a nature reserve, the park rangers may find wounded animals. Whenever
this happens, they take the animals to a local vet, so they can be nursed back
to health. When the injuries were major, the animal will reside in an animal
shelter, before being set free in the wild again.

Some animals are, unfortunately, more injured than others and therefore
require a longer time to recover. We can state that both the inter-arrival rate
of wounded animals as well as the recovery period follow a randomized distri-
bution.

Let’s say we’ll model this example using our current building block library.
Obviously, we have a Random Delay Generator for determining the ar-
rival of animals. The shelter looks like a (Simple) Queue that uses reneging,
seeing as each animal must stay some time in the shelter, independent of the
other animals. But how would we be modeling the randomness of their re-
covery period? The reneging time, dr, for the (Simple) Queue is a static
value that applies to all customers of the queue. Furthermore, changing this
to another value during execution will also alter all other customers.

There are two solutions for this issue:

• Either, we change the (Simple) Queue to make the dr item-specific, or

• we add another building block that provides this functionality and acts
independent of the Queue.

Seeing as the (Simple) Queue is quite complex as-is, we’ll opt for the
second solution. Basing ourselves on GPSS for the name, the Advance block
(see block 4.11) is born.



4.3. GATHERING DATA 64

Advance

input

pause

output

delay

Block 4.11: Advance building block.

Whenever an item i arrives in the Advance block on the input port in
the same timeframe as an input ∆ arrives on the delay port, the item i will be
held for ∆ time before being released on the output port. This allows items to
wait for a random delay in a more flexible manner than the (Simple) Queue
did. Additionally, customers can skip ahead, past other items that are taking
a longer time to finish. The pause input allows for a generic control of the
customers in this queue18 by providing a simple way of pausing the customers
until further notice.

4.3 Gathering Data

More often than not, you want to be able to “capture” the items or data
traveling through your model. This is useful for both statistical analysis and
debugging purposes. In short: keeping track of data gives you a better insight
into your models.

Data can be gathered using collectors. Collectors are small building com-
ponents that gather information on arriving items. Either during simulation
of your model or thereafter, the contents of the collectors can be analyzed in
any way you see fit.

4.3.1 Tableization

A naive implementation would be the Table Collector (see block 4.12).
This building block internally holds a table that is updated every time an item
arrives on its input port. The table can have as many columns as are required
within your problem domain, but let’s focus on the basics. One of the columns
is ideally the absolute time at which the item entered (and left) the collector.
By itself, this can be used to identify bottlenecks in your system. Another
column is obviously the item that arrives, as a whole. The item can be any

18Technically, it’s not a queue anymore, but more of an item pool, seeing as no queueing
discipline exists anymore, unless explicitly modeled by the input for the delay.



4.3. GATHERING DATA 65

kind of data: numbers, characters, strings, lists, maps and even your own type
of objects.

As you may be able to deduce, the Table Collector is a clean and
powerful way of keeping track of all your data. But this is also the caveat.
You are keeping track of all your data and your memory requirements will
scale proportionally to the amount of items that have arrived.

Table
Collector

input

clear

Block 4.12: Table Collector building block.

[Ima87] has a Clear Statistics block, which clears all statistical information
of the components. Because this might be useful, we also provide this feature
by adding a clear input port.

4.3.2 Memory-Efficient Collection

The best way to circumvent the caveat of the Table Collector is to stop
keeping track of all the data. Assuming your data is numerical and you desire
to do a statistical analysis of the system, chances are you do not require much
more than the minimum (min), the maximum (max), the mean (µ), the vari-
ance (V ar) and the standard deviation (σ). This corresponds to the Min &
Max and Mean & Variance blocks from [Ima87].

The Collector19 (block 4.13) does exactly that. It keeps track of these
five values without the need for remembering all your data. How is this pos-
sible? We use basic statistical mathematics. We know the following formulas:

µ =
1

N

N∑
i=1

xi V ar = σ2 =
N∑
i=1

(xi − µ)2

N

Where N is the amount of items that entered on the input port and xi the ith

19Called this way, seeing as this will be more commonly used over the other collectors.



4.3. GATHERING DATA 66

Collector

input

clear

Block 4.13: Collector building block.

item we see. The second formula allows for the following derivation:

σ2 =
N∑
i=1

(xi − µ)2

N

=
1

N

N∑
i=1

(
x2
i − 2xiµ+ µ2

)
=

1

N

(
N∑
i=1

x2
i − 2µ

N∑
i=1

xi +Nµ2

)

=
1

N

N∑
i=1

x2
i −

2µ

N

N∑
i=1

xi + µ2

Now, it is clear that, in order to keep track of the mean, the variance and
the standard deviation, all we need is N ,

∑N
i=1 xi and

∑N
i=1 x

2
i .

If we add two more values, min and max, we have reduced the memory-
space from N to 5, which can be updated every time there is an external
transition δext on the input input.

Additionally, we’ll add a condition to the Collector’s constructor, positive,
which, when true, will store these values only if the number that’s entering is
strictly positive, i.e. if xi > 0, an idea that’s also used in [Cla92].

Similarly to the Table Collector, the gathered information can be reset
upon the arrival of a message on the clear input.

4.3.3 Colletion w.r.t. the P 2 Algorithm without Scoring Ob-
servations

In [JC85], an algorithm is proposed to heuristically calculate quantiles and
histograms without the need to keep track of all data. Emphasis on “heuristic”.
Obviously it is impossible to perfectly predict the median of any sequence in
a single formula that can be computed iteratively. Nevertheless, the proposal
gets close to doing so.

The P 2 algorithm makes use of a set of b+1 markers, where b represents the



4.3. GATHERING DATA 67

amount of cells to look at20. When a new item xj enters the sequence, it tries
to identify in which cell the new item would fall. Based on this information, the
heights of the markers are updated via the piecewise-parabolic prediction (P 2)
formula. In order to keep track of this information, we create an Estimate
Collector block that needs to call the P 2 algorithm every time their δext
gets called.

Assume q is the list of the marker heights and n the list of their positions,
where qi indicates the ith height and ni the ith position. Algorithm 2 gives
the P 2 algorithm that the building block must execute every execution of δext.
For the full algorithm, see [JC85].

Estimate
Collector

input

clear

Block 4.14: Estimate Collector building block.

The Estimate Collector block is shown graphically in block 4.14. The
item that enters the block on its input port will call the P 2 algorithm before
being implicitly discarded. When a message arrives on the clear input, the
contents of the block will be reset.

4.3.4 Obtaining Numeric Data from other Items

As discussed previously, items do not have to be numeric in any way, shape
or form. Yet, our Collector and Estimate Collector are both building
blocks that only work with numerical data. There are two ways of dealing
with this issue:

1. You give each collector an additional unwrapping function u(i, t) that
takes two arguments: i, the item and t, the time that was passed at this
point in time. Then, before applying all logic in the δext functions, you
simply “unwrap” the item beforehand.

2. Introduce an additional building block, the Transform block that also
accepts such an unwrapping function u. It works as you might expect:
an item enters this block and the unpacked result leaves it within the
same time instance. See section 4.6 for more information on this kind of
block.

20b+ 1 is the amount of “bars” in the histogram



4.3. GATHERING DATA 68

Algorithm 2 Simplified version of the P 2 algorithm step that needs to be
called in every δext of the Estimate Collector block.

1: procedure P2Step(xj, N) . xj is the new item, N items seen
2: if q doesn’t have size b+ 1 yet then
3: Add xj to q and sort this list in increasing order
4: else
5: Find cell k such that qk ≤ xj < qk+1

6: Adjust extreme values q0 and qb+1 if necessary
7: ni ← ni + 1 ∀i ∈ {k, ..., b+ 1}
8: for i = 0→ b do
9: d← i · (N − 1) /b− ni

10: if (d ≥ 1 and ni+1 − ni > 1) or
11: (d ≤ −1 and ni−1 − ni < 1) then
12: d← sign(d)
13: q′i ← qi from P 2 formula
14: if qi−1 < q′i < qi+1 then
15: qi ← q′i
16: else . Use the linear formula
17: qi ← d · (qi+d − qi) / (ni+d − ni)
18: end if
19: ni ← ni + d
20: end if
21: end for
22: end if
23: end procedure

The latter choice not only provides a useful block within many contexts, it
is also a cleaner and more streamlined way of obtaining such data, hence why
this was chosen.

4.3.5 Counting Items

Let’s imagine once more you’re a store owner. You have made a model for
predicting the peek hours and when you would best assign your staff where.
Because you want to lure people to your store, you do a special deal: the
thousandth customer will get a free shopping cart worth 100 euros.

Now, you want to know when this customer will be in your store, so you
need to edit your model. We currently do not have a way of doing so during
our simulation, which is why we will introduce the Counter building block,
that counts the amount of messages that passed through. It is represented
graphically in block 4.15.

Its functionality is quite simple: when a message arrives on the input input,



4.4. MATHEMATICS 69

Counter

input

clear

output

count

Block 4.15: Counter building block.

it will be outputted on the output port. Additionally, the amount of currently
seen messages will be outputted on the count output. The clear input clears
the statistics of this block, just as with any other collector.

4.4 Mathematics

Often it can be useful to be able to do computations during the simulation
of your model. These can go from simple comparisons to full on nth degree
polynomials. For single-argument functions (like most trigonometric formulas),
the Transform block (see section 4.6) could be used, but we quickly hit the
limitations of this block. To allow for all kinds of mathematical equations, we
will create some building blocks, inspired by the Causal Block Diagram (CBD)
[GDV16] formalism.

CBD is a formalism that allows the representation of mathematical formulas
as a graph. This easily allows for a system of equations, which can be solved
by the CBD simulator. While [VVV18] mentions CBD can be mapped onto
DEVS, the solving of equations falls outside of the scope of this thesis, meaning
we will not be bothered with so-called algebraic loops. Take a look at [Dem14]
if you need to tackle this problem. Besides getting inspiration from the CBD
formalism, we can also identify certain mathematical building blocks in [Ima87]
and [LEG13].

4.4.1 General Functionality

We will be describing each individual building block later on, but before we
do that, we must think about how these block will work. There are multiple
possibilities:

1. All inputs must arrive at exactly the same timeframe. The output will
be sent out immediately.

2. All inputs must arrive at the same time, but not necessarily within the
same timeframe. For instance, a block outputs a value, which is sent



4.4. MATHEMATICS 70

immediately to the input of the operator. Another block fires at the
same time, but needs to be transformed before being inputted into the
operator. The ta is 0 for all blocks in the chain, yet, both inputs do not
arrive together.

3. The time of arrival does not matter. When all inputs have been arrived,
the output is sent, otherwise, we keep waiting and remember all already-
arrived inputs.

4. When there are inputs missing, a request is sent to obtain the next input.

For the purposes of our library, we will consider option 3, but all options
are valid, depending on what the end goal of the library is.

4.4.2 Basic Mathematics

In [Dia+00], there are numerous example models that make use of some very
basic mathematical building blocks.

Adder
The Adder (see block 4.16) has a n inputs (in1, in2, ..., inn) and a single
output result. As soon as all inputs are obtained, the sum is computed an
outputted.

Adder
result

in1

in2

in3

Block 4.16: Adder building block.

Multiplier
Similar to the Adder, the Multiplier (see block 4.17) has n inputs (in1, in2,
..., inn) and a single output result. When all inputs are known, the product is
outputted over result.

Multiplier
result

in1

in2

in3

Block 4.17: Multiplier building block.



4.4. MATHEMATICS 71

4.4.3 Equations

We could go on and list every imaginable formula and/or equation, like CBD’s
Subtractor, Divider, Inverter, Negator..., but that would not be useful. All
these blocks technically have the same functionality, which is why we will
combine them all in a single block: the Equation block (see block 4.18).

Equation
result

in1

in2

in3

Block 4.18: Equation building block.

The Equation block takes a finite set of user-defined inputs, applies an op-
eration and outputs the result, respecting the conditions that were mentioned
in section 4.4.1.

For instance, for a Subtractor, we define x and y as our inputs and x− y as
our operation. Whenever both x and y have been defined, the Equation block
outputs their difference once, without delay. Additionally, we can provide a
set of default arguments D for our inputs, removing the necessity for all inputs
to have obtained a value.

Solving Equations
Obviously, the Equation block only executes a function, given all inputs. It
does not solve any equation with unknowns. When looking at [Ima87]’s Data
Filter block, we realize this does allow for solving equations.

There exist numerous libraries to solve equations programmatically (most
commonly by using some matrix techniques). For the purposes of this thesis,
we will not divulge this matter any further.

Transformations
Within the provided context, it is not enforced that all inputs and the output
of the Equation block are numerical. In fact, by not enforcing this, we’ll
allow more complex functionalities w.r.t. transforming data.

4.4.4 Complex Mathematics

Oft, it is also useful to be able to do more complex mathematics. Besides the
possibility to chain the already described building blocks together (and thus
obtaining an even bigger equation), we might want to have some additional
functionalities within these mathematical blocks.



4.4. MATHEMATICS 72

Differentiator
CBD allows you to use differentials (over the time) within your models. This
is a feature that can be used to determine the rate change throughout time. It
closely corresponds to the differentiator that can be used in electronic circuits.

To allow for a similar feature, we will introduce the Differentiator
block (see block 4.19) that yields an approximation of the differential of the
rate change. We will make use of the differential definition for the backwards
difference to describe the output of this block:

d

dt
f(t) = lim

∆t→0

f(t)− f(t−∆t)

∆t

where t is the current time and ∆t the elapsed time between the previous input
and t. Ideally, we would want ∆t to be as small as possible, but we leave this
up to the user. The closer to 0, the more precise the result.

Differentiator
resultinput

Block 4.19: Differentiator building block.

Therefore, each item xi that arrives at the input port will use the previous
value (or the initial condition IC if no such value exists) xi−1 and the elapsed
time ∆t to output v on the result port:

v =
xi − xi−1

∆t

Integrator
If we can differentiate, we should be able to integrate as well. Hence, we
introduce the Integrator block (see block 4.20). Strangely enough, [Ima87]
has an Integrator block, but lacks a Differentiator.

Integrator
resultinput

Block 4.20: Integrator building block.

In order to determine which value to output, we will be using the assump-
tion that our input comes from a continuous function and our delay between
inputs ∆t is as small as possible.



4.4. MATHEMATICS 73

Random

random

input

value

Block 4.21: Random building block.

To compute the integral at time t, when ∆t time has elapsed, we can use:

v(t) =

∫
f(τ) dτ = IC +

∫ t

0

f(τ) dτ = v(t−∆t) +

∫ t

t−∆t

f(τ) dτ

where v(t−∆t) was the previous value of the integral. Additionally, we want
v(0) = IC, or, in other words, the very first value that arrives in the block
should output IC. Hence, we know f(t), f(t−∆t) and v(t−∆t) at every time
t (t > 0). There are three methods to estimate the remaining unknown in the
equation:

∫ t

t−∆t

f(τ) dτ =


∆t · f(t−∆t) lower bound

∆t · f(t) upper bound
∆t

2
· (f(t−∆t) + f(t)) trapezoidal rule

Alternatively, Simpson’s rule could also be used if we keep track of three
points and if ∆t remains consistent for all consequent calls of the block:

v(t) = v(t− 2∆t) +
∆t

3
· (f(t− 2∆t) + 4f(t−∆t) + f(t))

Because we have no guarantee that ∆t will remain consistent, Simpson’s
rule is not implemented in PythonDEVS-BBL. The other rules can be defined
by the user. Whenever a value arrives on the input port, that value is said to
be f(t) and v(t) is computed before it’s outputted on the result port.

Randomized Values
In section 4.1.2, the generation of random numbers was discussed, resulting
in the Random Number Generator. While this works for continuously
generating such building blocks, we often require to associate a random number
to each passing item, instead of to each time instance. Think of the Random
block from [LEG13] and randomized arrival times or delays in [Ima87], [SIM94],
[Fle93] and [INC97].

Using the same logic as in block 4.4, we can create a Random block (see
block 4.21) that outputs a random value on its random port as soon as it
obtains an input. The inputted value will also be outputted on the value port.
The distributions mentioned in appendix A.2 can also be used here.



4.5. INPUT/OUTPUT 74

Random

random

input

value
Timer

finished

start

blocked
dt

Figure 4.7: Creating a randomized delay from the Random and the Timer
blocks.

Figure 4.7 shows how the Random block can be used in combination with
the Timer (see section 4.7.8, block 4.37) to create a randomized delay for each
message, just like [Ima87], [SIM94], [Fle93] and [INC97] can do.

The DEVS model in the figure also corresponds to the Random Delay
Generator in the same way that the Random block corresponds to the
Random Number Generator. That being said, it is probably preferred to
use the Advance block (see section 4.2.2, block 4.11) instead.

4.5 Input/Output

Working with a computer system often requires user interaction. Either by
outputting debug information to some file or console, or maybe by asking the
user for input. This not only helps in making a system that will work hand-
in-hand with its users, but also for tracing issues and problems.

The DEVS formalism does not have a predetermined way to handle I/O
information. An output simply corresponds with a message that is outputted
from a block. An input, on the other hand, is a message that enters a block
and presumably changes the block’s state.

Note that Python(P)DEVS also provides a way to listen to and interrupt
a real-time simulation. These should be used for actual user interaction in
real-time systems, whereas the building blocks that are to be discussed in this
section define a way to get a more generic interaction that resonates with a
programmer’s mindset.

4.5.1 Output

A standard for message logging, called syslog is given in [Ger+09]. It allows for
a general way to store, parse, read and create messages throughout software
systems, in a platform-independent manner. Within syslog, all messages are
given a facility and a severity value, which are normative, but often used.



4.5. INPUT/OUTPUT 75

Numerical Code Facility

0 Kernel Messages

1 User-Level Messages

2 Mail System

3 System Daemons

4 Security/Authorization Messages

5 Messages generated internally by syslogd.

6 Line Printer Subsystem

7 Network News Subsystem

8 UUCP Subsystem

9 Clock Daemon

10 Security/Authorization Messages

11 FTP Daemon

12 NTP Subsystem

13 Log Audit

14 Log Alert

15 Clock/Scheduling Daemon

16-23 Local Use 0 - 7

Table 4.2: The facility code table for syslog messages.

Tables 4.2 and 4.3 give an overview of these values21.
Depending on the severity code, your system might require to exit exe-

cution. This can be used to throw errors that break a setup or cause an
inconsistency. To indicate when your system requires this exit, a threshold
is set. If you have a system where the occurrence of such a message is re-
ally dangerous (like for cars, airplanes, banking applications, factories...), this
threshold will be high. If this is not too big of a deal (as, for instance, in
supermarkets, resource allocation...), this value is usually low. But, there is
no general rule. The higher this threshold, the less acceptable you are for the
occurrence of errors.

To allow for syslog in our library, we introduce the following nine blocks:
Logger, Emergency, Alert, Critical, Error, Warn, Notice, Info
and Debug. All their representations are shown in block 4.22.

The Logger is a block which is able to log to any level of the user’s
choosing. This allows for a fast interchangeability in the model, but requires
the knowledge of table 4.3. All other blocks “inherit” from this block and

21Note that in Python(P)DEVS, the default facility is 19.



4.5. INPUT/OUTPUT 76

Numerical Code Severity Description

0 Emergency System is unusable

1 Alert Action must be taken immediately

2 Critical Critical conditions

3 Error Error conditions

4 Warning Warning conditions

5 Notice Normal, but significant condition

6 Informational Informational messages

7 Debug Debug-level messages

Table 4.3: The severity code table for syslog messages.

statically assign their corresponding level to all messages they must sent. All
loggers have a single input port that accepts the message to log. Internally,
the block transforms the string to a valid syslog message and logs this to the
available syslog server. The facility code that must be used is dependent on
the context of the models.

Note that, by default, Python’s logging module does not implement RFC
5424 [Ger+09] and therefore Python(P)DEVS doesn’t either. For instance,
logging to levels 0 (Emergency), 1 (Alert) and 5 (Notice) are not enabled
by default because [Pyt] claims they are not too often used. The pypde-

vsbbl.generic.io module from the implementation of the BBL provides a
setLogger function that, by default, follows the RFC. Users may opt out of
this functionality by setting the rfc5424 argument to a falsy value.

For those that have difficulties setting up a syslog server to listen for
the logged messages, a simple to use and lightweight syslog server for Linux,
created by the author of this thesis, is available on https://github.com/

RandyParedis/PySysLogQt.

Writing to Files
Another way of generating output is by writing free text to files. The syslog
solution described before will output messages in a predefined format. While
this is extremely useful for application-independent situations, it might not
always be preferred. Often, you just might want files to be generated according
to your own format or domain-specific language (DSL).

The File Writer block (as shown in block 4.23) will allow you to do so.
It has a single input port on which it accepts a string that will be written to a
file as-is. If we look at the Python documentation [Pyt], we can deduce there
are numerous ways to open a file22. For the purposes of our library, we will

22Just like all major programming languages.

https://github.com/RandyParedis/PySysLogQt
https://github.com/RandyParedis/PySysLogQt


4.5. INPUT/OUTPUT 77

Logger
input

(a) Logger

Emergency
input

(b) Emergency

Alert
input

(c) Alert

Critical
input

(d) Critical

Error
input

(e) Error

Warn
input

(f) Warn

Notice
input

(g) Notice

Info
input

(h) Info

Debug
input

(i) Debug

Block 4.22: Representation of the Logger building block and its derivatives.

File Writer
input

Block 4.23: File Writer building block.

only focus on three of them. The first two (write and binary) can only be used
exclusively, i.e. they cannot be used together and at least one must be set.
In the implementation of the File Writer a boolean value is therefore used.
The last flag (append) can be used in combination with the previous two.

write Open for writing textual data, truncating existing data.

binary Open in binary mode, i.e. do not read the contents as a string, but
more as binary data. Truncates the existing data.

append Append new input to the file instead of overwriting it.

Because the usage of files often leads to memory leaks, it is preferred to
open and close the file if (and only if) a message needs to be written.



4.5. INPUT/OUTPUT 78

4.5.2 Input

[Ima87] makes use of a Popups block that temporarily interrupts the simulation
while it waits for the user to enter input. Within DEVS, this kind of user
interaction cannot and should not be done. Even if it were possible to describe
this within the formalism, it counteracts what we’re trying to achieve with real-
time simulations. Asking for user input will always pause or halt our system
and therefore we loose our wall-clock time. Hence, no corresponding block
exists within our library. If this functionality is required, you can make use of
a Listener (see section 4.5.4) that tracks all user input.

