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Abstract - Rèsume

The Statechart formalism is explored. The meta-modeling environment, AToM3, is examined. Stat-
echarts are meta-modelled using the AToM3 tool. The classical, hierarchical DEVS formalism is
also explained in detail. A simulation package, pythonDEVS is used to simulate DEVS models.
Small modifications to the pythonDEVS package yields a real-time DEVS executor, pythonDEVS-RT.
From the Statechart meta-model, a Statechart modeling environment is generated. The mapping
of Statechart models onto behaviourally equivalent DEVS models is presented. Statecharts are
mapped onto DEVS. A code generator is built which automates the Statecharts to DEVS transla-
tion. The resulting models can be executed in real-time using the pythonDEVS-RT package.

Le formalisme de Statechart est exploré. L’environnement de méta-modellisation, AToM3, est
examiné. Statecharts sont méta-modelés l’aide de l’outil d’AToM3. Le formalisme classique et
hiérarchique de DEVS est également expliqué en détail. Un paquet de simulation, pythonDEVS est
employé pour simuler des modéles de DEVS. Les petites modifications au paquet de pythonDEVS
rapporte un exécuteur en temps réel de DEVS, pythonDEVS-RT. Les crée de méta-modéle de Stat-
echart un Statechart modelant l’environnement. Statecharts sont tracés sur DEVS. On présente un
générateur de code qui automatise le Statecharts la traduction de DEVS. Les modles résultants
peuvent être exécutés en temps réel en utilisant pythonDEVS-RT le paquet.
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1
The Statechart Formalism

1.1 Introduction

Statecharts have become a popular visual formalism in recent years. They are challenging finite
state automata as the most widely used language for describing reactive systems. In fact, state-
charts can represent complex behaviour much more compactly than their predecessor, finite state
automata. Statecharts present an elegant solution to the problem of state explosion when flatten-
ing concurrent states. They also model the hierarchy of information in their specifications, in an
intuitive way. Statecharts have been used for a wide range of fields from graphical user interface
(GUI) design to embedded systems.

Statecharts were built for specification of systems under the event oriented paradigm. Event-driven
systems are everywhere and it is these systems such as telephones, stock exchanges and computer
networks to name a few, that statecharts elegantly represent.
When linked with code generation, statecharts can be very useful in the software engineering world
as applications can be developed rapidly, with a high level of modularity. Code generation from
a statechart specification is a rich subject as there are many implementation details to be decided
upon.
In order to understand the basics of statecharts, it is useful to first look at higraphs. Higraphs, while
normally used for formal mathematical specification, are also used as a basis for statecharts.

1.2 Higraph Basics

Visualizing information concisely is the motivation behind higraphs. It is important to note that the
style of information that is to be represented is relational or topological (as opposed to geometri-
cal). The shapes of the visual objects used are not important, rather, it is the relationships between
objects that is important. These constructs are termed topiovisual [33].
Euler was the first to create such a topiovisual construct. He developed the well known visual
formalism, graphs. Graphs are capable of defining elements of a set, S with a binary relation, R
using vertices (small circles) connected by edges (lines) [28]. The field of graphs is huge and there
are many different types of graphs created by different types of relations. It seems this would be a
useful feature for describing information relationships.
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internet

Figure 1.1: A hypergraph.

A

B

Figure 1.2: A higraph.

Another topiovisual formalism is Venn diagrams (an extension of Euler circles), developed by John
Venn (1834-1923). Venn diagrams are a very intuitive way of describing the binary set operators,
union and intersection [28]. This also seems like a useful notion for representing information.
If the goal is to create a topological representation of a microcircuit where the edges are the wires
and the vertices are modules using a graph, there exists a problem. The problem is that the relation,
R, is binary while microcircuits do not necessarily have edges which simply connect two modules.
What is needed is a type of graph which utilizes a relation where the cardinality of their operands
may be greater than one. This is accounted for in the hypergraph construct. An example hypergraph
can be seen in Figure 1.1.
Now the previous ideas can be extended to create the Higraph [28] construct. First, Venn Diagrams
are used to account for set inclusion and exclusion. Each set is called a blob and is denoted using
a rectangle with rounded edges. For the purposes of labeling, it is required that each intersection
explicitly contains another blob. Looking at Figure 1.2 it is evident that having such a requirement
is necessary. Since all the labels for a set are contained with a blob, it is unclear whether A denotes
the entire blob with the dotted edge or (the blob with the dashed edge) - (the blob with the solid
edge). In Figure 1.3, A and B and C are uniquely defined where C � A � B � D � A � B � E � B � A.
Using this method the entire topography is flattened so an atomic blob (a blob that has no sub blobs)
is obtained for every set or subset to be referenced. Another possibility is to draw overlapping

A

B
D

E

C

Figure 1.3: A higraph with hierarchy.
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Figure 1.4: A higraph with orthogonal components.

blobs, A and B, without explicitly adding a blob in the intersection region. Such a construct is
fairly useless since no inference can be made about the regions A � B, A � B and B � A.

Next, the notion of the Cartesian product is used to deal with concurrent parts of the system being
designed. The ability to split any blob into sections using a dotted line is added. These sections, or
orthogonal components represent the Cartesian product of the blob containing them. For example,
in Figure 1.4, A � B � C. Since B � E � F and C � G � H , then A �	� E � F 
���� G � H 
 . B and C are
called the orthogonal components of A. Note that saying A � B � C is the same as saying A � C � B.
Thus, the Cartesian product operator � is not entirely correct since A is really an unordered set.
Thus, it should be written using the unordered Cartisian product operator as A � B 
 C, but � will
be notationally equivalent.

In fact, higraphs are defined by Harel as a 4-tuple as follows:

H ��� B � σ � π � E 

B is the set of unique blobs. E is the set of all hyper edges. Note that E can also be defined as:

E � 2B � 2B

σ is the sub-blob or hierarchy function. It takes a blob, X and returns the set of sub-blobs within
X:

σ : B � 2B

Also, σ should never define a cycle. That is, if x is a descendant of X , then x �� σ ��� x 
 with,

σ0 � x 
�� x

σi � 1 � x 
���� y � σi � x � σ � y 

σ � � x 
���� ∞

i � 1σi � x 

The partitioning function (the function which specifies how a blob is broken up into its orthogonal
components) is defined as:
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π : B � 2B � B

Note that π is an equivalence relation and it specifies partitions of a blob, each of which are
equivalence classes.

This concludes a definition of higraph syntax. To know more about the semantics of the higraph
construct, some definitions are given. The set of atomic blobs, A is defined as:

A ��� x � B  σ � x 
���!#"
Note that since there exists a criterion on σ which ensures that cycles cannot occur, A will not be
empty. The unordered Cartesian product of two sets is written as:

S 
 T �	� s � t  s � S � t � T "
Now the model of a higraph is defined. It is another way of writing the higraph formally for
purposes of understanding its structure. The model, M, is a 2-tuple:

M ��� D � µ 

D is called the domain of the model, and it is simply a set of unstructured elements. It is defined
to provide a mapping between the atomic blobs and D’s power set. This mapping is defined by µ
as follows:

µ : A � 2D

Note that µ � x 
$� µ � y 
%��!&� i f x �� y 
 . Next the unordered Cartesian product is used to define a more
complex construct containing orthogonal components. For each x � B,

µ � x 
���
 kx
i � 1 �'� y � πi � x � µ � y 
(


The semantics of the edges must also be defined. A relation called the EM is used as follows:

� µ � x 
)� µ � y 
(
 � EM *,+ � x � y 
 � E

1.3 Higraph Applications

Higraphs are now a well-defined visual formalism and can be used for many methods of formal
specification. To see the power of Higraphs, look at Figure 1.5. The constraint of specifying each
edge in a 5-clique is relaxed. The Higraph representation is much more compact.

Higraphs can also be used to replace entity-relationship diagrams. Figure 1.6 shows explicitly an
entity relationship diagram describing various real world objects and their relation to one another.
In Figure 1.7, the entity relationship diagram is represented as a higraph. It is important to note
that sub-blobs of the statechart version have an implicit relationship with their parent contour. This
implicit relationship often takes on meanings such as is-contained-in or is-type-of.

Higraphs are also a useful basis for statecharts. Next, the statecharts formalism is introduced.
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Figure 1.5: The clique, fully connected semantics.
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Figure 1.6: A standard ER diagram.
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Figure 1.7: A higraph as a statechart.

1.4 The Basics of Statecharts

The most basic elements in statecharts are blobs. Statecharts are a visual formalism and a blob is
usually represented by a variable sized rectangle with rounded edges. Blobs have a similar meaning
to states in finite state automata. However, there are different kinds of blobs as well. This differs
from the FSA specification in which there is essentially only one kind of state.

These different kinds of states are called OR-blobs, AND-blobs and BASIC-blobs. These different
types of blobs give rise to hierarchy in statecharts. It makes it easy to see that when a certain state
is reached, some details may be left out. However, these details can be specified using OR-blobs.
More specifically, a BASIC-blob is a state such that it has no sub-OR-blobs, sub-AND-blobs nor
any sub-BASIC-blobs. OR-blobs are blobs that have one or more sub-OR-blobs. AND-blobs have,
what are called orthogonal components. The orthogonal components of a blob are normally drawn
with a dashed line and denote concurrent operations. These definitions are easily seen with a
picture in Figure 1.8.
Blobs E, H, I, K, L are of type BASIC, blobs B, C, D, F, G are of type OR and blobs A and J are of
type AND. It is also useful to note that OR-blobs may contain AND-blobs and vice-versa. Also,
BASIC-blobs may be contained within any type of blob except BASIC-blobs.

This definition so far has much expressive power on its own. An example of a basic class diagram
can be seen on the left side of Figure 1.9. An example which gives a static description of the
components of an automobile, can be seen on the right side of Figure 1.9.

Next, transitions are used in order to specify system dynamics in the diagrams. A transition is
simply an arrow which indicates the system can change its current state from the source state
of the transition to the destination state of the transition. Transitions are normally labeled with a
construct of the form e - c .0/ a [32]. This syntax denotes that the transition fires when event e occurs
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A
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I

Figure 1.8: A first look at the basics.
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RADIO

CONTROLS

STICKBRAKE

Figure 1.9: An automobile specification.

RELEASE BRAKE
[GEAR IS IN DRIVE]

STOPPED MOVING

Figure 1.10: The transition from STOPPED to MOVING.
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Figure 1.11: Statecharts are compact.

and condition c is true. The ‘slash a’ usually means one of two different things, depending on the
variant of statechart. In some definitions, ‘/a’ denotes that upon firing the transition, the a event
is broadcast throughout the entire statechart, which may trigger more transitions. In the UML
definition, ‘/a’ usually denotes a series of actions (such as computer code) to execute, upon firing
the transition. The UML suggests the potential use of a function GEN � e 
 , which can be one the
many steps in a. This function is used to broadcast the event e. Most statechart variants combine
these two aspects. An intuitive example of this (without actions or broadcasted events) is given in
Figure 1.10.
Moreover, there are different kinds of transitions. First, there is the initial transition. It is the default
transitions that fires upon entering an OR-blob, AND-blob or the root. They force the diagram to
be deterministic by denoting which is the current state upon entering an OR-blob. They are usually
drawn as a small filled-in circle with the connected transition pointing towards a blob and may only
be labeled with an action (no trigger event).

1.4.1 State, Transition Relaxation

The orthogonal component property of statecharts solves the problem of state explosion in a FSA
when trying to denote synchronization between concurrent systems. For example, in Figure 1.11a,
there is a FSA which has two independent components: the radio and the gear shift of an auto-
mobile. In fact, it is not immediately noticeable that the FSA has 2 independent components. But
with some inspection it is seen that all the states actually consist of a 2-tuple indicating that there
are probably two separate processes occurring simultaneously.
To keep the example simple (because the number of states really does increase rapidly) the gear
shift will be denoted as being in one of three possible states: PARK, DRIVE and NEUTRAL.
Switching gears is the event that will change the state of the shifter from one gear to another. Also,
it helps to abstract the radio behaviour by allowing only two states, ON or OFF.

Notice that in the FSA specification there are 6 states to describe the system fully. There are also
18 transitions to move between the various states. A possible statechart description (Figure 1.11B)
reduces the number of states (blobs) to 5 and the number of transitions to 8.

When design modifications are needed, the statechart formalism becomes a great help. What if
another state must be added to the radio system? The number of states in the FSA grows to 9,
while the number states (blobs) in the statechart only increases by one. In fact, the number of
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Figure 1.12: It is easy to modify statecharts.

states in the FSA specification is the product of the number states in the orthogonal components
of the statechart. Therefore, the number of states in the FSA grows exponentially faster than the
number of states (blobs) in the statechart as they are added to the orthogonal components.

Suppose more changes are needed. An important part of a car is the DEAD state which indicates
that the automobile has not been started via the key ignition. In this DEAD state all the other
information about the gear and the radio becomes unimportant. The car is DEAD, so the gear of
the car and the state of the radio does not matter (this is obviously simplified - most cars today
allow you to play the radio while it is not running). To make this modification of the FSA, an extra
state must be added, and a transition must be drawn from every previously existing state to this
new state in the event that the key is turned and the car stops running. Moreover, an extra transition
is needed to indicate that when the car starts, the radio will be off and the gear will be park (this
is also not exactly true since the most cars today can be started in DRIVE or NEUTRAL, but this
point will be touched upon later). This is exemplified in Figure 1.12A.
In the statechart specification, making this change is much simpler. Add the blob outside of the
CAR RUNNING blob and connect the two with transitions indicating that when the car starts, the
GEAR and RADIO information come into scope. This is seen in Figure 1.12b.

Notice how complex the FSA specification has become. On the other hand, the statechart diagram
immediately displays several properties of the system: the two concurrent components GEAR and
RADIO and well as the fact that the DEAD state is reachable at any time.

1.4.2 More Statechart Elements

The previous example will be built upon to make it slightly more realistic. Consider a car whose
gear is DRIVE and who’s radio is turned ON. Also, the car is running. If the car suddenly stops
running via the key ignition or perhaps stalling, the car’s state will be DEAD. Once the car starts
up again, the state of the gear and radio should really be DRIVE and ON respectively. However,
the specification denotes that the state of the gear and radio will be reset to their default values.
This is not the desired effect and there exists some mechanics in statecharts to solve this problem:
the history blob.

The history blob lies inside of a blob B and indicates that upon entering B, the current state should
be updated to the state which was visited last before leaving B. So, in the previous example, this
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Figure 1.13: A look at history.
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CAR
CAR RUNNING

Figure 1.14: H* retrieves the deep history in the hierarchy.

problem is solved by adding a history blob to the CAR RUNNING blob and a transition from the
DEAD state to the new history blob. The current state, upon re-entry, will be updated to whatever
it was when the car became DEAD.
It is important to discuss the scope of the history state. The history state only applies to the blobs
which are contained in the same blob as the history state itself. Since there are two orthogonal
components in the CAR RUNNING blob, how is it possible to denote that the history is to be
updated in each of GEAR and RADIO?

In order to explicitly state that the history must be updated in each of the two orthogonal com-
ponents, GEAR and RADIO, use some notation from higraphs. Higraphs use special edges called
hyperedges to denote moving from one state set to another, each of which may have a different
cardinality. This hyperedge will simply be an edge which starts at the DEAD blob and splits off
like a snake‘s tongue to both of the history states in each of the orthogonal components. This is
drawn in Figure 1.13.

What about specifying the history for the BASIC-blobs that are nested quite deep within an OR-
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Figure 1.16: The select construct.

blob? Is it necessary to draw hyperedges to all the nested BASIC-blobs, if the history is to be
applied as such? In fact, it is not required to draw all these hyperedges. The H* deep history
pseudo-state is another special state which sets the history to apply to the deepest nested BASIC-
blobs within the state at the level of the H* state. Knowing this, the diagram in Figure 1.13 can be
revised to an alternative notation seen in Figure 1.14.

Another feature of statecharts which can help simplify the visual intuitiveness of the diagrams is
the conditional. Normally denoted as a C, the conditional gets rid of edges which are enabled on
the same event but fire on different conditions.
This is most easily seen in Figure 1.15a. Note that Figure 1.15A can be represented as 1.15B.

The selection feature of statecharts is similar to the C/C++ select statement. The selection element
simplifies diagrams where several transitions enter a blob, without any condition requirements,
and each is in a one-to-one correspondence with the inner blobs. That is, each transition enters
blob B and each links to some inner blob. An example of this can be seen in Figure 1.16A. This
can be further simplified by using the selection feature, usually denoted with an S. The transitions
must be specified explicitly, but can be omitted for simplicity such as in Figure 1.16B.

1.5 How do Statecharts Work?

Until now, this discussion has been focused on the syntax of statecharts. Proper syntax basically
means to draw a legal statechart. But how do statecharts really work? What are the their underlying
mechanics? In this section the operational semantics of statecharts will be outlined. This will be
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the basis for building a Statechart simulator.

1.5.1 Operational Semantics

Much work has been done on describing the semantics of statecharts. The Statecharts formalism
was first introduced in [27] and its semantics were discussed, though not in detail. The first rigor-
ous definition was given in [33]. Many papers have proposed variations on statecharts as well as
describe some semantics [68].
A loose definition equates Statecharts as follows.

Statecharts = State Automata + Hierarchy + Orthogonal Components + Broadcasting

Many approaches map statecharts onto another known formalism such as ESTEREL [59], etc.
Having understood the ESTEREL construct, some inference can be made about statecharts upon
performing this mapping. One of the most widely referenced papers on statechart semantics is
[32]. This paper describes in detail the semantics of statecharts implemented in the STATEMATE
software tool developed by the iLogix corporation. The paper’s description takes the form of plain
English and pseudo code. Thus, the same approach is taken in this chapter.

Many subtleties arise upon specifying exactly what happens when a statechart is put in motion. For
example, there must be a carefully defined algorithm which deals with external events generated
at any time. Once an event is generated, when does the system stop following transitions? What if
a loop occurs? What if transitions cross state boundaries into different levels of hierarchy, which
states are entered and exited? It is clear there are many problems to be classified and solved. This
is exactly the purpose of having an operational semantics.

1.5.2 The STATEMATE Semantics of Statecharts

The STATEMATE semantics of statecharts, [32], is probably the most popular and most cited
semantics for statecharts today. It is the semantics used to implement iLogix’s statechart tool,
STATEMATE. This tool can be used for building valid statecharts, simulating these statecharts
with random or user specified events and generating portable code from the statechart mainly used
for running embedded hardware.

First, consider what is classified as a single step using the STATEMATE semantics. A step takes
zero simulation time. That is, the clock which tracks the statechart’s notion of time is not in-
cremented during the execution of a step. Once an external event is generated, transitions which
respond to this event become enabled. Recall that transitions are labeled e - c .0/ a, meaning the tran-
sition fires and action a is executed if event e occurs while condition c is true. So, if event e occurs
but condition c is not true, this transition cannot be followed nor will the current state be updated.
The current state refers to the state of the statechart model. If a state is current, then so is its con-
taining state. This means the current state is actually a tree structure, extending from the root,
which is always active, down to the basic states at the leaves of the tree.

If the condition c is true, the system proceeds to execute action a and update the current state
to that of the transition’s destination state. If the action generates another event which in turn
triggers another transition to become enabled and fire, then this is also carried out within the very
same step. This process is repeated every time the execution of a transition’s action causes another
event to fire. When no more internal broadcasted events trigger more transitions to fire, the step
is considered to be completed. The series of steps which leads to another stable configuration is
called a macrostep while the smaller series of steps are microsteps.

Another note about time. The fact that execution of a step takes zero time helps us realize an
important distinction between simulating a statechart and generating executable code from a stat-
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Figure 1.17: A look at semantics.

echart. When simulating or animating a statechart the user may choose to speed up or slow down
simulation time as the statechart knows it. The user can define the time model used upon running
the simulation. Once executable code is generated, however, the time model is inherent to the stat-
echart design and the system which runs the code. Moreover, a step clearly does not take zero
time.

Some more important rules which will be discussed in more detail follow. Every operation that
is carried out during the execution of a step solely depends on the status of the system at the
beginning of the step. This become an important point, later, for certain special cases. Reactions
or updates from external and internal events can only be realized until after the step is completed.
A maximal set of non-conflicting transitions is always executed. This means that if a transition
is enabled, it will be executed as long as there is no non-determinism. It may happen that when
several transitions are enabled, some may be conflicting and unable to be executed in the same
step. A priority scheme is one way to resolve conflicting transitions.

There are special events which are generated to mark the entering and exiting of a Statechart, A.
These events are entered � A 
 and exited � A 
 for entering and exiting a Statechart, respectively.
Some examples follow which start very simple and become progressively more complicated. A
very simple example can be seen in Figure 1.17 [68]. Suppose that the system is currently in state
A when it suddenly receives the external event e. The following operations are carried out:

1. Transition t becomes enabled and fires (there is no conditional constraint on this transition).
The system will exit state A and will enter state B (the current state will be B after the step
has completed).

2. Action a is executed.

3. More events are generated: entered � B 
 as well as exited � A 
 .
4. The condition in � A 
 becomes false while in � B 
 becomes true.

5. The static reactions which were executing while the system was in state A continue to exe-
cute in state B since state S is never exited. So, the static reaction for state S is executed.

