Real-Time pythonDEVS (pythonDEVS-RT)

Spencer Borland
Documentation
July 2002

Modeling, Simulation & Design Lab
McGill University

sync

poke(e)

<

Execut or dient

send(e)

Figure 1: The pythonDEVS-RT threading model.

1 Abstract

This document outlines the motivation and basics of creating a real-time
DEVS execution engine. An explanation is given as to how the previous
Simulator was adapted to become an execution backend for DEVS mod-
els. This documentation ends with an example of a DEVS model and its
subsequent execution.

2 Motivation

Instead of simulating DEVS models where the implicit time variable is sim-
ulation time, we wish to execute a model where time units are equivalent
to real-world time. The reason for this is to be able to execute real-time
programs with the DEVS real-time engine driving the dynamics of the ap-
plication. In particular, graphical programs are an example of this desired
framework. The graphical application has entities such as buttons which
generate events. These events are sent to the real-time DEVS engine which
may send a return message. The graphical application can then change its
state based on the received message.

3 pythonDEVS-RT

Firstly the pythonDEVS-RT Executor class as well as the threading model
are explained. Following, is a discussion of pythonDEVS-RT Executor’s wait-
dispatch loop. Finally, the interface between the Executor and client appli-
cations is outlined for graphical applications.

3.1 Threading Model

When an application uses a DEVS engine as its underlying dynamics, both
the client and the engine are started in separate threads. This is illustrated in
figure 1. The sync block is a global Event object taken from the threading
library. This is the mechanism which synchronizes activities between the

client and the Executor. The Executor is in an unending wait-dispatch
loop which utilizes calls to the wait(x) function. The method, wait (x),
will return if a call to set () is made from another thread or if z time has
passed. Thus, when a client wishes to send an event to the DEVS engine,
it will first poke () the event and then set() the sync object. The engine
will then wake up, and process the event which was poked.

3.2 The Wait-Dispatch Loop

The Executor uses the same method of collecting information from all atomic
DEVS components. However, some of this information is not needed any-
more. In particular, the time of the next internal transition, ¢y, is irrelevant
information in a real-time framework. Instead, the smallest time advance of
all the atomic DEVS in the model is required. The Executor must explicitly
wait for this amount of time before the next internal transition. Once the
wait stage is passed, the Executor must decide what type of message to send
to its sub-components. It searches all its input ports and checks if any of
them correspond to components which are sending events. If there exists
such an event, it is considered an incoming external event and is passed
to the DEVS model’s corresponding input port. If there are no external
events, a timeout must have occurred and an internal event signal is sent to
the DEVS model.
The code below is the Executor’s wait-dispatch loop, taken from RT_DEVS. py.

self.send(self.model, (0, [1, 0))

from time import time
initialRT = time()

Main loop repeatedly sends $(*,\,t)$
messages to the model’s root DEVS.
while 1:

if the smallest time advance is infinity, wait forever
if the smallest time advance is x, then wait(x)
don’t wait at all if the smallest time advance is O
ta = self.model.smallestTimeAdvance
if ta == INFINITY:
self.sync.wait()
elif ta > O:
self.sync.wait(ta)
self.sync.clear()
if self.domne:
return

calculate how much time has passed so far
clockRT = time() - initialRT
print "x " x 10, "CLOCK (RT): %f" % clockRT

pass incoming external events to their respective
ports from the GUI if there are no external events
then we must do an internal transition
immChildren = self.model.immChildren
external = 0
for inport in self.model.IPorts:
for sourceport in inport.inLine:
if len(sourceport.host.myOutput) != O:
external = 1
for e in sourceport.host.myOutput.values():
self.send(self.model, [{inport:e}, immChildren, clockRT])
sourceport.host.myOutput.clear()
if not external:
self.send(self.model, (1, immChildren, clockRT))

3.3 Executor Interface For Graphical Applications

When developing a graphical application, it must extend the DEVS_GUI_APP
class found in RT_DEVS.py. This class basically emulates a coupled DEVS
since it is responsible for connecting ports. The connectPorts method is
used for this effect. The DEVS_GUI class must be extended for building the
actual graphical program itself. This class inherits from the Tk class Frame
as well as Thread. DEVS_GUI has methods addOutPort and addInPort which
allow the graphical application to send events though different ports. The
send method is used from a DEVS model to send events back to the GUI.
These events are captured in the recv method which should be overridden.

4 Crosswalk Example

This example can be downloaded from:
http://msdl.cs.mcgill.ca/people/sborla/pythonDEVS-RT/.

The model in figure 2 is a model of a crosswalk and traffic light. The
light alternates between RED, YELLOW and GREEN. If the light is RED
and the crosswalk button is pressed the light will turn GREEN faster. A
"Police Interrupt’ will cause the RED light to flash repeatedly only until the
"Police Interrupt’ is pressed again. After the 'Police Interrupt’ is pressed a
second time, the light will turn the same color it was before the first time
this button was pressed. Moreover, the entire system can be turned on and

L(ed)=CH

ta(F0) =0. 2

ta(F1)=0.2

L(el) =SH(x)

Figure 2: The DEVS crosswalk model.

Frane Thr ead
7 /A
DEVS_GUI

+addl nPort ()

+addQut Port ()

+r ecv(DEVSevent)
+send(DEVSevent)
+poke(Port, DEVSevent)

Coupl edDEVS

Cr oss\Wal kGUI |

Cr osswal kKDEVS

\

Cr oss\Wal KAPP

;

At omi cDEVS

Rel ay

Hi st or

y

Hi st or

y

Coupl edSol ver

At omi cSol ver

[P

[P

DEVS_GUI_APP

Execut or

+connect Port s(Port, Port)

Figure 3: The crosswalk UML class diagram.

off. Once turned off, the system forgets all information, and once turned on
the system will always start in the RED state.

The program is run by typing ”"python CrossWalkAPP.py” at the shell
prompt. The class diagram for the application can be seen in figure 3. The
program starts by creating a new application object which instantiates and
initializes the tk graphical objects as well as the underlying DEVS engine.

One common problem and its solution are as follows. If an external event
is generated but has no effect on the current state, s, it is desirable to return
a time advance value which is the difference between ta(s) and the elapsed
time since the last state change. In the crosswalk example, if the current
state of the traffic light is GREEN and the "Pedestrian Crossing’ button is
pressed, the system to schedule the next internal transition as 9 seconds.
Since, the 'Pedestrian Crossing’ button has no effect on the current state
while the light is GREEN, the system should return a time advance of 9—¢’,
where €' is the elapsed time since the last state change.