Reading from Files
Reading from files is more difficult than writing. If you have predefined your
own file format, you must parse it again before you can use it. There is also
the possibility to write a binary file, so let’s add a way to read one as well.

The result is a File Reader that has a string input filename and an
output contents (see also block 4.24). Every time there is a new file to be
read, its filename must be send on the block’s input and the contents will be
outputted. With a constructor flag, you can identify if you’re reading binary
data or not.

File Reader
filename contents

Block 4.24: File Reader building block.

You can use the Transform block (see section 4.6) to fully parse the read
data into a format you desire. CSV files are quite simple to parse, whereas
complex file structures may require the creation of a grammar, so it can build
an abstract syntax tree (AST) from your file contents. It is believed this falls
outside of the scope of this project, but if you require a lot of file parsing, it
might be a good idea to create a custom Parse block. You may be able to
subclass the Transform block as a starting point.

4.5.3 Playing Sounds

Both [Ima87] as [LEG13] provide a way to play sound as some sort of feedback,
respectively in the Notify and the Sound blocks. As such, the Sound block
(see block 4.25) was born. Whenever it receives an input, it will conditionally
play a sound. The sound file and the condition are both given as constructor
arguments.

Note that some additional libraries might be necessary for this block to
work. While this can be enforced, PythonDEVS-BBL doesn’t. Instead, a warn-



4.5. INPUT/OUTPUT 79

Sound
input

Block 4.25: Sound building block.

ing will be shown if the library could not be located. Within the implemen-
tation provided for this thesis, pydub [Rob11] and simpleaudio [Ham15] are
required to be installed if the Sound block needs to be used. If it doesn’t,
the mentioned libraries do not need to be installed. Because of pydub, any
file format supported by FFmpeg [Bel11] can be used in this block and it is
perfectly possible to indicate a segment of the sound to play (in milliseconds).
This can be useful if you don’t want a massive library of sound files, but rather
snippets out of one single file. This can also be used if it appears your sound
takes way too long to complete. Additionally, simpleaudio will allow the
sounds to be played asynchronously, meaning they won’t halt the execution of
the simulation until they have finished playing.

4.5.4 Listening to External Events

Often, it might also be useful to listen to events that happen externally. Think
about the sensors or the Bluetooth Connection in [LEG13]; or the Button, Link
Alert and Switch blocks from [Ima87].

Listener
dt listen

Block 4.26: Listener building block.

This can be solved by introducing a Listener building block that contin-
uously polls for changes to an external event. Every ∆t time, the Listener
calls a polling function fp that takes at least one argument: the simulation
time. Its return value is outputted on the listen port.

The power of this block comes from the fact that fp can either read from a
file to get an updated value, read the current sensor value in a blocking way,
or capture data from an external process.



4.6. TRANSFORMING DATA 80

4.6 Transforming Data

The items that are traveling though your system do not have to be the same
type. It is perfectly possible one building block is sending a string whilst
another is sending a number. But why stop there? One of the core concepts
of object-oriented programming is the possibility for having multiple objects.
Such an object is a structured piece of memory that can be used or called upon
elsewhere.

It is perfectly understandable that you want to have your own type of items
traveling through the system, i.e. a Crate that is being transported through
your model of a factory, or a Car that is slowly being built on the conveyor
belts. If you could only use numbers for this kind of systems, you would run
into issues really fast, which is why it is important for items to be able to be
transformed. We distinguish three kinds of transformers: the Transformer
block, the Pack block and the Unpack block, all of whom have particular
purposes.

4.6.1 Transforming via Functions

It is ever so useful to be able to transform one data type into another. This
is, for instance, useful when turning complex objects into numerical data to
compute mathematical problems, as can be required by some blocks discussed
in sections 4.3 and 4.4. Generally, it is possible to state that, given a trans-
formation function T (i, e, t), where i is the item, e the elapsed time since the
previous event and t the simulation time, you can define a way to turn any
item into any other using an algorithm.

Transformer
input

transformed

original

Block 4.27: Transformer building block.

We will introduce a Transformer block (see block 4.27) that takes T
as a constructor argument. Every item it receives on its input port (input)
will be automatically transformed through T and outputted immediately on
the output port transformed. The item itself will be outputted on the original
port, which allows this block to be located in the middle of a block chain.

Note that, the more complex the algorithm, the longer it will take to exe-
cute this block. This is especially important to keep in mind when we concern



4.6. TRANSFORMING DATA 81

ourselves with real-time simulations and wall clock time. When multiple in-
puts are required, the Equation block (see section 4.4, block 4.18) could be
used instead.

4.6.2 Lookup Table

Because it’s perfectly possible that not all input values can be mapped onto
another value using a function, we will follow [Ima87]’s example and introduce a
Lookup Table block. This block can simply inherit from the Transformer
block, where the function is a mapping from the provided table. Therefore, it
should come to no surprise that it looks and acts exactly the same, as you can
see in block 4.28.

Lookup Table
input

transformed

original

Block 4.28: Lookup Table building block.

4.6.3 Packing and Unpacking

Another way of transforming data is to group multiple items together and split
them up again afterwards. These are processes that are known under many
names. [Ima87] uses “batching” and “unbatching”, while [Fle93] describes it
as “combining” and “separating”. [INC97] makes do with “assembling” and
“unpacking”, but we will refer to it as “packing” and “unpacking”.

Making Packages
The Pack block is a simple block (see block 4.29). Based on a predefined
Package class23 that defines what happens to new items in the package, all
items that enter the block on the input port, will call a transformation function
as is defined in the Package class. This class is set upon construction of the
block and corresponds to the Container atom from [INC97].

The Package class has two main methods: pack and unpack. The former
takes three arguments: new (the new item to add), elapsed (the elapsed time)
and time (the simulation time). Moreover the unpack method later.

Finally, if a release was obtained, the Pack block releases the held item
over the output port and reverts to the initial state (where an empty Package is
being held). Alternatively, because we use a specified class, we can also make
use of a finished method in that class. Whenever this method evaluates
to true upon acquisition of an input, it will be released automatically. In

23pypdevsbbl.extra.packaging.Package



4.7. ROUTING 82

Pack
input

output

release

Block 4.29: Pack building block.

practice, a specific subclass of the Package class can be used to allow it to be
applicable to the Car example given earlier.

Extracting Packages
The counterpart of the Pack block is the Unpack block, which assumes all
items that arrive on its input are of type Package and therefore have an unpack

function that yields a list of all items that can be unpacked. This list is
outputted on the output port. A graphical representation of this block is given
in block 4.30.

Unpack
input output

Block 4.30: Unpack building block.

4.7 Routing

Often, messages do not follow a straightforward path throughout your model.
There can be branches, splits, joins... This section describes a way to route
your messages through your model.

4.7.1 Exiting

Items that are traveling through our system might want to exit it. This hap-
pens when, for instance, clients leave a supermarket, or assembled items are
finished. All tools from section 3.1 have this kind of feature. The Exit block
is used by [Ima87] and the End Point block appears in [SIM94]. [Fle93] and
[INC97] have a Sink and even [LEG13] provides a Stop Program block24. For

24As mentioned in section 3.1.5, [LEG13] is actually a Flowchart, meaning that this block
also indicates the end of the program.



4.7. ROUTING 83

the most part, these blocks make sure the items are destroyed from the sim-
ulation and additional statistics can be gathered. As far as the statistics are
concerned, the reader is referred to section 4.8 for more info. Thus, we’ll only
look at the destruction of messages.

Finish
input

Block 4.31: Finish building block.

The DEVS formalism does not require such a feature. All messages ex-
iting an output that is not connected to anything will be silently discarded.
Nevertheless, the addition of a Finish block (see block 4.31) provides a clear
endpoint in a model, both for the modeler as for anyone that needs to read or
decipher the model. The Finish block destroys an arriving message from the
simulation25. Whenever you need to gather additional statistics, it is preferred
to use collectors (see section 4.3) instead.

4.7.2 Terminating a Simulation

Sometimes, it might be useful for your simulation to terminate when a certain
condition is met. Often, this condition can be set in the simulator itself, but
you might also require to end a simulation if a message enters a block, similar
to the Stop Program block from [LEG13]. For instance, you might want to
terminate your simulation as soon as a queue starts overflowing.

Halt
input

Block 4.32: Halt building block.

While such a situation is merely an event that’s fired, we will introduce a
Halt block (see block 4.32), which provides the above-mentioned termination
condition. Additionally, it will store the message that arrived before halting,
so an end-user may use this for analysis.

25Technically, in PythonDEVS-BBL this block does nothing, seeing as Python has auto-
matic garbage collection.



4.7. ROUTING 84

In PythonDEVS-BBL, the static function anyHalted can be used as a ter-
mination function on the simulation sim:

sim.setTerminationCondition(Halt.anyHalted)

Do note that the anyHalted function is slow if the amount of building
blocks in the model is high26. Whenever all Halt blocks in the model are
known and stored in the halt blocks list, the following (faster) code can be
used instead:

sim.setTerminationCondition(lambda m, t:

any((h.isHalted() for h in halt_blocks)))

4.7.3 Exceptions

[Ima87] provides a Throw Item, a Throw Value, a Catch Item and a Catch
Value block to jump from one location to another. While this is useful when
you have a lot of connections, it does not follow the CDEVS semantics27.

Additionally, an exception in DEVS is merely an event that is fired. To
print exceptions, the loggers (section 4.5.1) can be used. This can be combined
with the Halt block (section 4.7.2) if the simulation needs to be terminated
whenever a condition is reached.

4.7.4 Splitting and Joining

In DEVS, it does not matter that multiple messages arrive at the same port,
at the same time, especially in PDEVS. Similarly, when an output connects to
multiple inputs, the message is duplicated automatically. While this makes it
so we do not have to bother with specific splitters and joiners, it is good to
keep in mind that the message was duplicated.

Block Outputs
This might seem quite contradictory when some building blocks will output
the entered message as well. For instance, take a look at the Counter (block
4.15) and the Transformer (block 4.27).

In fact, there is a reasoning for those outputs. As mentioned in section
2.2.7, CDEVS are evaluated at each output event, not at each time instance.
To prevent some of the issues that are yielded from this construct, the output
ports under discussion make sure that the block outputs happen in the same
timeframe, which can be used for multiple computations at the same time.
More information can be found in section 4.7.9.

26As a sidenote, the Python(P)DEVS documentation states that the usage of a termination
condition function slows down the simulation.

27Nor the PDEVS semantics for that matter.



4.7. ROUTING 85

4.7.5 Conditionals

Despite of what section 4.7.4 might suggest, there is still some way to handle
multiple paths converging or splitting. For this we return briefly to a telephone
switchboard that was used from the late 19th century up to the second half
of the 20th century. Back in the day, when you had to call someone, you had
to tell the telephone operator who that was. They would link the connection
through to a switchboard in such a way that it corresponded to your call. This
was done by plugging a cable that made a connection into the board. Later
on this was automated into the dialing system we still know.

Building Blocks

Choose
Input

in2 output

select

in3

in1

(a) Choose Input building block.

Choose
Output

input

out1

out2

out3

select

(b) Choose Output building block.

Block 4.33: Choose Input and Choose Output building blocks.

Let’s create two building blocks that would allow for such a system: the
Choose Input and Choose Output blocks (see blocks 4.33a and 4.33b).
Based upon the value that arrives on their select input port, a specific path is
opened. The message that arrives on an input other than select will be sent
out of the corresponding path. All other messages will be discarded.

Note that, if the Choose Input or Choose Output blocks have two
paths, mapped on 0 and 1, the select input can be a truthy value, which allows
for boolean checks. There is only a single inconvenience remaining within these
blocks: what happens when the value from select does not correspond to a valid
path? The Select Value In, Select Value Out, Select Item In and Select Item
Out blocks from [Ima87] indicate that there are some possibilities. We opt for
a round robin system, i.e. we do a modulo division on the selected value to
get a value that falls within the range of the possible paths.

Choose Based on Message
For the Choose Output block, we might not always want to choose our path
based on the value of the select input. Often, the value that must travel the
path might want to indicate which path to follow. Think for instance about
the Decision block from [Ima87] or the Switch block from [LEG13].



4.7. ROUTING 86

With the given block this may be achieved by first extracting the value that
indicates the output and send it to the select input at the same time that the
input enters the block. An example on how to do this is given in figure 4.8. To
make sure this interaction happens correctly, the δext must first evaluate the
new select input (if one exists) before sending the message out via its path.

Transformer
input

transformed

original Choose
Output

input

out1

out2

out3

select

Figure 4.8: Example of how to set the select input of the Choose Output
block by default.

Busy and Free Paths
Let’s say that the outputs of a Choose Output block are linked to a resource
that can be busy or free. Whenever it’s busy, no other item may obtain access
to the resource. Currently, we have no way of doing this28. So let’s introduce
the Pick block, as shown graphically in block 4.34.

Pick

free

output

claim

in1

in2

in3

Block 4.34: Pick building block.

It is aware of multiple resources that can be free or busy and coordinates
the information with the Select Output block that handles access to the
resources. In the block, there are three ports that are always present: free,
output and claim. The Pick block outputs true over the free port whenever
it knows that there is at least a single resource that’s free. This port can be
used to signal a (Simple) Queue (see section 4.2, blocks 4.8a and 4.8b) that
the resources are waiting for their next item(s).

Not to be confused with the free port, the output port outputs the identifier
of a path to the select input of a Choose Output block. Whereas free and

28Not in a clean fashion, that is.



4.7. ROUTING 87

output were output ports, the claim port is an input that notifies the Pick
block a resource has become unavailable.

Finally, the block also has n input ports (equal to the amount of outputs
from the Choose Output block). When there is a message that arrives here,
its corresponding resource will be marked “free”.

In the constructor, we’ll also add the possibility to mark certain resources
as “busy” on startup and we provide a way to select the next resource, based
on the list of all resources and their idle times. For completeness’ sake, we’ll
also give the user the possibility to indicate that the last possible path is to be
the fallback path (i.e. the path that’s selected when all resources are busy).

4.7.6 Guards

Often, users might want to shield a section of the model from other input.
This is often the case when talking about critical sections on multi-threaded
machines. [Ima87] and [INC97] provide multiple blocks that allow for acquiry
and release of resources. In order to allow our DEVS library the same func-
tionality, we could follow [INC97] and create a Lock and Unlock block, but in
DEVS, they would require to be connected to one another. This can be done
more easily in a single Guard building block (see block 4.35) with two inputs
(input and leave) and three outputs (blocked, guarded and unguarded).

Guard
guarded

input

blocked
leave

unguarded

Block 4.35: Guard building block.

The Guard block has an internal counter n that tracks the amount of items
that are being guarded. It starts at a predetermined value and, if it’s larger
than 0, it decreases every time an item arrives on the input port. Afterwards,
the item is outputted via the guarded output. If n is 0, the item that arrived
is “bounced back” via the blocked port.

When a message arrives on the leave input, n is increased and the message is
outputted on the unguarded output. Additionally, the block has two functions:
w and u that both take an item and should return the weight that that item
requires. Even though the Guard block may be implemented as a Coupled
DEVS, the functionality was specific enough to decide it’d be best to place it
inside of an Atomic DEVS.



4.7. ROUTING 88

Following a Queue
Even though items may be bounced back, often it is better for them to be
waiting in a Queue, before they enter the critical section. In order to model
this correctly in our DEVS library, we have to make use of the Guard, Queue
(see section 4.2) and Single Fire (see section 4.1.4) blocks, as illustrated in
figure 4.9.

Single Fire
output

Queue

overflow

dequeue

renege

requestdequeue

enqueue

requestrenege

dr

dd count

Guard
guarded

input

blocked
leave

unguarded

...

Figure 4.9: Using the Guard, Queue and Single Fire blocks to create a
queue before a critical section.

The Queue is constructed so it will not automatically dequeue items. At
time 0, the Single Fire block will send a message on the requestdequeue
of the Queue, meaning that it will immediately pass on the first enqueued
item. Whenever an item leaves the guarded section, another dequeue event is
requested.

You should make use of the Table Generator (see section 4.1.1) with
multiple records at time 0 instead of the Single Fire block if the n value of
the Guard is larger than 1. Additionally, the Simple Queue (see section
4.2) can be used instead of the Queue if you don’t require the Queue’s dd
input.

Ambiguity
There is still a problem: what will happen first in the Guard? Blocking or
leaving of items? I.e. what happens if an item leaves at exactly the same time
that another requests access? It makes the most sense that the leaving action
will be processed before the optional blocking action. This would free a set of
resources before new access is requested.

Whereas this might seem enough to remove the ambiguity in the block, it
unfortunately isn’t. Because we’re using CDEVS, we cannot be certain that
an input on the leave port and one on the input port happen in the same
timeframe (i.e. the same execution of δext, see also section 2.2.7). This issue
can be solved by using a Sync block (see section 4.7.9).



4.7. ROUTING 89

4.7.7 Gates

Whereas using the Guard block can become complex quite fast, the Gate
block (see block 4.36) tries to simplify some of it. If a part of your model
requires toggleable access, it is recommended to use the Gate over of the
Guard.

Gate
output

input

blocked
block

Block 4.36: Gate building block.

Instead of using resources to allow access to a critical section, the Gate
accepts a boolean message on the block input. When false29, all following
messages that arrive on the input will be outputted on the out port, until block
receives true30, meaning that all messages should instead be outputted on the
blocked port.

Shifts
One main use of the Gate block is its possibility to introduce shifts into the
model. As defined in [Ima87], [SIM94], [Fle93]31 and [INC97]32, a shift is a set
of time periods in which work is done. Outside of these time periods, no new
inputs should happen in the model.

Table
Generator

output

Gate
output

input

blocked
block

Figure 4.10: Assigning shifts to sections of the model.

29Or falsy.
30Or any other truthy value.
31In [Fle93], you can use time tables and preemption to model this.
32In [INC97], it can be found under the AVAILABILITY node of the atom tree.



4.7. ROUTING 90

Figure 4.10 shows a graphical example on how the shifts may be assigned,
using a Table Generator and a Gate. The former holds a schematic
of the shift periods and the latter makes sure the messages won’t enter the
system outside of this schedule. For instance, a bank is open from 7.30 a.m.
until 5 p.m. No customers should enter the bank outside of these office hours.
Additionally, you could say the bank is always open, but the employees only
work in those hours. This is a clear example on how shifts might work in a
model.

4.7.8 Time Manipulation

No, this section is not going to go into detail on time travel and time dilation,
but rather on building blocks that make use of the simulation time to handle
certain events. Think of the Wait Time block from [Ima87] or the Timer from
[LEG13].

Timer
The simplest time manipulation is to hold a message for a predefined delay dt.
The building block that can do this is the Timer , as shown in block 4.37.

Timer
finished

start

blocked
dt

Block 4.37: Timer building block.

When a message arrives on the start input, the Timer will keep this item
for dt time, before releasing it on the finished output. All items that arrive
on the start input while an item is being held are immediately bounced back
on the blocked output port. If you do not want the items to be bounced
back, you can make use of the Queue block with a predefined dr attribute.
Alternatively, the Advance block may be used as well.

Note that each input event in DEVS recomputes the ta, meaning that ta
cannot simply be dt, but rather dt−telapsed. The dt value can be altered during
execution, based upon the input on the dt port. If this value is less than the
time that has been passed already, finished will be triggered at once.

Delayer
Not to be confused with the Timer, the Delayer (see block 4.38) omits the
usage of the dt attribute and the dt input. Instead, it takes a function ft(i)
that, for each item i that arrives on the input start, will compute the time
delay associated with this message.



4.7. ROUTING 91

Delayer
finished

start

blocked

Block 4.38: Delayer building block.

Transformer
input

transformed

original
Timer

finished

start

blocked
dt

Figure 4.11: Creating the Delayer building block from the Transformer
and the Timer.

Figure 4.11 represents how the Delayer can be seen w.r.t. the Timer
and the Transformer. While it can be implemented this way, it is much
more efficient to use an Atomic DEVS instead.

4.7.9 Syncing

In section 2.2.7, it was mentioned that, because we’re using CDEVS, it is
perfectly possible that not all external events will arrive in the same time-
frame. This is the reason why some building blocks (like the Counter and
the Transformer) will output the input as well as the result of their imple-
mentation in the same output function. Unfortunately, this does not solve all
our problems.

In figure 4.12, you can find a small model that allows us to test the validity
of the Guard building block. The Constant Generator continuously
outputs a certain value, which is collected in the first Table Collector
(collector 1) if there were no resources left. If there were, the items are
enqueued in the Simple Queue. This latter block allows each item to be in
the critical section for a predefined time delay (hence the reneging). When an
item leaves the critical section, it is collected in the second Table Collector
(collector 2).

Now, what happens if an item leaves the critical section (that has no re-
sources left) at the same time as another wants access? For instance, our
Guard has 3 resources available and our Simple Queue still holds two of
them. The logic defined for the Guard block (see section 4.7.6) clearly states
that the leave event should happen first, allowing the new item access to the
Simple Queue.



4.7. ROUTING 92

collector 2:
Table

Collector

input

clear

Simple
Queue

overflow

dequeue

renege

requestdequeue

enqueue

requestrenege

dr

Guard
guarded

input

blocked
leave

unguarded

Constant
Generator

output

dt

value

collector 1:
Table

Collector

input

clear

Figure 4.12: Issue with messages arriving at a different time.

Unfortunately, because the message on the leave port of the Guard ar-
rives a few timeframes after the message that the Constant Generator
generates, the new frame will still be blocked in this structure.

We can make use of a Timer block (see section 4.7.8) with a dt of 0 be-
tween the Constant Generator and the Guard to fix the issue in this
case. It solves the issue by exploiting the fact that the default select func-
tion in Python(P)DEVS executes the Atomic models in an alphabetical order.
Additionally, all unnamed blocks in the figure were given the name of their
type33.

The model is small, hence, the problems will become more provocative the
bigger our model gets, hence we follow [Fle93] and introduce the Sync block
(see block 4.39).

Sync

out1

out2

in1

in2

Block 4.39: Sync building block.

The Sync block has n input and output ports and allows for syncing the
arriving messages. Whenever all input ports have received a message, the
block will release all these messages over the corresponding output ports. The

33Which is a very ugly and specific solution to a generic problem.