6. Static reactions are actions associated with a state that are continuously executed upon en-
tering. The static reactions for A are disabled and stop running while the static reactions for
state B become enabled and start running.

Think, now, about what happens during actions. In the most intuitive implementations, actions are
simply computer code. Since code can have scope, what happens when the value of a single global
value is changed from two different actions, executed in the same step? In Figure 1.18 an example
of this situation is given. If the state of this system is � A � C 
 and event e is generated, both actions
a1 and a2 will be executed in the same step. The action are defined as follows:1 a1 : x 2 51 a2 : x 2 x 3 1
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Figure 1.18: More semantics.
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Figure 1.19: A look at scope.

a1 defines an action where the value 5 is moved into data buffer x. Action a2 takes the value in data
buffer x, adds 1 to this value, then moves this new value back into buffer x. What is the value of x
after this step is completed? It is difficult to say since the order in which the actions are executed
is unknown. It appears that there exists a race condition and the outcome of this step is unknown.
A statechart tool should have the capabilities of detecting and reporting such a race condition.
Chances are that a race condition is an undesirable behaviour so the current statechart model must
be refined to avoid these types of problems.

1.5.3 Scope

The scope that transitions maintain is another important factor to keep in mind when designing
statecharts. The scope of a transition refers to the lowest OR-state in the hierarchy which is not
exited when traversing a transition. This also means that the scope state is a proper common
ancestor of all the source and target states of the transition. For example, in Figure 1.19a, taking
transition t1 causes the current state to change from � B2 � C2 
 (or � B1 � C2 
 ) to � B2 � C1 
 . This means
exiting C2 � B1 � orB2 
)� B � C then A and entering A � B � C � B2 then C1. State S was not exited, thus S is
the scope of transition t1. Figure 1.19b helps to see the actual transition represented by t1 in Figure
1.19a. Note that transition t1 consists of transition segments t11, t12, t13 and t14.
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Figure 1.20: A look at non-determinism.
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Figure 1.21: A look at compositionality.

1.5.4 Non-determinism

It is important to note how the STATEMATE semantics treats non-determinism in various cases.
There is a top-down priority when it comes to conflicting transitions which gets rid of non-
determinism in many, but not all, cases. First, look inside state Y in Figure 1.20. It is evident
that there is non-determinism if the system is in state A and event e is generated. Transitions t1 and
t2 are said to be in conflict. The system wants to update the current state to both B and C, which
is of course, meaningless and incorrect. This configuration is illegal and should generate an error.
However, is it apparent that within the entire system there is still a conflict between t1 and t2. But,
since the scope of t3 is higher in the hierarchy than t1 and t2, it has priority and can fire without
any confusion.
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Figure 1.22: A look at hyperedges.
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Figure 1.23: A look at joints and forks.

1.5.5 More about time

The STATEMATE semantics of statecharts includes two models of time: synchronous and asyn-
chronous. The synchronous time model uses an internal clock to decide when to execute another
external event. This means, at every clock tick, the system can execute external events. These ex-
ternal events must be generated in the previous step, when the system was not processing anything,
or they will go unnoticed. The asynchronous time model handles external transitions as they are
generated. Thus, several steps can take place within a single point in time, which differs from the
synchronous time model. However, in both methods, a step still takes zero time (that is, the clock
stops) and the statechart still does not react to external events when it is processing events.
In the synchronous sense, a problem exists with Figure 1.21. First note that e 4 refers to the absence
of event e. If this statechart is in state � C � F 
 and the e 4 event is generated, an internal event, a, is
generated. This, in turn, causes t3 to fire in the other orthogonal component, which in turn causes
an e internal event to be generated. Upon generating an e, transition t2 should fire since status of
the system at the beginning of the step is all that is taken into consideration. However, this point
arose because there was an absence of event e. This problem is called a lack of compositionality
and is discussed in more detail in [45].
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Figure 1.24: What happens when e occurs, c1 is true but none of c2, c3 or c4 are true?
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Figure 1.25: Another way of looking at fig. 1.24.

1.5.6 More about transitions

In most of the examples so far, every transition has been a regular graph edge. That is, the cardi-
nality of the source and destination sets in each case has been one, so far. Now consider how to
represent hyperedges, where the cardinality of the source and destination sets can be more than
one, such as in Figure 1.22.

In addition to being able to represent hyperedges, the statechart can never end a step by stopping
at a conditional, select or history construct. For example, in Figure 1.24, if event e occurs and c1
is true but none of c2, c3 or c4 are true, then does the system stop at the condition, or does it roll
back to state A? It would seem logical to simply stay at state A in this case.
In order to check that one of these entire transitions fires it must be broken up into transition
segments. Since after each transition fires, the system should be in a stable configuration, the
transition segments are joined to ensure that all conditions are satisfied before letting the entire
transition fire. This conjunction of transitions is called a basic compound transition (CT) [32]. For
example, Figure 1.24 becomes Figure 1.25. Note that in order to ensure that they are all true for
the basic CT to fire, simply take the logical AND of the conditions. Also, note that two actions in
each basic CT must be executed, each corresponding to the transition segment actions.
There are two types of connectors which allow grouping of transition segments. The first is the
OR-connector. This has already been seen in Figure 1.24, where the OR-connector is actually the
condition entity. The OR-connector is named this because only one path traveling through the
connector needs to be executable. That is, if T1 is the set of transition segments going into an OR-
connector C, and T2 is the set of transition segments going out, then a transition moving through T1
and T2 will have one segment from T1 and one from T2. This differs from an AND-connector which
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Figure 1.27: What if events a and b are generated at the same time?

usually involves orthogonal components and can be seen in Figure 1.26. In this case, if T1 is the
set of transition segments going into an AND-connector, C, and T2 is the set of transition segments
going out, then the transition moving through T1 and T2 contains all the transition segments in
T1 � T2.

So, a hyperedge is simply an edge with AND-connectors. The hyperedge in Figure 1.22 is drawn
with AND-connectors in Figure 1.23.

1.6 More Statechart Efforts

1.6.1 Statecharts and the Object Oriented Paradigm

One recent and popular research effort is to combine statecharts with class diagram-like for-
malisms. Class diagrams are static in the sense that they represent the relationship of many com-
plex entities but do nothing to specify any semantics of execution. Specifying execution semantics
is the main purpose of this fusion between statecharts and class diagrams. The goal is to bring
to life the high-level designs created using class diagrams by linking them with a full statechart
specification.
One example of object execution modeling can be found in [29]. The class diagram-like formalism
used in this paper is called O-charts. O-charts are similar to class diagrams because they contain
information about class objects, multiplicities, inter-associations and of course inheritance. Once
a class is specified using the O-chart formalism, its behavior is specified using statecharts. Many
issues must be addressed such as initialization, references to instances, creation and deletion of
instances, inheritance and even threading. These issues are left open-ended in [29].

1.6.2 Subtle Semantics

A well-defined summary of some important and less obvious issues regarding statechart semantics
is given in [68]. A few will be discussed in this section.

It is important to allow negated triggers. Negated triggers can help reduce non-determinism in sev-
eral cases. For example, consider Figure 1.27. This appears to be a simple, deterministic statechart.
However, if events a and b are generated simultaneously, a non-deterministic case arises. Luckily,
negated trigger events can be used to work around this problem. All that is needed is to change one
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Figure 1.28: A solution to 1.27 using negated trigger events.

A Bt1:e/(!e)

Figure 1.29: The opposite event is generated from the trigger event.

of the transitions’ triggers to ensure exclusivity. An example of this can be seen in Figure 1.28.
In order for t2 to fire, event b must occur along with the explicit non-occurrence of event a. This
small modification ensures the statechart will be deterministic in the case that events a and b are
generated at the same time.
By allowing negated trigger events a new problem arises. Transitions fire because of a certain event
being generated. This can be thought of as simply doing something because of an event e being
generated. So, in a situation such as Figure 1.29, action !e is executed when this is triggered by e.
This behaviour is confusing and inconsistent.

Different semantics handle this situation in different ways. Most semantics dictate that if a transi-
tion fires and generates an event a, then the event !a cannot be a valid trigger in any future micro
steps. Only some semantics say that if event a is generated at transition t, in a series of micro steps,
then !a cannot be a valid trigger for a previous transition in this series. The preferred semantics is
to be only concerned with future micro steps.

Another subtle problem exists in statecharts like that of Figure 1.30. If state B is entered and exited
in the same instance of time, does the macro step halt at state B? Most semantics prohibit such a
construct. However, there are advantages as well as disadvantages for allowing such instantaneous
states. One desirable property of allowing instantaneous states is that only a finite number of micro
steps can occur in one macro step.

This problem can be simplified to the example in Figure 1.31 in order to study the effects of
allowing such a semantics. If state A is the current state, how many times must event a occur
so that state C is reached? If the answer is that only 1 occurrence of event a is sufficient to get
to state C, then it is possible for an infinite sequence of micro steps to be executed in a macro
step. Conversely, two occurrences of event a will work just as well. Perhaps the best statechart

A B C
t1:a/b t2:b

Figure 1.30: Is state B instantaneous?



1.7 Other formalisms of interest 21

A B C
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Figure 1.31: How many times must event a occur in order to reach state C?
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Figure 1.32: An example UML statechart - A simple telephone.

environment would allow for both types of semantics.

1.7 Other formalisms of interest

1.7.1 UML Statecharts

The Object Management Group (OMG) is the organization responsible for defining the Unified
Modeling Language (UML) among several other standards such as CORBA. Included in the UML
are the specifications of State Diagrams which closely resemble STATEMATE statecharts in their
syntax and semantics. The OMG have developed their version of statecharts to be geared towards
designing application level software, where more classical definitions have been mainly used for
lower level software. That is, their statechart definition has been modified to be more compatible
with the object-oriented paradigm. Firstly, the UML adds a few syntactic components which do
not appear in most statechart specifications.
For the most part, UML statecharts look identical to most other types of statecharts. They have all
the core features of statecharts that were major developments from flat state machines like FSA.
Such features include hierarchy and orthogonal components. An example of a UML statechart is
given in Figure 1.32.
Like most statechart variants, states have the following special actions:1 Entry: The action to be executed upon entry into this state.1 Do: The action to be executed while this state is current.1 Exit: The action to be executed upon leaving this state.
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Figure 1.33: Using stub states.
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Figure 1.34: Using synch states.

1 Include: Used to link other statechart specifications to be referenced within this state.

If include is used, one then has the ability to reference the included statechart. Since the specifica-
tion of these statecharts remains hidden, a special notational component called a stub state is used
to denote which state a transition terminates on within the included sub machine. An example of
including a sub machine can be seen in Figure 1.33 [51]. Upon generating event error1, the cor-
responding transition fires and terminates on state sub1 within Handlefailure. Generating error3
causes the system to enter the default state of FailureSubmachine. If the fixed1 event is generated,
the system will leave HandleFailure granted the current state is subEnd. Referencing a sub-sub
state of the included statechart is written sub1::sub2:: 5(5(5 ::subn. In Figure 1.33, error2 causes the
system to terminate on state sub12 which is a substate within sub1 of FailureSubmachine.

Stub states make it possible to define a statechart, put it in a library and reference it later when
needed. This is exactly the same as the object-oriented world. In fact, the UML specification states
that these statecharts can be used to define class instances.
Another interesting notational component introduced in the OMG UML specification is the synch
state. Synch states are used in conjunction with hyperedges to synchronize activities between
orthogonal components. Visually, they are circles with a number inside. The number indicates an
upper bound on how many times a transition may fire and may also be unlimited (*). Synch states
usually appear on the boundaries of concurrent regions. An example of synch state usage is given
in Figure 1.34 [51]. Notice that, before the electrical parts can be installed in the frame, both the
frame and the electrical parts of the foundation must be installed. The synch state ensures these
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Figure 1.35: Converting synch states into core elements.

two activities are completed before electrical parts are installed in the frame. This also denotes
there is a type of dependency between these activities.
Synch states can be modeled using only the ”core” elements from the usual statechart defini-
tions. One possible method of converting a synch state into only core elements is to use the
MAKE TRUE with boolean operators and guards. An example of such a conversion can be seen
in Figure 1.35. The process of preparing spaghetti requires cooking the pasta and making the sauce
before mixing the two together. The synch state in Figure 1.35A ensures this constraint holds. No-
tice that in Figure 1.35B the cook pasta is followed by a wait state. This is done to allow a boolean
variable a to be set to true. The bottom orthogonal component sets a boolean variable b to true
as well. Once both activities are completed the boolean expression a 6 b will be true and the mix
together activity can begin.

Refining UML Statecharts

The OMG have decided to go one step further and define rules for refining statechart models in
the event that their statechart formalism is used to specify class behaviour. In this framework, each
statechart diagram is a class instance in the object oriented paradigm (OOP). Since in the OOP
classes can be extended in various ways, the same should be allowed with statechart models.

There are three basic methods of refinement that the OMG suggests may be useful: sub-typing,
strict inheritance and general refinement.
Subtyping It is very important to preserve pre/post conditions of the class specification when sub-
typing. This preservation is what supports to substitutability. In the subtyping framework, states
and transitions can only be added, not removed. The set of outgoing transitions must remain in-
tact, but more may be added. There are no constraints on modifying the set of incoming transitions.
More substates may be added and may even be divided into orthogonal regions. A refined transi-
tion may end on a substate of the ending state in the super class. Moreover, disjunctions may be
added to refined guards (this means extra OR clauses) since this only relaxes the boolean expres-
sion. Procedures executed on transitions must maintain the same actions in the same order. More
actions may be added granted they do not alter the course of the macrostep.

Strict Inheritance Here, the internals of a state machine are of no concern. The goal is to simply
allow implementation reuse. Like subtyping, a refined state can change its set of incoming tran-
sitions, add outgoing transitions, add substates and may split into concurrent regions. A refined
transition can terminate on a different target state but must maintain the source state. Guards can
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Figure 1.36: Stateflow loops.

be completely modified. Procedural actions can be removed and added, but must remain in the
same order.
General Refinement This is the most relaxed refinement policy. Refined states may have different
incoming and outgoing transitions. Refined transitions may have a different source and destination.
Also, guards and procedures can change altogether.

1.7.2 Notes on Semantics

The OMG outlines several semantic details which are tightly intertwined with implementation
issues, since their documents are supposed to aid a developer in building a statechart environment,
not how to build statechart models.

The following is a list of a few subtle semantic points of interest taken from [51].1 The OMG statechart specification clearly leaves details regarding event durability open-
ended. They want to be able to allow several different semantic models such as zero-time
semantics.1 Instantaneous states are allowed.1 UML statecharts employ one transition priority rule which helps extinguish non-determinism.
This rule states that a transition who’s source state is deeper in the state hierarchy has a
higher firing priority. Note that this is the opposite of the STATEMATE semantics.

1.7.3 Stateflow

The creators of MATLAB (The Mathworks) have built a development environment using a formal-
ism similar to statecharts called stateflow. The package is designed to work with The Mathworks’
flagship products Simulink and MATLAB for designing and simulating complex, event-driven
systems.

Stateflow is largely based on the statechart formalism, containing most features present in [32] such
as hierarchy and orthogonal states. It lacks certain constructs such as the select and history entities.
Another small difference is the representation of transition actions as well as broadcasted events.
Transition actions are represented as the part after the slash on a transition, while broadcasted
events are written within curly brackets.

The operational semantics of a stateflow diagram is also similar to the STATEMATE semantics
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Figure 1.37: An activity diagram: The college application process.

of statecharts. One disagreeable semantic result is the possibility of loops within stateflow. For
example, in Figure 1.36 if the system is in state A and event e occurs, the system should move to
state B and broadcast event e. However, the formal semantics of a stateflow diagram states that
internally broadcasted events are incepted before the current state is updated. Thus, in Figure 1.36
upon receiving an e event the system starts to move from state A to B. Another e event is broadcast.
Since the current state is still A, the same transition fires! This results in an unwanted infinite loop
and is a condition of which a developer using stateflow should be aware.

1.7.4 Activity Diagrams

The activity diagram is a visual formalism for describing work flow. This means they illustrate
sequences of activities ordered such that dependencies are easily visible. Synchronization of ac-
tivities is represented in the same way as petri nets. A bar is drawn and multiple arcs may connect
to the bar to ensure that these activities are all completed before moving onto the next. Other in-
formation that can be obtained from activity diagrams at a glance is the concurrency of activities
as well as conditional branching.

Activity diagrams are drawn using circles for the activities and directional arcs to denote the com-
pletion and beginning of activities. There are special start and end markers to denote the beginning
and completion of the entire task. Conditional branches are drawn using a diamond, similar to the
UML dataflow formalism. An example of an activity diagram is given in Figure 1.37 which is
taken from [2].

One major difference between state diagrams like finite state automata and activity diagrams is that
an FSA blob represents the static state of the system, while an activity diagram blob represents the
system while performing an action. Statecharts, in fact, can represent both situations. Basic states
(states with no children) are similar to FSA states, while non-basic states (states with children) are
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Figure 1.38: Activity diagrams lack compactness.

similar to activities, since an entire statechart may be inside.
Some describe activity diagrams as a similar formalism to statecharts, but they lack one of the most
important features of statecharts: hierarchy. For example, in Figure 1.38 the grocery transaction
process from the cashier’s perspective is modeled using an activity chart. Note that in order to
represent a washroom break at each step of the way, these arcs need to be explicitly modeled.
Statecharts provide a more modular solution, allowing the user to group the main activities using
hierarchy then only draw one arc to specify the washroom interrupt. Moreover, note that after the
break, the cashier would normally return to the step which he or she was doing previously. This
is easily modeled using the history construct in statecharts, but requires some bulky conditional
branches in activity diagrams. To save space, simply indicate that after their washroom break, the
cashier proceeds to start checking items again, which is probably not the case in reality.

1.8 Conclusion

In this chapter, the world of statecharts was explored. Like all visual formalisms statecharts have
a syntax as well as a semantics. While it is relatively easy to specify a visual syntax, the seman-
tics is quite another matter. One of the most important semantics definitions, STATEMATE, was
examined as well as several semantic issues present in all statecharts specifications.

It is clear that more research must be done to standardize the formal semantics of statecharts as
there are far to many variants. The bridge should be gapped between current statecharts research
and standardization groups such as the OMG who defined the UML.
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AToM3: A Tool For Multi-Formalism

Meta-Modeling

2.1 Introduction

Complex systems are characterized by components and aspects whose structure as well as be-
haviour cannot be described in a single formalism (due to their different nature). For example, if
one wishes to model a temperature and level controlled vessel, the controller can be described with
a discrete formalism (such as Petri-Nets or Statecharts [28]) whereas the behaviour of the liquid
(which describes the variation in volume and temperature) should be described using a continuous
formalism (such as Ordinary Differential Equations or CBDs).
One of the approaches to tackle complex systems is multi-formalism modelling. In this approach
the different parts of the system are modelled using different formalisms. In order to analyze a
multi-formalism system, it is not enough to look at each component in isolation. One must consider
the whole system. For this reason, multi-formalism modelling attempts to convert all components
into a common formalism which is closed under composition, so that the whole system can be
properly analyzed or simulated.
In order to make the multi-formalism approach possible, the problem of dealing with a plethora
of different formalisms must be solved. One would like to dedicated tools to model in each one of
these formalisms, but the cost of building such tools from scratch is prohibitive. Meta-Modelling is
useful to deal with this problem, as it allows the (possibly graphical) modelling of the formalisms
themselves. A model of a formalism should contain enough information to permit the automatic
generation of a tool to check and build models subject to the described formalism’s syntax. The
advantage of this meta-modelling approach is clear: rather than building a whole application from
scratch, it is only necessary to specify the kind of models dealt with. If this specification is done
graphically, the time to develop a modelling tool can be drastically reduced to a few hours. Other
benefits are the reduction of testing, ease of change and maintainability.

At the very least, the generated tool should be able to allow the construction of valid models and
discover errors in their construction. If (meta-)models are stored as graphs, further manipulations
of the models can be described as graph grammars [57]. In Multi-Paradigm Modelling and Simu-
lation, model manipulations such as the following are of interest.
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Table 2.1: Meta-Modelling Levels.

Level Description Example

Meta-Meta-Model Model describes a formalism that will
be used to describe other formalisms.
Specified with a meta-formalism

Description of Entity-Relationship
Diagrams, UML Class Diagrams

Meta-Model Model describes a simulation formal-
ism. Specified with a meta-formalism

Description of Deterministic Finite
Automata, Ordinary Differential
Equations (ODE)

Model Description of an object. Specified
with a formalism

f 798 x :<;>= sinx ? f 8 0 :$; 0 (in the ODE
formalism)

1 Model simulation or animation.1 Model optimization, for example, to reduce its complexity.1 Model transformation into another model (equivalent in behaviour), expressed in a different
formalism.1 Generation of (textual) model representations for use by existing simulators or tools. The
type of model transformation discussed in this chapter.

In this chapter, AToM3 [4] [18] is presented. It is a tool which implements the ideas presented
above. AToM3 has a meta-modelling layer in which formalisms are modelled graphically. From
the meta-specification (a model in the Entity Relationship formalism extended with constraints),
AToM3 generates a tool to process models described in the specified formalism. Models are repre-
sented internally using Abstract Syntax Graphs (ASGs), a generalization of the concept of Abstract
Syntax Trees used by compilers. The ASG represents –in the form of a graph– the syntactic infor-
mation of the model built by the user. As a consequence, model manipulation can be expressed as
graph grammars.

2.2 Computer Aided Multi-Paradigm Modelling

Computer Aided Multi-Paradigm Modelling (CAMPaM) [65][48] is a research area which has the
objective to simplify the modelling of complex systems by combining three different directions of
research:1 Meta-Modelling, which is the process of modelling formalisms. Formalisms are described

as models described in meta-formalisms. The latter are nothing but expressive enough for-
malisms, such as Entity Relationship diagrams (ER) or UML class diagrams. A model of
a meta-formalism is called a meta-meta-model; a model of a formalism is called a meta-
model. Table 2.2 depicts the levels considered in this meta-modelling approach. Note that
only three levels are considered, although it can be the case that a meta-formalism mf1 is
powerful enough to describe the meta-meta-model of another meta-formalism mf2. Both
mf1 and mf2 as meta-formalisms are considered and are placed in the same meta-level. As
will be seen later, in AToM3 it is usually the case that meta-formalisms can describe meta-
formalisms as well as formalisms.
To be able to fully specify modelling formalisms, the meta-formalism may have to be ex-
tended with the ability to express constraints (limiting the number of meaningful models).
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For example, when modelling Deterministic Finite Automata, different transitions leav-
ing a given state must have distinct labels. This cannot be expressed within ER diagrams
alone. Expressing constraints is usually done by adding a constraint language to the meta-
formalism. Whereas the meta-formalism frequently uses a graphical notation, constraints
are usually given in textual form. For this purpose, some systems [36] (including ours) take
advantage of the Object Constraint Language OCL [51] used in the UML. As AToM3 [4] is
implemented in the scripting language Python [55], arbitrary Python code can also be used.
Another alternative to using constraints is to express as graph grammar rules, the kind of
editing actions the user can perform at each moment in the modelling phase. This approach
is called syntax-directed [6]. Other kinds of visual editors are called free-hand [47] and allow
the user more flexibility in the model editing phase, but they have to check that the model
the user is building is correct. In AToM3, free-hand editing is the default approach, and
model correctness is guaranteed by evaluating the constraints defined at the meta-level (and
associated with events) when the user is building the model. In AToM3, free-hand editing
can be combined with the syntax-directed approach by building graph grammar rules for
editing tasks.1 Model Abstraction, concerned with the relationship between models at different levels of
abstraction.1 Multi-Formalism modelling, concerned with the coupling of and transformation between
models described in different formalisms. In Figure 2.1, a part of the “formalism space” is
depicted in the form of a Formalism Transformation Graph [64]. The different formalisms
are shown as nodes in the graph. The solid arrows between them denote a homomorphic
relationship “can be mapped onto”. The mapping consists of transforming a model in the
source formalism into a behaviourally equivalent one in the target formalism. The dotted,
vertical thick arrows denote the existence of a simulator for the formalism, which produces
simulation traces. This iterative simulation can be seen as a special case of formalism trans-
formation (into the “traces” formalism). The vertical dashed line separates continuous (left)
and discrete (right) formalisms, whereas the horizontal dashed line below formalism “DAE
non-causal set” separates causal (upper) and non-causal formalisms. It can be observed
how DEVS [70] (Discrete EVent system Specification) can be a suitable target formalism
when the purpose of the transformation is simulation, as DEVS can be simulated by parallel,
highly efficient simulators based on the HLA architecture.
In this approach, the specification of composite systems by coupling heterogeneous com-
ponents expressed in different formalisms is allowed. For the analysis of its properties, the
composite system must be assessed by looking at the whole multi-formalism system. That
is, its components may have to be transformed to a common formalism, which can be found
in the FTG. In this approach formalisms are meta-modelled and stored as graphs. Thus, the
transformations denoted by the arrows (both for simulation and for formalism transforma-
tion) of the FTG can be modelled as graph grammars.

2.3 AToM3: An Overview

AToM3 [4] [18] is a tool which uses and implements the concepts presented above. As it has
been implemented in Python, it is able to run (without any change) on all platforms for which
an interpreter for Python is available: Linux, Windows and MacOS. The main idea of the tool
is: “everything is a model”. During its implementation, the AToM3 kernel has been bootstrapped
from a small initial kernel. Models were defined for bootstrapped parts of it, code was generated
and then later incorporated into itself. Also, for AToM3 users, it is possible to modify some of
these model-defined components, such as the (meta-)formalisms and the user interface.



30 AToM3: A Tool For Multi-Formalism Meta-Modeling

DEVS

Process Interaction 
Discrete Event

state trajectory data (observation frame)

Petri NetsStatecharts

scheduling-hybrid-DAE

Bond Graph a-causal

Bond Graph causal

DAE non-causal set

DAE causal set

PDE

Transfer Function

Difference Equations

System Dynamics

KTG Cellular Automata

Event Scheduling 
Discrete Event

3 Phase Approach 
Discrete Event

DAE causal sequence (sorted)

DEVS&DESS

Activity Scanning 
Discrete Event

Timed Automata

Figure 2.1: Formalism Transformation Graph (FTG).

The main component of AToM3 is the Kernel, responsible for loading, saving, creating and ma-
nipulating models (at any meta-level, with the Graph Rewriting Processor and graph grammar
models), as well as for generating code from the (meta-) @ models.
The ER formalism extended with constraints is available at the meta-meta-level. As stated before,
it is perfectly possible to define other meta-formalisms using ER. Constraints can be specified
as OCL or Python expressions, and are associated with events (similar to event-programming
systems such as Visual Basic). The designer must specify when (pre- or post- and on which event)
the condition must be evaluated. Events can be related either to the abstract syntax (such as editing
an attribute, connecting two entities, etc.) or purely graphical (such as dragging, dropping, etc.)
If the constraint associated with an event is evaluated to false, the event is cancelled, or undone
if the constraint was a post-condition. Constraints can be either associated with entities (local
constraints) or with the whole model (global constraints). AToM3, can also define Actions, similar
to Constraints but with side-effects.

When modelling at the (meta-) @ level, the entities that may appear in a model must be specified
together with their attributes (and constraints and actions as stated before). For example, to define
the Petri Net Formalism, it is necessary to define both Places and Transitions. Furthermore, the
attributes name and number of tokens must be added to Places. The name attribute must be added
to Transitions. The (meta-) @ information is used by the AToM3 Kernel to generate some Python
files, which, when loaded by the Kernel, allow the processing of models in the defined formalism.

One of the components of the generated files is a model of a part of the AToM3 user interface.
This user interface model follows the “Buttons” formalism, and has its own meta-model. Initially,
this model represents the necessary buttons to create the entities defined in the formalism’s meta-
model. It can be modified by the user to include, for example, buttons to execute graph grammars
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on the current model.

In AToM3, entities may have two kinds of attributes: regular and generative. Regular attributes
are used to identify characteristics of the current entity. Generative attributes are used to generate
new attributes at a lower meta-level. The generated attributes may be generative in their own right.
Both types of attributes may contain data or code for pre- and post-conditions.
Entities are connected by means of ports, which can be named or unnamed. An entity may have
both types of ports. Unnamed ports are used when all the connections are semantically equal and
there is no need to distinguish them. A typical example is Statecharts, in which states have un-
named ports to connect to other states. Named ports are used when there exists different meanings
for the same types of connections. A typical example of this are the entities in the CBD formalism,
where some entities represent functions to which other entities may be connected, representing the
function’s parameters. One needs to know exactly which parameter corresponds to each connec-
tion. For example, an INTEGRAL block has two parameters: the initial condition and the signal to
be integrated. If a block is connected to an INTEGRAL, it must be known if this connection is to
be interpreted as the initial condition or as the value to be integrated. This way, two named ports
are needed for the INTEGRAL block to store the connections to each parameter.

In the meta-model, it is also possible to specify the graphical appearance of each entity of the
defined formalism. This appearance is, in fact, a special kind of generative attribute. Objects’
graphical appearance can be icon-like or arrow-like with optional icon decorations in the center,
segments and extremes. For example, for Statecharts, States can be represented as ovals with the
name inside the oval. Transitions are arrow-like drawings with the events, conditions and actions
besides them. In general, semantic attributes are displayed graphically. Constraints and actions
can also be associated with the graphical entities. Each graphical form, part of the graphical entity,
can be referenced by an automatically generated name that has methods to change its graphical
properties (colour, visibility, etc.) That is, in AToM3, graphical manipulations must be explicitly
specified by the user by means of constraints expressed in Python. This is in contrast with other
approaches [6] in which constraint languages for graphical layout are used. Python constraints
have the drawback of being at a lower abstraction level than a constraint language, but they are
usually more efficient.

2.3.1 Graph Transformation in AToM3

Graph grammars [57] are a generalization of Chomsky grammars, for graphs. They are composed
of rules; each having graphs on their left and right hand sides (LHS and RHS). Rules are evaluated
against an input graph (called host graph). If a matching is found between the LHS of a rule and a
zone in the graph, then the rule can be applied. When a rule is applied, the matching subgraph of
the host graph is replaced by the RHS of the rule. Rules can have applicability conditions, as well
as actions to be performed when the rule is applied. Some graph rewriting systems have control
mechanisms to decide which rule should be checked next. In AToM3, rules are ordered according
to a priority, and are checked from higher to lower priority. After the application of a matching
rule, the system again tries to match, starting from the higher priority rule in the list. The graph
grammar execution ends when no more applicable rules are found.
Model manipulations can be expressed in AToM3, either as Python programs or as graph grammar
models. The latter has the advantage of being a higher-level, natural, visual, declarative and formal
notation. This makes computations become models, easier to specify, understand, and maintain
and frees the user of knowing AToM3 implementation details. The kind of model manipulations
of interest include model execution, model optimization (for example, reducing its complexity),
model transformation into another formalism, and code generation. The latter can be seen as a
special case of formalism transformation. As a drawback, the use of graph grammars is constrained
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Figure 2.2: Model Transformation in AToM3.

by efficiency as in the most general case, subgraph isomorphism testing is NP-complete. However,
the use of small subgraphs on the LHS of graph grammar rules, as well as using node and edge
types and attributes can greatly reduce the search space.

In Figure 2.2, a transformation of a model between two formalisms (Fsource and Fdest ) has been
depicted. To convert a model from formalism Fsource to Fdest it is necessary to use the meta-models
for both Fsource and Fdest , together with the meta-model for graph grammars.
Graph grammars can be graphically edited (as any other model), as shown in Figure 2.3, in AToM3.
The image shows a moment in the editing of the RHS of a rule. The graph grammar is composed
of three rules (see dialog window to the left). Note how in AToM3 graph grammars can have
actions to be executed before and after the graph grammar execution. The next dialog window to
the right shows the information about the third rule, named “gen OOCSMP Outputs CBD”. In
AToM3 a rule has a name, a priority, a time delay, a flag for subtype matching, textual conditions
and actions (expressed in Python) and LHS and RHS models. The time delay flag is used if the
graph grammar is executed in animation mode. Note how this value can be changed by the actions
of the rules. Other execution modes for graph grammars are step-by-step and continuous. The
subtype matching flag is used in the matching process to specify either an exact type matching
between the nodes of the LHS and the nodes in the host graph or a “subtype matching”. In the
latter case, nodes (or connections) in the LHS and in the host graph do not need to have the same
type. However, AToM3 checks at run-time whether the node (or the connection) in the host graph
has at least the same set of attributes as the node in the LHS. That is, if the node in the host graph
is a structural subtype of the node in the LHS. Subtyping relationships in the meta-models do not
need to be expressed. This relationship is found at run-time. This can be useful since one can write
very general graph grammars, and reuse them for many formalisms.
The next dialog window to the right of the previous one shows the RHS of the rule being edited.
Nodes and edges in LHS and RHS are provided with numbers (the entity displayed has been
labelled “1”) in such a way that if a number appears in both LHS and RHS, the node is not deleted.
If it appears in the LHS, but not in the RHS, the node is deleted. Finally, if the number appears
in the RHS but not in the LHS, the corresponding node is created. Nodes and connections in the
LHS must be provided with the attribute values that will make a match with nodes and connections
in the host graph. Any value of these attributes will make a match, or a specific value can be set.
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Figure 2.3: Editing a Graph Grammar in AToM3.

Attributes of nodes and connections in the RHS of a rule, can either maintain the value (check-box
labelled as “Copy from LHS” in the right-most dialog window in the figure), receive a specific
value (specified in the different widgets in the dialog window, depending on the attribute’s type),
or calculate a new one by means of Python code (button labelled as “Specified”). This code can
use other node and connection attributes.



3
Modelling Statecharts with AToM3

Modelling any formalism in AToM3 first requires that a meta-model is created. Next, syntactic (or
visual) constraints are added to the Statechart meta-model. These constraints fine tune the meta-
model to only reflect valid Statechart models. Once the meta-model is complete, it is possible to
automatically generate a Statechart model editor. There are several ways of specifying the op-
erational semantics of the meta-modelled formalism. One way is to explicity model operational
semantics by means of graph grammars. Another is to build a code generator. The latter method
was used and is examined in a later chapter. This chapter only concerns itself with the Statechart
environment and building Statechart models.

3.1 Statechart Meta-model

Figure 3.1 displays the Statechart meta-model in the Entity Relationship formalism created
using AToM3. From this diagram it is easy to see the hierarchical nature of Statecharts. A Composite
state is related to itself via the contains relation. This means a Composite state may be contained
within another Composite state.

Hyperedges connect all states to themselves. Thus, a hyperedge can connect Basic to Basic,
Basic to Composite, Composite to Composite, etc. Recall that a History node is not actually
a state. An execution environment cannot end a macro-step at a history node. A history node is
a section of a transition. The fact that we have allowed transitions to emanate from a history is a
short-hand notation. This notation allows the modeller to specify an alternate history state if no
history information is available.

Orthogonal nodes may be related to a Composite via the orthogonality relation. This design
decision makes it easier to add constraints which restrict only valid Statecharts. The orthogonality
relation is essentially the same as the contains relation. Notice that an orthogonal may be con-
tained within a Composite via orthogonality but can only contain a Composite, Basic or
History. This formulation forces the strict AND-OR layering required by Statecharts. A
B
Recall that the AND-OR requirement means an orthogonal cannot be contained within an orthogonal.



3.1 Statechart Meta-model 35

name type=String init.val
is_default type=Boolean i
visible type=Boolean init
auto_adjust type=Boolean 
enter_action type=Text in

Composite

name type=String init.val
is_default type=Boolean i
enter_action type=Text in
exit_action type=Text ini

Basic

is_default type=Boolean i
name type=String init.val
star type=Boolean init.va

History

name type=String init.val
visible type=Boolean init
auto_adjust type=Boolean 

Orthogonal

contains_links_visible ty
Composite_default_height 
Composite_default_width t
contains_color type=Strin
orthogonality_links_visib

visual_settings

contains

Hyperedge

orthogonality

Figure 3.1: Statecharts Meta-Model in AToM3.
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Table 3.1: Statechart Meta-Model Cardinalities
Relation Source, Cardinality Destination, Cardinality
contains Composite, 1 Composite, N
contains Composite, 1 Basic, N
contains Composite, 1 History, 1
orthogonality Orthogonal, 1 Composite, N
orthogonality Orthogonal, 1 Basic, N
orthogonality Orthogonal, 1 History, 1
Hyperedge Composite, N Basic, N
Hyperedge Composite, N Composite, N
Hyperedge Composite, N History, N
Hyperedge Basic, N Basic, N
Hyperedge Basic, N Composite, N
Hyperedge Basic, N History, N
Hyperedge History, 1 Basic, N
Hyperedge History, 1 Composite, N
Hyperedge History, 1 History, N

Table 3.2: Statechart Meta-Model Constraints
Entity/Relationship Constraint
Composite Must have exactly one default state.
Composite,Orthogonal Can have a maximum of one History node.
contains If A is a node instance, then A � A is not valid (where � is a

contains relation and A is Composite).
contains If A � B then B � A is not valid (where � is a contains relation

and A & B are Composite).
Hyperedge If a Hyperedge instance’s source and/or destination cardinalities

are greater than 1, the instance must have each respective source
and destination node as a child of different orthogonal compo-
nents.

3.1.1 Cardinalities

Table 3.1.1 indicates the allowed cardinalities between objects in the Meta-Model. The cardinal-
ities are a way of restricting only the creation of valid Statechart models. Here, the cardinalities
will not be specified as in AToM3, but in a slightly more intuitive manner.

3.1.2 Constraints

Table 3.2 illustrates the constraints used to enforce the creation of valid Statecharts. The meanings
of the constraints are described in plain English.

3.2 The Environment

Once the Statechart meta-model is complete, it becomes possible to automatically generate an
environment which is capable of drawing Statecharts. This environment can be seen in figure 3.2.

Notice there are buttons for adding an object corresponding to each entity in the meta-model.
Composite and Basic states can be added. In order to specify that one state is a sub-state of another,
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Figure 3.2: The Statechart environment in AToM3.
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they must be connected by first clicking the connect button (on the top toolbar), then clicking on
the parent and child states. This sequence of steps indicates that one wishes to connect these
two entities using one of the relations in the meta-model. There are two ways to relate states in
the meta-model: the contains relation and the Hyperedge relation. Thus, a dialog will present an
option to the user to specify which relation to use.
Clicking the edit button and then clicking on an entity displays a dialog in which the user can
modify the meta-model attributes for that entity. For a state, these attributes include the name of
the state, enter action, exit action and a boolean value indicating if the state is default. A history
node has a name attribute as well as a boolean flag indicating H or H � .
The user may also put Orthogonal regions on the canvas. Orthogonal regions may be con-
nected via the orthogonality relation to a Composite. The orthogonality relation is basically
the same a the contains relation. Two or more Orthogonal regions must be connected to a
Composite, as indicated in the table of constraints. Having only one Orthogonal region within a
Composite does not represent a valid Statechart.

Notice that there exists a button for creating a new Hyperedge. This is probably never needed
while building Statechart models. However, it is included mainly for building graph grammars to
convert Statechart models into DEVS models.
The final button is PythonDEVS-RT. This is used to perform the actual conversion from Statecharts
to DEVS. This action will output a file which contains a valid DEVS model. The model can be
executed in real-time using PythonDEVS-RT.

3.3 Statechart Attributes

In order to properly set the Statechart attributes, the user must know how the attributes are used.
A description of the attributes used in the Statechart meta-model is given in the tables below as
follows.

1 Basic & Composite: Table 3.31 Orthogonal: Table 3.41 History: Table 3.51 visual settings: Table 3.61 Hyperedge: Table 3.7

Table 3.3: Statechart meta-model attributes for the Basic and Composite entities.
Attribute Name Description
name The name of the state.
is default Boolean value indicates if state is default.
enter action Valid Python code.
exit action Valid Python code.

Table 3.4: Statechart meta-model attributes for the Orthogonal entity.
Attribute Name Description
name The name of the orthogonal state.
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Table 3.5: Statechart meta-model attributes for the History node.
Attribute Name Description
name The name of the history node.
star Boolean indicates if node is H (un-set) or H � (set).

Table 3.6: Statechart meta-model attributes for the visual settings entity.

Attribute Name Description
contains links visible Boolean which makes the contains relation visible (set) or in-

visible (unset).
orthogonality links visible Boolean which makes the orthogonality relation visible (set)

or invisible (unset).
Hyperedge links visible Boolean which makes the Hyperedge relation visible (set) or in-

visible (unset).
Composite default height The default height of a Composite node.
Composite default width The default width of a Composite node.
contains color The color of the contains relation.
orthogonality color The color of the orthogonality relation.
Hyperedge color The color of the Hyperedge relation.
Composite color The color of the Composite entity.
Orthogonal color The color of the Orthogonal entity.

3.4 Statechart Operational Semantics

Graph Grammars were not used to model the operational semantics of the Statechart models.
Instead a code generator, written in Python, converts the Statechart models into a DEVS model.
The resulting DEVS model will represent the Statechart as well as the Statechart’s operational
semantics. This procedure is described in the coming chapters.

3.5 General Usage

This section outlines the general usage of the Statechart editor tool. It will illustrate the basics of
building a Statechart model and important things to remember about scoping and broadcasting.

3.5.1 Adding Entities and Relations

To add an entity on the canvas, simply click the entity’s button on the left tool bar, then click on the
canvas. The entity will be created. There is no need to create hyperedges in this way. Hyperedge,
contains and orthogonality relations are created using the ”Connect” button on the top toolbar.
Click the source entity then the destination entity and the relation will be created automatically.
In some cases, the modeller will be presented with a dialog box as in figure 3.3. This allows to
choose between a contains relation or a Hyperedge relation when the context of the connection
is ambiguous. This is always the case when connecting Composite nodes since they may be joined
by a hyperedge or one may be contained within the other.