4.8. SIMULATION TRACERS 93

block does not enqueue the arriving items. A construction similar to figure 4.9
is required to circumvent messages arriving too fast after one another.

4.8 Simulation Tracers

Often, it is a good idea to keep track of events that happen in the simulation.
These can be especially useful when trying to gather statistics or obtain cost
information ([Ima87], [SIM94]). Luckily, this can be done by using a simulation
tracer.

A simulation tracer is not a building block, but rather an object that gath-
ers the real time information of a simulation and processes it. Accompanied
with PythonDEVS-BBL, there are four generic tracers34, based on the function-
ality provided by the tools from section 3.1. Some examples on how to use
each of these tracers are given in the Jupyter notebooks that can be found in
src/notebook.

4.8.1 Plot Tracer

The PlotTracer provides a way of plotting your simulation data during run-
time, given a set of collectors and a way of plotting. For instance, a Table
Collector (section 4.3, block 4.12) can be plot easily in a line plot, but you
might require items to be grouped together in buckets, in order to obtain valid
data for a bar plot or histogram, or maybe you want to plot boxplots instead.
All this info can be passed to the PlotTracer to plot the correct info.

A note on Boxplots
A boxplot is a box-and-whiskers plot, where the whiskers define the data range,
the box defines the inter-quartile range IQR = Q3 − Q1 and the median is
defined by a line in the box. Optional outliers are drawn as dots outside of
the range. While the task of “drawing a boxplot” seems simple enough, but
the issue lies in the fact that there is no single formula for computing Q1 and
Q3. The six most common formulas are given below (see also [Lan06; FP87]).
Assuming that we have a list L of N items, Q1 is the item at index q1 if q1
is an integer, otherwise it’s the linear interpolation of the surrounding points.
The same is true for Q3 and q3. Note that both q1 and q3 are one-based.

Default Formula The Q1 and Q3 values are the medians of the lower list and
the upper list of the set split on its global median, respectively. The
global median is not included in the computation. When there is an

34As well as a superclass for creating your own tracers.



4.8. SIMULATION TRACERS 94

even amount of items, the two values that make up the median are both
excluded from the computation.

q1 =


N

4
if N is even

N + 1

4
if N is odd

q3 =


3 ·N + 4

4
if N is even

3 ·N + 3

4
if N is odd

(4.2)

Tukey’s Formula [Tuk77] The formula that’s used in R’s [R F97] fivenum func-
tion and by the Python library Matplotlib [Dro+03] for plotting boxplots.
The global median is included in the computation.

q1 =


N + 2

4
if N is even

N + 3

4
if N is odd

q3 =


3 ·N + 2

4
if N is even

3 ·N + 1

4
if N is odd

(4.3)

Minitab Formula The formula that is used in Minitab [Min72] and in Microsoft
Excel [Mic87] for the QUARTILE.EXC method (if you have a more recent
version than 2007). The global median is excluded from the computation
when the amount of items is odd.

q1 =
N + 1

4
q3 =

3 ·N + 3

4
(4.4)

Freund & Perles’ Formula [FP87] This formula is used in Microsoft Excel for
QUARTILE.INC (of for QUARTILE, if your version is less recent than 2007).
Additionally, the R software makes use of this formula in the summary

function. The Python library Numpy [Oli+95] also uses this in the per-

centile function.

q1 =
N + 3

4
q3 =

3 ·N + 1

4
(4.5)

Moore & McCabe’s Formula [MM03] An alternative form of formula 4.3, where
the global median is excluded from the computation. It is used in the
TI-83 calculators for computing boxplot data [Lan06].

q1 =


N + 2

4
if N is even

N + 1

4
if N is odd

q3 =


3 ·N + 2

4
if N is even

3 ·N + 3

4
if N is odd

(4.6)



4.8. SIMULATION TRACERS 95

Mendenhall & Sincich’s Formula The same as formula 4.4, except with round-
ing. Usually, for the lower quartile, we round up and for the upper quar-
tile, we round down. Other authors use other interpretations [Lan06].

q1 =

⌈
N + 1

4

⌉
q3 =

⌊
3 ·N + 3

4

⌋
(4.7)

Additionally, there is also the Fast Algorithm for Median Estimation (FAME,
[FS07]), which estimates the median of a series, which can obviously be used
to estimate Q1 and Q3 as well.

Nevertheless, all these algorithms require the full sequence to estimate the
data, which we don’t always have. In [JC85], an algorithm is created to es-
timate the percentiles, without the knowledge of the full sequence. See also
the Estimate Collector (section 4.3, block 4.14) for more info on this
algorithm.

4.8.2 Statistics Tracer

Almost all tools that were discussed in section 3.1 provide some way to obtain
statistics about the throughput of a submodel (mostly of single blocks). They
generally report the following statistics:

1. The amount of items that entered the submodel.

2. The amount of items that left the submodel.

3. The average time spent in the submodel.

4. The average amount of items in the submodel for a given period.

The StatisticsTracer provides exactly the same functionality, given a
set of entry and exit points of a submodel.

4.8.3 Footprint Tracer

In [SIM94], the term “footprint” is used to indicate a consequence of using
a building block. Other tools refer to this as a “cost”35. However you call
it, a footprint is the cost of using a block (or a submodel). This can be
a financial cost (when trying to compute how expensive your model is), or
an environmental cost (when you, for instance, try to estimate the carbon
footprint of your model).

Whenever the block is used, the cost of this block is accumulated until
the end of the simulation. This can be done with the FootprintTracer. It
takes a mapping from a port to a number and computes for each block the

35[SIM94] mainly uses “footprint” for the environment and “cost” for anything else.



4.9. EXAMPLE 96

associated cost. It is up to the user to determine what this cost actually means.
Alternatively, the mapping can also map to a function that uses the item that
enters the block to obtain a certain cost. For instance, an item that weighs
60 kilograms might be more costly to transport in comparison to an item that
weighs 10 kilograms. Finally, this block will also allow an overview of the cost
per item that traveled through the simulation. This allows users to quickly
identify the most costly item in their system.

4.8.4 Profile Tracer

Finally, the last tracer, the ProfileTracer is a class that helps users create a
profile of a simulation. It collects the amount of messages that traveled over
certain connections and the number of times a block’s internal, external and
confluent36 transition function fired.

While no tools provide such a feature, this might be used to optimize a
spaghetti-like model. The resulting file is a CSV file, containing two tables
(separated with an empty line): an overview for each block and an summary
for each connection. Note that for each output that connects to multiple
inputs, the connections will be count as well in the connection total.

4.9 Example

In the Pythin(P)DEVS documentation, there are lots of example usages of dif-
ferent parts of the framework. Additionally, there is a complete example use
case, which can be found on https://msdl.uantwerpen.be/documentation/

PythonPDEVS/queueing.html:

Example 4.9.1 (Application to Queueing Systems).
In this example we model the behaviour of a simple queue that gets served by
multiple processors. Implementations of this queueing systems are widespread,
such as for example at airport security. Our model is parameterizable in sev-
eral ways: we can define the random distribution used for event generation
times and event size, the number of processors, performance of each individual
processor, and the scheduling policy of the queue when selecting a processor.
Clearly, it is easier to implement this, and all its variants, in DEVS than it is
to model mathematically. For our performance analysis, we show the influence
of the number of processors (e.g., metal detectors) on the average and maximal
queueing time of jobs (e.g., travellers). A model of this is shown in figure 4.13.

Events (people) are generated by a generator using some distribution func-
tion. They enter the queue, which decides the processor that they will be sent

36Making it useful for parallel simulations, even if the library isn’t.

https://msdl.uantwerpen.be/documentation/PythonPDEVS/queueing.html
https://msdl.uantwerpen.be/documentation/PythonPDEVS/queueing.html


4.9. EXAMPLE 97

to. If multiple processors are available, it picks the processor that has been idle
for the longest; if no processors are available, the event is queued until a pro-
cessor becomes available. The queue works First-In-First-Out (FIFO) in case
multiple events are queueing. For a processor to signal that it is available, it
needs to signal the queue. The queue keeps track of available processors. When
an event arrives at a processor, it is processed for some time, depending on the
size of the event and the performance characteristics of the processor. After
processing, the processor signals the queue and sends out the event that was
being processed.

Proc 1

Proc ...

Proc n

λ

finish

event

event

event

Figure 4.13: Application to Queueing Systems example model concept [Van14;
VV17b].

Whereas the Python(P)DEVS documentation provides an in-depth descrip-
tion on how to implement this, we can, in fact, make us of our BBL. Figure
4.14 is a graphical representation of the block diagram for three processors
that produces the same results as the example solution. The implementation
is given in a Jupyter notebook in the PythonDEVS-BBL repository.

Notice that, while the BBL has builtin RNGs, we bypass this functional-
ity to enforce that the same distributions and seeds were used in the sample
solution.



4.9. EXAMPLE 98

R
andom

 D
elay

G
enerator

output

halt

C
hoose

O
utput

input

out1

out2

out3

select

process 2:
D

elayer
finished

start

finished

process 3:
D

elayer
finished

start

finished

process 1:
D

elayer
finished

start

finished

Pick

free

output

claim

in1

in2

in3

Q
ueue

overflow

dequeue

renege

enqueue

dr
dd

count

requestdequeue

requestrenege
events:

C
ollector

clear

input

Figure 4.14: Implementation of example 4.9.1 in PythonDEVS-BBL, for three
processors.



4.10. IMPLEMENTATION NOTES 99

4.10 Implementation Notes

This final section will go into detail on some additional remarks that are worth
mentioning w.r.t. the library.

As should be clear by now, PythonDEVS-BBL is built in Python, on top
of the Python(P)DEVS framework. As of 2020 (which is the year of writing),
Python 2 has officially been discontinued by the Python Software Foundation.
For this reason, PythonDEVS-BBL has not been tested on Python 2 and will,
presumably, yield some strange behaviour when running it as such.

4.10.1 Library Specifics

While the library has been explained in much details, there are some aspects
that need to be kept in mind.

Constructor Arguments
All building blocks will have a first (required) argument that represents the
block name. While the pypdevs.DEVS class defaults this to be None, an error
will be thrown if the name is not a string. It stands to reason it would be
better to enforce the usage of the argument instead.

Port Names
The names for the ports in the code are exactly the same as described in this
paper and the referencing variables follow the same names. I.e. ConstantGen-
erator("gen").output will obtain the output port (called “output”) from a
Constant Generator (which is called “gen”).

Exceptions for this rule are the Choose Input (see section 4.7.5, block
4.33a), Choose Output (see section 4.7.5, block 4.33b), Pick (see section
4.7.5, block 4.34), Sync (see section 4.7.9, block 4.39), Adder (see section
4.4.2, block 4.16) and Multiplier (see section 4.4.2, block 4.17) blocks, where
the inputs and outputs members are lists that can be indexed and the cor-
responding port name will be input-N or output-N, as described in the doc-
umentation of these blocks.

Project Structure
PythonDEVS-BBL comes in three subpackages: generic, extra and tracers37.
The first subpackage contains all the generic building blocks as described in
this chapter, each category separated into their own module. The second one
contains a set of modules, helper methods, classes and constructs for the build-
ing blocks to work. They also include the boxplot algorithms as described in
section 4.8.1. Additionally, it provides a method pypdevsbbl.extra.toDot

37An additional subpackage, domain, is present to allow for future domain-specific blocks
and the code for GPSS2DEVS, as will be discussed in chapter 5.



4.10. IMPLEMENTATION NOTES 100

that creates a basic graph of any model, in a standard Graphviz [ATT91] for-
mat38. Lastly, the third subpackage contains a generalized basis for creating
and assigning custom tracers. On top of that, it provides the tracers that are
discussed in section 4.8.

4.10.2 Documentation

The PythonDEVS-BBL library comes with an extensive documentation that
acts like an addendum to this thesis. When in doubt about the logic of a
block, the docstring should probably provide an adequate answer. For each
block, the documentation therefore provides:

• A short description of the block.

• An optional more in-depth description.

• A graphical representation of the block, as and when it is used within
these pages.

• The constructor arguments. Including optional default values.

• A description of the state of the block, if it uses a state.

• The set of input ports for a block if they exist.

• The set of output ports for a block if they exist.

• Some optional notes and warnings which are good to know when using
a block.

Non-blocks (i.e. functions, classes, variables...) will provide an sufficient
description of what they are and how to use them.

Jupyter Notebook
Additionally, some examples and use cases have been implemented in Jupyter
notebooks (see src/notebook). These provide some alternative explanations
on the building blocks, specified on a combined usage in the use case.

Note that these use cases are fictional and only loosely based on real-life
events and situations. They’re there for illustrative and informative purposes
and should not be used as a basis for research by themselves. In those contexts,
a model should always be backed up with scientific results or experiments.

38Note that this is not a valid graphical representation w.r.t. the representations provided
in this paper, but can be used to debug large models or validate the correctness thereof.



4.10. IMPLEMENTATION NOTES 101

4.10.3 Tests

All code needs to be tested. This is an additional layer of safety for users to
ensure that, with respect to the tests, the provided code act as it should and
does not provide any unexpected behaviour. PythonDEVS-BBL is bundled with
such a set of tests that can be executed as identified in the documentation.
Rest assured that all required, important and described functionality is tested.
Nevertheless, such a system is never foolproof and small issues or edge cases
can slide through the cracks. Don’t hesitate to contact the author when such
issues occur.

The one exception to these tests is the Sound block (see section 4.5.3,
block 4.25). Because a unit test to check if the sound plays is quite useless,
there is the possibility to execute the pypdevsbbl.generic.io module. As
described in its documentation, you should hear a sound. If you don’t, the
test failed.

Also, do note that, while most tests run incredibly fast, this is not the case
for the tests concerning the inverse distribution functions. This is because
we require a lot of stochastic information to be able to deduct with enough
certainty that our inverse cumulative distribution functions follow the correct
distributions for a large numbers of parameters.



CHAPTER 5

GPSS2DEVS

In [VVV18; Van00b; Van00a], DEVS is said to be a common denominator
for countless formalisms, even GPSS. Yet, no full explanation is given on this
topic. Despite GPSS and DEVS being completely different world views, this
chapter tries to provide a valid transformation from the GPSS subset we’ve
discussed in section 2.3 onto the CDEVS formalism. The interested reader is
free to expand upon this transformation until it encompasses the full GPSS
specification as is discussed in [Gor75].

While the generic idea is language-independent, we will focus on Python
and Python(P)DEVS as we did in chapter 4. That being said, a graphical
representation for most structures is provided in this paper, making it not
only expandable to other frameworks, but also useful in visual specification
languages for model transformations and their analysis [Gue+10; Gue+13;
Hol97].

First, in section 5.1, we will discuss some of the choices we’ve made and
preconditions that were set in order to obtain the transformation. Section
5.2 goes into detail on the actual translational semantics for GPSS2DEVS.
Section 5.3 discusses some things to keep in mind when implementing the
transformation and we end (in section 5.4) with a some examples that make
use of the proposed transformation.



5.1. GENERAL PRINCIPLES 103

5.1 General Principles

Before we delve too deep into the actual transformation, we need to define
some general principles we’ll be using in this chapter. Additionally, section
5.1.2 will describe some syntax we’ll be using to prevent some ambiguity within
the transformation.

5.1.1 Three Principles of GPSS2DEVS

We’ve set out to make GPSS2DEVS based on the following three principles:

1. Every GPSS building block needs to be transformed into a structure
of DEVS building blocks in such a way that the original block can be
recovered. I.e. every GPSS block has a representative DEVS alternative.
In other words, the amount of blocks in the resulting DEVS model is
at least the amount of blocks in the original GPSS model. The only
exception to this rule is the TRANSFER block, which can be optimized as
we’ll discuss later on. We’ll call this the backwards propagation principle.

2. Since only a single transaction may move at any time, we’ll make it so
there can be at most one transaction in each corresponding DEVS build-
ing block, simplifying the internal logic. This is the limitation principle,
because it puts a constraint on the individual building blocks. An ex-
ception to this rule is obviously the ADVANCE block, which can contain
multiple transactions at the same time.

3. The availability principle states that the GPSS chains need to be repre-
sented in the transformation in one way or another.

5.1.2 Notation

To prevent ambiguity, we need a way to distinguish the GPSS blocks from
their DEVS counterpart. Especially when taking the backwards propagation
principle (principle 1) quite literally. Hence, every DEVS building block that
corresponds to a GPSS block (i.e. a GPSS2DEVS block) will be given the same
name as it were in GPSS. Within this thesis, that means that the GPSS2DEVS
blocks will be capitalized with the first letter only and they will be denoted
with the Small Capitals font style (as was the case in chapter 4), while the
GPSS counterparts will retain the typewriter style (as we did in section 2.3).
For instance, PREEMPT becomes Preempt and ASSIGN becomes Assign.

Furthermore, arguments provided to GPSS building blocks will be de-
noted as class constructor parameters. I.e. “GENERATE 5” will translate to
“Generate(5)”.



5.2. TRANSFORMATION 104

5.2 Transformation

Now that we know the principles (as they were given in section 5.1.1) for a
transformation, we can start mapping GPSS onto DEVS.

5.2.1 Entities

First things first, a transaction in GPSS can easily be seen as an event from
DEVS, provided that an event is able to carry parameters. While a Python
dictionary may seem like a valid representation of such a transaction, we’ll use
a class instead. This way, we have more flexibility over the transactions and
allow for possible further expansions in a backwards-compatible way. Further-
more, the time-unit from GPSS can be mapped onto the time-unit from DEVS
quite straightforwardly. We do need to keep in mind that real-time simulation
in Python(P)DEVS indicates a time unit of a second.

The obtaining of SNAs can be done by making use of a global construct.
Within the implementation, a function is used that takes the SNA as a string
and returns the corresponding value, given the current transaction, the model
and the current simulation time.

[Gor75] defines eight RNGs: RN1 to RN8, where the number at the end
defines the default seed. It also states that GPSS makes use of a MCG,
which is quite a predictable generator in comparison to [LS03]. To make
sure GPSS2DEVS is congruent to GPSS, we need to use an RNG that is as
predictable1. Python’s builtin random module was used for this purpose.

5.2.2 Scanning Algorithm

A valid transformation in GPSS2DEVS requires a control unit that coordinates
the events being sent and, therefore, the flow of the transactions. We introduce
a Controller block (see block 5.1a) and a Hold block (see block 5.1b) that
communicate how the transactions should move through the model. In effect,
this communication implements the scanning algorithm. Whereas there is only
one Controller block for each model, multiple Hold blocks are apparent.
In general, there is a single Hold block behind every GPSS2DEVS block. This
means that, in the general case2, there are at least two DEVS blocks for every
GPSS block.

Hold blocks will listen to coordination messages that the Controller
sends. Whenever a transaction enters such a block, it will be stored internally
until the block is told by the Controller to release a specific transaction,

1This is mainly to ensure the validity when comparing simulation results.
2There are some exceptions to this rule.



5.2. TRANSFORMATION 105

Controller
notify

pause
create

moved

delay

facilities unblock

terminate

(a) Controller

Hold

input

output

select

fallback

contents

release

(b) Hold

Block 5.1: GPSS2DEVS Controller and Hold blocks.

which is done by a notify event. This internal storage makes it possible for the
DEVS blocks to only look at a single transaction at any time, thus enforcing
the limitation principle (principle 2).

There are two possible modes for every Hold block: send mode, in which
the contents of the Hold block (i.e. all transactions that are waiting) are
outputted over the contents port upon the arrival of a new input event; and
normal mode, in which this does not happen. In our visual representation, we
will say that whenever the contents port of a Hold block H is connected to
the moved port of the Controller block, H is in send mode.

Principle 3, the availability principle states that all chains need to be repre-
sented in GPSS2DEVS. Some of them are easily mapped, like the FEC, which
is implicit in DEVS by making use of the time advance function ta. Others, like
the CEC, are slightly more difficult to see3. We’ll provide the Controller
block with four internal lists:

active The list of transactions that are neither blocked, delayed, nor termi-
nated. The scanning algorithm iterates over these transactions until the
list is empty. The transactions on this list are ordered by priority (and
time of arrival).

delayed The unordered list of transactions that are delayed until further notice.
All transactions on the FEC can be found here, as well as transactions
that enter a Link/LINK block.

created The list containing all transactions that are created by Generate
blocks during an iteration over the active list. We need to make sure
all Generate blocks have called their output function λ before the
Controller starts with the scan. Additionally, all transactions that
were delayed or blocked, but have moved, will be placed in this list,
anticipating the rescan (hence, their λ needs to have been called as well).
The transactions do not need to be ordered in this list.

3The interrupt chain and user chains will be discussed later on.



5.2. TRANSFORMATION 106

blocked The list of transactions that cannot move to the next block due to
some blocking condition. If a resource is released, the Controller will
move all transactions on this list to the created list before rescanning. For
performance reasons, the coordination of blocked transactions happens
in groups instead of individually: if a single transaction of a group is
blocked, the Controller can mark all remaining transactions in the
group as blocked. The order of the transactions in this list does not need
to be defined. Furthermore, the CEC can be seen as the union of the
active and blocked lists.

Given these lists, we can rewrite the scanning algorithm that was given in
section 2.3.4 as follows:

1. The Controller will notify the first transaction T in the active list
that it may move. As long as T can move through the model, it will
move.

• This is done by sending T over the notify port and therefore noti-
fying every Hold block that T is allowed to move.

• In their turn, the Hold blocks output T over their output if it is
waiting inside. The Hold blocks remember T , until they receive
another value from the Controller and immediately pass on T
if they receive the transaction on their input.

• To prevent unnecessary overhead, the Controller won’t send T
if the previous transaction that was allowed to move equals T .

2. Whenever T is to be delayed or blocked, it will be removed from the
active list and placed on the corresponding list. A delay happens when
a transaction enters an Advance4 or a Link block.

3. If T leaves the FEC, the Controller is notified and adjusted accord-
ingly. I.e. T is moved from the delayed list to the created list, ready for
the next iteration of the algorithm.

4. When T is terminated, the termination counter of the Controller is
updated as required by the Terminate block and T is removed from
the active list.

• Because of the removal from this list, the next transaction in the
active list will be selected for the next notify event automatically.

• Whenever the termination counter reaches the zero, the DEVS sim-
ulation of the GPSS model is halted.

4The block is underlined to distinguish it from the previously declared Advance block
(see block 4.11).



5.2. TRANSFORMATION 107

5.2.3 Time and Flow

Figure 5.1 shows the transformation of the GENERATE, ADVANCE and TERMINATE

blocks. As you can see, every transaction that is generated will be added to the
Controller’s created list (by entering on the corresponding input). They are
terminated from the simulation by entering on the Controller’s terminate
port5. The Controller will always have a connection between its notify
output and a release input of a Hold block.

Furthermore, the Advance signals the Controller that a transaction
has moved (i.e. is not delayed anymore) and the block before the Advance
will tell the Controller to move the transaction to the delay list. The
Controller may pause certain transactions in the Advance block. This
block is, in fact, a Coupled DEVS and can be created as shown in figure 5.2.

Seeing that we need to make all transactions unique and GPSS can have
multiple GENERATE blocks, we need to transform the unique identifier that
the Generate block6 uses to initialize the transactions. If we don’t, two
Generate blocks will yield the same sequence of transactions, making them
not unique. We can solve this issue by stating that the unique identifier (uid)
of a transaction is given by n · i+g, where n identifies the amount of GENERATE
blocks in the model, g the index of the Generate block that creates the
transaction and i the amount of transactions the Generate block has created
already. Now, each Generate block generates uid according to its own unique
arithmetic progression, such that no to progressions can collide.

Example 5.2.1 (Lucky Timings).
Consider the GPSS model with a visual concrete syntax as shown in figure
5.3a. The translated version of this model is straightforward, given figure 5.1.
Starting from time 10, every 10 time units, a transaction is created with a
uid that follows the sequence {0, 1, 2...}. Each transaction waits for 5 time
units before being destroyed. The simulation runs until the termination counter
becomes zero (i.e., until a given number of messages was destroyed). The
sequence diagram given in figure 5.3b shows all events that are being sent in
the translated example at time 10, 20, 30, . . . In the diagram, Tx identifies
the transaction that is created in that time unit. The process goes through the
following phases:

1. When the Generate block creates Tx, it sends a message to the Con-
troller stating that the transaction has been created. Next, it will pass
the message on to a Hold block.

5Actually, a pair enters this port, where the first field indicates the to-terminate trans-
action and the second field the termination count for that transaction.

6Which is technically a Random Delay Generator (see block 4.5).



5.2. TRANSFORMATION 108

Controller
notify

pause
create

moved

delay

facilities unblock

terminate

GENERATE
A, B, C, D, E

outputhalt

Hold

input

output

select

fallback

contents

release

(a) GENERATE block in GPSS2DEVS.

Hold

input

output

select

fallback

contents

release

Controller
notify

pause
create

moved

delay

facilities unblock

terminate

ADVANCE
A, B

input

output

pause

(b) ADVANCE block in GPSS2DEVS.

TERMINATE
A

input

output

Controller
notify

pause
create

moved

delay

facilities unblock

terminate

(c) TERMINATE block in GPSS2DEVS.

Figure 5.1: The translation of the GENERATE, ADVANCE and TERMINATE blocks
in GPSS2DEVS.



5.2. TRANSFORMATION 109

Random

random

input

value
Advance

input

pause

output

delay

Figure 5.2: The GPSS2DEVS Advance block as a Coupled DEVS.

2. The Controller notifies all Hold blocks that Tx may move. Because
Tx is only in “Hold 1”, it moves from there to the Advance block,
while also messaging the Controller that Tx should be moved to the
delay list, because it’s entering an Advance.

3. After five time units, Tx is freed from the Advance block and makes
its way into the “Hold 2” block. The Controller is notified that Tx
is not delayed anymore and remembers that the last notification allowed
Tx to pass, so no notify is sent. “Hold 2” also remembers the previous
notification and sends Tx to the Terminate block.

4. The Terminate block makes the Controller remove Tx from the
active chain and reduce the termination counter by 1.

5. After 5 time units, the Generate block creates a new Tx, restarting
the process.

Let’s defer the construction of the translation of the TRANSFER block until
section 5.2.5. In the meantime, we can construct the translations for the TEST

and the ASSIGN blocks without too much issues. They are shown in figure 5.4.

5.2.4 Resources

In general, resources follow the same structure as already described above.
Each block that gains access (be it a Seize, a Preempt, an Enter or a
Logic) is immediately followed by a corresponding Hold block. In fact,
here, there is a double connection between the GPSS2DEVS-block and the
Hold block: one for the passing transaction and one that indicates if the
transaction should be blocked7.

For performance reasons, it’s only these Hold blocks that are in send
mode and therefore notify the Controller about their contents. If the Con-
troller tells the Hold block to release a blocked transaction, the transaction
retries to gain access on the GPSS2DEVS-block’s input port8.

7Using the select port of the Hold block.
8Here, we use the fallback port of the Hold block.



5.2. TRANSFORMATION 110

10

5

1

(a) Visual Notation in
AToM3.

(b) Sequence diagram for all messages in the sim-
ulation. The “busy” section for the Controller
identifies that Tx is located in the active list in
these periods. For all other blocks, it indicates
that Tx is located in the block.

Figure 5.3: Example 5.2.1.

As soon as a retrying transaction is blocked, the Controller is aware
that the resource cannot be accessed anymore and it marks all transactions
that are in the same group as the trying transaction as “blocked”9. The block
that requests access communicates with the corresponding resource whether
or not access may be granted. Additionally, blocks that free up a resource also
do a similar communication, besides also triggering a rescan.

Facilities
Besides the general rules that resources follow in the translation, facilities re-
quire some additional coordination with the Controller. In GPSS, a trans-
action has knowledge of all the facilities it belongs to. In the translation, this
relationship is reversed: all facilities know which transactions have access to
them, interrupted or not. This statement can be made without loss of gener-
ality, as long as we make sure a transaction may not be interrupted more than
255 times (as stated in [Gor75])10. To do so, we’ll have the Controller listen
to facility updates. When such an update happens, the Controller, using
the pause port, must send a message to all Advance blocks, notifying that all
transactions (except the last transaction that obtained the facility) must be
paused. Because of the way our transformation is constructed, a transaction
can only be interrupted when its in an Advance block. Only then, the list

9The Hold blocks send their entire contents (i.e. the full group) to the Controller.
10While this may have been for memory reasons, this limit was kept in the translation,

because that it is believed that such an edge case is indicative of bad modeling practices.



5.2. TRANSFORMATION 111

Hold

input

output

select

fallback

contents

release

Controller
notify

pause
create

moved

delay

facilities unblock

terminate

TEST
A, X, B

input

outputC

Hold

input

output

select

fallback

contents

release

(a) TEST block in GPSS2DEVS.

ASSIGN
A, B, C, D

input

output

Hold

input

output

select

fallback

contents

release

Controller
notify

pause
create

moved

delay

facilities unblock

terminate

(b) ASSIGN block in GPSS2DEVS.

Figure 5.4: The translation of the TEST and ASSIGN blocks in GPSS2DEVS.



5.2. TRANSFORMATION 112

Hold

input

output

select

fallback

contents

release

Facility
A

enter

leave

updates

preempt

SEIZE

input

output

request

halting

facility

Controller
notify

pause
create

moved

delay

facilities unblock

terminate

(a) SEIZE block in GPSS2DEVS.

Hold

input

output

select

fallback

contents

release

Facility
A

enter

leave

updates

preempt

Controller
notify

pause
create

moved

delay

facilities unblock

terminate

RELEASE

input

output

facility

(b) RELEASE block in GPSS2DEVS.

Figure 5.5: The translation of the SEIZE and RELEASE blocks in GPSS2DEVS.

of transactions that obtained the facility will be larger than 1. Whenever a
transaction releases a facility (via either a Release or a Return block), this
list is updated and another transaction will be resumed.

Figure 5.5 gives the translation for the SEIZE and RELEASE blocks. The
dotted arrow indicates a connection that should be made upon the construction
of the Facility. Notice how an additional block, Facility, is present in our
model. This is done because the facilities can be obtained from any branch in
the original model. Over the updates port, it outputs the current state of the
facility, whenever some change happens. The translation for the PREEMPT and
RETURN blocks can be inferred from this figure.



5.2. TRANSFORMATION 113

Hold

input

output

select

fallback

contents

release

ENTER
B

input

output

request

halting

storage

Controller
notify

pause
create

moved

delay

facilities unblock

terminate

Storage
A

enter

leave

updates

(a) ENTER block in GPSS2DEVS.

Hold

input

output

select

fallback

contents

release Controller
notify

pause
create

moved

delay

facilities unblock

terminate

LEAVE
B

input

output

storage Storage
A

enter

leave

updates

(b) LEAVE block in GPSS2DEVS.

Figure 5.6: The translation of the ENTER and LEAVE blocks in GPSS2DEVS.

Storages
Following the same structure as facilities, a Storage block can be added
to the translation, identifying the storage the transactions are entering. In
figure 5.6, the translation is shown.

Logic Switches
Logic switches are the odd ones out. Instead of having a single block for
each switch, there is an all-knowing LogicSwitches block. This is done
because logic switches are more often than not accessed via SNAs. While we
could manipulate Python’s getattr -like functionality, this is a slow and
rather dirty solution. Additionally, each logic switch only represents a boolean
variable, so a unique block per switch would cause too much overhead.

Furthermore, instead of having a block that indicates a resource request
and another that represents the release of that resource, logic switches only



5.2. TRANSFORMATION 114

Hold

input

output

select

fallback

contents

release

Controller
notify

pause
create

moved

delay

facilities unblock

terminate

LOGIC
X, A

input

output

switches Logic
Switches

change

updates

(a) LOGIC block in GPSS2DEVS.

Hold

input

output

select

fallback

contents

release

Controller
notify

pause
create

moved

delay

facilities unblock

terminate

Logic
Switches

change

updatesGATE
X, A, B

input

output halting

B switches

Hold

input

output

select

fallback

contents

release

(b) GATE block in GPSS2DEVS.

Figure 5.7: The translation of the LOGIC and GATE blocks in GPSS2DEVS.

have a GATE block that can cause blocking. For this reason, the Gate block
implements the same general logic as, for instance, an Enter block and a
Leave block combined.

The translation of the LOGIC and the GATE blocks is given in figure 5.7.
For the GATE, the optional fallback port B (when defined) also introduces an
additional Hold block11. When argument B is not defined, the port is not
created in the Gate block.

11Which is why it is shown in a muted color.



5.2. TRANSFORMATION 115

Pick

free

output

claim

in1

in2
Choose
Output

select

out1

out2

input

claim

in1

in2

out1

out2

input

output

Figure 5.8: The GPSS2DEVS Transfer block in conditional mode as a Cou-
pled DEVS.

5.2.5 The TRANSFER Block

As the exception that confirms the rule, the TRANSFER block is quite special:
it does not follow the backwards propagation principle (principle 1).

In fact, the TRANSFER block in unconditional mode can be translated into a
single connection. There is no need for a Hold block here, seeing as the
transaction will unconditionally flow from the previous block to the block
indicated in parameter A. Blocking can never occur, so the addition of two
blocks for this purpose would cause unnecessary overhead.

In the case of the conditional mode, for facilities and storages, the block
can be translated as shown in figure 5.9. In the figure, the example for the
combination with SEIZE and RELEASE is shown. The Transfer block follows
the Coupled DEVS model that is represented in figure 5.8. Here, the in2 and
out2 ports will not be used.

More generically, we can replace the TRANSFER block by a TEST block that
checks the condition we’re interested in. When we use a TRANSFER block in all
mode, we can replace this by a chain of multiple TRANSFER blocks in conditional
mode.

5.2.6 User Chains

As far as the translation is concerned, LINK and UNLINK can be seen as a
special kind of ADVANCE block. The LINK enters transactions in the chain and
the UNLINK takes them out again. The delay between entry and departure
of the chain depends on the correspondence between process flows, hence all
transactions that are on a chain will also be on the Controller’s delay list.
The translation for both blocks are shown in figure 5.10. Notice that the dotted
lines indicate a possible additional part of the translation.



5.2. TRANSFORMATION 116

Hold

input

output

select

fallback

contents

release

Facility
A

enter

leave

updates

preempt

SEIZE

input

output

request

halting

facility

Controller
notify

pause
create

moved

delay

facilities unblock

terminate

Hold

input

output

select

fallback

contents

release

RELEASE

input

output

facility

... TRANSFER BOTH

input

output

in1

out1

claim

Hold

input

output

select

fallback

contents

release

Figure 5.9: The translation of the TRANSFER block in conditional mode, com-
bined with the SEIZE and RELEASE blocks in GPSS2DEVS.

In the case of the LINK block, when C is set, the port will be connected to
an existing Hold block in the model. Notice that a Hold block was chosen
to keep it consistent, but (following the same reasoning as with the TRANSFER

block in unconditional mode) we might as well refer to a GPSS2DEVS block.
If C is undefined, the port won’t be created. For the UNLINK block, when F is
defined, we create an additional Hold block for that port. Similar as to the
LINK, when F is undefined, the port does not exist. Notice that the Chain
block identifies a data structure that represents the user chain.

5.2.7 Gathering Statistics

As discussed in section 2.3.9, it is possible that statistics can be gathered
during a GPSS simulation. Eventually, all statistics can be cleared from their
corresponding blocks, similar to the RESET statement in GPSS.



5.2. TRANSFORMATION 117

Hold

input

output

select

fallback

contents

release

Controller
notify

pause
create

moved

delay

facilities unblock

terminate

LINK
B, C

input

C

output Chain
A

enter

leave

updates

(a) LINK block in GPSS2DEVS.

Hold

input

output

select

fallback

contents

release

Controller
notify

pause
create

moved

delay

facilities unblock

terminate

Hold

input

output

select

fallback

contents

release

Chain
A

enter

leave

updates

UNLINK
C, D, E, F

input

FB output

chain

unlink

Hold

input

output

select

fallback

contents

release

(b) UNLINK block in GPSS2DEVS.

Figure 5.10: The translation of the LINK and UNLINK blocks in GPSS2DEVS.



5.2. TRANSFORMATION 118

MARK
A

input

output

Hold

input

output

select

fallback

contents

release

Controller
notify

pause
create

moved

delay

facilities unblock

terminate

(a) MARK block in GPSS2DEVS.

Hold

input

output

select

fallback

contents

release

Controller
notify

pause
create

moved

delay

facilities unblock

terminate

TABULATE
B

input

output

table Table
A

input

(b) TABULATE block in GPSS2DEVS.

Figure 5.11: The translation of the MARK and TABULATE blocks in GPSS2DEVS.

Tabulation
Let’s add a DEVS block, namely a Table block, for each TABLE statement in
the GPSS code. The Table’s constructor sets up the buckets to be empty
and a Tabulate block communicates to the Table what must be tracked.
Additionally, we will compute the mean, variance and standard deviation in
the same way as was discussed in section 4.3.2. The concerning GPSS blocks
can be translated as is shown in figure 5.11.

Queues
In a similar fashion as to the Table block, we can construct a Queue building
block. It’s underlined to distinguish from the translated Queue block that
represents GPSS’ QUEUE. Furthermore, we are not referring to the Queue
block (i.e. block 4.8b) from section 4.2. Figure 5.12 shows the corresponding
translation.



5.3. IMPLEMENTATION 119

Hold

input

output

select

fallback

contents

release

Controller
notify

pause
create

moved

delay

facilities unblock

terminate

QUEUE
B

input

output

queue Queue
A

enter

leave

(a) QUEUE block in GPSS2DEVS.

Hold

input

output

select

fallback

contents

release

Controller
notify

pause
create

moved

delay

facilities unblock

terminate

DEPART
B

input

output

queue Queue
A

enter

leave

(b) DEPART block in GPSS2DEVS.

Figure 5.12: The translation of the QUEUE and DEPART blocks in GPSS2DEVS.

5.3 Implementation

While we have described the full translation of the subset of GPSS at this
point, we still need to take a look at some implementation details concerning
this translation.

5.3.1 Name Mangling

Notice how we’re using CDEVS as a formalism. This makes it so events are
executed within certain timeframes (see section 2.2.7). Therefore, we cannot
assume that all events will fire within a certain order, as was hinted at in
section 5.2.2. Luckily, the select function comes to save the day.



5.3. IMPLEMENTATION 120

The order in which the events need to be executed is as follows:

1. All Generate blocks need to create the transactions for the current
simulation time.

2. All Advance blocks need to output the delayed transactions and notify
the Controller that those transactions are no longer delayed. The
same can be said for all Unlink blocks.

3. The Controller needs to execute its scan.

4. All resources must communicate their state, so the corresponding blocks
know what to do.

5. All Hold blocks must release the requested active transaction to move.

6. The remainder of the blocks need to move the active transaction to the
next Hold block.

In order to encode this behaviour, we rename every building block in such
a way that we can execute the blocks in alphabetical order12. To do this, we
make use of name mangling . Name mangling is the process of creating unique
names by encoding properties into the name. In this context, the names of the
blocks can be made unique by encoding the line number if no label is given in
the original GPSS. Furthermore, we encode the execution order by prefixing
each block with GPSS2DEVS i , where i corresponds to the order that’s listed
above. In the GPSS2DEVS implementation, zero-based index of the given order
was used.

5.3.2 Python(P)DEVS Formats

In the implementation of the proposed transformation, we can do two things:

1. For every GPSS block we find in the original model, we create a structure
that corresponds to that block.

2. We provide Python blueprints for each structure in the form of a simple
function call. We now have to translate the GPSS block to the corre-
sponding function and provide the correct arguments.

Depending on the translation method, either possibility is valid. Yet, when
using the latter option, there is less room for errors, because the blueprints are
valid w.r.t. the translational semantics. A downside of using the blueprint-
method is that the actual transformation is hidden and may be interpreted as
a 1-to-1 mapping, which is not the case.

12This is the default order that’s set by the select function in Python(P)DEVS.



5.4. EXAMPLES 121

5.4 Examples

Let’s take a look at a complete example of the transformation, based on some
GPSS examples that were introduced in [Gor78a]. Additionally, we will com-
pare our results to GPSS World [Min10] and GPSS/H [Cra97].

5.4.1 Manufacturing Shop

In [Gor78a], an example of a simple manufacturing shop is provided, which
will be reused to demonstrate the transformation on a small scale.

Example 5.4.1 (Manufacturing Shop).
A machine tool in a manufacturing shop is turning out parts at the rate of one
every 5 minutes and places them on a conveyor that carries the parts towards
three inspectors.

It takes 2 minutes to reach the first inspector; if he is free at the time the
part arrives, he takes it for inspection. If he is busy at that time, the part takes
a further 2 minutes to reach the second inspector, who takes the part if he is
not busy. Parts that pass the second inspector may get picked up by the third
inspector, who is a further 2 minutes along the conveyor belt; otherwise they
are lost.

To keep the model small, only the transit time of the parts will be recorded
and the possibility of the inspectors rejecting the parts will be ignored. Each
inspector takes 12 ± 9 minutes per inspection.

The model for this example is shown graphically in figure 5.13 and textually
in figure 5.14. The short version of the translated code is given in figure 5.15.
An implementation in a Jupyter notebook is accompanied with the code. Table
5.1 summarizes the results we obtain in comparison of the TRANSIT table and
the facilities between GPSS World, GPSS/H and GPSS2DEVS. We used a warm-
up of 10 parts and simulated the arrival of 10 000 parts. Given the results we
obtain, we can conclude that the translation is equivalent to the original model
in GPSS.

5.4.2 Telephone Exchange

On a larger scale, we have the telephone exchange example from [Gor78a].
This example includes almost everything that can be used by our subset of
GPSS.

Example 5.4.2 (Telephone Exchange).
Assume we have a telephone system in which a series of calls come from a
number of telephone lines and the system is to connect the calls by using one



5.4. EXAMPLES 122

Figure 5.13: Visual Notation in AToM3 for Example 5.4.1 (the manufacturing
shop).

Block Metric GPSS World GPSS/H GPSS2DEVS

TRANSIT
Mean 15.734 15.7752 15.6721

Standard Deviation 5.479 5.4223 5.6909

INSP1 Utilization 0.831 0.834 0.8603

INSP2 Utilization 0.731 0.729 0.7419

INSP3 Utilization 0.549 0.559 0.5382

Table 5.1: Obtained metrics for example 5.4.1. Ran until 10 000 parts accepted.



5.4. EXAMPLES 123

* Manufacturing shop model 5

* G. Gordon Figure 11-1/9-10

SIMULATE

L0 GENERATE 5 ; Create parts

L7 ADVANCE 2 ; Move to the first inspector

L8 TRANSFER BOTH,L5,CONV1 ; Check if first inspector is busy

L5 SEIZE INSP1 ; The first inspector becomes busy

L1 ADVANCE 12,9 ; Inspect

L9 RELEASE INSP1 ; Free inspector 1

TAB TABULATE TRANSIT ; Tabulate parts’ transit time

ACC TERMINATE 1 ; Accepted parts

CONV1 ADVANCE 2 ; Move to 2nd inspector

C2 TRANSFER BOTH,L13,CONV2 ; Check if 2nd inspector is busy

L13 SEIZE INSP2 ; The 2nd inspector becomes busy

L15 ADVANCE 12,9 ; Inspect

L17 RELEASE INSP2 ; Free inspector 2

L19 TRANSFER ,TAB ; To tabulate

CONV2 ADVANCE 2 ; Move to 3rd inspector

C3 TRANSFER BOTH,L14,TERM ; Check if 3rd inspector is busy

L14 SEIZE INSP3 ; The third inspector becomes busy

L16 ADVANCE 12,9 ; Inspect

L18 RELEASE INSP3 ; Free inspector 3

L20 TRANSFER ,TAB ; To tabulate

TERM TERMINATE ; Remain uninspected

TRANSIT TABLE M1,5,5,10

START 10,NP

RESET

START 10000

END

Figure 5.14: Textual Notation for Example 5.4.1 (the manufacturing shop).