Default Colors

The visual settings entity can be used to modify the colors and visibility of certain entities
and relations. However, the modeller should understand the default colors used since they denote
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Table 3.7: Statechart meta-model attributes for the Hyperedge relation.
Attribute Name Description
name The name of the Hyperedge relation
trigger A string containing the name of an event or a string of the form:

AFTER(X) where X denotes a valid Python expression, which
evaluates to a number.

guard A string which is a valid Python boolean expression or a string of
the form IN(X) where X is a string of the form A.B.C...Z. Each
letter is the name of a state. Altogether, X is a path from root to
destination. The destination (Z) is the referenced state.

action Valid Python code to be executed when the transition fires.
broadcast Python code to build an object to be broadcast. Use ’return X’ as

the last statement to indicate X as the broadcasted event. Should
return None or an instance of DEVSevent

display A string to be displayed on the canvas.

Figure 3.3: A dialog to choose between the contains and Hyperedge relations.

important information.1 Default state: Green1 Orthogonal region: Gray1 Non-default state: Blue

3.5.2 Editing and Deleting Entities and Relations

To edit the attributes of anything on the canvas, click the ”Edit Entity” button on the top toolbar
then on the entity or relation one wishes to edit. A dialog will be presented with all the attributes
for that entity or relation as indicated in tables 3.3 to 3.7. To remove an entity or relation a similar
action is taken. Click on the ”Delete” button on the top toolbar, then click on the entity or relation
to delete.
Following is a list of figures illustrating the edit dialogs for their respective entity or relation.1 State: Figure 3.41 Hyperedge: Figure 3.51 History: Figure 3.61 Orthogonal: Figure 3.7

3.5.3 Broadcasting Events

The broadcast attribute of a Hyperedge relation is used for broadcasting or narrowcasting events.
This attribute is a string value and represents a Python function. Thus, the modeller can use the
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Figure 3.4: The state edit dialog.

Figure 3.5: The hyperedge edit dialog.

Figure 3.6: The history edit dialog.

Figure 3.7: The orthogonal edit dialog.
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Figure 3.8: An example Statechart.

Python return statement to return the event to be broadcast. If no event is to be broadcast, then
None should be returned. Otherwise, an instance of class DEVSevent must be returned.

The modeller must use the special attributes of the DEVSevent to indicate how the event is to be
narrowcast and where this narrowcasting will occur. The address parameter is used to indicate
the final destination of the event. The address parameter is a list of strings which are names of
DEVS ports. One can use the names of children as well as the special name PARENT (outputs to
the C or parent port).

If the modeller wishes this event to be broadcast from its final destination point, then they should
set the broadcast parameter to the string value TRUE.
For example, consider the Statechart in figure 3.8. The following specification of the broadcast
parameter for the hyperedge going from D1 to D2 would cause the event e to be narrowcasted
within B2.

e = DEVSevent("e")
e.set_param("address",
["\_PARENT\_",
"\_PARENT\_",
"\_PARENT\_",
"\_PARENT\_",
"A2",
"B2"])

e.set_param("broadcast", "TRUE")
return e

Notice that the address parameter is a virtual path, not a path from the root. That is, the path starts
from the source state of the transition.

3.5.4 Scoping

The scope of any action can be considered as local. That is, the modeller will not know any names
defined outside of its own local scope. Thus, if persistent variables are needed, they should be
defined using dynamic scoping. The modeller can easily put a variable or function into the global
scope and then access it later from another action.

3.5.5 Additional Information

More information regarding the Statecharts environment in AToM3 can be found in Appendix B.



4
The DEVS Formalism

The DEVS formalism was conceived by Zeigler [71, 72] to provide a rigorous common basis for
discrete-event modelling and simulation. For the class of formalisms denoted as discrete-event
[50], system models are described at an abstraction level where the time base is continuous (IR),
but during a bounded time-span, only a finite number of relevant events occur. These events can
cause the state of the system to change. In between events, the state of the system does not change.
This is unlike continuous models in which the state of the system may change continuously over
time. As an extension of Finite State Automata, the DEVS (Discrete Event Systems) formalism
captures concepts from Discrete Event simulation. As such it is a sound basis for meaningful
model exchange in the Discrete Event realm. The following specification was originally written
by Hans Vangheluwe.

4.1 The DEVS Formalism

The DEVS formalism fits the general structure of deterministic, causal systems in classical systems
theory. DEVS allows for the description of system behaviour at two levels. At the lowest level,
an atomic DEVS describes the autonomous behaviour of a discrete-event system as a sequence
of deterministic transitions between sequential states as well as how it reacts to external input
(events) and how it generates output (events). At the higher level, a coupled DEVS describes a
system as a network of coupled components. The components can be atomic DEVS models or
coupled DEVS in their own right. The connections denote how components influence each other.
In particular, output events of one component can become, via a network connection, input events
of another component. It is shown in [71] how the DEVS formalism is closed under coupling: for
each coupled DEVS, a resultant atomic DEVS can be constructed. As such, any DEVS model, be
it atomic or coupled, can be replaced by an equivalent atomic DEVS. The construction procedure
of a resultant atomic DEVS is also the basis for the implementation of an abstract simulator or
solver capable of simulating any DEVS model. As a coupled DEVS may have coupled DEVS
components, hierarchical modelling is supported.

In the following, the different aspects of the DEVS formalism are explained in more detail.
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4.1.1 The Atomic DEVS Formalism

The atomic DEVS formalism is a structure describing the different aspects of the discrete-event
behaviour of a system:

atomicDEVS DFE S � ta � δint � X � δext � Y � λ G)5
The time base T is continuous and is not mentioned explicitly

T � IR 5
The state set S is the set of admissible sequential states: the DEVS dynamics consists of an ordered
sequence of states from S. Typically, S will be a structured set (a product set)

S �H� n
i � 1Si 5

This formalizes multiple (n) concurrent parts of a system. It is noted how a structured state set is
often synthesized from the state sets of concurrent components in a coupled DEVS model.

The time the system remains in a sequential state before making a transition to the next sequential
state is modelled by the time advance function

ta : S � IR �0 �I3 ∞ 5
As time in the real world always advances, the image of ta must be non-negative numbers. ta � 0
allows for the representation of instantaneous transitions: no time elapses before transition to a
new state. Obviously, this is an abstraction of reality which may lead to simulation artifacts such
as infinite instantaneous loops which do not correspond to real physical behaviour. If the system is
to stay in an end-state s forever, this is modelled by means of ta � s 
%��3 ∞.
The internal transition function

δint : S � S

models the transition from one state to the next sequential state. δint describes the behaviour of a
Finite State Automaton; ta adds the progression of time.
It is possible to observe the system output. The output set Y denotes the set of admissible outputs.
Typically, Y will be a structured set (a product set)

Y �J� l
i � 1Yi 5

This formalizes multiple (l) output ports. Each port is identified by its unique index i. In a user-
oriented modelling language, the indices would be derived from unique port names.

The output function
λ : S � Y �,� φ "

maps the internal state onto the output set. Output events are only generated by a DEVS model at
the time of an internal transition. At that time, the state before the transition is used as input to λ.
At all other times, the non-event φ is output.
To describe the total state of the system at each point in time, the sequential state s � S is not
sufficient. The elapsed time e since the system made a transition to the current state s needs also
to be taken into account to construct the total state set

Q �	�K� s � e 
L s � S � 0 M e M ta � s 
N"
The elapsed time e takes on values ranging from 0 (transition just made) to ta � s 
 (about to make
transition to the next sequential state). Often, the time left σ in a state is used:

σ � ta � s 
O� e
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Up to now, only an autonomous system was described: the system receives no external inputs.
Hence, the input set X denoting all admissible input values is defined. Typically, X will be a
structured set (a product set)

X �H� m
i � 1Xi

This formalizes multiple (m) input ports. Each port is identified by its unique index i. As with the
output set, port indices may denote names.
The set Ω contains all admissible input segments ω

ω : T � X �,� φ "
In discrete-event system models, an input segment generates an input event different from the non-
event φ only at a finite number of instants in a bounded time-interval. These external events, inputs
x from X , cause the system to interrupt its autonomous behaviour and react in a way prescribed by
the external transition function

δext : Q � X � S

The reaction of the system to an external event depends on the sequential state the system is in,
the particular input and the elapsed time. Thus, δext allows for the description of a large class
of behaviours typically found in discrete-event models (including synchronization, preemption,
suspension and re-activation).

When an input event x to an atomic model is not listed in the δext specification, the event is ignored.
In Figure 4.1, an example state trajectory is given for an atomic DEVS model. In the figure, the
system made an internal transition to state s2. In the absence of external input events, the system
stays in state s2 for a duration ta � s2 
 . During this period, the elapsed time e increases from 0
to ta � s2 
 , with the total state �H� s2 � e 
 . When the elapsed time reaches ta � s2 
 , first an output is
generated: y2 � λ � s2 
 , then the system transitions instantaneously to the new state s4 � δ int � s2 
 .
In autonomous mode, the system would stay in state s4 for ta � s4 
 and then transition (after gen-
erating output) to s1 � δint � s4 
 . Before e reaches ta � s4 
 however, an external input event x ar-
rives. At that time, the system forgets about the scheduled internal transition and transitions to
s3 � δext �(� s4 � e 
)� x 
 . Note how an external transition does not give rise to an output. Once in state
s3, the system continues in autonomous mode.

As an example atomic DEVS, consider the model of two traffic lights depicted in Figure 4.2. In
autonomous mode, the light transition in intuitive fashion. If the “switch to manual” (M) external
event is received, lights in both directions blink yellow. If the “switch to automatic” event is re-
ceived, the system switches back deterministically to state RY to resume autonomous mode. The
atomic DEVS representation is given below.

DEVS ��E X � S � Y � δint � δext � λ � ta G
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Figure 4.1: State Trajectory of a DEVS-specified Model
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Figure 4.2: Traffic light example

T � IR
X �P� M � A "
ω : T � X �,� φ "
S �	� RG � RY � GR � YR � BB "
δint � RG 
Q� RY ; δint � RY 
�� GR
δint � GR 
Q� Y R; δint � Y R 
Q� RG
ta � RG 
�� 60s; ta � RY 
�� 10s
ta � GR 
�� 50s; ta � Y R 
Q� 10s
ta � BB 
���3 ∞
δext �(� RG � e 
)� M 
Q� BB
δext �(� RY � e 
)� M 
�� BB
δext �(� GR � e 
)� M 
Q� BB
δext �(� Y R � e 
)� M 
Q� BB
δext �(� BB � e 
)� A 
Q� RY
Y �	� GREY � YELLOW � BLINK "
λ � RG 
Q� λ � RY 
Q� λ � GR 
Q� GREY
λ � Y R 
Q� YELLOW
λ � BB 
Q� BLINK

4.1.2 The Coupled DEVS Formalism

The coupled DEVS formalism describes a discrete-event system in terms of a network of coupled
components.

coupledDEV S D�E Xsel f � Ysel f � D �R� Mi "<�R� Ii "<�R� Zi S j "<� select G
The component sel f denotes the coupled model itself. Xsel f is the (possibly structured) set of
allowed external inputs to the coupled model. Ysel f is the (possibly structured) set of allowed
(external) outputs of the coupled model. D is a set of unique component references (names). The
coupled model itself is referred to by means of sel f , a unique reference not in D.
The set of components is � Mi  i � D "<5
Each of the components must be an atomic DEVS

Mi �FE Si � tai � δint S i � Xi � δext S i � Yi � λi G)�0T i � D 5
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The set of influencees of a component, the components influenced by i � D �&� sel f " , is Ii. The set
of all influencees describes the coupling network structure� Ii  i � D �,� sel f "U"<5
For modularity reasons, a component (including sel f ) may not influence components outside its
scope –the coupled model–, rather only other components of the coupled model, or the coupled
model sel f : T i � D �,� sel f " : Ii � D �,� sel f "<5
This is further restricted by the requirement that none of the components (including sel f ) may
influence themselves directly as this could cause an instantaneous dependency cycle (in case of a
0 time advance inside such a component) akin to an algebraic loop in continuous models:T i � D �,� sel f " : i /� Ii 5
Note how one can always encode a self-loop (i � Ii) in the internal transition function.
To translate an output event of one component (such as a departure of a customer) to a correspond-
ing input event (such as the arrival of a customer) in influencees of that component, output-to-input
translation functions Zi S j are defined:� Zi S j  i � D �&� sel f "<� j � Ii "<�

Zsel f S j : Xsel f � X j �0T j � D �
Zi S sel f : Yi � Ysel f �0T i � D �

Zi S j : Yi � X j �0T i � j � D 5
Together, Ii and Zi S j completely specify the coupling (structure and behaviour).

As a result of coupling of concurrent components, multiple state transitions may occur at the same
simulation time. This is an artifact of the discrete-event abstraction and may lead to behaviour
not related to real-life phenomena. A logic-based foundation to study the semantics of these arti-
facts was introduced by Radiya and Sargent [56]. In sequential simulation systems, such transition
collisions are resolved by means of some form of selection of which of the components’ transi-
tions should be handled first. This corresponds to the introduction of priorities in some simulation
languages. The coupled DEVS formalism explicitly represents a select function for tie-breaking
between simultaneous events:

select : 2D � D

select chooses a unique component from any non-empty subset E of D:

select � E 
 � E 5
The subset E corresponds to the set of all components having a state transition simultaneously.

4.1.3 Closure of DEVS under coupling

As mentioned before, it is possible to construct a resultant atomic DEVS model for each coupled
DEVS. This closure under coupling of atomic DEVS models makes any coupled DEVS equivalent
to an atomic DEVS. By induction, any hierarchically coupled DEVS can thus be flattened to an
atomic DEVS. As a result, the requirement that each of the components of a coupled DEVS be an
atomic DEVS can be relaxed to be atomic or coupled as the latter can always be replaced by an
equivalent atomic DEVS.
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The core of the closure procedure is the selection of the most imminent (ie soonest to occur) event
from all the components’ scheduled events [71]. In case of simultaneous events, the select function
is used. In the sequel, the resultant construction is described.

From the coupled DEVS E Xsel f � Ysel f � D �R� Mi "<�R� Ii "<�R� Zi S j "<� select G)�
with all components Mi atomic DEVS models

Mi ��E Si � tai � δint S i � Xi � δext S i � Yi � λi G)�0T i � D

the atomic DEVS E S � ta � δint � X � δext � Y � λ G
is constructed.
The resultant set of sequential states is the product of the total state sets of all the components

S �H� i � DQi �
where

Qi �	�K� si � ei 
L s � Si � 0 M ei M tai � si 
N"<�0T i � D 5
The time advance function ta

ta : S � IR �0 �I3 ∞
is constructed by selecting the most imminent event time, of all the components. This means,
finding the smallest time remaining until internal transition, of all the components

ta � s 
�� min � σi � tai � si 
O� ei  i � D "<5
A number of imminent components may be scheduled for a simultaneous internal transition. These
components are collected in a set

IMM � s 
���� i � D  σi � ta � s 
N"<5
From IMM, a set of elements of D, one component i A is chosen by means of the select tie-breaking
function of the coupled model

select : 2D � D
IMM � s 
V� i A

Output of the selected component is generated before it makes its internal transition. Note also
how, as in a Moore machine, input does not directly influence output. In DEVS models, only an
internal transition produces output. An input can only influence/generate output via an internal
transition similar to the presence of memory in the form of integrating elements in continuous
models. Allowing an external transition to produce output could lead to infinite instantaneous
loops. This is equivalent to algebraic loops in continuous systems. The output of the component is
translated into coupled model output by means of the coupling information

λ � s 
�� Zi W'S sel f � λi W � si W 
(
)� if sel f � Ii W 5
If the output of i A is not connected to the output of the coupled model, the non-event φ can be
generated as output of the coupled model. As φ literally stands for no event, the output can also be
ignored without changing the meaning (but increasing performance of simulator implementations).
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The internal transition function transforms the different parts of the total state as follows:

δint � s 
����X5(5(5N�N� s 4 j � e 4 j 
)�(5(5(5Y
)� where� s 4 j � e 4 j 
Z� � δint S j � s j 
)� 0 
 � for j � i A[�� � δext S j � s j � e j 3 ta � s 
)� Zi W S j � λi W � si W 
(
(
)� 0 
\� for j � Ii W �� � s j � e j 3 ta � s 
(
 � otherwise 5
The selected imminent component i A makes an internal transition to sequential state δint S i W � si W 
 . Its
elapsed time is reset to 0. All the influencees of i A change their state due to an external transition
prompted by an input which is the output-to-input translated output of i A , with an elapsed time
adjusted for the time advance ta � s 
 . The influencees’ elapsed time is reset to 0. Note how i A is not
allowed to be an influencee of i A in DEVS. The state of all other components is not affected and
their elapsed time is merely adjusted for the time advance ta � s 
 .
The external transition function transforms the different parts of the total state as follows:

δext � s � e � x 
]���X5(5(5^�N� s 4i � e 4i 
)�(5(5(5Y
)� where� s 4i � e 4i 
V� � δext S i � si � ei 3 e � Zsel f S i � x 
(
)� 0 
\� for i � Isel f �� � si � ei 3 e 
 � otherwise 5
An incoming external event is routed, with an adjustment for elapsed time, to each of the compo-
nents connected to the coupled model input (after the appropriate input-to-input translation). For
all those components, the elapsed time is reset to 0. All other components are not affected and only
the elapsed time is adjusted.
Some limitations of DEVS are that1 a conflict due to simultaneous internal and external events is resolved by ignoring the internal

event. It should be possible to explicitly specify behaviour in case of conflicts;1 there is limited potential for parallel implementation;1 the select function is an artificial legacy of the semantics of traditional sequential simulators
based on an event list;1 it is not possible to describe variable structure.

Some of these are compensated for in parallel DEVS ([16]).

4.1.4 Implementation of a DEVS Solver

The algorithm in Figure 4.3 is based on the closure under coupling construction and can be used as
a specification of a –possibly parallel– implementation of a DEVS solver or “abstract simulator”
[71, 41]. In an atomic DEVS solver, the last event time tL as well as the local state s are kept. In
a coordinator, only the last event time tL is kept. The next-event-time tN is sent as output of either
solver. It is possible to also keep tN in the solvers. This requires consistent (recursive) initialization
of the tNs. If kept, the tN allows one to check whether the solvers are appropriately synchronized.
The operation of an abstract simulator involves handling four types of messages. The � x � f rom � t 

message carries external input information. The � y � f rom � t 
 message carries external output infor-
mation. The �I_<� f rom � t 
 and � done � f rom � tN 
 messages are used for scheduling (synchronizing)
the abstract simulators. In these messages, t is the simulation time and tN is the next-event-time.
The �I_<� f rom � t 
 message indicates an internal event _ is due.

When a coordinator receives a �I_<� f rom � t 
 message, it selects an imminent component i A by means
of the tie-breaking function select specified for the coupled model and routes the message to i A .
Selection is necessary as there may be more than one imminent component (with minimum next
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message m simulator coordinator�I_<� f rom � t 
 simulator correct only if t � tN
y 2 λ � s 
 send �I_<� sel f � t 
 to i A , where
if y �� φ : i A � select � imm children 


send � λ � s 
)� sel f � t 
 to parent imm children �	� i � D  Mi 5 tN � t "
s 2 δint � s 
 active children 2 active children �&� i A["
tL 2 t
tN 2 tL 3 ta � s 

send � done � sel f � tN 
 to parent� x � f rom � t 
 simulator correct only if tL M t M tN (ignore δint to resolve a t � tN conflict)
e 2 t � tL T i � Isel f :
s 2 δext � s � e � x 
 send � Zsel f S i � x 
)� sel f � t 
 to i
tL 2 t active children 2 active children �,� i "
tN 2 tL 3 ta � s 

send � done � sel f � tN 
 to parent� y � f rom � t 
 T i � I f rom ` � sel f " :

send � Z f rom S i � y 
)� f rom � t 
 to i
active children 2 active children �,� i "

if sel f � I f rom :
send � Z f rom S sel f � y 
)� sel f � t 
 to parent� done � f rom � t 
 active children 2 active children ` � f rom "

if active children � /0:
tL 2 t
tN 2 min � Mi 5 tN  i � D "
send � done � sel f � tN 
 to parent

Figure 4.3: DEVS Simulation Procedure



52 The DEVS Formalism

t 2 tN of topmost coordinator
repeat until t a tend (or some other termination condition)

send �I_<� main � t 
 to topmost coupled model top
wait for � done � top � tN 

t 2 tN

Figure 4.4: DEVS Simulation Procedure Main Loop

remaining time).
When an atomic simulator receives a �I_<� f rom � t 
 message, it generates an output message � y � f rom � t 

based on the old state s. It then computes the new state by means of the internal transition function.
Note how in DEVS, output messages are only produced while executing internal events. When a
simulator outputs a � y � f rom � t 
 message, it is sent to its parent coordinator. The coordinator sends
the output, after appropriate output-to-input translation, to each of the influencees of i A (if any).
If the coupled model itself is an influencee of i A , the output, after appropriate output-to-output
translation, is sent to the the coupled model’s parent coordinator.

When a coordinator receives an � x � f rom � t 
 message from its parent coordinator, it routes the mes-
sage, after appropriate input-to-input translation, to each of the affected components.
When an atomic simulator receives an � x � f rom � t 
 message, it executes the external transition func-
tion of its associated atomic model.
After processing an � x � f rom � t 
 or � y � f rom � t 
 message, a simulator sends a � done � f rom � tN 
 mes-
sage to its parent coordinator to prepare a new schedule. When a coordinator has received � done � f rom � tN 

messages from all its components, it sets its next-event-time tN to the minimum tN of all its com-
ponents and sends a � done � f rom � tN 
 message to its parent coordinator. This process is recursively
applied until the top-level coordinator or root coordinator receives a � done � f rom � tN 
 message.