5.4. EXAMPLES 124

from pypdevsbbl.domain.gpss import GPSS2DEVS , dist

class Model(GPSS2DEVS ):

def __init__(self):

super (). __init__("Manufacturing")

self.createFacility("INSP1")

self.createFacility("INSP2")

self.createFacility("INSP3")

self.createTable("TRANSIT", "M1", 5, 5, 10)

self.GENERATE("L0", dist=lambda x: 5)

self.ADVANCE("L7", dist=lambda x: 2, prev="L0")

self.SEIZE("L5", "INSP1")

self.ADVANCE("L1", dist=dist , args =(12,9), prev="L5")

self.RELEASE("L9", "INSP1")

self.TABULATE("TAB", "TRANSIT")

self.TERMINATE("ACC", ’1’)

self.TRANSFER_BOTH("L8", "L5", "INSP1", self.GPSS2DEVS_5_L9.facility)

self.ADVANCE("CONV1", dist=lambda x: 2, prev="L8")

self.SEIZE("L13", "INSP2")

self.ADVANCE("L15", dist=dist , args =(12,9), prev="L13")

self.RELEASE("L17", "INSP2")

self.TRANSFER_BOTH("C2", "L13", "INSP2", self.GPSS2DEVS_5_L17.facility)

self.ADVANCE("CONV2", dist=lambda x: 2, prev="C2")

self.SEIZE("L14", "INSP3")

self.ADVANCE("L16", dist=dist , args =(12,9), prev="L14")

self.RELEASE("L18", "INSP3")

self.TRANSFER_BOTH("C3", "L14", "INSP3", self.GPSS2DEVS_5_L18.facility)

self.TERMINATE("TERM")

self.connectPorts(self.GPSS2DEVS_4_L0.output , self.GPSS2DEVS_1_L7.input)

self.connectPorts(self.GPSS2DEVS_4_L7.output , self.GPSS2DEVS_5_L8.input)

self.connectPorts(self.GPSS2DEVS_4_L5.output , self.GPSS2DEVS_1_L1.input)

self.connectPorts(self.GPSS2DEVS_4_L1.output , self.GPSS2DEVS_5_L9.input)

self.connectPorts(self.GPSS2DEVS_4_L9.output , self.GPSS2DEVS_5_TAB.input)

self.connectPorts(self.GPSS2DEVS_4_TAB.output , self.GPSS2DEVS_5_ACC.input)

self.connectPorts(self.GPSS2DEVS_4_L8.output , self.GPSS2DEVS_1_CONV1.input)

self.connectPorts(self.GPSS2DEVS_4_CONV1.output , self.GPSS2DEVS_5_C2.input)

self.connectPorts(self.GPSS2DEVS_4_L13.output , self.GPSS2DEVS_1_L15.input)

self.connectPorts(self.GPSS2DEVS_4_L15.output , self.GPSS2DEVS_5_L17.input)

self.connectPorts(self.GPSS2DEVS_4_L17.output , self.GPSS2DEVS_5_TAB.input)

self.connectPorts(self.GPSS2DEVS_4_C2.output , self.GPSS2DEVS_1_CONV2.input)

self.connectPorts(self.GPSS2DEVS_4_CONV2.output , self.GPSS2DEVS_5_C3.input)

self.connectPorts(self.GPSS2DEVS_4_L14.output , self.GPSS2DEVS_1_L16.input)

self.connectPorts(self.GPSS2DEVS_4_L16.output , self.GPSS2DEVS_5_L18.input)

self.connectPorts(self.GPSS2DEVS_4_L18.output , self.GPSS2DEVS_5_TAB.input)

self.connectPorts(self.GPSS2DEVS_4_C3.output , self.GPSS2DEVS_5_TERM.input)

Figure 5.15: Python(P)DEVS code for Example 5.4.1 (the manufacturing shop).



5.4. EXAMPLES 125

of a limited number of links. Only one call can be made to any one line at a
time and it is assumed that the calls are lost if the called party is busy or no
link is available.

It will be assumed that the distribution of arrivals is Poisson with a mean
interarrival time of 12 seconds. The length of the calls will also be assumed to
have an exponential distribution. It will be assumed that each new call can come
from any of the non-busy lines with equal probability, and that its destination
is equally likely to be any line other than itself.

In the telephone system, blocked class wait for a link to become free with
the following service rules. Line 1 belongs to the company president. If there
is an incoming call for line 1 and line 1 is free, the next free link goes to that
call. Otherwise, the link goes to the call with the lowest origin number.

The model for the example is given graphically in figure 5.16 and textually
in figure 5.17. The corresponding code can be found in figure 5.18. Similarly
to the previous example, a sample implementation of the execution is given in
a Jupyter notebook. Table 5.2 summarizes the results for the LNKS storage and
the WAIT chain for GPSS World, GPSS/H and GPSS2DEVS. The model cannot
be made deterministic, while still remaining consistent with the use case.

It is interesting to note that the results we obtain lie closer to the GPSS/H
results than the obtained values from GPSS World. This is especially the case
when comparing the average time that each transaction spent in the chain.

Block Metric GPSS World GPSS/H GPSS2DEVS

LNKS
Utilization 0.683 0.728 0.7079

Average Contents 6.834 7.277 7.0788

WAIT
Average Time 41.134 24.474 23.5716

Average Contents 0.426 0.483 0.4045

Table 5.2: Obtained metrics for example 5.4.2. Ran for 10 hours.



5.4. EXAMPLES 126

FN$POISS12

2GV$FREEL

LR PH$ORIG

V$LN PHDEST

PH$DESTNEPH$ORIG

S PH$ORIG

BOTH

LNKS

WAIT

ORIG$PH

LR PH$DEST R PH$ORIG

LNKS

S PH$DEST

FN$POISS120

R PH$ORIG

R PH$DEST

LNKS

60

1

V$LN PHORIG

0GCH$WAIT

LR 1

WAIT

1

1

DEST$PH

WAIT

1

Function: POISSLNKS

10

Variable

FREEL XH$LS-2*S$LNKS-CH$WAIT

Variable

LN XH$LS*RN1/1000+1

Figure 5.16: Visual Notation in AToM3 for Example 5.4.2 (the telephone ex-
change).



5.4. EXAMPLES 127

* SIMULATION OF A TELEPHONE SYSTEM - MODEL 2 (president line)

POISS FUNCTION RN1,C24 Function for I/A interval (Poisson)

0.0,0.0/0.1,0.104/0.2,0.222/0.3,0.355/0.4,0.509/0.5,0.69/

0.6,0.915/0.7,1.2/0.75,1.38/0.8,1.6/0.84,1.83/0.88,2.12/

0.9,2.3/0.92,2.52/0.94,2.81/0.95,2.99/0.96,3.2/0.97,3.5/

0.98,3.9/0.99,4.6/0.995,5.3/0.998,6.2/0.999,7/0.9997,8

* The phone process

GENERATE 12,FN$POISS,,,,2PH ; Arrival of calls, characterized by two halfword parameters,

* one for ORIGin and one for DESTination

TEST G V$FREEL,2,ABND ; Test whether system is full (all lines in use)

ASN1 ASSIGN ORIG,V$LN,PH ; Pick an ORIGin LiNe, store in parameter ORIG

GATE LR PH$ORIG,ASN1 ; Check whether ORIGin line is busy; if so, go back and try

; to pick another line

ASN2 ASSIGN DEST,V$LN,PH ; Pick a DESTination LiNe, store in parameter DEST

TEST NE PH$ORIG,PH$DEST,ASN2 ; Retry if DESTination == ORIGin

LOGIC S PH$ORIG ; Set ORIGin line busy

TRANSFER BOTH,,BLKD ; If no link available, blocked in WAIT chain

GETL ENTER LNKS ; Get a link

GATE LR PH$DEST,BUSY ; Check whether DESTination line is busy

LOGIC S PH$DEST ; Set DESTination line busy

ADVANCE 120,FN$POISS ; Talk for a while, talktime mean 12min

LOGIC R PH$ORIG ; ORIGin hangs up

LOGIC R PH$DEST ; DESTination hangs up

LEAVE LNKS ; Free up the link

CKCH TEST G CH$WAIT,0,TERM ; Test whether calls are waiting

GATE LR 1,GETF ; Check whether line 1 (president) is free

UNLINK WAIT,GETL,1,DEST$PH,1,GETF ; If a call to 1 (president) is waiting, get it out

* of the WAIT chain and let it get a link, else connect

* (in the other UNLINK block) the first

* waiting call (ordered by call ORIGin)

TERM TERMINATE ; Normal end of a succesful call

GETF UNLINK WAIT,GETL,1 ; Connect the first waiting call (ordered by call ORIGin)

TRANSFER ,TERM

ABND TERMINATE ; Abandon call

BLKD LINK WAIT,ORIG$PH ; Wait in order of call ORIGin (lower number first)

BUSY LOGIC R PH$ORIG ; Caller hangs up

LEAVE LNKS ; Free up the link

TRANSFER ,CKCH ; Go to test for waiting calls

LNKS STORAGE 10 ; Number of links

LN VARIABLE XH$NLINES*RN1/1000+1 ; Pick a random LiNe

FREEL VARIABLE XH$NLINES-2*S$LNKS-CH$WAIT ; Number of free lines

* The clock process

GENERATE 60 ; One clock tick every minute

TERMINATE 1

* GPSS/H Control Statements

INITIAL XH$NLINES,50 Set the total number of lines

START 10,NP Warm up run of 10 minutes, don’t print

RESET Wipe out statistics

START 600 Main run (10 hours)

END

Figure 5.17: Textual Notation for Example 5.4.2 (the telephone exchange).



5.4. EXAMPLES 128

from pypdevsbbl.domain.gpss import GPSS2DEVS , SNA , Function

class Model(GPSS2DEVS):

def __init__(self):

super().__init__("TelephoneExchange", 2)

self.createStorage("LNKS", 10)

self.createChain("WAIT")

self.functions = {

"FN$POISS": Function("RN1", Function.parse(

"0.0 ,0.0/0.1 ,0.104/0.2 ,0.222/0.3 ,0.355/0.4 ,0.509/0.5 ,0.69/" \

"0.6 ,0.915/0.7 ,1.2/0.75 ,1.38/0.8 ,1.6/0.84 ,1.83/0.88 ,2.12/" \

"0.9 ,2.3/0.92 ,2.52/0.94 ,2.81/0.95 ,2.99/0.96 ,3.2/0.97 ,3.5/" \

"0.98 ,3.9/0.99 ,4.6/0.995 ,5.3/0.998 ,6.2/0.999 ,7/0.9997 ,8", 24), True)

}

self.savevalues = {

"XH$NOLINES": 50

}

self.variables = {

"V$LINE": lambda: SNA("XH$NOLINES", self) * SNA("RN1", self) // 1000 + 1,

"V$FREELN": lambda: SNA("XH$NOLINES", self) - 2 * SNA("S$LNKS", self) - SNA("CH$WAIT", self)

}

# The phone process

self.GENERATE("L0", dist=lambda x: 12 * SNA("FN$POISS", self))

self.TEST("L1", "V$FREELN", "G", "2")

self.ASSIGN("ASN1", "PH$ORIG", lambda p: SNA("V$LINE", self))

self.GATE("L3", "PH$ORIG", "ASN1", "R")

self.ASSIGN("ASN2", "PH$DEST", lambda p: SNA("V$LINE", self))

self.TEST("L5", "PH$ORIG", "NE", "PH$DEST")

self.LOGIC("L6", "S", "PH$ORIG")

self.ENTER("GETL", "LNKS")

self.GATE("L8", "PH$DEST", "BUSY", "R")

self.LOGIC("L9", "S", "PH$DEST")

self.ADVANCE("L10", dist=lambda x: 120 * SNA("FN$POISS", self), prev="L9")

self.LOGIC("L11", "R", "PH$ORIG")

self.LOGIC("L12", "R", "PH$DEST")

self.LEAVE("L13", "LNKS")

self.TRANSFER_BOTH("L7", "GETL", "LNKS", self.GPSS2DEVS_5_L13.storage)

self.TEST("CKCH", "CH$WAIT", "G", "0")

self.GATE("L15", "1", "GETF", "R")

self.UNLINK("L16", "WAIT", 1, "PH$DEST", "1", "GETF")

self.TERMINATE("TERM")

self.UNLINK("GETF", "WAIT", 1)

self.TERMINATE("ABND")

self.LINK("BLKD", "WAIT", "L7", "PH$ORIG")

self.LOGIC("BUSY", "R", "PH$ORIG")

self.LEAVE("L21", "LNKS")

# The clock process

self.GENERATE("L26", dist=lambda x: 60)

self.TERMINATE("L27", "1")

# CONNECTIONS

self.connect("L0", "L1")

self.connect("L1_Y", "ASN1")

self.connect("L1_N", "ABND")

self.connect("ASN1", "L3")

self.connect("L3", "ASN2")

self.connect("L3_B", "ASN1")

self.connect("ASN2", "L5")

self.connect("L5_Y", "L6")

self.connect("L5_N", "ASN2")

self.connect("L6", "L7")

self.connect("L7", "BLKD")

self.connect("GETL", "L8")

self.connect("L8", "L9")

self.connect("L8_B", "BUSY")

self.connect("L9", "L10", True)

self.connect("L10", "L11")

self.connect("L11", "L12")

self.connect("L12", "L13")

self.connect("L13", "CKCH")

self.connect("CKCH_Y", "L15")

self.connect("CKCH_N", "TERM")

self.connect("L15", "L16", True)

self.connect("L15_B", "GETF", True)

self.connect("L16", "TERM")

self.connect("L16_B", "GETL")

self.connect("L16_F", "GETF", True)

self.connect("GETF", "TERM")

self.connect("GETF_B", "GETL")

self.connect("BUSY", "L21")

self.connect("L21", "CKCH")

self.connect("L26", "L27")

Figure 5.18: Python(P)DEVS code for Example 5.4.2 (the telephone exchange).



CHAPTER 6

Wrapping Up

To conclude this thesis, we will discuss related work pertaining the topics we’ve
discussed so far. Additionally, we will shortly revisit what we’ve done and draw
some conclusions. Finally, we end with a description of possible expansions
upon this research.

6.1 Related Work

The domain of Multi-Paradigm Modeling (MPM) [MV04] is continuously grow-
ing. It promotes the modeling of relevant aspects of a system at their most
appropriate level(s) of abstraction, making use of the most relevant modeling
language(s). Modeling language engineering techniques concerns themselves
with the need for semantics in the evaluation of models.

DEVS can be seen as a common denominator for discrete-event modeling
languages [Van00a]. It can therefore be used to describe the semantics of
numerous modeling languages with some discrete-event abstraction. A For-
malism Transformation Graph (FTG), a mapping between formalisms, is also
discussed. Later on, the FTG is extended with a Process Model, resulting
in the FTG+PM language [Luc+13] and allows the description of complex
modeling workflows.

A mapping from Statecharts onto DEVS has been studied. [BV03] attempts
to do a one-on-one transformation, similar to what we did for GPSS2DEVS;
and [SV11] attempts to map the source model onto a single Atomic DEVS



6.2. CONCLUSIONS 130

for efficiency reasons. Moreover, [Dem14] describes how a CBD model can be
mapped onto a single Atomic DEVS.

Despite its age, GPSS is still quite popular [St̊a+11]. While most imple-
mentations don’t seem to exist anymore, they paved the way for tools like
GPSS World [Min10], aGPSS [St̊a99] and GPSS/H [Cra97].

DEVS has a growing popularity with many frameworks, tools and libraries
that implement the formalism (like Python(P)DEVS [Van14], adevs [Nut15]...).
Additionally, the formalism can be easily transformed so that inexperienced
programmers also understand what is going on under the hood [Mal+15].

6.2 Conclusions

In this thesis, we’ve started from the DEVS formalism and showed, while there
are many tools that implement this formalism, most of them are lacking a
formal description of basic models that can be used as a stepping stone in
creating your own models. Furthermore, the tools that do provide such models
only focus on the generation of items and the gathering of data.

Based on popular discrete-event tools that are used in an industrial context
by major companies, we have created a building block library for DEVS, and
more specifically, Python(P)DEVS. We focused on providing a wide enough
basis for numerous M&S contexts, while, at the same time, not trying to
oversaturate the library with functionality.

We distinguished seven generic parts in this BBL: generators, queues, col-
lectors, mathematics, input and output, transformations and routing. Addition-
ally, we provided some simulation tracers to help users analyze their models.
With an example (that can also be found in the Python(P)DEVS documenta-
tion), we’ve shown the usefulness and applicability of the BBL.

Next, we based ourselves on the ideology that DEVS is a common denom-
inator for discrete-event simulation formalisms and provided a valid transfor-
mation from a language in the process interaction world view, GPSS1, onto
DEVS, a formalism in the event scheduling world view. Despite the transfor-
mation between world view being non-trivial, the provided translation provides
a contribution to the ongoing work in MPM.

This transformation followed the three principles of GPSS2DEVS : the back-
wards propagation principle, the limitation principle and the availability prin-
ciple. They allowed us to create the transformation in a uniform manner, while
at the same time remaining true to the process interaction world view. Addi-
tionally, they helped us constructing a translation that contains a traceability

1Technically, a subset thereof.



6.3. FURTHER WORK 131

between the source and target model, opening the doors for complex features
like debugging and testing.

Since we already had a BBL and GPSS2DEVS was also to be implemented
in Python(P)DEVS, we were able to use some constructs of the BBL in this
translation.

Finally, with some high-level and complex GPSS examples, we showed the
validity of the translation w.r.t. existing GPSS tools like GPSS/H and GPSS
World. The validity of this mapping allows us to benefit from the advantages of
DEVS (e.g. modular models, scalable simulators, real-time execution...), while
also exploiting the pros from GPSS (e.g. complex queueing systems, easily
understandable system-flows, porwerful computation of complex models...).

6.3 Further Work

The work done in this thesis is by far complete and can easily be expanded in
numerous ways. This section will discuss both the expansion on our BBL, as
well as on the translation we have provided.

6.3.1 PythonDEVS-BBL

A building block library can be expanded indefinitely, because we can always
find a functionality that is not yet supported. The two main goals of the
library were its extensiveness and its completeness. Hence, we only focus on
what is common and useful. That being said, there are some aspects of the
library we can expand upon.

General Expansions
First things first, it has been made abundantly clear that PythonDEVS-BBL
implements the CDEVS formalism. Special issues that occur due to superdense
time may be solved by using the specialized Sync block (section 4.7, block
4.39).

A clear expansion that can be done on the BBL is therefore the expansion
to PDEVS. In the most ideal scenario, the library can be reused, with the only
difference being the removal of the line

simulator.setClassicDEVS()

Unfortunately, at this point in time Python(P)DEVS has no way for models to
know if they belong to a simulation according to CDEVS or PDEVS. Hence,
this expansion will probably add this missing feature to the Python(P)DEVS
simulation kernel.



6.3. FURTHER WORK 132

Another expansion that can be done comes from an analysis of uses of the
BBL. If we have enough different models, we may be able to deduce com-
mon structures of combinations of blocks from the BBL. To increase user-
friendliness, these structures (as individual Coupled DEVS) may become part
of a snippet part of the library, reducing possible overhead in creating models
even further.

Missing Building Blocks
Both DEVS-Ruby and DEVSimPy provide building blocks that are able to write
to specific file formats, yet we require two blocks for this purpose: the Trans-
former (section 4.6, block 4.27) and the File Writer (section 4.5, block
4.23). Whereas some file formats, like CSV, are quite easy to create in this
way, others, like XML, might become slightly more complex. Hence, a possible
expansion upon the BBL is the creation of a specific Filetype Writer (or
set thereof) that is able to handle these requests. Additionally, while the full
syslog protocol [Ger+09] is currently available in the BBL and many other pos-
sibilities were enabled via allowing the reading from and writing to files, tools
like ExtendSim [Ima87] provide a full interaction with an external database,
which is currently not cleanly supported in PythonDEVS-BBL.

Even though the Sound block (section 4.5, block 4.25) is currently quite
powerful for its purpose, a small expansion can be made in allowing users to
choose a specific note or frequency to be played (similar as to what can be
done in LEGO Mindstorms [LEG13]).

Finally, some sort of Equation Solver may provide even more strength
to the BBL as a whole. Yet, this would require the need of either a CBD solver
in DEVS (as in [Dem14]) or an additional library.

Adding Domain-Specificity
Whereas PythonDEVS-BBL has mainly focused on the generic kind of building
blocks (i.e. the blocks that can be used in many different domains of modeling),
we might also start considering some more domain-specific aspects.

For instance, when looking at ExtendSim [Ima87] FlexSim [Fle93] and Enter-
prise Dynamics [INC97], we notice that a lot of the building blocks they provide
focus on industrial contexts. Conveyor belts, cranes, robots... they are all rep-
resented within their building block library. To allow PythonDEVS-BBL to be
useful in those contexts, it might be interesting to add these features to the
library in a domain-specific section.

Furthermore, Agent-Based Modeling (ABM) is an integral part of [Fle93],
so building blocks for such a purpose can be as useful. To do this, we can follow
the ABM specification that’s proposed in [Ley20], which is already based on
DEVS.

Additionally, [Dia+00] speaks of a flow architecture within their discrete
formalism. Because our BBL cannot yet represent the flow of fluids, we might



6.3. FURTHER WORK 133

be able to add this flow architecture and henceforth use a transformation
between a continuous-time specification and DEVS, similar to [KJ01].

6.3.2 GPSS2DEVS

As far as the translation is concerned, the most obvious expansion is the im-
plementation of the full GPSS semantics, instead of the subset that has been
presented in this paper. Additionally, we could make use of some dependency
analysis in order to optimize a model and the control messages that are be-
ing sent. Furthermore, the fact that our translation is traceable between the
source and the target model, allows us to create a debugger for debugging the
GPSS from the DEVS model, possibly making use of the DEVS debugger as is
presented in [VVV18].

Alternatively, we could improve the efficiency of the target GPSS model by
mapping the source model onto a single Atomic DEVS, similar to what was done
in [SV11]. A drawback for this method is the disappearance of the traceability.
Yet, in researching a way of mapping that still allows the traceability in the
debugger that is presented in [VVV18], this drawback can be counteracted.
This latter expansion on this research could also result in a brand new GPSS
simulator that is able to parse and execute models for GPSS World, GPSS/H,
aGPSS, GPSS V and HGPSS. The creation of such a tool may make it easier
for new modelers to find their way to the GPSS formalism.



Appendices



APPENDIX A

Distributions

This appendix goes into detail on the distributions that have been studied/im-
plemented in PythonDEVS-BBL.

A.1 Distribution Overview

The distributions that are available in PythonDEVS-BBL are selected from the
distributions used in the available tools (see section 3.1) and the ones that
were listed in [Law14]. This appendix provides an overview of the availability
of these distribution w.r.t. the mentioned sources.