As the simulation procedure is synchronous, it does not support a-synchronously arriving (real-
time) external input. Rather, the environment or Experimental Frame should also be modelled as a
DEVS component.
To run a simulation experiment, the initial conditions tL and s must first be set in all simulators
of the hierarchy. If tN is kept in the simulators, it must be recursively set too. Once the initial
conditions are set, the main loop described in Figure 4.4 is executed.
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The pythonDEVS Simulator

Discrete Event system Specification (DEVS) were first introduced by Zeigler in 1976 as a rigorous
basis for discrete-event modeling. In this chapter we first present an implementation of the classical
formalism. An early prototype of a DEVS Modeling and Simulation Package is then introduced.
The chapter then moves on to discuss a real-time execution framework. The motivation behind
real-time DEVS execution is discussed as well as the implications of 0-time semantics.

5.1 Design and Implementation

This version of the DEVS Modeling and Simulation Package has been implemented using Python,
an interpreted, very high-level, object- oriented programming language. The package consists of
two files, the first of which (DEVS.py) provides a class architecture that allows hierarchical DEVS
models to be easily defined. The simulation engine (SE) itself is implemented in the second file
(Simulator.py). Based on the DEVS simulator described in [73], it uses the same message-
passing mechanism. A detailed description of both the model architecture and the SE follows.

5.1.1 Model Architecture

The model architecture implemented in DEVS.py is a canvas from which hierarchical DEVS mod-
els can be easily described. It consists of a number of classes arranged to capture the essence of
hierarchical DEVS. A model is described in a dedicated file by deriving coupled and/or atomic-
DEVS descriptive classes from this architecture. These atomic models are then arranged hierarchi-
cally through composition. Methods and attributes form the standard interface that allows an SE,
such as the one described in the next sub-section, to interact with the instantiated DEVS model.
Our main concern with the architecture are twofold: remain as consistent as possible with the orig-
inal hierarchical DEVS definition, and maintain a flexible approach to DEVS so as to encourage
model reusability through parameterization.

The class architecture is represented in Figure 5.1: BaseDEVS is the root class which provides basic
functionalities common to both atomic and coupled models.

Two classes are inherited from BaseDEVS to deal with the specifics of atomic and coupled DEVS
formalisms (Figure 5.1). These three classes are all abstract in that they cannot be directly instan-
tiated. Rather, a model is described by deriving descriptive classes from either the AtomicDEVS
or the CoupledDEVS class. This provides them with a suitable constructor and overrides the de-



54 The pythonDEVS Simulator

BaseDEVS
+parent: CoupledDEVS | None = None
+myID: string | None = None
+condFlag: integer = 1
+IPorts: list = [ ]
+OPorts: list = [ ]
+myInput: dictionary = { }
+myOutput: dictionary = { }
+__init__()
+type(): string
+addInPort(): Port
+addOutPort(): Port

AtomicDEVS
+AtomicIDCounter: integer = 0
+state: any = None
+elpased: float = 0.0
+__init__()
+poke(p:Port,v:any)
+peek(p:Port): any
+extTransition(): any
+intTransition(): any
+outputFnc()
+timeAdvance(): float

CoupledDEVS
+CoupledIDCounter: integer = 0
+componentSet: list = [ ]
+IC: list = [ ]
+EIC: list = [ ]
+EOC: list = [ ]
+__init__()
+addSubModel(model:BaseDEVS): BaseDEVS
+connectPorts(p1:Port,p2:Port)
+select(immList:list): BaseDEVS

Port
+InCounter: integer = 0
+OutCounter: integer = 0
+inLine: list = [ ]
+outLine: list = [ ]
+hostDEVS: BaseDEVS | None = None
+myID: string
+__init__(t:boolean)
+type(): string

 1

 1..*
 1

 *

Figure 5.1: Modelisation class architecture

fault interface methods. Note that the constructors at every level of the class hierarchy have an
active role. Hence, a descriptive class’ constructor should always start by calling the parent class’
constructor.

The constructor of the AtomicDEVS class merely initializes the myID attribute and provides a de-
fault initial value for the DEVS’ total state, through the state and elapsed attributes. The re-
maining class definitions consist of default method declarations for the interface functions δext
(extTransition), δint (intTransition), ta (timeAdvance) and λ (outputFnc). These methods
expect no parameter, and it is up to the modeler to be consistent with the corresponding functions’
domain when overriding the methods. Except for outputFnc (which uses the poke method as de-
scribed below), all the methods shall return a value compatible with the corresponding function
range.

Since default values are provided for both attributes and methods, the minimal atomic-DEVS
descriptive class is empty:

class MinimalAtomicDEVS(AtomicDEVS):
pass

This atomic-DEVS is passive. It remains in its default state forever. A more interesting example is
a generator, which sends a message (the integer 1 in this case) through its unique output port at a
constant time interval:

class SimpleGenerator(AtomicDEVS):
def __init__(self, n = 1):

AtomicDEVS.__init__(self)
self.interval = n
self.message = 1
self.OUT = self.addOutPort()

def outputFnc(self):
self.poke(self.OUT, self.message)

def timeAdvance(self):
return self.interval

As mentioned above, the outputFnc returns no value; instead it relies on the poke method to
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send message (second parameter) through the OUT output port (first parameter). The companion
method, peek, returns the message on the input port that is given as a unique parameter, and is
used exclusively in the extTransition function. Both poke and peek methods are defined in the
AtomicDEVS class, and should not be overridden.

The CoupledDEVS class only has one method to override, the tie-breaking select function. This
takes a list of sub-models which are in conflict. The select function should return the sub-model
instance from this list who’s transition is to fire next. All a CoupledDEVS sub-models should be
included by passing their instance variables to the addSubModel function.

Coupling of ports is performed through the connectPorts method. Its first parameter is the source
port and the second parameter is the destination port. A coupling is rejected and an error message
issued if the coupling is invalid.
The source and destination ports are instances of the class Port. This class defines channels where
events may pass between DEVS models. These channels are defined in the Port’s inLine and
outLine attributes.

A B

Parent

OUT IN OUT OUT

Figure 5.2: Simple Coupled-DEVS

Consider the example of the situation illustrated in Figure 5.2. There exists a descriptive class
SomeDEVS for a DEVS (either atomic or coupled) with an input and output port locally known as
IN and OUT. We want to connect the input port to the output port of the SimpleGenerator atomic-
DEVS described above: both DEVS must of course be children of the same coupled-DEVS for the
coupling to be performed. The coupled-DEVS descriptive class is defined below.

class Parent(CoupledDEVS):}
def __init__(self, x = 1):

CoupledDEVS.__init__(self)
self.OUT = self.addOutPort()
self.A = self.addSubModel(SimpleGenerator(x))
self.B = self.addSubModel(SomeDEVS())
self.connectPorts(self.A.OUT, self.B.IN)
self.connectPorts(self.B.OUT, self.OUT)

Note that the parameter to the constructor is used to parameterize the SimpleGenerator atomic-
DEVS. As for atomic-DEVS, the constructor first calls the parent class’ constructor. Note also that
the coupled-DEVS itself has an output port. The first coupling is an internal coupling, while the
second is an external output coupling. This is a complete definition for a coupled-DEVS descrip-
tive class. The default select function is used.
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Once all the descriptive classes in the hierarchical DEVS model have been defined, the whole
model can be build by instantiating the root DEVS. This is possible since the hierarchical repre-
sentation of the model is built by composition rather than aggregation.

As a final warning, note that recursive definitions are illegal, since they are incompatible with a
tree structure. As a trivial example, a coupled-DEVS’ descriptive class SomeCoupledDEVS cannot
call in its constructor the addSubModel method with an instance of SomeCoupledDEVS. This is
mentionned since such recursive constructs will not be detected.

5.1.2 Simulation Engine

The Simulation Engine (SE) is the tool that simulates the behavior of a system given its model
as specified in the previous section. Since the SE is independent from the model architecture
presented above, a clean interface between the model and the simulator must be defined. This
allows alternative SEs (eg. parallel implementations) to be written. The particular SE we describe
here is loosely based on the DEVS simulator described in [73].

Atomic
Model

Atomic
Model

Atomic
Model

Coupled
Model

Coupled
Model

Coupled
Solver

Coupled
Solver

Atomic
Solver

Atomic
Solver

Atomic
Solver

Root
Coordinator

Figure 5.3: Mapping a hierarchical model onto a hierarchical simulator

The main challenge in writing a SE for a hierarchical DEVS model consists in determining, at
run-time, the sequence (atomic or coupled) of DEVS activation. As it turns out, the hierarchical
representation of the model (Figure 5.3), although it gives no information about couplings, helps
tackle the problem by means of a message-passing mechanism A : in Zeigler’s words [73],

A hierarchical simulator for hierarchical DEVS coupled models consists of devs-
simulators and devs-coordinators and uses four types of messages. An initialization
method � i � t 
 is sent at the initialization time from the parent simulator object to all
its subordinates, to synchronize their clocks. The scheduling of events is done by theB

The transfer of messages (data) from port to port shall not be confused with the passing of messages (control)
from solver to solver.
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internal state transition message �I_<� t 
 and are sent from the coordinator to its immi-
nent child. An output message � y � t 
 is sent from the subordinates to their parents to
notify them of output events. The input message � x � t 
 is sent from the coordinator to
its subordinates to cause external events.

BaseDEVS Simulator
+model: BaseDEVS
+__init__(model:BaseDEVS)
+augment(d:BaseDEVS)
+send(d:BaseDEVS,msg:dictionary): dictionary
+simulate(T:float=100.0)

AtomicSolver

+receive(aDEVS:AtomicDEVS,msg:dictionary): dictionary

CoupledSolver

+receive(cDEVS:CoupledDEVS,msg:dictionary): dictionary

 1  1

Figure 5.4: Simulation class architecture

Note that the t in the messages is the time stamp of that message. The other part of the message
is either a command flag (i or _ ), or an input or output dictionary (x and y). Whereas Zeigler calls
the coupled-DEVS and atomic-DEVS solvers coordinators and simulators respectively, simulator
is a term that should be reserved for the whole SE. Consequently the terms atomic-solvers and
coupled-solvers are preferred.

DEVS objects being passive by themselves, the role of the corresponding solvers is to operate on
them when they are activated (ie. call the DEVS’ methods and modify the DEVS’ attributes). This
being said, we have to find a mechanism to either augment each DEVS in the hierarchical model
into a solver, or to associate the DEVS with an appropriate solvers.

S = Simulator(Parent(1))

Upon instantiation, the simulator class calls its augment method which traverses the hierarchi-
cal model to effectively augment the DEVS objects with required attributes. These consist of
timeLast and timeNext, which respectively hold the simulation time when the last transition
occurred and the scheduled time for the next internal transition. In the case of a coupled-DEVS,
an eventList attribute is also added which is the list of pairs � tnd � d 
 , where d is a reference to a
sub-model of the coupled-DEVS and tnd is set to the timeNext attribute of that model (hence for
a coupled DEVS timeNext is set to the minimum tnd in its eventList).
The simulation is started by calling the simulate method as follows.

S.simulate(30)

The parameter is the length of the simulation (simulation, not wall-clock, time). The simulate
code corresponds to that of Zeigler’s root-coordinator. It starts by sending an initialization mes-
sage � i � t 
 to the root-DEVS, which will cascade through the model. The main loop then repeatedly
sends internal state transition messages �I_<� t 
 to the root DEVS until the simulation clock reaches
the length of the simulation. Messages are passed from DEVS to DEVS by means of the sim-
ulators’ send method, which dispatches the messages to either the AtomicSolver.receive or
the CoupledSolver.receive method as required. The progress of a simulation is dumped to the
standard output.

A final note is in order to stress a difference between the message-passing pattern described here
and that described in Zeigler’s view. Since � y � t 
 messages are sent back to a parent coupled-DEVS
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Figure 5.5: The pythonDEVS-RT threading model.

only in response to sending a �I_<� t 
 message, the former message is “sent back” as a returned value
rather than by means of the send method. Hence the receive methods in both solver classes treat
only three kinds of messages, namely � i � t 
 , �I_<� t 
 and � x � t 
 . This design choice, which does not
impact the behavior of the simulated model, is motivated by the fact that extra-coding would
otherwise have been required to distinguish between � x � t 
 and � y � t 
 messages. As a matter of
fact, these messages are implemented as pairs whose first member is either an input or output
dictionnary, which are essentially indistinguishable.

5.2 A Real-Time pythonDEVS Execution Environment

5.2.1 Motivation

Instead of simulating DEVS models where the implicit time variable is simulation time, we wish
to execute a model where time units are equivalent to wall-clock time. The reason for this is to be
able to execute programs with the DEVS real-time engine driving the dynamics of the application.
Graphical programs are an example of this desired framework. The graphical application has en-
tities such as buttons which generate events. These events are sent to the real-time DEVS engine
which may send a return message. The graphical application can then change its state based on the
received message.

In essence, if the current time is t and the time of the next internal transition is t 3 x, then the
simulation environment should block for x time units.

5.2.2 Design Structure

Firstly the pythonDEVS-RT Executor class as well as the threading model are explained. Fol-
lowing, is a discussion of pythonDEVS-RT Executor’s wait-dispatch loop. Finally, the interface
between the Executor and client applications is outlined.

Threading Model

When an application uses a DEVS engine as its underlying dynamics, both the client and the engine
are started in separate threads. This is illustrated in figure 5.5. The sync block is a global Event
object taken from the threading library. This is the mechanism which synchronizes activities
between the clients and the Executor. The Executor is in an unending wait-dispatch loop which
utilizes calls to the wait(x) function. The method, wait(x), will return if a call to set() is made
from another thread or if x time has passed. Thus, when a client wishes to send an event to the
DEVS engine, it will first poke() the event and then set() the sync object. The engine will then
wake up, and process the event which was poked.

The Wait-Dispatch Loop

If the clock reads x, then the Executor must explicitly wait for tN � x time units, where tN is the
time of the next internal transition. Once the wait stage is passed, the Executor must decide what
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type of message to send to its sub-components. It searches all its input ports and checks if any
of them correspond to components which are sending events. If there exists such an event, it is
considered an incoming external event and is passed to the DEVS model’s corresponding input
port. If there are no external events, a timeout must have occurred and an internal event signal is
sent to the DEVS model.
The code below is the Executor’s wait-dispatch loop, taken from RT DEVS.py.

# ... initialization ...
clockRT = 0.0
while 1:
ta = self.model.myTimeAdvance # ta IS THE TIME OF THE NEXT INT TRANS
if ta == INFINITY:

initial = time()
self.sync.wait() # WAIT FOREVER
time_passed = time() - initial

elif ta-clockRT > 0:
initial = time()
self.sync.wait(ta-clockRT) # WAIT UNTIL NEXT INT TRANS
time_passed = time() - initial

else: time_passed = 0.0
if ta == INFINITY or ta-clockRT > 0.0: # SHOULD CLOCK MOVE FORWARD?

if self.sync.isSet(): clockRT += time_passed # INTERRUPT
else: clockRT += (ta-clockRT) # TIMEOUT

self.sync.clear()
if self.done:

return
# ... if external event, send ext trans signal, else send int trans signal ...

0-time Semantics

There are different ways to interpret 0-time semantics in a real-time execution environment. Con-
sider the following atomic DEVS model, A1. Any information not included is assumed to be the
degenerate case.

A1 � � S1 � ta1 � δe S 1 � δi S 1 � λ1 � X1 � Y1 "
S1 � � ε1 S 1 � ε1 S 2 "

ta1 � ε 
V� 0 T ε � S1

δi S 1 � ε 
V� b
ε1 S 1 if ε � ε1 S 2
ε1 S 2 if ε � ε1 S 1

And also the atomic model A2. Again, information not included indicates the degenerate case.

A2 � � S2 � ta2 � δe S 2 � δi S 2 � λ2 � X2 � Y2 "
S2 � � ε2 S 1 � ε2 S 2 "

ta2 � ε2 S 1 
c� 0

δi S 2 � ε2 S 1 
c� ε2 S 2
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Figure 5.6: The DEVS crosswalk model.

If these models are included as child models within some coupled model C, it becomes unclear
as to when the internal transition within A2 will fire. There are two interpretations. In the first
interpretation, A1 continually schedules an internal transition to occur within 0 time units. Thus,
the clock never advances and A2 will not execute its internal transition.
Another interpretation is that a 0-time transition is an abstraction of reality. Executing the transition
does take x time units and the clock should move forward this amount. Thus, the number of times
δi S 1 will fire before δi S 2 depends on the implementation of the Executor and the machine running
the simulation.
The implications of either approach depends on the desired use. Such a decision is left up to the
reader. However, it should be noted that the first of the two methods described above is the one
implemented in the RT DEVS module. To implement the second approach, a slight modification to
wait-dispatch loop is required.

The initial time should be stored in initialRT before the loop is entered. Next, the way clockRT
is updated after wait returns must change. Instead of incrementing the clock by the amount of
time that has passed while waiting, simply set the clockRT variable as follows.

d<eKfgdihkjkl �nmOo[p�qr�'
O�soutvowmro$x eUjkl
Client Interface

Client applications may wish to be controlled by a DEVS model which is executed by the real-
time Executor. Naturally, any client program should be able to send events to a DEVS. However,
the DEVS cannot send events back since the client programs may not be DEVS models. Instead,
the send method emulates the ability to send events from a DEVS model to a particular client
application.
This client functionality is derived from the class Generator found in the RT DEVS module. The
name Generator comes from the fact that class instances may generate events at any point in
time. The client should override the recv method to receive the events sent using send. The client
should also add output ports to poke events, but no input ports since events are not received via
ports. RT DEVS also includes a global connectPorts function which is used to connect client
output ports to the DEVS model’s input ports.
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Figure 5.7: The crosswalk UML class diagram.

5.2.3 Crosswalk Example

This example can be downloaded from:
http://msdl.cs.mcgill.ca/people/sborla/pythonDEVS-RT/.
The model in figure 5.6 is a model of a crosswalk and traffic light. The light alternates between
RED, YELLOW and GREEN. If the light is RED and the crosswalk button is pressed the light will
turn GREEN faster. A ’Police Interrupt’ will cause the RED light to flash repeatedly only until the
’Police Interrupt’ is pressed again. After the ’Police Interrupt’ is pressed a second time, the light
will turn the same color it was before the first time this button was pressed. Moreover, the entire
system can be turned on and off. Once turned off, the system forgets all information, and once
turned on the system will always start in the RED state.
The program is run by typing ”python CrossWalkAPP.py” at the shell prompt. The class diagram
for the application can be seen in figure 5.7. The program starts by creating a new application object
which instantiates and initializes the Tkinter graphical objects as well as the underlying DEVS
engine.
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Transforming Statecharts to DEVS

6.1 Motivation

The Statechart formalism makes use of very high level constructs not seen in many formalisms
developed to this day. The high level constructs are part of its appeal. The more abstracted a
formalism becomes, the closer it is to the natural human thought process. DEVS, on the other
hand, has few high level syntactic elements. Thus, it is natural to transform the high-level to the
low-level and try to learn about the semantics of the high-level formalism which is hidden in its
engine. In effect, part of the semantics of Statecharts is removed from the engine and is modeled
explicitly using DEVS (see Figure 6.1). The information required to describe the Statechart model
with DEVS increases as a result of this transformation because the rich syntactic elements in
Statecharts are now being described explicitly.

This transformation also makes it very easy to plug and play Statecharts with other formalisms.
Since DEVS is so versatile, a transformation from other formalisms can be defined (e.g., Ordi-
nary Differential Equations to DEVS [11]) and can be glued together. In the case of continuous
formalisms, a hybrid environment is immediately possible, since Statecharts are discrete.

Another reason for this mapping is the extensions to the Statechart formalism. In UML 2.0, stat-
echarts have ports. These ports increase the modularity and compositionality of the formalism.
DEVS already uses ports for communication between components.

Statechart
Model

Statechart
Engine

DEVS
Model

DEVS
Engine

Figure 6.1: Transforming Statecharts to DEVS.
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Figure 6.2: Converting a Basic Statechart state.

6.2 Introduction

The transformation performs the following high-level actions. Hooks are a sequence of DEVS
transitions which start at some state ε, such that ta � ε 
y� 0. A handle is a sequence of DEVS
transitions which starts with some reaction to an external event.

1. Transform states

2. Build enter & exit handles

3. Build hooks

(a) Default hook

(b) History hook

(c) History star hook

4. Build handles

(a) Current state query (CSQ) handle

(b) Arbitrary event, X, handle

5. Build transitions

Appendix A gives a summary of the notation used in this chapter. In each section, a part of a DEVS
model will be described. The input and output sets, X and Y , the state set, S, and the ta function
will never be given. Instead, states will be introduced as the description of the transformation
continues. If the state is written as ε, then ta � ε 
�� 0 and S 2 S �z� ε " . If the state is written as
ω, then ta � ω 
{� ∞ and S 2 S �|� ω " . When building handles and hooks, an event, x, may be
introduced. If x is broadcast, then Y 2 Y �}� x " where Y is the output set for the source state DEVS
of the transition. If x is a trigger for a transition, then X 2 X �,� x " where X is the input set of the
source state DEVS of the transition.
Most importantly, the δe function will almost always be written as δe � s � f 
 . This is a short hand
notation for δe �(� s � e 
)� f 
 where e is the elapsed time parameter. This indicates that most external
transitions do not depend on the elapsed time.