A.1. DISTRIBUTION OVERVIEW 136

Distribution
ExtendSim

[Ima87]

SIMUL8

[SIM94]

FlexSim

[Fle93]

Enterprise

Dynamics

[INC97]

LEGO

Mindstorms

[LEG13]

Simulation

Modeling

and Analysis

[Law14]

Average

(Normal with

σ = 0.25)

x

Bernoulli x x x x x

Beta x x x x x

Binomial x x x

Cauchy x x

Chi Squared x

Constant / Fixed x x x x x

Empirical x x x

Erlang x x x x x

Exponential x x x x

Extreme Value

Type 1A
x x

Extreme Value

Type 1B
x x

F

Gamma x x x x x

Geometric x x x

Hyper

Exponential
x

Hyper

Geometric
x

Inverse

Gaussian
x x

Inverse

Weibull
x x

Johnson

Bounded
x x

Johnson

Unbounded
x x

Laplace x x

Log-Laplace x

Log-Logistic x x

Log-Normal x x x x x

Logarithmic x

Logistic x x x



A.1. DISTRIBUTION OVERVIEW 137

Distribution
ExtendSim

[Ima87]

SIMUL8

[SIM94]

FlexSim

[Fle93]

Enterprise

Dynamics

[INC97]

LEGO

Mindstorms

[LEG13]

Simulation

Modeling

and Analysis

[Law14]

Negative

Binomial
x x x

Negative

Exponential
x

Normal x x x x x

Pareto x x

Pearson

Type V
x x x x

Pearson

Type VI
x x x x

Poisson x x x x

Powerfunction x

Random Walk x

Rayleigh x

Student’s t

Triangular x x x x x

Uniform

Integer
x x x x x x

Uniform

Real
x x x x x

Weibull x x x x x

Zipf



A.2. DISTRIBUTIONS IN PYTHONDEVS-BBL 138

A.2 Distributions in PythonDEVS-BBL

Based on the distributions from appendix A.1, this appendix provides a list
of all the distributions that were made possible in the RNG building block
(see section 4.1.2, block 4.4). For each distribution, the table lists a name, a
description and how F−1 was obtained w.r.t. the techniques listed in section
4.1.2.



A.2. DISTRIBUTIONS IN PYTHONDEVS-BBL 139

N
a
m
e

D
e
sc
ri
p
ti
o
n

T
e
ch

n
iq
u
e
o
r
F
o
rm

u
la

B
er

n
ou

ll
i

T
h
e

d
is

cr
et

e
B

er
n
ou

ll
i

d
is

tr
ib

u
ti

on
is

a
sp

ec
ia

l
ca

se

of
th

e
B

in
om

ia
l

d
is

tr
ib

u
ti

on
w

h
er

e
n

=
1.

S
ee

B
in

om
ia

l.

B
et

a
T

h
e

B
et

a
d
is

tr
ib

u
ti

on
on

in
te

rv
al

[0
,1

]
w

it
h

sh
ap

es
a

1
an

d
a

2
.

A
n
y

te
ch

n
iq

u
e

b
u
t

cl
os

ed
fo

rm
.

B
in

om
ia

l
D

is
cr

et
e

B
in

om
ia

l
d
is

tr
ib

u
ti

on
w

it
h
n

ex
p

er
im

en
ts

th
at

h
av

e
p

ch
an

ce
of

su
cc

es
s.

In
ve

rs
e

tr
an

sf
or

m
.

C
au

ch
y

T
h
is

d
is

tr
ib

u
ti

on
is

al
so

k
n
ow

n
as

th
e

L
or

en
tz

d
is

tr
ib

u
ti

on

or
th

e
B

re
it

-W
ig

n
er

d
is

tr
ib

u
ti

on
.

It
is

of
te

n
u
se

d
as

th
e

ca
n
on

ic
al

ex
am

p
le

of
a

p
at

h
ol

og
ic

al
d
is

tr
ib

u
ti

on
.

F
−

1
(y

)
=

γ
·t

an
(π
·(
y
−

0.
5)

)
+
x

0

χ
2

T
h
e
χ

2
d
is

tr
ib

u
ti

on
is

a
sp

ec
ia

l
ca

se
of

th
e

G
am

m
a

d
is

tr
ib

u
ti

on

w
it

h
a

=
k
/2

an
d
b

=
1.

S
ee

G
am

m
a

E
rl

an
g

T
h
e

E
rl

an
g

d
is

tr
ib

u
ti

on
is

a
sp

ec
ia

l
ca

se
of

th
e

G
am

m
a

d
is

tr
ib

u
ti

on
w

h
er

e
b

is
an

in
te

ge
r.

S
ee

G
am

m
a

E
x
p

on
en

ti
al

C
on

ti
n
u
ou

s
ex

p
on

en
ti

al
d
is

tr
ib

u
ti

on
w

it
h

m
ea

n
1 λ
.

T
h
e

d
is

tr
ib

u
ti

on
ca

n
b

e
u
se

d
to

p
re

d
ic

t
th

e
w

ai
t

ti
m

e

u
n
ti

l
th

e
fi
rs

t
ev

en
t.

W
e

k
n
ow

th
e

d
is

tr
ib

u
ti

on
is

“m
em

or
y
le

ss
”,

h
en

ce
:

P
(X

>
s

+
t|X

>
s)

=
P

(X
>
t)

F
−

1
(y

)
=
−
ln

(y
)

λ



A.2. DISTRIBUTIONS IN PYTHONDEVS-BBL 140

N
a
m
e

D
e
sc
ri
p
ti
o
n

T
e
ch

n
iq
u
e
o
r
F
o
rm

u
la

G
en

er
al

iz
ed

E
x
tr

em
e

V
al

u
e

T
y
p

e
A

T
h
is

d
is

tr
ib

u
ti

on
is

al
so

k
n
ow

n
as

th
e

G
u
m

b
el

d
is

tr
ib

u
ti

on

or
th

e
lo

g-
W

ei
b
u
ll

d
is

tr
ib

u
ti

on
.

It
is

co
m

m
on

ly
u
se

d
in

h
y
d
ro

lo
gy

.

F
−

1
(y

)
=
−
β

ln
(−

ln
(y

))
+
µ

G
en

er
al

iz
ed

E
x
tr

em
e

V
al

u
e

T
y
p

e
B

T
h
is

d
is

tr
ib

u
ti

on
is

al
so

k
n
ow

n
as

th
e

F
ré

ch
et

d
is

tr
ib

u
ti

on

or
th

e
lo

g-
W

ei
b
u
ll

d
is

tr
ib

u
ti

on
.

It
is

co
m

m
on

ly
u
se

d
in

h
y
d
ro

lo
gy

.

F
−

1
(y

)
=
s(
−

ln
(y

))
−

1
/
α

+
m

F

F
is

h
er

-S
n
ed

ec
or

fu
n
ct

io
n

w
it

h
d

1
an

d
d

2
it

s

d
eg

re
es

of
fr

ee
d
om

.

It
u
se

s
th

e
B

et
a

d
is

tr
ib

u
ti

on
.

C
lo

se
d

fo
rm

fo
rm

u
la

.

G
am

m
a

G
am

m
a

d
is

tr
ib

u
ti

on
w

it
h

sh
ap

e
a
,

ra
te
b

an
d

sc
al

e
1 b
.

C
lo

se
d

fo
rm

fo
rm

u
la

w
.r

.t
.

p
re

co
n
d
it

io
n
s

G
eo

m
et

ri
c

D
is

cr
et

e
G

eo
m

et
ri

c
d
is

tr
ib

u
ti

on
.

F
−

1
(y

)
=

⌊ ln
(y

)

ln
(1
−
p)

⌋

In
ve

rs
e

G
au

ss

A
ls

o
k
n
ow

n
as

th
e

W
al

d
D

is
tr

ib
u
ti

on
,

it
is

co
m

m
on

ly
u
se

d
to

co
m

p
u
te

th
e

p
ro

p
er

ti
es

of
th

e
B

ro
w

n
ia

n
M

ot
io

n
.

In
ve

rs
e

tr
an

sf
or

m
at

io
n

w
it

h

sm
al

l
en

ou
gh

st
ep

si
ze

.

J
oh

n
so

n

B
ou

n
d
ed

J
oh

n
so

n
B

ou
n
d
ed

d
is

tr
ib

u
ti

on
w

it
h
a

1
an

d
a

2
th

e
sh

ap
e,
a

th
e

lo
ca

ti
on

an
d
b

th
e

sc
al

e.

It
u
se

s
th

e
S
ta

n
d
ar

d
N

or
m

al
d
is

tr
ib

u
ti

on
.

C
lo

se
d

fo
rm

fo
rm

u
la

,
b
as

ed

on
th

e
S
ta

n
d
ar

d
N

or
m

al

d
is

tr
ib

u
ti

on
.



A.2. DISTRIBUTIONS IN PYTHONDEVS-BBL 141

N
a
m
e

D
e
sc
ri
p
ti
o
n

T
e
ch

n
iq
u
e
o
r
F
o
rm

u
la

J
oh

n
so

n

U
n
b

ou
n
d
ed

J
oh

n
so

n
U

n
b

ou
n
d
ed

d
is

tr
ib

u
ti

on
.

S
ee

al
so

th
e

J
oh

n
so

n
B

ou
n
d
ed

d
is

tr
ib

u
ti

on
.

C
lo

se
d

fo
rm

fo
rm

u
la

,
b
as

ed

on
th

e
S
ta

n
d
ar

d
N

or
m

al

d
is

tr
ib

u
ti

on
.

L
ap

la
ce

A
d
is

tr
ib

u
ti

on
u
se

d
in

sp
ee

ch
re

co
gn

it
io

n
an

d
h
y
d
ro

lo
gy

.
F
−

1
(y

)
=
µ
−
b
·s

gn
(y
−

0.
5)
·

ln
(1
−

2|
y
−

0.
5|

)

L
og

-L
og

is
ti

c
F

is
k

d
is

tr
ib

u
ti

on
th

at
ap

p
ea

rs
of

te
n

in
ec

on
om

ic
al

ar
ea

s.
F
−

1
(y

)
=
b
·( y 1

−
y

) 1/a

L
og

-N
or

m
al

L
og

-N
or

m
al

d
is

tr
ib

u
ti

on
w

it
h

m
ea

n
µ

an
d

st
an

d
ar

d

d
er

iv
at

io
n
σ

.

T
h
e

n
at

u
ra

l
lo

ga
ri

th
m

w
il
l

b
e

n
or

m
al

ly
d
is

tr
ib

u
te

d
w

.r
.t

.

µ
an

d
σ

.

C
lo

se
d

fo
rm

fo
rm

u
la

.

C
an

b
e

ob
ta

in
ed

b
y

ta
k
in

g

th
e

ex
p

on
en

t
of

th
e

co
rr

es
p

on
d
in

g
N

or
m

al

d
is

tr
ib

u
ti

on
.

L
og

is
ti

c
T

h
e

d
is

tr
ib

u
ti

on
ap

p
ea

rs
in

lo
gi

st
ic

re
gr

es
si

on
an

d

fe
ed

fo
rw

ar
d

n
eu

ra
l

n
et

w
or

k
s.

F
−

1
(y

)
=
−
s
·l

n
(y
−

1
−

1)
+
µ

N
eg

at
iv

e

B
in

om
ia

l

D
is

cr
et

e
N

eg
at

iv
e

B
in

om
ia

l
d
is

tr
ib

u
ti

on
w

it
h

p
ch

an
ce

of
su

cc
es

s
fo

r
ea

ch
s

d
is

tr
ib

u
ti

on
s.

T
h
is

re
q
u
ir

es
a

se
t

of
ra

n
d
om

n
u
m

b
er

s.

M
ak

es
u
se

of
th

e
G

eo
m

et
ri

c
d
is

tr
ib

u
ti

on
.

C
lo

se
d

fo
rm

fo
rm

u
la

w
.r

.t
.

th
e

G
eo

m
et

ri
c

d
is

tr
ib

u
ti

on



A.2. DISTRIBUTIONS IN PYTHONDEVS-BBL 142

N
a
m
e

D
e
sc
ri
p
ti
o
n

T
e
ch

n
iq
u
e
o
r
F
o
rm

u
la

N
or

m
al

N
or

m
al

d
is

tr
ib

u
ti

on
w

it
h

m
ea

n
µ

an
d

st
an

d
ar

d
d
er

iv
at

io
n
σ

.

U
se
µ

=
0

an
d
σ

=
1

fo
r

th
e

S
ta

n
d
ar

d
N

or
m

al
d
er

iv
at

io
n
.

C
lo

se
d

fo
rm

fo
rm

u
la

b
as

ed

on
th

e
q
u
an

ti
le

fu
n
ct

io
n

an
d

th
e

p
ro

p
er

ti
es

of
th

e

er
ro

r
fu

n
ct

io
n
er
f

.

P
ar

et
o

T
h
e

d
is

tr
ib

u
ti

on
is

u
se

d
to

d
es

cr
ib

e
so

ci
al

,
sc

ie
n
ti

fi
ca

l,

ge
op

h
y
si

ca
l,

ac
tu

at
ia

l.
..

p
h
en

om
en

a.
It

or
ig

in
al

ly
w

as

u
se

d
to

d
es

cr
ib

e
th

e
d
is

tr
ib

u
ti

on
of

w
ea

lt
h
.

C
ol

lo
q
u
ia

ll
y,

th
e

d
is

tr
ib

u
ti

on
is

re
fe

re
d

to
as

th
e

80
-2

0
ru

le
.

F
−

1
(y

)
=
x
m
·(

1
−
y
)−

1
/
α

P
ea

rs
on

T
y
p

e
V

P
ea

rs
on

T
y
p

e
V

d
is

tr
ib

u
ti

on
w

it
h

sh
ap

e
a

an
d

sc
al

e
b.

It
u
se

s
th

e
G

am
m

a
d
is

tr
ib

u
ti

on
.

In
ve

rs
e

of
th

e
G

am
m

a

d
is

tr
ib

u
ti

on
w

it
h

sh
ap

e
a

an
d

sc
al

e
b.

P
ea

rs
on

T
y
p

e
V

I

P
ea

rs
on

T
y
p

e
V

I
d
is

tr
ib

u
ti

on
th

at
co

m
b
in

es
tw

o
G

am
m

a

d
is

tr
ib

u
ti

on
s.

W
ei

gh
te

d
va

lu
e

of
tw

o

G
am

m
a

d
is

tr
ib

u
ti

on
s.

P
oi

ss
on

D
is

cr
et

e
P

oi
ss

on
d
is

tr
ib

u
ti

on
w

it
h

m
ea

n
λ

.

E
x
p
re

ss
es

th
e

p
ro

b
ab

il
it

y
th

at
an

y
gi

ve
n

n
u
m

b
er

of

in
te

rv
al

s
o
cc

u
rs

in
a

fi
x
ed

in
te

rv
al

of
ti

m
e.

In
ve

rs
e

tr
an

sf
or

m
.



A.2. DISTRIBUTIONS IN PYTHONDEVS-BBL 143

N
a
m
e

D
e
sc
ri
p
ti
o
n

T
e
ch

n
iq
u
e
o
r
F
o
rm

u
la

S
tu

d
en

t’
s

t

S
tu

d
en

t’
s

t-
d
is

tr
ib

u
ti

on
w

it
h
v

d
eg

re
es

of
fr

ee
d
om

.

T
h
is

d
is

tr
ib

u
ti

on
is

of
te

n
u
se

d
fo

r
id

en
ti

fy
in

g
u
n
k
n
ow

n
s

in

an
y

d
is

tr
ib

u
ti

on
.

W
it

h
in

th
e

co
n
te

x
t

of
R

N
G

,
th

ey
ap

p
ea

r
in

m
u
lt

i-
d
im

en
si

on
al

ap
p
li
ca

ti
on

s
of

co
p
u
la

-d
ep

en
d
en

cy
.

In
ve

rs
e

tr
an

sf
or

m
at

io
n

w
it

h

sm
al

l
en

ou
gh

st
ep

si
ze

.

T
ri

an
gu

la
r

T
ri

an
gu

la
r

d
is

tr
ib

u
ti

on
w

it
h

m
in

u
m

u
m
a
,

m
o
d
e
b

an
d

m
ax

im
u
m
c.

T
h
is

d
is

tr
ib

u
ti

on
is

ty
p
ic

al
ly

u
se

d
as

a
su

rj
ec

ti
ve

d
es

cr
ip

ti
on

of
a

p
op

u
la

ti
on

fo
r

w
h
ic

h
th

er
e

is
li
m

it
ed

sa
m

p
le

d
at

a.

if
y
<

(c
−
a
)/

(b
−
a
),

F
−

1
(y

)
=

a
+
√ y(

b
−
a
)(
c
−
a
)

ot
h
er

w
is

e,

c
−
√ (1

−
y
)(
c
−
a
)(
c
−
b)

U
n
if

or
m

In
te

ge
r

R
ou

n
d
ed

(d
is

cr
et

e)
u
n
if

or
m

d
is

tr
ib

u
ti

on
ov

er
th

e
ra

n
ge

[a
,b

].
F
−

1
(y

)
=
a

+
b(
b
−
a

+
1)
·y
c

U
n
if

or
m

R
ea

l
C

on
ti

n
u
ou

s
u
n
if

or
m

d
is

tr
ib

u
ti

on
ov

er
th

e
ra

n
ge

(a
,b

).
F
−

1
(y

)
=
a

+
((
b
−
a
)
·y

)

W
ei

b
u
ll

T
h
e

W
ei

b
u
ll

d
is

tr
ib

u
ti

on
w

it
h

sc
al

e
a
,

sh
ap

e
b

an
d

lo
ca

ti
on

v
.

C
om

m
on

ly
u
se

d
to

p
re

d
ic

t
th

e
li
fe

ti
m

e
of

te
ch

n
ic

al
eq

u
ip

m
en

t.

N
ot

e
th

at
x
−
v

m
u
st

b
e

st
ri

ct
ly

p
os

it
iv

e.

F
−

1
(y

)
=
v

+
a
·(
−

ln
(y

))
1
/
b

Z
ip

f
D

is
cr

et
e

d
is

tr
ib

u
ti

on
w

.r
.t

.
Z

ip
f’

s
L

aw
.

M
ak

es
u
se

of
h
ar

m
on

ic
n
u
m

b
er

s.
In

ve
rs

e
tr

an
sf

or
m

at
io

n
.



APPENDIX B

Building Block Port Information

Throughout this thesis, many building blocks were mentioned. This appendix
provides additional information on the input and output sets for these blocks.
For each block, a summary is given for the names for the ports, their type
and/or range and their meaning. The order in which they are listed corre-
sponds to the order in which they occur in chapters 4 and 5.

Name Type / Range Description

In
p
u
ts value Any A new value to be outputted.

dt R+
+∞ \ {0}

A new time delay between the generated
messages.

O
u
tp

u
ts

output Any The generated values.

Table B.1: Ports for the Constant Generator building block.



145

Name Type / Range Description
In

p
u
ts

dt R+
+∞ \ {0}

A new time delay between the generated
messages.

O
u
tp

u
ts

output Any The generated values.

Table B.2: Ports for the Function Generator building block.

Name Type / Range Description

O
u
tp

u
ts

output Any The generated values.

Table B.3: Ports for the Table Generator building block.

Name Type / Range Description

O
u
tp

u
ts

output Any
The value that’s outputted at the prede-
fined time.

Table B.4: Ports for the Single Fire building block.

Name Type / Range Description

In
p
u
ts input N The amount of items to output in bulk.

dt R+
+∞ \ {0}

A new time delay between the generated
messages.

O
u
tp

u
ts

output Any The generated values.

Table B.5: Ports for the Bulk Generator building block.



146

Name Type / Range Description

In
p
u
ts

dt R+
+∞ \ {0}

A new time delay between the generated
messages.

O
u
tp

u
ts

output R−∞,+∞ The generated values.

Table B.6: Ports for the Random Number Generator building block.

Name Type / Range Description

In
p
u
ts

halt Boolean Whether to halt/continue the generator.

O
u
tp

u
ts

output Any The generated values.

Table B.7: Ports for the Random Delay Generator building block.



147

Name Type / Range Description
In

p
u
ts

enqueue Any The item to enqueue.

dr R+
+∞ \ {0}

The maximal delay an item may
spend in the queue.

requestdequeue N or Any

Indicates that items must dequeue.
When the block is constructed such
that the arriving value indicates the
amount of dequeues that must hap-
pen, it expects a natural number.
Otherwise, any arriving value is ac-
cepted and a single item will be de-
queued.

requestrenege N or Any

Indicates that the last item in
the queue must depart on the re-
nege port. When the block is
constructed such that the arriving
value indicates the amount of re-
neges that must happen, it expects
a natural number. Otherwise, any
arriving value is accepted and a sin-
gle item will be reneged.

O
u
tp

u
ts

dequeue Any The items that are dequeued.

renege Any The items that are reneged.

overflow Any
The items that were enqueued if the
block has already reached a maxi-
mal capacity.

Table B.8: Ports for the Simple Queue building block.

Name Type / Range Description

In
p
u
ts

dt R+
+∞ \ {0} The time delay for periodic output.

enter Any The item to enter the queue.

leave Any The item to leave the queue.

O
u
tp

u
ts

size N The size of the queue.

Table B.9: Ports for the Queue Tracker building block.



148

Name Type / Range Description

In
p
u
ts

enqueue Any The item to enqueue.

dd R+
+∞ \ {0} The delay between two dequeues.

dr R+
+∞ \ {0}

The maximal delay an item may
spend in the queue.

requestdequeue N or Any

Indicates that items must dequeue.
When the block is constructed such
that the arriving value indicates the
amount of dequeues that must hap-
pen, it expects a natural number.
Otherwise, any arriving value is ac-
cepted and a single item will be de-
queued.

requestrenege N or Any

Indicates that the last item in
the queue must depart on the re-
nege port. When the block is
constructed such that the arriving
value indicates the amount of re-
neges that must happen, it expects
a natural number. Otherwise, any
arriving value is accepted and a sin-
gle item will be reneged.

O
u
tp

u
ts

dequeue Any The items that are dequeued.

renege Any The items that are reneged.

overflow Any
The items that were enqueued if the
block has already reached a maxi-
mal capacity.

count N The size of the queue.

Table B.10: Ports for the Queue building block.



149

Name Type / Range Description
In

p
u
ts

input Any The item that needs to be remembered.

O
u
tp

u
ts

current Any The current item.

previous Any
The previous item, when in individual
mode, or all items from the same time in-
stance when in collection mode.

Table B.11: Ports for the Retain building block.

Name Type / Range Description

In
p
u
ts

input Any
The item to schedule, must arrive at the
same time as the item on the delay port.

delay R+
+∞

The delay for the item that arrived on the
input port.

pause
List of

(item, Boolean)

Indicates that certain items in the block
must be paused, while others may be con-
tinued.

O
u
tp

u
ts

output Any
The items that are delayed for a specific
delay.

Table B.12: Ports for the Advance building block.

Name Type / Range Description

In
p
u
ts input Any The items to obtain.

clear Any Clears the contents of the block.

Table B.13: Ports for the Table Collector building block.

Name Type / Range Description

In
p
u
ts input R The values to measure.

clear Any Clears the statistics of the block.

Table B.14: Ports for the Collector and Estimate Collector building
blocks.



150

Name Type / Range Description
In

p
u
ts input Any The messages to count.

clear Any Clears the contents of the block.

O
u
tp

u
ts output Any The counted item.

count N The amount of messages that have passed
through.

Table B.15: Ports for the Counter building block.

Name Type / Range Description

In
p
u
ts

input-1

R+∞ The terms to add together.
input-2

...

input-n

O
u
tp

u
ts

result R+∞ The sum of all inputs.

Table B.16: Ports for the Adder building block.

Name Type / Range Description

In
p
u
ts

input-1

R+∞ The factors to multiply with each other.
input-2

...

input-n

O
u
tp

u
ts

result R+∞ The product of all inputs.

Table B.17: Ports for the Multiplier building block.



151

Name Type / Range Description

In
p
u
ts

input-1

R+∞

All parameters of the equation. The
names for the ports are defined by the ar-
gument names for the function that’s as-
sociated with the block.

input-2

...

input-n

O
u
tp

u
ts

result R+∞ The result of the equation.

Table B.18: Ports for the Equation building block.

Name Type / Range Description

In
p
u
ts

input R+∞ The value to differentiate.

O
u
tp

u
ts

result R+∞ The differentiated value.

Table B.19: Ports for the Differentiator building block.

Name Type / Range Description

In
p
u
ts

input R+∞ The value to integrate.

O
u
tp

u
ts

result R+∞ The integrated value.

Table B.20: Ports for the Integrator building block.

Name Type / Range Description

In
p
u
ts

input Any
An item that triggers the generation of a
new random number.

O
u
tp

u
ts random R−∞,+∞

A random value, i.i.d. the provided distri-
bution.

value Any The item that was inputted.

Table B.21: Ports for the Random building block.



152

Name Type / Range Description

In
p
u
ts

input String The message to be logged.

Table B.22: Ports for the Logger building block and all its derivatives.

Name Type / Range Description

In
p
u
ts

input String or Bytes
The message to be written to a file, may be
binary.

Table B.23: Ports for the File Writer building block.

Name Type / Range Description

In
p
u
ts

filename String
The name of the file to read, either as an
absolute path, or relative to the execution
directory.

O
u
tp

u
ts

contents String or Bytes The contents of the file, possibly binary.

Table B.24: Ports for the File Reader building block.

Name Type / Range Description

In
p
u
ts

dt R+
+∞ \ {0} A polling delay.

O
u
tp

u
ts

listen Any The return value of the associated function.

Table B.25: Ports for the Listener building block.

Name Type / Range Description

In
p
u
ts

input Any
Item that is checked against a condition,
before the sound is played.

Table B.26: Ports for the Sound building block.



153

Name Type / Range Description
In

p
u
ts

input Any The item to transform.

O
u
tp

u
ts transformed Any The transformed value.

original Any
The original value that was inputted
in the block.

Table B.27: Ports for the Transformer and Lookup Table building
blocks.

Name Type / Range Description

In
p
u
ts input Any A new item to add to the package.

release Any
Requests the created package to be re-
leased.

O
u
tp

u
t

output Package A packaged object.

Table B.28: Ports for the Pack building block.

Name Type / Range Description

In
p
u
ts

input Package
A packaged object that needs to be ex-
tracted.

O
u
tp

u
ts

output List The contents of the package, as a list.

Table B.29: Ports for the Unpack building block.

Name Type / Range Description

In
p
u
ts

input Any Item that has finished simulating.

Table B.30: Ports for the Finish and Halt building blocks.



154

Name Type / Range Description

In
p
u
ts

select N The index of the input to choose.

input-1

Any
A list of possible inputs to route over the
output port.

input-2

...

input-n

O
u
tp

u
ts

output Any
The item that was inputted on the selected
input.

Table B.31: Ports for the Choose Input building block.

Name Type / Range Description

In
p
u
ts select N The index of the input to choose.

input Any
The input to be routed conditionally over
the selected output.

O
u
tp

u
ts

output-1

Any
A list of possible outputs to route the in-
put over.

output-2

...

output-n

Table B.32: Ports for the Choose Output building block.

Name Type / Range Description

In
p
u
ts

claim Any
Marks the currently selected path as
“busy”.

input-1

Any
Indicates that the corresponding path has
become free again.

input-2

...

input-n

O
u
tp

u
ts output N

The index of the path to select. Is to be
inputted in the select port of the Choose
Output block.

free Boolean
Outputs true when there is at least one
free path.

Table B.33: Ports for the Pick building block.



155

Name Type / Range Description
In

p
u
ts input Any

Items that require access to the re-
source.

leave Any
The items that release access to the re-
source.

O
u
tp

u
ts

blocked Any
The item that entered on the input port
when no access to the resource is possi-
ble.

guarded Any
The items that were granted access to
the resource.

unguarded Any
The items that released access to the
resource, i.e. the items that entered on
the leave input.

Table B.34: Ports for the Guard building block.

Name Type / Range Description

In
p
u
ts input Any

Items want to gain access to a critical sec-
tion.

block Boolean When true, the gate will be closed.

O
u
tp

u
ts output Any

All items that arrived on input when the
gate is open.

blocked Any
All items that arrived on input when the
gate is closed.

Table B.35: Ports for the Gate building block.

Name Type / Range Description

In
p
u
ts start Any Starts the timer for the item.

dt R+
+∞ A new delay to hold an item for.

O
u
tp

u
ts blocked Any

All items that arrived when the block was
busy.

finished Any The item that was delayed.

Table B.36: Ports for the Timer building block.



156

Name Type / Range Description

In
p
u
ts

start Any Starts the timer for the item.

O
u
tp

u
ts blocked Any

All items that arrived when the block was
busy.

finished Any The item that was delayed.

Table B.37: Ports for the Delayer building block.

Name Type / Range Description

In
p
u
ts

input-1

Any Items that must be delayed until all others
are received.

input-2

...

input-n

O
u
tp

u
ts

output-1

Any All obtained items from all inputs.
output-2

...

output-n

Table B.38: Ports for the Sync building block.



157

Name Type / Range Description

In
p
u
ts

create Transaction
The newly generated
transaction.

terminate (Transaction, N)

A transaction that needs
to be terminated and de-
crease the termination
counter with a certain
amount.

delay Transaction

A transaction that en-
ters an Advance or a
Link block.

moved

Transaction or

(Transaction, Boolean) or

List of (Transaction, Boolean)

A transaction that has
moved, possibly with
its blocked status or
a group of transactions
with their blocked sta-
tuses.

unblock Transaction
A transaction that is not
blocked anymore.

facilities (String, Transaction, Boolean)
Updated value of a facil-
ity.

O
u
tp

u
ts

notify Transaction
The transaction that is
allowed to move.

pause
List of

(item, Boolean)

All transactions that
need to be paused
in the corresponding
Advance block.

Table B.39: Ports for the Controller building block.



158

Name Type / Range Description

In
p
u
ts

input Transaction
A transaction that needs to be
passed on.

select Boolean
When true at the time a transac-
tion arrives on the input port, the
transaction needs to be blocked.

release Transaction
The transaction that is allowed to
move.

O
u
tp

u
ts

output Transaction

The transaction that is allowed
to move, if it was located in the
block.

fallback Transaction
The transaction that is allowed to
move after it was blocked.

contents
List of

(Transaction, Boolean)

The contents of the block, i.e.
all transactions that are waiting
at this point, together with their
blocked status.

Table B.40: Ports for the Hold building block.



APPENDIX C

GPSS Blocks

Different tools implement different functionalities and subsets of the GPSS
building block set. This appendix provides an overview of these subsets, based
on [CC09]. An “x” indicates that the block is available in the given tool and
an “(x)” means that the block is only partially available.

GPSS World

[Min10]

GPSS/H

[Cra97]

WebGPSS

aGPSS

[St̊a99]

JGPSS

[CC09]
GPSS2DEVS

ADOPT x

ADVANCE x x x x x

ALTER x x x

ATNWAIT x

ARRIVE x

ASSEMBLE x x x x

ASSIGN x x x

BRANCH

BUFFER x x x

BCLOSE x

BFILEDEF x



160

GPSS World

[Min10]

GPSS/H

[Cra97]

WebGPSS

aGPSS

[St̊a99]

JGPSS

[CC09]
GPSS2DEVS

BGETLIST x

BGETSTRING x

BLET x

BPUTPIC x

BPUTSTRING x

BCLEAR x

BCALL x

BRESET x

CHANGE x

CLOSE x

COMPARE

COUNT x x

DEPART x x x x x

DISPLACE x

ENTER x x x x x

EXAMINE x x

EXECUTE x x

FAVAIL x x x

FUNAVAIL x x x

GATE x x x x

GATHER x x x

GENERATE x x x x x

GOTO x

HELP x x

IF x

INDEX x x

INTEGRATION x

JOIN x x

LEAVE x x x x x

LET x

LINK x x x

LOGIC x x x x



161

GPSS World

[Min10]

GPSS/H

[Cra97]

WebGPSS

aGPSS

[St̊a99]

JGPSS

[CC09]
GPSS2DEVS

LOOP x x x

MARK x x x

MATCH x x x

MSAVEVALUE x x x

OPEN x

PLUS x

PREEMPT x x x

PRINT x x

PRIORITY x x x

QUEUE x x x x

READ x

RELEASE x x x x x

REMOVE x x

RESCHEDULE x

RETURN x x x

SAVAIL x x x

SAVEVALUE x x x

SCAN x x

SEEK x

SEIZE x x x x x

SELECT x x

SPLIT x x x x

SUNAVAIL x x x

TABULATE x x x x

TERMINATE x x x x x

TEST x x x x

TRACE x x

TRANSFER x x (x) (x)

UNLINK x x x

UNTRACE x x

WAITIF x

WRITE x



Bibliography

[ATT91] AT&T Labs Research. Graphviz. https://www.graphviz.org/.
1991. Used in 2020.

[Aut96] Autodesk. 3ds Max. https://www.autodesk.com/products/

3ds-max/. 1996. Accessed 08-06-2020.

[Aut98] Autodesk. Maya 3D. https://www.autodesk.com/products/
maya/. 1998. Accessed 08-06-2020.

[Bar+11] A. Barǐsić et al. “Quality in Use of Domain-specific Languages: A
Case Study”. In: Proceedings of the 3rd ACM SIGPLAN Workshop
on Evaluation and Usability of Programming Languages and Tools.
PLATEAU ’11. ACM, 2011, pages 65–72.

[Bar95] F. J. Barros. “Dynamic Structure Discrete Event System Speci-
fication: a New Formalism for Dynamic Structure Modeling and
Simulation”. In: Proceedings of the Winter Simulation Conference.
Piscataway, New Jersey: Institute of Electrical and Electronics En-
gineers, Inc., 1995, pages 781–785.

[Bar97] F. J. Barros. “Modeling Formalisms for Dynamic Structure Sys-
tems”. In: ACM Transactions on Modeling and Computer Simu-
lation 7.4 (Oct. 1997), pages 501–515.

[Bar98] F. J. Barros. “Abstract Simulators for the DSDE Formalism”.
In: Proceedings of the 1998 Winter simulation Conference. Pis-
cataway, New Jersey: Institute of Electrical and Electronics Engi-
neers, Inc., 1998, pages 407–412.

[Bel11] F. Bellard. FFmpeg File Formats. http://www.ffmpeg.org/

general.html#File-Formats. 2011. Online; accessed 01-06-2020.

https://www.graphviz.org/
https://www.autodesk.com/products/3ds-max/
https://www.autodesk.com/products/3ds-max/
https://www.autodesk.com/products/maya/
https://www.autodesk.com/products/maya/
http://www.ffmpeg.org/general.html#File-Formats
http://www.ffmpeg.org/general.html#File-Formats


[Ble98] Blender Foundation. Blender. https://www.blender.org/. 1998.
Accessed 08-06-2020.

[BV03] S. Borland and H. Vangheluwe. “Transforming statecharts to DEVS”.
In: Summer Computer Simulation Conference (Student Workshop).
2003, S154–S159.

[Cap+11] L. Capocchi et al. “DEVSimPy: A Collaborative Python Software
for Modeling and Simulation of DEVS Systems”. In: IEEE 20th
International Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises. June 2011, pages 170–175.

[Cap19] L. Capocchi. DEVSimPy. https : / / github . com / capocchi /

DEVSimPy. 2019. Online; accessed 31-05-2020.

[CC09] P. F. i Casas and J. Casanovas. “JGPSS, an open source GPSS
framework to teach simulation”. In: Proceedings of the 2009 Win-
ter Simulation Conference. 2009.

[Cla92] F. Claeys. “HGPSS: Object-geörienteerde “process-interaction” sim-
ulatie”. Master’s thesis. University of Ghent, June 1, 1992.

[Cra97] R. C. Crain. “Simulation using GPSS/H”. In: Proceedings of the
29th conference on Winter simulation - WSC 1997. ACM Press,
1997.

[CV10] B. Chen and H. Vangheluwe. “Symbolic Flattening of DEVS mod-
els”. In: Proceedings of the 2010 Summer Simulation Multiconfer-
ence. 2010, pages 209–218.

[CZ94] A. C. H. Chow and B. P. Zeigler. “Parallel DEVS: A parallel, hier-
archical, modular modeling formalism”. In: Proceedings of Winter
Simulation Conference. IEEE. 1994, pages 716–722.

[Dem14] N. Demarbaix. Causal Block Diagram: compiler to LaTeX and
DEVS. Research report. University of Antwerp, 2014.

[Dev86] L. Devroye. “General Principles in Random Variate Generation”.
In: Non-Uniform Random Variate Generation. Springer Science +
Business Media New York, 1986, pages 27–82.

[Dia+00] B. Diamond et al. Extend v5 User’s Guide. Edited by Imagine
That, Inc. 2000.

[Dro+03] M. Droettboom et al. Matplotlib. https://matplotlib.org/.
2003. Online; accessed 09-06-2020.

[Epi98] Epic Games. Unreal Engine. https://www.unrealengine.com/
en-US/. 1998. Accessed 08-06-2020.

https://www.blender.org/
https://github.com/capocchi/DEVSimPy
https://github.com/capocchi/DEVSimPy
https://matplotlib.org/
https://www.unrealengine.com/en-US/
https://www.unrealengine.com/en-US/


[Eur+66] European Computer Manufacturers Association et al. “Standard
ECMA-4: Flow charts”. In: European Computer Manufacturers
Association (1966).

[Fau19] A. C. Faul. “Sampling”. In: A Concise Introduction to Machine
Learning. CRC Press, 2019, pages 63–66.

[FB04] J.-B. Filippi and P. Bisgambiglia. “JDEVS: an implementation of
a DEVS based formal framework for environmental modelling”.
In: Environmental Modelling & Software (2004), pages 261–274.

[Fle93] FlexSim Software Products, Inc. FlexSim. https://www.flexsim.
com/. 1993. Used in 2020.

[FP87] J. E. Freund and B. M. Perles. “A New Look at Quartiles of Un-
grouped Data”. In: The American Statistician 41.3 (1987), pages 200–
203.

[Fra+14] R. Franceschini et al. “DEVS-Ruby: A Domain Specific Language
for DEVS Modeling and Simulation (WIP)”. In: Proceedings of the
Symposium on Theory of Modeling & Simulation - DEVS. Tampa,
FL, USA, 2014, pages 103–108.

[Fra+18] R. Franceschini et al. “An Overview of the Quartz Modelling and
Simulation Framework”. In: Proceedings of 8th International Con-
ference on Simulation and Modeling Methodologies, Technologies
and Applications. Volume 19. 3. Science and Technology Publica-
tions, 2018.

[FS07] D. Feldman and Y. Shavitt. “An optimal median calculation al-
gorithm for estimating Internet link delays from active measure-
ments”. In: Workshop on End-to-End Monitoring Techniques and
Services. IEEE. 2007, pages 1–7.

[GBK16] R. Goldstein, S. Breslav, and A. Khan. “DesignDEVS: Reinforcing
Theoretical Principles in a Practical and Lightweight Simulation
Environment”. In: Proceedings of the 2016 Spring Simulation Mul-
ticonference. Pasadena, CA, USA, 2016, pages 1–8.

[GDV16] C. Gomes, J. Denil, and H. Vangheluwe. Causal-block diagrams.
Research report. University of Antwerp, 2016.

[Ger+09] R. Gerhards et al. The syslog protocol. Technical report. Network
Working Group, 2009.

[GLV07] H. Giese, T. Levendovszky, and H. Vangheluwe. “Summary of
the Workshop on Multi-Paradigm Modeling: Concepts and Tools”.
In: Models in Software Engineering. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pages 252–262.

https://www.flexsim.com/
https://www.flexsim.com/


[Gor75] G. Gordon. The Application of GPSS V to Discrete System Sim-
ulation. Englewood Cliffs, New Jersey: Prentice-Hall, 1975.

[Gor78a] G. Gordon. System Simulation. 2nd edition. Englewood Cliffs, New
Jersey: Prentice-Hall, 1978.

[Gor78b] G. Gordon. “The Development of the General Purpose Simulation
System (GPSS)”. In: History of programming languages 13.8 (Aug.
1978), pages 183–198.

[Gou69] R. L. Gould. “GPSS/360 - An improved general purpose simula-
tor”. In: IBM Systems Journal 8.1 (1969), pages 16–27.

[Gue+10] E. Guerra et al. “A Visual Specification Language for Model-to-
Model Transformations”. In: IEEE Symposium on Visual Lan-
guages and Human-Centric Computing. 2010.

[Gue+13] E. Guerra et al. “Automated verification of model transformations
based on visual contracts”. In: Automated Software Engineering
20.1 (2013), pages 5–46.

[Ham15] J. Hamilton. SimpleAudio. https://simpleaudio.readthedocs.
io/. 2015. Online; accessed 01-06-2020.

[Har87] D. Harel. “Statecharts: A visual formalism for complex systems”.
In: Science of Computer Programming 8.3 (1987), pages 231–274.

[Hek16] M. Hekimoǧlu. IE 303, Discrete-Event Simulation, Lecture 5: Prob-
ability Review. http://www2.isikun.edu.tr/mustafahekimoglu/
simulation/Lecture5-ProbabilityReview.pdf. 2016. Online;
accessed 07-12-2019.

[Hol97] G. J. Holzmann. “The Model Checker SPIN”. In: Transactions on
Software Engineering 23.5 (1997), pages 279–295.

[HR04] D. Harel and B. Rumpe. “Meaningful Modeling: What’s the Se-
mantics of “Semantics”?” In: Computer 37.10 (2004), pages 64–
72.

[Hwa07a] M. H. Hwang. DEVS#: C# open source library of DEVS formal-
ism. http://xsy-csharp.sourceforge.net/DEVSsharp/. May
2007. Online; accessed 31-05-2020.

[Hwa07b] M. H. Hwang. DEVS++: C++ open source library of DEVS for-
malism. http://odevspp.sourceforge.net/. 2007. Online; ac-
cessed 31-05-2020.

[Hwa07c] M. H. Hwang. Modeling and Simulation using DEVS#. 2007.

[Ima87] Imagine That, Inc. ExtendSim. https://www.extendsim.com/.
1987. Used in 2020.

https://simpleaudio.readthedocs.io/
https://simpleaudio.readthedocs.io/
http://www2.isikun.edu.tr/mustafahekimoglu/simulation/Lecture5-ProbabilityReview.pdf
http://www2.isikun.edu.tr/mustafahekimoglu/simulation/Lecture5-ProbabilityReview.pdf
http://xsy-csharp.sourceforge.net/DEVSsharp/
http://odevspp.sourceforge.net/
https://www.extendsim.com/


[INC97] INCONTROL Simulation Solutions. Enterprise Dynamics. https:
//www.incontrolsim.com/. 1997. Used in 2020.

[JC85] R. Jain and I. Chlamtac. “The P2 algorithm for dynamic calcu-
lation of quantiles and histograms without storing observations”.
In: Communications of the ACM 28.10 (1985), pages 1076–1085.

[Kar+14] A. T. Karl et al. “Using RngStreams for parallel random num-
ber generation in C++ and R”. In: Computational Statistics 29.5
(2014), pages 1301–1320.

[Ken53] D. G. Kendall. “Stochastic Processes Occurring in the Theory of
Queues and their Analysis by the Method of the Imbedded Markov
Chain”. In: The Annals of Mathematical Statistics 24.3 (1953),
pages 338–354.

[KJ01] E. Kofman and S. Junco. “Quantized-state systems: a DEVS Ap-
proach for continuous system simulation”. In: Transactions of The
Society for Modeling and Simulation International 18.3 (2001),
pages 123–132.

[KK00] J.-H. Kim and T. G. Kim. “Framework for modeling/simulation
of mobile agent systems”. In: Proceedings of 2000 Conference on
AI, Simulation and Planning in High Autonomy Systems. Citeseer.
2000, pages 53–59.

[Kle07] A. Kleppe. “A language description is more than a metamodel”.
In: Fourth International Workshop on Software Language Engi-
neering. 2007.

[Kna10] T. Knaresboro. Popular Mechanics: How to Choose the Fastest
Line. https://www.popularmechanics.com/science/health/
a6164/how-to-choose-the-fastest-line/. 2010. Online; ac-
cessed 11-12-2019.

[KSE09] S. Kim, H. S. Sarjoughian, and V. Elamvazhuthi. “DEVS-Suite:
A Simulator Supporting Visual Experimentation Design and Be-
havior Monitoring”. In: Proceedings of the 2009 Spring Simulation
Multiconference. San Diego, CA, USA, 2009, pages 1–7.