6.3 Transforming States

The transformation starts by building the skeleton of the DEVS model. The skeleton consists of
the model hierarchy. The state, input and output sets along with the ta, δe, λ and δi functions are
specified later. The goal of this section is to specify each DEVS model with its corresponding
sub-models.
First, the transformation indicates that a basic state is converted to an atomic DEVS (Figure 6.2).
These atomic models will be referred to as TERMINALS.

Second, the transformation specifies that a composite state or an orthogonal component is con-
verted to a coupled DEVS with one sub-model (atomic) called a relay (Figure 6.3).
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Figure 6.3: Converting a Composite Statechart state.
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Figure 6.4: A Statechart Model.

The purpose of the relay is to act as a controller for the converted composite state. This is required
since a coupled model has no state in its own right, nor does it specify any dynamics. A coupled
model only specifies the static coupling among its sub-models. The dynamics for the composite
state are included in the relay. These entities (coupled model with atomic relay) will be referred to
as NON-TERMINAL.
This already makes it very easy to see the structure of the resultant DEVS model. Figure 6.4 is
a diagram of a simple Statechart model and 6.5 is the resultant DEVS model according to the
transformation described to this point.
At first glance, the hierarchical structure of a DEVS model looks very similar to its Statechart.
However, the meaning of the two is very different. In a Statechart with no orthogonal regions, at
most one sub-state can be current at a time. A DEVS model with sub-models means each sub-
model is concurrent. Something must be done to bridge the large semantic gap between these two
formalisms. This is one of the goals of this transformation.

Now that the shell of the DEVS model is built, all the sub-models may be coupled. Coupling in-
volves specifying the input-to-output translation (Zi S j) function. This specification indicates chan-
nels where events may pass. It is crucial that sub-models can send events to their parent and that
parent models can send events to their children. Also, it would be nice if a parent could choose
to broadcast to all of its children or send an event to only one particular child model. These are
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Figure 6.5: The DEVS shell.
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constraints which must be taken into consideration when designing the Z function.

6.4 Ports and Coupling

Once the shell of the DEVS model is constructed, it is possible to specify all ports as well as
the entire coupling. The specification of the output-to-input translation function, Z i S j , is a very
important part of transforming Statechart models to DEVS models.

6.4.1 Port Names

Every single atomic DEVS in the resulting model must have both a ~ input port and a C output
port. The ~ port is the sole input port. This is from where all incoming events come. The C port
is a port which must connect the current DEVS with its parent model. Think of ~ as an arrow
pointing inward (input port) and the C port as an arrow pointing upwards to a parent model.
Relays have additional ports, including the � � output port and � i, T i � D where D belongs to the
containing coupled DEVS. Think of � as an arrow pointing downwards to a child model. The ���
port connects the current DEVS with all of its children (i.e., they connect the current relay with
multiple children). The � � port is used by a composite state to broadcast to each of its orthogonal
regions. The ports for each child (i.e., they connect only the current relay with one child) are named
after the children themselves. For example, consider a Statechart, P, with child state, C. RELAYP
will have a port named C. This way, the relay can easily send events directly to any of its children.
Note that using this interface, all terminals only have two ports, ~ (sole input port) and C (par-
ent output port). This is because a terminal has no children, and thus needs no output ports for
communicating with sub-models.

6.4.2 Coupling

Each Coupled DEVS model must specify the output-to-input translation function, Z i S j , such that
events put on output ports in its relay must be sent to the proper adjacent models. Since the domain
and range of the Z function are the X and Y sets and these sets have not yet been specified, the
coupling of ports will be explained in plain English. For example, output port � connects to input
port ~ .
In general, Z for a coupled model A with its relay r � D is as follows. RELAYA’s parent port
connects to A’s parent port (recall that RELAYA and A can be thought of as interchangeable). A’s~ port connects to RELAYA’s ~ port. The port named i � D, D � A connects to Mi, i � D, i �� r.
RELAYA’s ��� port connects to sub-model 1’s ~ port, sub-model 2’s ~ port, ..., sub-model n’s ~
port.

Figure 6.6 is a visual representation of this description.

6.5 The Event Framework

The resulting DEVS model now has enough structure for events to traverse its hierarchy. Each
event generated and received by a DEVS model must adhere to a protocol so that each sub-model
can handle the events in a uniform way.
Each event must have an address parameter. The address indicates to where the event should be
routed. A terminal or relay DEVS can examine the address and take action accordingly.

Events are structured sets (see Appendix A). They have four named coordinates or fields. These
are the name field, Ψ, the address field ∆, the broadcast field, β and the history field, H .
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Figure 6.6: Coupling between a parent and its children.

6.5.1 The Name Field, Ψ

The name field is simply a string of characters used to identify the type of the event. If a Statechart
has a transition with trigger, e, then the equivalent DEVS event, x will have x 5Ψ � ”e”.

6.5.2 The Address Field, ∆

The address field is an ordered set which indicates where an event should be routed. If the set is
empty, the event has reached it destination. Otherwise, each DEVS model that receives the event
should look at the first element in the set using the � operator. This element will indicate upon
which output port the event should be sent. This is why each relay and terminal state must have
the same way of naming ports.

6.5.3 The Broadcast Field, β

This is a boolean value which indicates if the event should be broadcast. If so, the event will
continue to its destination given by ∆, then will be pushed out port � � .
6.5.4 The History Field, H

The history field takes on different values in different contexts. When H is a field of an α event, the
history field is also a boolean value. It indicates if the α event should enter a history state instead
of the usual default state. If β � 1 6 H � 1,the α event will emulate deep history semantics.

In the context of a χ � event or a state, the H field takes on the value of an actual state. This actual
state is the history state.

6.6 Maintaining the Current State

Note that while the hierarchy of a Statechart model and its DEVS skeleton seems very similar,
the meaning of these two constructs is quite different. In Statecharts, only one state is current at a
time (unless orthogonal). In DEVS, a state from all atomic models is current. Every single atomic
model is executing in parallel. Thus, every atomic model, TERMINAL or NON-TERMINAL must
have two important states which indicate whether that particular Statechart state is current or not-
current. These states are specified as follows.



6.6 Maintaining the Current State 67

A

R

B
e

Figure 6.7: State A has Deep Children.

1 Σ � S, ta � Σ 
%� ∞: Denotes a current state (in-scope)1 Γ � S, ta � Γ 
�� ∞: Denotes a non-current state (out-of-scope)

A coupled model does not have an explicit state set. Thus, the Σ and Γ states are kept in the coupled
model’s relay. In a sense, the relay is a controller for a particular coupled model.

6.6.1 Synchronizing the Current State

Transitions are the constructs in Statecharts which change the current state. In fact, when a tran-
sition fires, the source state is exited and the destination state is entered. As such, a mechanism is
required to exit, as well as enter, converted DEVS states.
When a state is exited, its exit action must be executed. However, if that state has deep children,
these states must first be exited and their exit actions executed. Conversely, when a state is entered,
its enter action must be executed. However, if that state has children, then the default state must
also be entered and its enter action executed. This entering continues down the hierarchy until a
terminal is reached.

Exiting a state is signaled by the exit-all event χ. Acknowledgement of the exit is signaled by the
exit-all-acknowledgement event χ � .
Conversely, entering a state is signaled by the enter event α. An α acknowledgement event is not
required since enter actions are executed as α events are received. That is, parent enter actions are
executed before child enter actions.
It is the firing of a transition which generates these special events. The reaction to each of these
special events will be explained first to simplify the explanation of the Statechart transitions later.
In the following section, the transition is examined which will help fully understand how these two
mechanisms, χ and α, work together.

6.6.2 The χ and χ � Events

Each terminal model as well the relays must handle the χ and χ � events. The objective is to move
from an in-scope state (Σ) to an out-of-scope state (Γ). However, a particular state, such as state A
in Figure 6.7, may have deep children. Before moving out-of-scope, all of the state’s deep children
must execute their exit actions and move to the Γ state.
This behavior is modelled as follows. When a terminal receives a χ event, it should only execute
its exit action then send a χ � to its parent.

δe � Σ � χ 
Z� ε
δi � ε 
Z� Γ
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Figure 6.8: Terminal reaction to χ.
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Figure 6.9: Non-terminal reaction to χ.
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When a relay receives a χ event from its parent (they can only be received from the parent) it must
first send another χ to all its children then wait for acknowledgement (χ § ). When the acknowl-
edgement is received, it may execute the state’s exit action and send an acknowledgment to its
parent.

Notice that only the current state(s) will respond to the event, since δe is a function of Σ. If there
are no orthogonal regions, then only k £ 1 sub-states will be current. If there are n orthogonal
regions, then k £ n sub-states will be current. Thus, the relay must collect k, χ § acknowledgements
before it can send its own χ § acknowledgement. Notice the recursive nature of exiting a state. χ
events are continually pushed deeper until they reach a terminal at which point χ § events are sent
back to the parent nodes.

δe ¡ Σ ¬ χ ¢ £ ε ­
λ ¡ ε ­]¢ £ ¤¦® § £ χ ¤ ∆ £P¨«® § ©«ª(ª
δi ¡ ε ­]¢ £ ω1

δe ¡ ω1 ¬ χ§ ¢ £ ω2

δe ¡ ω2 ¬ χ§U¢ £ ω3¯(¯(¯
δe ¡ ωk ° 1 ¬ χ§ ¢ £ ε ±

λ ¡ ε ±]¢ £ ¤¦¥�£ χ§ ¤ ∆ £P¨ /0 ©«ª(ª
δi ¡ ε ±]¢ £ Γ

A visual representation of the reaction to the χ event can be seen in Figures 6.8 and 6.9. The
reaction at a terminal state can be seen in Figure 6.8 and at a non-terminal state can be seen in
figure 6.9. The Figures represent states which do not have orthogonal components. That is, only
one χ§ event is required to acknowledge that all sub-models are safely out-of-scope.
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Γ Σ

ENTER action

δe � Γ � α �0� ε

�
�

Figure 6.10: Terminal reaction to α.

6.6.3 The α Event

The α event is used to signal that a state is to move in scope (Σ). When a relay receives an α
event, it must signal its default sub-state to also move in scope. These semantics are constructed at
compile time in the default hook sequence. The default hook sequence starts at a state named εde f
and simply sends an enter event to a particular state’s default sub-state. For a Statechart, A, with
default state D, the following sequence would be added to RELAYA.

δi � εde f 
V� Σ
ta � εde f 
V� 0

λ � εde f 
V� E'� D � α E ∆ �	� /0 "wG(G
If A has orthogonal components, then α events must be sent to each component. This, too, is easily
built into the default hook sequence. The relay will simply broadcast the α event to each orthogonal
component. This is done by outputting α on the � � port. The relays for each orthogonal component
will then send the α to the default state.

In general, once the default hook sequence is in place, the δe for relays is set as follows.

δe � Γ � α 
%� εde f if  α 5 ∆  = 0

The default hook sequence for a composite state with orthogonal components is therefore different
from a composite state without orthogonal components. The sequence for a composite state with
orthogonal components must broadcast an α event then move in-scope.

δi � εde f 
Z� Σ
ta � εde f 
Z� 0

λ � εde f 
Z� E'� � � α E ∆ �	� /0 "wG(G
When a terminal receives an α event, there is no need to relay anymore α events since terminals
have no children. Thus the terminal simply moves from the Γ to the Σ state and executes its enter
action.

δe � Γ � α 
�� Σ

A visual representation of the reaction to the α event can be seen Figures 6.10 and 6.11. The
reaction is a terminal can be seen in Figure 6.10 and in a non-terminal can be seen in Figure 6.11.
The non-terminal sequence shown is for a composite state without orthogonal components.
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Γ Σ

λ ² ε ³µ´i¶ · DEFAULT ´ α ¶ ∆ ´[¸ /0 ¹ º ºδe ² Γ » α ³9´ ε

δi ² ε ³9´ ω

ENTER action ¼½
· DEFAULT

ε

Figure 6.11: Non-terminal reaction to α.

6.6.4 The Relay Sequence

Consider relay R. R receives event E such that  E 5 ∆ ¾ 0  , but length � ϕ 
 ¾ 0. Thus, this event’s
destination is some other state in the hierarchy. It is now R’s job to route E accordingly. This is
the main function of the relay sequence. The relay sequence starts at a state named ε∆. It must pop
an event off the address stack, and push the event out the port with the same name as the popped
value. Note that the top function returns the top value of a stack.

δe � Σ � E 
Z� ε∆ if  E 5 ∆ ¾ 0  
δi � ε∆ 
Z� Γ if E 5Ψ � ”α” 6z� E 5 ∆ ��C
ta � ε∆ 
Z� 0

λ � ε∆ 
Z� E

6.6.5 The Broadcast Sequence

The broadcast sequence, which starts at state εβ, is similar to the relay sequence. The address
parameter of the incoming event must be empty, and the broadcast field of the event is set to
TRUE. In this case, a new address stack is assigned to the address field. This stack consists of only
one value, � � .

δe � Σ � E 
Z� εβ E µ � E G if  E 5 ∆  ¿� 0 6 E 5 β � 1

δi � εβ 
V� Σ
ta � εβ 
V� 0

λ � εβ 
V� E E��#� εβ 5 µ 5 ∆ � εβ 5 µ E ∆ �ÁÀÂ� εβ 5 µ 5 ∆ 
(G(G
Broadcasting Optimization - Avoid ���
When events are broadcast through the � � port, they are received by all the sub-states (including
the states that are in a Γ state). This is unnecessary since out-of-scope states never ’hear’ broad-
casted events. Thus, if the parent state were to track which of its children, X , is in a Σ state, then
the output event can be pushed out port X . The out-of-scope states will remain dormant, and some
extra computation is avoided.
Tracking which sub-state is in-scope is very easy and can be done by looking at the top of the
address stack for an α event. If the top of the stack is X , where X ��	C , then the parent can add a
field to its current state indicating that X is its current sub-state.

In the case of orthogonal components, this cannot be done. The output events must still be pushed
out the ��� event. The orthogonal relays will remember their current sub-state.
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Figure 6.12: State reference.

6.7 Transforming Transitions

The DEVS formalism is much more modular and compositional than the Statechart formalism.
Unlike in Statecharts, one cannot draw inter-level transitions. This is one factor which breaks the
compositionality of the Statechart formalism. These are semantics which must be considered when
modeling Statechart transitions using DEVS.

One thing Statecharts and DEVS have in common is that a firing transition is a function of the
current state and the trigger event. Thus, it is natural to build the start of the transition at the source
of the transition. Even though the transition may span several model borders, it is still necessary
to know when the transition fires. For example, if there is a transition T going from state X to Y
with trigger e, a DEVS transition should be built in the atomic component named X from state Σ
to Γ with trigger e. That is, X ’s δe function should look something like the following.

δe � Σ � E 
V� Γ if E 5Ψ � 4 e 4
Of course, there is much more to a transition than what has been explained so far. There must be
a way of ensuring that the destination, Y , moves from state Γ to Σ. Moreover, the transition action
must be executed and broadcasted outputs must be generated. Also, the source state may have deep
children. These children must move the Γ state as well.
These are exactly the mechanisms, χ and α already described. Once χ and α are already in place,
changing the current state for a transition, t, becomes very easy.1 Execute transition action1 Do χ, χ� sequence for the source of t1 Do α sequence for the destination of t

For example, consider a transition which reacts to event, E , has source A and destination B. The
path from A to B is X1 � X2 �(5(5(5N� Xn.

δe � Σ � E 
V� ε1

δi � ε1 
V� ω1

λ � ε1 
V� E'� � � χ E ∆ ��� /0 "wG(G
δe � ω1 � χ� 
V� ε2

λ � ε2 
V� E X1 � α E ∆ �Ã� X2 �(5(5(5^� Xn 
(G(G
δi � ε2 
V� Γ
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Σ

ε

EXIT action

ENTER action

δe � Σ � χ �0� ε

δi � ε ��� Σ

Figure 6.13: Terminal reflexive or inward transition optimization.

Σ

ε1

EXIT action

ENTER action

δe Ä Σ Å χ ÆXÇ ε

δi Ä ε1 ÆXÇ ω1

ω1

ε2

λ Ä ε1 ÆXÇ%È ÉQÇ χ È ∆ ÇQÊ /0 ËÍÌÎÌ
δe Ä ω1 Å χÏ ÆIÇ ε2

δi Ä ε2 ÆXÇ Σ

λ Ä ε2 ÆXÇ%È ÉvÇ α Ì
Figure 6.14: Non-terminal reflexive or inward transition optimization.

6.7.1 Reflexive or Inward Pointing Transitions

Reflexive and inward pointing transition (inward means the destination of the transition is a sub-
state of the source of the transition) are a special case which can provide a slight optimization.
If this type of transition fires, an α event is sent to itself. This event must pass though the parent
relay. Instead of passing the α to the parent, the relay can simply remain in the Σ state and can
execute its exit and enter actions, respectively.

A simple transformation can provide such an optimization. For terminals, simply execute the exit
action, then enter action and move to the Σ state. See Figure 6.13.
For non-terminals, first perform the χ sequence. Upon receiving the χ � , simply execute the exit
action, then the enter action and move to the Σ state. Finish with the α sequence. See Figure 6.14.

6.8 Boolean Guards

Transitions also have boolean guards which can cause a transition to not fire if the value of the
guard is false. Thus, before a transition action is executed, the boolean guard must be calculated.
If the value is true, then the transition will fire, and the source state is exited and the destination
state is entered. Otherwise, the transition does not fire, and the system must move back to the Σ
state.
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Figure 6.15: A state reference boolean guard.

Σ

ε1

ω1

εT χ,α sequence

CSR Ð β Ç 1CSR Ð β Ç 0

Figure 6.16: Transformed transition.

To make matters more complicated, the boolean guard may be a state reference. In this case, a
Current State Query-Current State Response (CSQ-CSR) sequence must be performed in order to
determine the value of the boolean expression.

6.8.1 State Reference

The IN function is a boolean function used to determine if a particular node in the current state
tree is in-scope. For example, consider the Statechart in Figure 6.12. The transition from X to Y
has a boolean guard exhibiting the IN function.
For example, consider the Statechart in Figure 6.15. The boolean guard on the transition from A to
B is a state reference. This gets converted into a complex sequence of steps.

δe � Σ � e 
c� ε1

δi � ε1 
c� ω1

λ � ε1 
c� E�� X � CSQ E ∆ �ÁÀ X G(G
δe � ω1 � CSR 
V� b

εT if CSR 5 β � 1
Σ otherwise

δi � εT 
c� χ,α sequence

Figure 6.16 shows, graphically, how the transition in Figure 6.15 would be converted.

The CSQ-CSR Sequence

Every state can be queried to determine if it is current. Thus, at every state there exists a sequence
which responds to a CSQ event and returns a CSR event. In order for the CSR to be returned to
the sender the CSQ event must come equipped with a return address. Recall that DEVS events and
states are structured sets in this framework. The return address is stored in the CSQ structured set’s
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Σ

ε
δi Ä ε ÆXÇ Σ

δe Ä Γ Å CSQ ÆXÇ ε È ∇ Ç CSQ Ð∇ Ì

λ Ä ε ÆXÇ%È Ñ ε Ð∇ Ç CSRTRUE È ∆ ÇuÒ ε Ð∇ ÌÎÌ
Figure 6.17: Current state query returns TRUE.

δe Ä Γ Å CSQ ÆIÇ ε È ∇ Ç CSQ Ð∇ ÌΓ

ε
δi Ä ε ÆIÇ Γ

λ Ä ε ÆXÇ%È Ñ ε Ð∇ Ç CSRFALSE È ∆ ÇuÒ ε Ð∇ ÌÎÌ
Figure 6.18: Current state query returns FALSE.

coordinate, ∇. This way, the queried terminal or non-terminal can simply set the address parameter
of the CSR event to the return address of the CSQ event’s ∇ field. The following is the reaction
from the Σ state.

δe � Σ � CSQ 
c� ε E ∇ � CSQ 5∇ G
δi � ε 
c� Σ
λ � ε 
Z� E�� ε 5∇ � CSRT RUE E ∆ �ÁÀ ε 5∇ G(G

The reaction from the Γ state is listed below.

δe � Γ � CSQ 
c� ε E ∇ � CSQ 5∇ G
δi � ε 
c� Γ
λ � ε 
c� E�� ε 5∇ � CSRFALSE E ∆ �ÁÀ ε 5∇ G(G

Notice that the ∇ value is stored in the ε state. This is required since λ is a function of ε. In other
words, δe � Γ � CSQ 
�� ε E ∇ � CSQ 5∇ G gives λ access to the return address, ∇. These two sequences
can be see in Figures 6.17 and 6.18.