[Küh+10] T. Kühne et al. “Explicit Transformation Modeling.” In: MoD-
ELS Workshops. Volume 6002. Lecture Notes in Computer Sci-
ence. Springer, Apr. 13, 2010, pages 240–255.

[Küh06] T. Kühne. “Matters of (Meta-)Modeling”. In: Software and System
Modeling 5 (2006), pages 369–385.

https://www.incontrolsim.com/
https://www.incontrolsim.com/
https://www.popularmechanics.com/science/health/a6164/how-to-choose-the-fastest-line/
https://www.popularmechanics.com/science/health/a6164/how-to-choose-the-fastest-line/


[Kwo+96] Y. W. Kwon et al. “Fuzzy-DEVS Formalism: Concepts, Real-
ization and Application”. In: Proceedings of AI, Simulation and
Planning in High Autonomy Systems. San Diego, CA, USA, 1996,
pages 227–234.

[Lan06] E. Langford. “Quartiles in Elementary Statistics”. In: Journal of
Statistics 14.3 (2006).

[Lar87] R. C. Larson. “OR Forum – Perspectives on Queues: Social Justice
and the Psychology of Queueing”. In: Operations Research 35.6
(1987), pages 895–905.

[Law14] A. M. Law. “Generating Random Variates”. In: Simulation Mod-
eling and Analysis, Fifth Edition. McGraw-Hill Education, 2014,
pages 426–487.

[LEc+02] P. L’Ecuyer et al. “An object-oriented random-number package
with many long streams and substreams”. In: Operations research
50.6 (2002), pages 1073–1075.

[LEc01] P. L’Ecuyer. “Random Numbers”. In: Int. Encyc. Social and Be-
havioural Sciences (2001).

[LEc12] P. L’Ecuyer. “Random Number Generation”. In: Handbook of com-
putational statistics. Springer Berlin Heidelberg, 2012, pages 35–
71.

[LEG13] LEGO A/S. LEGO Mindstorms EV3. https : / / mindstorms .

lego.com/. 2013. Used in 2020.

[Ley20] T. Leys. “Towards an Agent-Based Modeling Platform with Pre-
cise Semantics”. Master’s thesis. University of Antwerp, Jan. 1,
2020.

[Lia11] P.-Y. Liao. “A queuing model with balking and reneging rate”.
In: International Journal of Services and Operations Management
10.1 (Aug. 22, 2011).

[LS03] P. L’Ecuyer and R. Simard. RngStreams: An object-oriented random-
number package in C with many long streams and substreams.
http://statmath.wu.ac.at/software/RngStreams/. 2003.
Online; accessed 31-05-2020.

[LS07] P. L’Ecuyer and R. Simard. “TestU01: A C library for empirical
testing of random number generators”. In: ACM Transactions on
Mathematical Software (TOMS) 33.4 (2007), pages 1–40.

[Luc+13] L. Lucio et al. “FTG+PM: An Integrated Framework for Inves-
tigating Model Transformation Chains”. In: SDL: Model-Driven
Dependability Engineering. Volume 7916. LNCS. 2013, pages 182–
202.

https://mindstorms.lego.com/
https://mindstorms.lego.com/
http://statmath.wu.ac.at/software/RngStreams/


[LV02a] J. de Lara and H. Vangheluwe. “AToM3: A Tool for Multi-formalism
and Meta-modelling”. In: Fundamental Approaches to Software
Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, Mar. 15,
2002, pages 174–188.

[LV02b] J. de Lara and H. Vangheluwe. “Using Meta-Modelling and Graph
Grammars to process GPSS models”. In: 16th European Simulation
Multi-conference (ESM). SCS, June 2002, pages 100–107.

[Mal+15] M. Maleki et al. “Designing DEVS visual interfaces for end-user
programmers”. In: Simulation 91.8 (2015), pages 715–734.

[Max90] Maxon. Cinema 4D. https://www.maxon.net/en-us/products/
cinema-4d/overview/. 1990. Accessed 08-06-2020.

[Mel16] C. Mele. How to Pick the Fastest Line at the Supermarket. https:
//www.nytimes.com/2016/09/08/business/how-to-pick-

the-fastest-line-at-the-supermarket.html. 2016. Online;
accessed 11-12-2019.

[Mic87] Microsoft. Microsoft Excel. https://www.microsoft.com/nl-
be/microsoft-365/excel. 1987. Accessed 09-06-2020.

[Min10] Minuteman Software. GPSS World. http://www.minutemansoftware.
com/. 2010. Used in 2020.

[Min72] Minitab, LLC. Minitab. https://minitab.com/. 1972. Accessed
09-06-2020.

[MM03] D. S. Moore and G. P. McCabe. Introduction to the Practice of
Statistics. 4th edition. 2003.

[MN05] A. Muzy and J. J. Nutaro. “Algorithms for Efficient Implemen-
tations of the DEVS & DSDEVS Abstract Simulators”. In: 1st
Open International Conference on Modeling and Simulation. 2005,
pages 273–279.

[Moo09] D. Moody. “The “Physics” of Notations: Toward a Scientific Ba-
sis for Constructing Visual Notations in Software Engineering”. In:
IEEE Transactions on Software Engineering 35.6 (2009), pages 756–
779.

[Mur89] T. Murata. “Petri nets: Properties, Analysis and applications”. In:
Proceedings of the IEEE 77.4 (1989), pages 541–580.

[MV04] P. J. Mosterman and H. Vangheluwe. “Computer Automated Multi-
Paradigm Modeling: An Introduction”. In: Simulation 80.9 (Sept. 1,
2004), pages 433–450.

https://www.maxon.net/en-us/products/cinema-4d/overview/
https://www.maxon.net/en-us/products/cinema-4d/overview/
https://www.nytimes.com/2016/09/08/business/how-to-pick-the-fastest-line-at-the-supermarket.html
https://www.nytimes.com/2016/09/08/business/how-to-pick-the-fastest-line-at-the-supermarket.html
https://www.nytimes.com/2016/09/08/business/how-to-pick-the-fastest-line-at-the-supermarket.html
https://www.microsoft.com/nl-be/microsoft-365/excel
https://www.microsoft.com/nl-be/microsoft-365/excel
http://www.minutemansoftware.com/
http://www.minutemansoftware.com/
https://minitab.com/


[MV14] B. Meyers and H. Vangheluwe. “A Multi-Paradigm Modelling Ap-
proach for the Engineering of Modelling Languages”. In: Proceed-
ings of the Doctoral Symposium of the ACM/IEEE 17th Interna-
tional Conference on Model Driven Engineering Languages and
Systems. CEUR Workshop Proceedings. 2014, pages 1–8.

[Nut10] J. J. Nutaro. Building Software for Simulation: Theory and Algo-
rithms, with Applications in C++. 1st edition. Hoboken, NJ, USA:
Wiley, 2010.

[Nut15] J. J. Nutaro. adevs. http://www.ornl.gov/~1qn/adevs/. 2015.
Online; accessed 10-05-2020.

[Oli+95] T. Oliphant et al. NumPy. https://numpy.org/. 1995. Online;
accessed 09-06-2020.

[ON04] C. M. Overstreet and R. E. Nance. “Characterizations and Rela-
tionships of World Views”. In: Proceedings of the 36th Conference
on Winter Simulation. WSC ’04. Washington, D.C.: Winter Sim-
ulation Conference, 2004, pages 279–287.

[Pet77] J. L. Peterson. “Petri Nets”. In: ACM Computing Surveys (CSUR)
9.3 (1977), pages 223–252.

[Pri19] J. Prisco. Popular Mechanics: How to Choose the Fastest Line.
https : / / edition . cnn . com / style / article / design - of -

waiting - lines / index . html. Feb. 15, 2019. Online; accessed
08-06-2020.

[Pyt] Python Software Foundation. Python Language Reference, ver-
sion 3. https://www.python.org/. Online; accessed 13-02-2020.

[R F97] R Foundation. R. https://www.r-project.org/. 1997. Accessed
09-06-2020.

[Res+09] M. Resnick et al. “Scratch: programming for all”. In: Communi-
cations of the ACM 52.11 (2009), pages 60–67.

[Ris+17] J. L. Risco-Mart́ın et al. “Reconsidering the Performance of DEVS
Modeling and Simulation Environment Using the DEVStone Bench-
mark”. In: Simulation (2017).

[Ris10] M. Risoldi. “A methodology for the development of complex domain-
specific languages”. PhD thesis. University of Geneva, June 7,
2010.

[Rob11] J. Robert. Pydub. http://pydub.com/. 2011. Online; accessed
01-06-2020.

[Sch74] T. J. Schriber. Simulation Using GPSS. Wiley, 1974.

http://www.ornl.gov/~1qn/adevs/
https://numpy.org/
https://edition.cnn.com/style/article/design-of-waiting-lines/index.html
https://edition.cnn.com/style/article/design-of-waiting-lines/index.html
https://www.python.org/
https://www.r-project.org/
http://pydub.com/


[She08] M. Shermer. “Patternicity: Finding Meaningful Patterns in Mean-
ingless Noise”. In: Scientific American (2008).

[SIM94] SIMUL8 Corporation. SIMUL8. https : / / www . simul8 . com/.
1994. Used in 2020.

[SK03] S. Sendall and W. Kozaczynski. “Model Transformation: The Heart
and Soul of Model-Driven Software Development”. In: IEEE Soft-
ware 20.5 (2003), pages 42–45.

[SS15] H. S. Sarjoughian and S. Sundaramoorthi. “Superdense Time Tra-
jectories for DEVS Simulation Models”. In: Proceedings of the
Symposium on Theory of Modeling & Simulation: DEVS Integra-
tive M&S Symposium. DEVS ’15. Alexandria, Virginia: Society for
Computer Simulation International, 2015, pages 249–256.

[St̊a+11] I. St̊ahl et al. “GPSS 50 years old, but still young”. In: Proceedings
of the 2011 Winter Simulation Conference (WSC). IEEE. 2011,
pages 3947–3957.

[St̊a99] I. St̊ahl. aGPSS. http://agpss.com/index.html. 1999. Used in
2020.

[SV11] R. Shaikh and H. Vangheluwe. “Transforming UML2.0 Class Di-
agrams and Statecharts to Atomic DEVS”. In: Proceedings of the
2011 Symposium on Theory of Modeling & Simulation: DEVS In-
tegrative M&S Symposium. TMS-DEVS ’11. Boston, Massachusetts:
Society for Computer Simulation International, 2011, pages 205–
212.

[Syr+13] E. Syriani et al. “AToMPM: A Web-based Modeling Environ-
ment”. In: Proceedings of MODELS’13 Demonstration Session.
2013, pages 21–25.

[Syr11] E. Syriani. “A Multi-Paradigm Foundation for Model Transfor-
mation Language Engineering”. PhD thesis. McGill University,
Feb. 4, 2011.

[SZ98] H. S. Sarjoughian and B. P. Zeigler. “DEVSJAVA: Basis for a
DEVS-based collaborative M&S environment”. In: Simulation Se-
ries 30 (1998), pages 29–36.

[Tra09] M. K. Traoré. “A graphical notation for DEVS”. In: Proceedings
of the 2009 Spring Simulation Multiconference. 2009, pages 1–7.

[Tuk77] J. W. Tukey. Exploratory data analysis. Volume 2. 1977.

[Uhr01] A. M. Uhrmacher. “Dynamic Structures in Modeling and Simula-
tion: a Reflective Approach”. In: ACM Transactions on Modeling
and Computer Simulation 11 (2001), pages 206–232.

https://www.simul8.com/
http://agpss.com/index.html


[Uni05] Unity Technologies. Unity. https://unity.com/. 2005. Accessed
08-06-2020.

[Van+17] S. Van Mierlo et al. “Domain-specific modelling for human-computer
interaction”. In: The Handbook of Formal Methods in Human-
Computer Interaction. Springer, 2017, pages 435–463.

[Van00a] H. Vangheluwe. “DEVS as a Common Denominator for Multi-
Formalism Hybrid Systems Modelling”. In: IEEE International
Symposium on Computer-Aided Control System Design. Anchor-
age, AK, USA, 2000, pages 129–134.

[Van00b] H. Vangheluwe. “Multi-Formalism Modelling and Simulation”. PhD
thesis. Universiteit Gent, 2000.

[Van08] H. Vangheluwe. “Foundations of modelling and simulation of com-
plex systems”. In: Electronic Communications of the EASST 10
(2008).

[Van14] Y. Van Tendeloo. “Activity-aware DEVS simulation”. Master’s
thesis. University of Antwerp, June 28, 2014.

[VV14] Y. Van Tendeloo and H. Vangheluwe. “The Modular Architecture
of the Python(P)DEVS Simulation Kernel”. In: Proceedings of the
Symposium on Theory of Modeling & Simulation - DEVS. Tampa,
FL, USA, 2014, pages 97–102.

[VV15] Y. Van Tendeloo and H. Vangheluwe. “PythonPDEVS: a Dis-
tributed Parallel DEVS simulator”. In: Proceedings of the 2015
Spring Simulation Multiconference. Alexandria, VA, USA, 2015,
pages 844–851.

[VV16] Y. Van Tendeloo and H. Vangheluwe. “An Overview of Python-
PDEVS”. In: JDF 2016 – Les Journées DEVS Francophones –
Théorie et Applications. Toulouse, France: Cépaduès, 2016, pages 59–
66.

[VV17a] Y. Van Tendeloo and H. Vangheluwe. “An Evaluation of DEVS
Simulation Tools”. In: Simulation 93.2 (2017), pages 103–121.

[VV17b] Y. Van Tendeloo and H. Vangheluwe. “Classic DEVS Modelling
and Simulation”. In: Proceedings of the 2017 Winter Simulation
Conference. WSC 2017. Las Vegas, NV, USA: IEEE, Dec. 2017,
pages 644–656.

[VV18] Y. Van Tendeloo and H. Vangheluwe. “Extending the DEVS For-
malism with Initialization Information”. In: ArXiv e-prints (2018).

https://unity.com/


[VVD19] S. Van Mierlo, H. Vangheluwe, and J. Denil. “The Fundamentals
of Domain-Specific Simulation Language Engineering”. In: 2019
Winter Simulation Conference (WSC). Dec. 8, 2019, pages 1482–
1494.

[VVV18] S. Van Mierlo, Y. Van Tendeloo, and H. Vangheluwe. “A General-
ized Stepping Semantics for Model Debugging”. In: Proceedings of
MODELS 2018 Satellite Events. Volume 2245. CEUR-WS, Nov.
2018.

[Wai09] G. A. Wainer. Discrete-Event Modeling and Simulation: A Practi-
tioner’s Approach. 1st edition. Boca Raton, FL, USA: CRC Press,
2009.

[WK04] T. Williams and C. Kelly. Gnuplot. http://www.gnuplot.info/.
2004. Used in 2020.

[Zei84] B. P. Zeigler. Multifacetted Modelling and Discrete Event Simula-
tion. Academic Press, London, 1984.

[ZPK00] B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of Modeling
and Simulation. 2nd edition. Academic Press, 2000.

http://www.gnuplot.info/


Index

agent-based modeling, 132
atom, 8, 33

block diagram, 14
boxplot, 93–95, 99
building blocks, 2, 14, 15

collectors, 64–69
collector, 65, 66
counter, 68, 69
estimate collector, 67, 68, 95
table collector, 64, 65

generators, 41–54
bulk generator, 54
constant generator, 41, 42
function generator, 42
incrementor, 42
random delay generator, 52
random number generator, 51,

52
rdg, 52
rng, 51, 52
single fire, 54
stock, 53
table generator, 42, 43

input and output, 74–79
file reader, 78
file writer, 76, 77, 132
listener, 78, 79
loggers, 74–76
sound, 78, 79, 132

math, 69–74
adder, 70, 99
differentiator, 72
equation, 71
integrator, 72
multiplier, 70, 99
random, 73, 74

queues, 55–64
advance, 19, 63, 64
queue, 60
queue tracker, 61
retain, 62
simple queue, 60

routing, 82–101
choose input, 85, 99
choose output, 85, 86, 99
delayer, 90, 91
finish, 83
gate, 89
guard, 87–88
halt, 83
pick, 86, 99
sync, 92, 99, 131
timer, 90

transformers, 80–82
lookup table, 81
pack, 81, 82
transformer, 80, 132
unpack, 82



critical section, 19, 87

DEVS
Atomic, 8–9
bag, 10
Closure under Coupling, 9–10
closure under coupling, 10
component references, 9
confluent transition function, 10
Coupled, 9
external transition function, 8
flattening, 9
initial state, 8
input set, 8, 9
internal transition function, 8
null event, 9
output function, 9
output set, 8, 9
Parallel, 10
passive state, 8
select, 119
set of all sub-components, 9
set of influences, 9
superdense time, 14
tie-breaking function, 9, 10
time advance function, 8, 105
transfer function, 9

Enterprise Dynamics, 33
ExtendSim, 30

FlexSim, 31–33
flow architecture, 132
footprint, 95

GPSS, 14–28
blocks

ADVANCE, 19, 20
ASSIGN, 19
DEPART, 28
ENTER, 22, 23
GATE, 22, 24
GENERATE, 17, 18

LEAVE, 22, 23
LINK, 23, 25
LOGIC, 22, 24
MARK, 27
PREEMPT, 20, 22
QUEUE, 28
RELEASE, 20, 21
RETURN, 21, 22
SEIZE, 20, 21
TABULATE, 25, 27
TERMINATE, 17, 18
TEST, 18, 20
TRANSFER, 18, 19
UNLINK, 23, 25

chains, 16
current events chain, 16
delay chain, 16
entity, 15
facility, 19, 20
future events chain, 16, 105
interrupt chain, 16, 21
logic switch, 19, 22
match chain, 16
non-mobile entities, 16
scanning algorithm, 17, 21, 104,

106
standard numerical attributes, 16,

104
statements, 15
storage, 19, 21
termination counter, 17
transactions, 15
user chain, 16, 116

INCONTROL, 33

LEGO Mindstorms, 33–34

majorizing function, 49
meta-model, 4, 39
model transformation, 2

name mangling, 120



pull port, 13
push port, 13

queue, 55
balking, 56, 62
balking index, 57
chunking, 58
cutting lines, 58
dequeue, 55
discipline, 56
enqueue, 55
faffing, 58
first-come-first-served, 56
first-in-first-out, 28, 56
jockeying, 57
Kendall’s notation, 55, 56
last-in-first-out, 56
priority, 56
queueing theory, 55
reneging, 57
service-mechanism, 55
skip, 58
slip, 58

random, 43, 73
acceptance-rejection, 49
composition, 48
convolution, 49
goodness of fit, 50
inverse-transform, 46
LCG, 44
linear congruantial generator, 44
MCG, 44, 104
multiplicative congruantial gener-

ator, 44, 104
patternicity, 44
predictiveness, 44
pseudo-random, 44
ratio of uniforms, 49
reproducibility, 44
seed, 51
table method, 49

Random Number Generator, 43–52, 73

shift, 89
Simpson’s rule, 73
SIMUL8, 31
state set, 8
stock, 52
syncing, 91
syslog, 74

termination, 83
timeframe, 88, 91
tracers

Footprint Tracer, 95
Plot Tracer, 93
Statistics Tracer, 95

transformers
assembling, 81
batching, 81
combining, 81
packing, 81
separating, 81
unbatching, 81
unpacking, 81


	List of Figures
	List of Tables
	List of Blocks
	Abstract
	Acknowledgements
	Nederlandstalige Samenvatting
	Introduction
	Motivation
	Contributions
	Structure

	Background
	Modeling Language Engineering
	Syntax and Semantics
	World Views

	DEVS Formalism
	Classic DEVS
	Parallel DEVS
	Simulator
	Barriers for Non-Programmers
	Representation of DEVS Building Blocks
	Push and Pull Systems
	Time Evaluation in DEVS

	GPSS
	GPSS Syntax
	Entities
	Chains
	Scanning Algorithm
	Flow
	Time
	Resources
	User Chains
	Gathering Statistics


	Tools, Frameworks and Libraries
	Tools
	ExtendSim
	SIMUL8
	FlexSim
	Enterprise Dynamics
	LEGO Mindstorms

	DEVS Frameworks and Libraries
	Python(P)DEVS
	DEVSimPy
	JDEVS
	adevs
	DEVS++ and DEVS#
	DEVS-Suite
	DesignDEVS
	DEVS-Ruby

	GPSS Tools
	HGPSS
	GPSS World
	GPSS/H
	JGPSS
	aGPSS
	AToM3


	PythonDEVS-BBL
	Generators
	Standard Generators
	Random Number Generators
	Using Stock
	Firing Single Events
	Generating in Bulk

	Queueing Systems
	Queueing Theory
	Building Blocks for Queues

	Gathering Data
	Tableization
	Memory-Efficient Collection
	P2 Algorithm without Scoring Observations
	Obtaining Numeric Data from other Items
	Counting Items

	Mathematics
	General Functionality
	Basic Mathematics
	Equations
	Complex Mathematics

	Input/Output
	Output
	Input
	Playing Sounds
	Listening to External Events

	Transforming Data
	Transforming via Functions
	Lookup Table
	Packing and Unpacking

	Routing
	Exiting
	Terminating a Simulation
	Exceptions
	Splitting and Joining
	Conditionals
	Guards
	Gates
	Time Manipulation
	Syncing

	Simulation Tracers
	Plot Tracer
	Statistics Tracer
	Footprint Tracer
	Profile Tracer

	Example
	Implementation Notes
	Library Specifics
	Documentation
	Tests


	GPSS2DEVS
	General Principles
	Three Principles of GPSS2DEVS
	Notation

	Transformation
	Entities
	Scanning Algorithm
	Time and Flow
	Resources
	The TRANSFER Block
	User Chains
	Gathering Statistics

	Implementation
	Name Mangling
	Python(P)DEVS Formats

	Examples
	Manufacturing Shop
	Telephone Exchange


	Wrapping Up
	Related Work
	Conclusions
	Further Work
	PythonDEVS-BBL
	GPSS2DEVS


	Appendices
	Appendix Distributions
	Distribution Overview
	Distributions in PythonDEVS-BBL

	Appendix Building Block Port Information
	Appendix GPSS Blocks
	Bibliography
	Index