6.9 Transforming Hyper-transitions

Hyper-transitions employ the same mechanism required to execute a transition with source and
destination set cardinalities equal to one. They use χ events to exit the source state and α events to
enter the destination states. However, it is more difficult to determine where the transition starts.
The transition is function of an event and x source states. A reaction to the event should not be
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A

B C

e

Figure 6.19: Hyper-transition with source set cardinality equal to one.

built into each source state. Knowing if all the source states ’heard’ the event is difficult. Thus, this
is not a good approach.
Another method utilizes a mechanism already described: the state reference function, IN. This
approach is as follows. At some point in the hierarchy, a relay will ’listen’ for the trigger event.
Once this event occurs, the relay should continue to check the status of each source state by using
the CSQ and CSR events. If at least one state is not current, the hyper-transition does not fire.
Otherwise, the transition fires, and α events should be sent to each destination state.

6.9.1 Hyper-transitions with Source Set Cardinality Equal to One

Notice that, under this scheme, hyper-transitions with a source set cardinality equal to one and
destination set cardinality greater than or equal to one may still be converted using the previous
method for transitions. It is a source set cardinality greater than one that requires extra synchro-
nization.
Consider the hyper-transition in Figure 6.19. A’s δe will respond to event e in the normal way.
However, once the source is exited, the relay must send two α events. The path from A to B is ρA S B
and the path from A to C is ρA SC.

δe � Σ � e 
c� ε1

δi � ε1 
Z� ε2

λ � ε1 
Z� E�� ρA S B � α E ∆ �ÁÀ ρA S B G(G
δi � ε2 
Z� Γ
λ � ε2 
Z� E�� ρA SC � α E ∆ �ÁÀ ρA SC G(G

This sequence can be seen graphically in Figure 6.20.

6.9.2 Hyper-transitions with Source Set Cardinality Greater than One

This special case requires extra synchronization. As stated earlier, the state reference mechanism,
CSQ-CSR sequence, is used to check if a particular hyper-transition with a source set cardinality
greater than one can fire. Once this sequence is triggered by the trigger event, the status of every
source state must be checked. If all x source states are in-scope, the transition can fire (or will check
its guard if one exists). This involves sending x χ events, then waiting for x χ � acknowlengements.
If at least one source state is not in-scope the transition does not fire.

Some thought must be put into where to install the event trigger. It must be added into the δe of the
relay belonging to the deepest coupled DEVS which is the parent of all the source states. This is
also known as the least common ancestor. In this location, the relay can pick up all narrowcasted
trigger events which would cause this Statechart transition to fire.
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Σ

ε1

ε2

Γ

δi Ä ε1 ÆIÇ ε2

δi Ä ε2 ÆXÇ ω1

δe Ä Σ Å e ÆXÇ ε1

λ Ä ε1 ÆXÇ%È Ñ ρA Ó B Ç α È ∆ ÇuÒ ρA Ó B ÌÎÌ
λ Ä ε1 ÆXÇ%È Ñ ρA ÓC Ç α È ∆ ÇuÒ ρA ÓC ÌÎÌ

Figure 6.20: Hyper-transition DEVS sequence with source set cardinality equal to one.

Figure 6.21: Hyper-transition with source set cardinality greater than one.

For example, consider the Statechart in Figure 6.21. There is a hyper-transition from state A � B
to C which is triggered by event e. Notice that there would be a coupled DEVS, X with a relay
named RELAYX . The event trigger must be added to the δe belonging to RELAYX . Thus, the δe
within RELAYX must react to the trigger event.
This setup also applies to the general case. For any hyper-transition, there will always be some
contour, X , which engulfs all the source states of the hyper-transition. This state must be current
for the transition to fire. Thus, it is a natural place to install the hyper-transition mechanism.

Once the hyper-transition in Figure 6.21 is triggered, the following sequence of activities take
place.

δe � Σ � e 
c� ε1

δi � ε1 
c� ω1

λ � ε1 
c� E A � CSQ E ∆ �	� /0 "<� ∇ �P�wC#"wG(G
δe � ω1 � CSRFALSE 
c� Σ
δe � ω1 � CSRTRUE 
c� ε2

δi � ε2 
c� ω2

λ � ε2 
c� E B � CSQ E ∆ �	� /0 "<� ∇ �P�wC#"wG(G
δe � ω2 � CSRFALSE 
c� Σ
δe � ω2 � CSRTRUE 
c� χ, α etc.
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Σ

ε1

ω1

ε2

ω2

χ, α etc.

δi Ä ε1 ÆXÇ ω1

λ Ä ε1 ÆRÇ�È A Ç CSQ È ∆ ÇQÊ /0 Ë Å ∇ ÇQÊ ∇ ËÍÌÎÌ

δi Ä ε2 ÆXÇ ω2

δe Ä Σ Å e ÆXÇ ε1

λ Ä ε1 ÆRÇ�È B Ç CSQ È ∆ ÇQÊ /0 Ë Å ∇ ÇQÊ ∇ ËÍÌÎÌ
δe Ä ω1 Å CSRT RUE ÆIÇ ε2

δe Ä ω1 Å CSRFALSE ÆXÇ Σ

δe Ä ω2 Å CSRT RUE ÆIÇ χ,α sequence

δe Ä ω2 Å CSRFALSE ÆXÇ Σ

Figure 6.22: Hyper-transition with source set cardinality greater than one, converted to DEVS.
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Figure 6.23: A Statechart with History.

A visual representation of this sequence can be seen in Figure 6.22. It is now clear that a CSQ-CSR
sequence occurs for each source state. This is to ensure that each source state is current at the time
the transition fires. The first CSR that returns a FALSE value forces the relay to stop processing
the transition and to return to a Σ or Γ state.
This relay remembers if the sequence started at Σ or Γ by maintaining a start field in each state
throughout the entire sequence. If, when a CSR response returns, the value of the response is
FALSE, the relay must return to the state it was in previously. Thus, the δe function can simply
examine the start field and take action appropriately.

6.10 Incorporating History

The History mechanism fits in nicely with the infrastructure already built. When a state with chil-
dren wishes to exit, it signals to its children to exit as well. The exit-acknowledgement is returned
from the state that was in-scope. This state is the last state to be in-scope before the parent state
exited. Thus, the history information can be easily added as a field of the χ � event. When the parent
receives this event, it stores the history value as a field in its current state.

A transition which terminates on a History node is converted to DEVS as follows. The transition
will fire at the source state. An α event will be generated for the destination. The address field of
the α event will have the history’s parent contour at the bottom of the stack. This ensures that the
α’s destination is the parent contour of the history node.

Another important field specified in the α event is the history field. A value of 1 indicates to the
relay that the α event means to enter the history state, not the default state. Once the relay sees the
history field in the α event, it can look at the history field of its current state (obtained from the χ �
event). The relay should then send an α event for this history node.
If a transition terminates on an H � node, the transformed DEVS transition is very similar to one
which terminates on an H node. The history information is received in exactly the same way for a
H � node. When a relay receives an α event which has an history-star field set to True, it will get
the history information from the current state, just as with a normal history. However, the α event
which is sent must have the history-star field set to True again. This will cause the next sub-node
to enter its history state, and so forth.
Consider the Statechart in Figure 6.23. Recall that while a History node looks like a state, it is
not a state at all. A History node is a section of a transition. Thus, in a converted DEVS model, a
History mechanism may appear to be elusive.

When X receives a χ event, it will send a χ to its sub-states. Either A or B will respond. Without
loss of generality, let us say that B is the responding state. B will store history information in the
H field of the χ� event as follows.

δe � Σ � χ 
V� ε
δi � ε 
V� Γ
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Figure 6.24: The resulting DEVS model can deadlock.

λ � ε 
c� E'C�� χ� E H � B G(G
The history information is gathered in RELAYX from the χ� event as follows.

δe � ω � χ� 
Q� Γ E H � χ� 5H G
When an α is received such that α 5H � 1 6 α 5 β � 1, the relay responds as follows.

δe � Γ � α 
Ô� ε E H � Γ 5H G if α 5H � 1 6 α 5 β � 1

δi � ε 
c� Σ
λ � ε 
c� E ε 5H � α E β � 1 � H � 1 � ∆ ��� /0 "wG(G

In the case of deep children, the α events will be continually sent down the DEVS hierarchy until
terminal states are reached. If a terminal state receives an α event such that α 5H � 1 6 α 5 β � 1 it
can treat it as a normal α event, since it has no children.

An α such that α 5H � 1 6 α 5 β � 0 follows almost exactly the same sequence. The difference
occurs when sending the α event to the history state. Instead of sending another α such that α 5H �
1 6 α 5 β � 0 to perpetuate the entering of history states, an α event such that α 5H � 0 6 α 5 β � 0
is sent. This way, the history state is entered and if it has sub-states, their default states will be
entered.

6.11 Event Queueing

One small detail remains which is vital to the implementation of the converted DEVS models.
A DEVS simulator is a time-slicing simulator and treats concurrent behaviour sequentially. It
executes each atomic DEVS as if they are concurrent objects. Concurrent programs are subject to
race conditions and deadlock. In the framework described, race conditions and deadlock can occur
in several places.
Consider the Statechart in Figure 6.24. The DEVS model converted from this model can deadlock.
Before an explanation is given as to how this may occur, first look at the skeleton of the resulting
DEVS model in Figure 6.25.

When the transition from A to B fires, a sequence of steps occur. Eventually, the atomic model, A,
will send an α event to B. When this happens, A sends the α event to its parent, then sets its current
state to Γ. Now, neither A nor B represent an in-scope state. At this time, the transition from Y to
C may fire. If this happens, RELAYX will send a χ to RELAYY which will in turn broadcast another
χ to both A and B. However, recall that the response to χ is as follows.

δe � Σ � χ 
���5(5(5
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Figure 6.25: The DEVS skeleton of the Statechart in Figure 6.24.

The only sub-model which will respond has a current state Σ. But in this case, no sub-model has
a current state Σ. Both A and B are out-of-scope. Thus, the event is forgotten and a χ � is never
returned. This causes RELAYX and RELAYY to wait in some ω state forever.

The general solution uses event queues and locks. This idea is as follows. When a model is in
an intermediate state it is locked. All incoming events are queued and dealt with once the model
has finished its job. When finished, it returns to either the Σ or Γ state. If the event queue is not
empty, there is more work to be done. In this case, the model must continually dequeue events and
process them until the event queue is empty. Note that when all event queues are empty throughout
the entire DEVS model, a macro step has completed.

The event queue is stored in a field of the current state as Q. Q is an ordered set. Moreover, the
δe function now has an extremely simple definition. Its sole job is to funnel events into the event
queue and maintain the current state.

δe � k � x 
�� k E Q � k 5Q Õ x G
It is also necessary that there exist dequeue states, εΣ and εΓ such that,

δi � Σ 
V� εΣ

δi � Γ 
V� εΓ

This ensures that after returning to a stable state of Σ or Γ, the model will move to the dequeue
state and continue to handle events.
It is only necessary to move to the dequeue state if there are events in the queue. Thus, the ta
function can be defined to stay in a stable state if there are no events, otherwise return a time
advance of 0.

ta � Σ 
c� b
∞ if  Σ 5Q  L� 0
0 otherwise

ta � Γ 
c� b
∞ if  Γ 5Q  L� 0
0 otherwise

Under this configuration, all the definitions that were specified for the δe function are now moved
to the δi function under the dequeue states, εΣ and εΓ. That is, if the current state is a dequeue state,
an event is dequeued, examined and action is taken. These actions occurred previously in the δe
function, but now occur in the δi function.
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Figure 6.26: Using the select function for orthogonal priority.

6.12 The Use of the select Function

The select function can provide very useful variations in the generated models’ semantics. The
most evident of these uses is for orthogonal components. Orthogonal components represent a prod-
uct state set. They are independent systems running concurrently. Thus, an execution environment
with a single executor must somehow multiplex the activities within adjacent orthogonal compo-
nents. The pythonDEVS-RT executor is one such environment. It must decide which transition
will fire next if several are scheduled to fire at the same time. This is precisely what happens in or-
thogonal components. Transitions are scheduled to fire at the same time, and the select determines
which will fire next.

Consider the Statechart in Figure 6.26. The total transition execution sequence depends on which
semantics are used. Perhaps A3 is reached before B2 is reached or vice versa. The meaning of this
Statechart depends on its use and the version of the semantics used to execute it.
Most desired semantics can be attained by carefully defining the select function. If A should take
priority over B then the select for the coupled DEVS corresponding to R should be defined as:

select � E 
%� A

where E is the set of conflicting components � A � B " . Another intuitive interpretation of how to
execute the Statechart in Figure 6.26 is to execute transitions from A and B in turn. That is, ex-
ecute A’s transition, then B’s then A’s, etc. Perhaps, the next transition to be executed should be
determined by sampling probabilities from a random distribution. The possibilities are endless.

Another use of the select function is the implementation of inside-transition-first or outside-
transition-first semantics. The Statechart in Figure 6.27 will have a conflict if the current state is B1.
Which transition fires, and what is the resulting current state again depend on the semantics used.
If outside-transition-first semantics are used, the current state becomes A1. If inside-transition-first
semantics are used, the current state changes to B2.

To use outside-transition-first semantics, simply specify select to return the relay which is closest
to the root. Terminals have the lowest priority. To use inside-transition-first semantics, terminals
have the highest priority. Thus the select function should return either a terminal or the deepest
relay in the hierarchy.



82 Transforming Statecharts to DEVS

Figure 6.27: Using the select function for transition priority.

6.13 Putting it All Together

This final section illustrates how all the mechanisms and sequences described work together. It
also shows the final rough structure of the δe and δi functions. This will be done using Python
code with 5(5(5 to extrapolate areas of the code which are repetitive.

Notice that there are several class member variables. These can be thought of as coordinates of the
current state structured set. The values of these coordinates are continuously and implicity passed
on to the new current state in every δe and δi function. These member variables help simplify the
implementation.

The following is a code listing for typical DEVS components. The following class TypicalAtomic
illustrates a typical atomic DEVS. Relays and terminals are very similar in structure. The following
is only to give the reader a sense of how the mechanisms described above work together and are
structured in one of many possible implementations.

class TypicalAtomic(AtomicDEVS):
def __init__(self):

AtomicDEVS.__init__(self)
self.current_child = None # track which sub-state is current
self.history = ’PLAYING’ # initialize the history
self.Q = [] # the event queue
self.delta_ext = 0 # has the delta external function fired?
self.inscope = 0 # is the current context INSCOPE?
self.scope = 2 # what is out depth in the hierarchy
self.timeout = 0 # has a timeout occured?
self.elapsed_since_inscope = 0 # the elapsed time since we’ve been INSCOPE
self.ports = {} # add ports
self.ports[’_IN_’] = self.addInPort(’_IN_’)
self.ports[’_PARENT_’] = self.addOutPort(’_PARENT_’)
self.ports[’_ALL_’] = self.addOutPort(’_ALL_’)
self.states = {} # add states
self.states[’INSCOPE’] = DEVSstate(’INSCOPE’)
self.states[’OUTSCOPE’] = DEVSstate(’OUTSCOPE’)
...
self.state = self.states[’OUTSCOPE’]

def extTransition(self):
if self.inscope: self.elapsed_since_inscope += self.elapsed # time has passed
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else: self.elapsed_since_inscope = 0 # reset
event = self.peek(self.ports[’_IN_’]) # get incoming event
self.Q.append(event) # append event to the event queue
self.delta_ext = 1 # an external transition has occured
return self.state # return the same state as when we started

def intTransition(self):
if self.inscope: self.elapsed_since_inscope += self.elapsed # time has passed
else: self.elapsed_since_inscope = 0 # reset
if not self.timeout and round(self.elapsed_since_inscope, 6) >= 0: # a TIMEOUT has occured!

self.Q.append(EVENT(’_TIMEOUT_’)) # append the TIMEOUT event to the event queue
self.elapsed_since_inscope = 0 # reset
self.timeout = 1 # a timeout has occured

def get_new_state(): # wrapper for getting the new state
if self.state == ’INSCOPE_DQ’: # dequeue and process an event

while len(self.Q) > 0:
self.event=self.Q[0];del self.Q[0] # dequeue
if self.event == ’X1’: return self.states[’epsilon1433’]
elif self.event == ’_TIMEOUT_’: return self.states[’epsilon1449’]
elif self.event == ’EXITALL’: return self.states[’epsilon1427’]
... # other states here
else: return ’__relay_hook’ # route the event elsewhere

elif self.state == ’OUTSCOPE_DQ’:
... # dequeue and process an event

elif self.state == ’epsilon1446’: # do something
return self.states[’OUTSCOPE’]

elif self.state == ’epsilon1434’: # do something
return self.states[’epsilon1437’]

... # other states here
new_state = get_new_state() # get the new state
if new_state == ’INSCOPE’: # check if context is INSCOPE

self.inscope = 1
if len(self.Q) == 0: self.timeout = 0 # no timeouts

elif new_state == ’OUTSCOPE’: # check if context is OUTSCOPE
self.inscope = 0
if len(self.Q) == 0: self.timeout = 0 # no timeouts

return new_state # return the new state to the simulator

def timeAdvance(self):
if self.state == ’INSCOPE’ and len(self.Q) > 0: ta = 0
elif self.state == ’OUTSCOPE’ and len(self.Q) > 0: ta = 0
elif self.delta_ext: ta = 0;self.delta_ext=0
elif self.state == ’epsilon1427’: ta = 0
elif self.state == ’OUTSCOPE’: ta = INFINITY
...
if self.inscope and not self.timeout:

ta_after = max(0, 5-self.elapsed_since_inscope) # this is from an AFTER(5) trigger
else:

ta_after = INFINITY
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return minEx(ta, ta_after)

def outputFnc(self):
if self.state == ’epsilon1454’: # particular state

def __outputFnc(self):
event = DEVSevent(’ENTER’)
event.set_param(’address’, [’_PARENT_’, ’STOPPED’])
event.set_param(’return_address’, [’_PARENT_’, ’CAN_SEEK’])
return event

event = __outputFnc(self) # get the output event
port_name = event.get_param(’address’)[0] # get the port the event should be poked out
del event.get_param(’address’)[0] # dequeue the address list
self.poke(self.ports[port_name], event) # poke the event

...

The next short code listing illustrates a typical coupled DEVS in class TypicalNonterminal.

class TypicalNonterminal(CoupledDEVS):
def __init__(self):

CoupledDEVS.__init__(self)
self.ports = {}
self.ports[’_IN_’] = self.addInPort(’_IN_’)
self.ports[’_PARENT_’] = self.addOutPort(’_PARENT_’)
self.relay=self.addSubModel(RELAY_TypicalNonterminal())
self.A = self.addSubModel(SUBSTATE_CLASS1())
self.B = self.addSubModel(SUBSTATE_CLASS2())
self.relay.ports[’A’] = self.relay.addOutPort(’A’)
self.relay.ports[’B’] = self.relay.addOutPort(’B’)
...
self.connectPorts(self.relay.ports[’A’], self.A.ports[’_IN_’])
self.connectPorts(self.A.ports[’_PARENT_’], self.relay.ports[’_IN_’])
...

def select(self, imm):
min_scope = INFINITY
highest = imm[0]
for devs in imm:

if is_relay(devs):
if devs.scope < min_scope: highest = devs; min_scope = devs.scope

return highest

6.14 Conclusion

This chapter illustrated, in some detail, a method of converting models in the Statechart for-
malism to DEVS. This procedure opens up the possibility for using DEVS as a target specifi-
cation from other, not necessarily discrete event, formalisms. Fine tuning concurrent semantics
becomes extremely easy using the select function. The final DEVS models can be simulated
using pythonDEVS or executed in real-time using pythonDEVS-RT.
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Code Generator

The code generator provides a programming interface to transform a Statechart into a DEVS
model. This chapter will first examine the static representations that the code generator uses. This
includes all classes and static design information. Finally, the execution of the code generator is
examined. This illustrates how Statechart models finally end up as DEVS models.

7.1 Static Representations

The code generator converts valid Statechart models into valid DEVS models usable by the python-
DEVS and pythonDEVS-RT packages. The code generator uses a canonical Statechart data struc-
ture representation. This representation features two different objects which reference each other
in a tree-like structure. A list of the classes used and a brief description of what each represents is
given below.1 SC2DEVS NODE: Basic and Composite states, History nodes1 SC2DEVS REGION: Orthogonal component1 SC2DEVS TRANSITION: Hyperedge relation1 SC2DEVS TRIGGER: A Hyperedge trigger1 SC2DEVS GUARD: A Hyperedge boolean guard expression1 SC2DEVS COUPLED DEVS: A coupled DEVS model1 SC2DEVS ATOMIC DEVS: An atomic DEVS model1 SC2DEVS CONTAINER: A non-terminal Statechart state as an atomic DEVS model1 SC2DEVS TERMINAL: A terminal Statechart state as an atomic DEVS model

The class diagram in Figure 7.1 shows the static relationships between each of the Statechart com-
ponents. Notice that a node can reference another node. Also, nodes and transitions reference each
other. Transitions reference trigger and guard objects. Regions are place holders for orthogonal
components.
The structure of the resulting DEVS models contains only two types of objects, SC2DEVS CONTAINER
and SC2DEVS TERMINAL. These objects form a tree where the terminal models form the leaves of
the tree and the container models are the intermediate nodes. The class diagram for the DEVS mod-
els can be seen in Figure 7.2. Note that every container has, as a member variable, a SC2DEVS RELAY
instance. This instance is the relay.
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SC2DEVS_NODE
+out_transitions: list: [SC2DEVS_TRANSITION] = 
+in_transitions: list: [SC2DEVS_TRANSITION] = 
+type: string = 
+is_default: boolean = 
+enter_action: action = 
+exit_action: action = 
+parent: SC2DEVS_NODE = 
+children: list: [union: NODE, REGION] = 

SC2DEVS_TRANSITION
+in_segments: list: [SC2DEVS_NODE] = 
+out_segments: list: [SC2DEVS_NODE] = 
+action: action = 
+guard: SC2DEVS_GUARD = 
+trigger: SC2DEVS_TRIGGER = 
+broadcast: action = 

SC2DEVS_REGION
+parent: SC2DEVS_NODE = 
+children: list: [SC2DEVS_NODE] = 

SC2DEVS_TRIGGER
+type: union {AFTER:: time: float, EVENT:: event: string} = 

SC2DEVS_GUARD
+type: union {REF:: path: string, EXP:: exp: string} = 

Figure 7.1: Statechart code generator class diagram.

<<>>
SC2DEVS_COUPLED_DEVS

+name: string = 
+parent: SC2DEVS_COUPLED_DEVS = 
+ports: list: [string] = 
+connections: list: [string] = 
+submodels: union: DEVS = 
+<<>> __init__(): 

SC2DEVS_ATOMIC_DEVS
+name: string = 
+ports: list: [string] = 
+states: list: [string]
+delta_internal: dict: {state: action}
+output_function: dict: {state:action}
+parent: SC2DEVS_COUPLED_DEVS
+<<>> add_epsilon(): 
+<<>> add_wait(): 
+<<>> set_time_advance(state:string=,time:int=): 
+<<>> set_trigger(event:string=,inscope:bool=,actions:string=,destination:string=): 
+<<>> set_delta_internal(source:string=,actions:string=,destination:string=): 
+<<>> set_delta_internal_guarded(source:str=,guard:str=,true_state:str=,false_state:str=): 
+<<>> set_output_function(source:str=,broadcast_fnc:str=): 

<<>>
SC2DEVS_CONTAINER

+relay: SC2DEVS_ATOMIC = 
+scope: int = 
+<<>> __init__(node:SC2DEVS_NODE=): 

<<>>
SC2DEVS_TERMINAL

+scope: int = 
+<<>> __init__(node:SC2DEVS_NODE=): 
+<<>> build_terminal(): 
+<<>> handle_ENTER(): 
+<<>> handle_CSQ(): 
+<<>> handle_EXITALL(): 
+<<>> handle_transitions(): 

<<>>
SC2DEVS_RELAY

+scope: int = 
+is_orthogonal = 
+<<>> build_relay(): 
+<<>> hook_alpha_relay(): 
+<<>> handle_transitions(): 
+<<>> hook_default(): 
+<<>> hook_history(): 
+<<>> hook_history_star(): 
+<<>> handle_arbitrary_event(): 
+<<>> handle_ENTER_outscope(): 
+<<>> handle_ENTER_inscope(): 
+<<>> handle_EXITALL(): 
+<<>> handle_CSQ(): 

Figure 7.2: DEVS code generator class diagram.
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The Statechart models built using AToM3 include several unnecessary pieces of information, such
as graphical information. Thus, the code generator starts by rebuilding the Statechart model us-
ing its internal representation, keeping only the relevant model details. Once the canonical repre-
sentation is built, the transformation begins using several passes. A new DEVS representation is
constructed. Finally the DEVS model is output in one file, compatible with pythonDEVS.

7.2 The Execution of the Code Generator

As indicated above, the code generator starts by building a representation of the Statechart model to
be transformed. This representation provides efficient access to important data. Next, the syntax of
the Statechart is verified. If the syntax is not correct, the code generator prints the error messages
and exits. If the syntax is correct, the transformation ensues and the resulting DEVS model is
written to disk.

The top-level sequence of calls are as follows.

1. build statechart

2. verify syntax

3. build devs

4. emit devs

7.2.1 build statechart

build statechart simply takes the AToM3 data-structure and returns the same Statechart, but
expressed using its cannonical Statechart representation. The value returned is an instance of
SC2DEVS NODE which represents the root of the Statechart. All other nodes, transitions, triggers,
etc. are reachable from this root node.

7.2.2 verify syntax

Since the implementation in this thesis uses meta-modelling, all syntactic information is specified
at the meta-model level. This makes syntax verification at the code generation stage unnecessary.
However, this step is included for compatibility with other tools which do not have meta-modeling
capabilities.

7.2.3 build devs

The next step, build devs, builds the final DEVS model. This function consists of one pass
through the Statechart hierarchy and returns the root DEVS model. The root is an instance of
class SC2DEVS CONTAINER. The root is always wrapped by a coupled DEVS in case the root, as
the modeller sees it, consists of orthogonal regions. All sub-models can be accessed from the root
coupled DEVS.
The function does a depth first traversal on the Statechart data-structure. A Statechart is a higraph
and so the depth first traversal must mark nodes as they are discovered so that they are not pro-
cessed again. If a node is a basic state, a SC2DEVS TERMINAL is built. Otherwise, a SC2DEVS CONTAINER
is built, and the function recurses on all the children.
The SC2DEVS TERMINAL and SC2DEVS RELAY classes each basically have one large constructor.
The constructor is separated into several smaller methods, each of which builds a particular hook
or adds a response to a particular event.

The methods that start with hook are sequences that start at an epsilon state, ε, such that ta � ε 
Q� 0.
They provide a convenient way to latch into a sequence which performs reusable actions. The
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sequence will performs these actions then attempt to resume stability by ending finishing at either
Σ or Γ. A
Methods that start with handle build a response to a particular event. These sequences always start
at one of the dequeue states εΣ or εΓ. They, too, attempt to resume stability (finish the macro-step)
by ending their sequence at one of Σ or Γ.
Transitions are built as they are encountered. The triggers and guards are built as needed. For
example, a transition which is triggered by event e will be transformed such that the existence of
the e event is checked in the delta internal function for the inscope dequeue state, εΣ. This is where
history nodes are processed. A history node is actually a segment of a transition. Thus, if a history
nodes is the destination of a particular transition, that transition sequence will then latch onto the
history hook sequence.

7.2.4 emit devs

Finally, the emit function writes the DEVS model to a file which is readable by the pythonDEVS
packages. The final emitted DEVS model may then be combined with other DEVS models or with
the Generator interface.

The model on its own cannot be executed. The modeller must pass an instance of the root coupled
DEVS to an Executor instance for the model to be executed in real-time. This also allows the
modeller to use the root Statechart-DEVS model as a sub-model of some other coupled DEVS.

B
The end of a sequence depends on which sequence is being executed.
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Case Studies

The chapter discusses simple models built using the Statechart meta-model for AToM3 and their
subsequent execution using pythonDEVS-RT. Each model is an engine for one or more client
modules. The client sends events to the engine. The engine will then return events to the client. In
this way, thin clients are built, and the core dynamics of the total application are modelled using
Statecharts.

8.1 Crosswalk

This application features a graphical client which emulates a pedestrian crosswalk and the State-
chart which models its dynamics. The graphical interface is seen from the pedestrian’s perspective:
there is a traffic light and a crosswalk button (which shortens the time of a red light). There are also
buttons that a police officer may use. These buttons include an interrupt which causes the traffic
light to flash yellow and an on/off switch.
The Statechart which models the dynamics of this system can be seen in Figure 8.1. The states’
enter and exit are visible from this diagram. Thus, these actions have been sumarized in Table 8.1.
Note that the exit actions have not been specified because no state has an exit action.

The class diagram of the entire system is illustrated in Figure 8.2. From the class diagram it is easy
to see how both CrosswalkGUI and the Executor class depend on the SYNC object. Events are
poked from the graphical client to the ROOT DEVS. Then the client signals the SYNC object which
wakes up the Executor to handle the event. The Statechart model will use send to relay events

Table 8.1: Crosswalk states’ enter actions
State Enter action
RED GUI.send(’RED’)
GREEN GUI.send(’GREEN’)
YELLOW GUI.send(’YELLOW’)
OFF GUI.send(’DEAD’)
YELLOW ON GUI.send(’YELLOW’)
YELLOW OFF GUI.send(’DEAD’)
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Figure 8.1: The Statechart crosswalk model.
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Figure 8.2: The crosswalk application class diagram.

back to the graphical client.
A screenshot of the graphical client can be seen in Figure 8.3.

8.2 An MP3 Player

This is a simple application capable of playing audio files (usually MP3). The application has a
list of requirements which must be considered when building the Statechart model. The list of
requirements is as follows.1 Action requirements

1. Load: Load an MP3 file when the application starts.

2. Play: Play the current, loaded mp3 file. Update current time.

3. Pause: If Playing, pause playing. Time stops.

4. Stop: Stop playing: Time reset to 0:0.

5. Seek forward: If playing or paused, move time forward faster. If the end of the track is
reached, stop playback and set time to 0:0.

6. Seek reverse: If playing or paused, move time backwards, quickly. If the beginning of
the track is reached, stop playback and set time to 0:0.

7. Off: Stops playing, closes environment.1 Display requirements

1. A button for each ACTION

2. File: The current loaded file

3. Time: The current time (mins:secs)
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Figure 8.3: The crosswalk graphical client.

4. Total: The length in time of the current track (mins:secs)

There also exists a MP3AudioDriver package which the Statechart model can use to gain access
to an MP3 decoder and audio devices. The package provides simple functionality such as play,
stop, pause etc. For more details, refer to the Driver class in Figure 8.4.
In total, there are three layers to the application. Figure 8.5 illustrates each of these layers. The
high level layers are on the top and the low level layers are on the bottom.

The dynamics of the control layer are modelled using the Statechart formalism. The Statechart
used for this application can be seen in Figure 8.7. Since the enter and exit actions are not visible
from the Statechart diagram, they have been summarized in Table 8.2. Note that the exit actions
are not specified because no state in the model has an exit action. Figure 8.6 shows the appearance
of the graphical windows which is created when the application starts. The buttons correspond to
the action requirements and the left text area corresponds to the display requirements.

The seeking functionality uses careful synchronization between orthogonal regions. This ensures
that when the Display region finishes seeking, the Audio region may carry out the seek operation.
Verification of each requirement is simplified by referring to the Statechart model. One can use a
coverability graph to determine the sequence of actions required for a particular state to be reached.
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Figure 8.4: The MP3 application class diagram.

Figure 8.5: The MP3 application’s layers.

Figure 8.6: The MP3 application’s graphical appearance.
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Figure 8.7: The MP3 application’s Statechart control dynamics.
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Table 8.2: DEVSamp states’ enter actions
State Enter action
SEEKING if DRIVER.is playing(): DRIVER.pause()
PLAYING DRIVER.play()
PAUSED DRIVER.pause()
STOPPED DRIVER.stop()
DISPLAY NOTHING GUI.send(EVENT("DISPLAY", [("info", "LOAD FILE"),

("state", ""), ("time", (0,0))]))
DISPLAY STOPPED filename = self.event.get param(’filename’);

GUI.send(EVENT("DISPLAY", [("time",
(0,0)),("info", filename),("state", "STOPPED")]));
GUI.send(EVENT("BUTTON", [("playpause", "PLAY")]))

SLOW PLAY GUI.send(EVENT("DISPLAY", [("state",
"PLAYING")])); GUI.send(EVENT("BUTTON",
[("playpause", "PAUSE")]))

SLOW PAUSED secs = round(DRIVER.current time()/1000, 0); mins =
secs/60; secs = secs%60; GUI.send(EVENT("DISPLAY",
[("state", "PAUSED"), ("time", (mins, secs))]));
GUI.send(EVENT("BUTTON", [("playpause", "PLAY")]))

PASSED FF seek = DRIVER.current time(); total time =
DRIVER.total time(); GUI.send(EVENT("DISPLAY",
[("state", "FAST FORWARD")]))

PASSED RW seek = DRIVER.current time();
GUI.send(EVENT("DISPLAY", [("state", "REWIND")]))



9
Conclusions

Conclusions will now be made regarding the topics discussed and contributions made in this thesis
document. These topics and contributions are as follows.1 The Statecharts to DEVS transformation1 The Statechart meta-model1 DEVS code generation from Statechart model

9.1 Statecharts to DEVS Transformation

Transforming Statecharts to DEVS can provide an easy way to make large changes in semantics.
It also allows for combining with other formalisms which use DEVS as a target specification.

9.1.1 Semantic Variations

This transformation can be a useful way of fine tuning the operational semantics of the high level
Statechart models. One example of this involves specifying the priorities of transitions in conflict.
These conflicts cannot be determined by looking at the static model. The conflicts occur when
the model is executed. The select function is the perfect mechanism for dealing with conflicting
Statechart transitions.

Deciding between inside transitions first vs. outside transitions first semantics is the most intuitive
time to use some conflict resolution mechanism. For example, if event e occurs in the Statechart in

Figure 9.1: Potentially conflicting transitions.
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Figure 9.1 and the current state is A, the new current state could either be B or C. Some semantics
specify that inside transitions should take priority over outside transitions, while other semantics
dictate exactly the opposite. The semantics used depends on the end usage and it would be nice to
be able to have control over this option.

If the depth of each node is known then making inside vs. outside decisions is easy. The number
after the comma for each state in Figure 9.1 indicates the depth of the node. For outside transitions
first the select function chooses the node with the smaller depth. For inside transitions first the
select function chooses the node with the larger depth. For example, in Figure 9.1 an outside
transition first scheme would choose C as the new current state since,

depth � C 
×Ö depth � A 
 *,+ T RUE 5
Where the select function is as follows. Note that � A � C " is the input set, since A and C are the
atomic models in conflict.

select �I� A � C "w
Ø� b
C if depth � C 
×Ö depth � A 

A otherwise

9.1.2 DEVS as a Target Specification

Consider models X1 � X2 �(5(5(5^� Xn. Each Xi model is specified in a unique formalism. If each can be
converted to an equivalent DEVS model, X 4i , then each can be bound into one coupled DEVS, X .
Each X 4i may communicate anyway that the modeller wishes.
This is not restricted to discrete event formalisms. There is work being done to convert Ordinary
Differential Equations to DEVS [11]. This gives way to a hybrid environment in which a particular
physical system may be modelled using a continuous or discrete event formalism. More work is
needed in this area.

9.2 The Statechart Meta-model

A Statechart meta-model was presented with several syntactic constraints. This meta-model imme-
diately enables automatic generation of an environment in which syntactically correct Statechart
models can be built.

9.3 DEVS code generation

A code generator was also presented. It takes as input a Statechart specification and automati-
cally outputs a DEVS model. The DEVS models output can be simulated using the pythonDEVS
simulation package or they can be executed in real-time using pythonDEVS-RT.

9.4 Final Remarks

Statecharts are a very usable formalism for specifying the dynamics of physical systems. They are
widely used in software systems and electronics design. Coupled with a transformer to DEVS and
a real-time execution environment, Statecharts can be used in many different instances. They can
be injected almost anywhere control logic is needed.
More research is needed in the area of multi-formalism modelling. This work will no doubt lead
to interesting advances in modeling and simulation.



A
Notation

Here, a notation and framework will be introduced which enriches and simplifies the DEVS for-
malism and simplifies model descriptions. This framework applies to the input and output sets, X
and Y , respectively. It would be nice if each DEVS, atomic or coupled, had ports through which
events could enter or exit that particular model. The input-to-output translation function, Z, would
then connect ports together. The connections could be thought of as channels where events could
flow.
In order to define DEVS with ports, the input and output sets, X and Y are defined as structured
sets. These structured sets use named coordinates and an operator to access information more
easily. This framework was first developed by Jean Sébastien and is extended below.

Structured Set - Definition 1 Let C be the set of valid coordinates. This can be thought of as the
set of valid port names. Let n a 0 and U n � Cn be the set of all valid n-tuples of coordinates:

Un ��ÙO� c1 � c2 �(5(5(5N� cn 
Ú ci
� C 6 ci � c j + i � j � i � j � � 1 � 2 �(5(5(5N� n "ÚÛ

Let V � V1 � V2 �Ü5(5(5U� Vn, a cartisian product of n sets of values where /0 /� Vi �0T i. V can also be
written as:

V �	�K� v1 � v2 �(5(5(5^� vn 
Ú vi
� Vi � i � 1 � 2 �(5(5(5)� n "

An element of U n is an n-tuple or coordinates:

u �F� c1 � c2 �(5(5(5)� cn 

Finally, let S be a structured set with respect to V if it is of the form S �P� u "Ý� V , or:

S �	�K�(� c1 � c2 �(5(5(5)� cn 
K�N� v1 � v2 �(5(5(5^� vn 
N
Ú vi
� Vi � i � 1 � 2 �(5(5(5)� n "

Projection Operator - Definition 2 The projection operator, ”.”, is used to associate a coordi-
nate from Un with a value from Vi for some i. The projection operator is a binary operator defined
as follows. 5 : S � C �O� Þ nß

i � 1

Vi à �&� /0 "
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The projection operator can be used on an element s � S, s �á�(� c1 � c2 �(5(5(5^� cn 
k�N� v1 � v2 �(5(5(5^� vn 
(
 , as
follows.

s 5 c � b
vi if â i � � 1 � 2 �(5(5(5)� n "# c � ci� /0 " otherwise

With these definitions, DEVS with ports can now be constructed. X and Y are defined as structured
sets. The named coordinate set, U n, is the set of named ports and the sets of values, Vi, are the sets
of events associated with a particular port.

Event Structured Set - Definition 3 All events in a DEVS converted from a Statechart model are
structured sets. The coordinate set used is a 4-tuple.� Ψ � ∆ � β � H 

Ψ is a string which is the name of the event. ∆ is the address field. Note that if X is the set of all
port names then ∆ � 2X and ∆ is ordered. β � � 0 � 1 " indicates if the event should be broadcast.
H � � 0 � 1 " indicates if the α event should enter a history state or not.

Events - Notation 1 e E M G is a short hand notation for an element of a structured set. M is a list
of expressions of the form a � b. e E a1 � b1 � a2 � b2 �(5(5(5^� an � bn G is short for the following.�^� Ψ � a1 � a2 �(5(5(5^� an 
ã�N� ”e” � b1 � b2 �(5(5(5^� bn 
(
 where bi

� Vi

The same notation given anonymously as E a1 � b1 � a2 � b2 �(5(5(5N� an � bn G is meant to indicate the
same element of a structured set without the Ψ field.�(� a1 � a2 �(5(5(5^� an 
K�N� b1 � b2 �(5(5(5^� bn 
(
 where bi

� Vi

Operators - Definition 2 The � and À operators are unary operators and are defined on ordered
sets. � returns the first element in the list and À returns the list without the first element or /0
otherwise. ��� s1 � s2 �(5(5(5^� sn " � b

s1 if n ¾ 0� /0 " otherwise

ÀÜ� s1 � s2 �(5(5(5^� sn " � b � s2 �(5(5(5^� sn 
 if n ¾ 1� /0 " otherwise

The ä operator is a binary operator which returns a new list with the left hand list at the front of
the new list and the right hand list at the end of the list. The operator is used as follows.

� a1 � a2 �(5(5(5^� an "×äå� b1 � b2 �(5(5(5)� bm " � æççè ççé
� /0 " if n � 0 6 m � 0� a1 � a2 �(5(5(5N� an " otherwise if m � 0� b1 � b2 �(5(5(5N� bm " otherwise if n � 0� a1 � a2 �(5(5(5N� an � b1 � b2 �(5(5(5^� bm " otherwise

This notation makes it very easy to define the λ function. For example, let e be an event to be
broadcast and with an address of �'Cê�ICê� k 
 . e is written as:

e E ∆ ���'Cê�IC}� k 
)� β � 1 G
A λ function should now put e on the output port indicated by the first element in the ordered e 5 ∆
set.

λ � s 
��ÃE0� e 5 ∆ � e E ∆ �ÁÀ e 5 ∆ � β � e 5 β G(G



B
The Statecharts-AToM3 Environment

B.1 Introduction

This appendix explains the usage of the Statecharts to DEVS environment in AToM3. It discusses
how to build graphical Statechart models, how to transform a Statechart to a DEVS model and
then how to execute the DEVS models in real-time.

B.2 Buttons Overview

When the environment starts you should see the screen in Figure B.1. The left-hand toolbar features
buttons which are specific to Statecharts while the top toolbar provides more general functions. The
following sub-sections explain the usage of each of the Statechart buttons. For more information
on the top toolbar, please refer to the AToM3 website at http://atom3.cs.mcgill.ca.

B.2.1 New Composite, Basic, History, Orthogonal and Hyperedge Buttons

These buttons do exactly what their names imply. For example, clicking on New Composite then
clicking on the canvas will create a new composite state. Note that while building Statechart mod-
els you will almost never need to use the New Hyperedge button. This is present only for the
purpose of building Statechart graph grammars.

B.2.2 New visual settings Button

This button draws a large square on the canvas. When edited (ie. by clicking the Edit entity
button then on the visual settings object) the modeler will be presented with a series of visual
options in a dialog box. This dialog can be seen in Figure B.2. Each of the options change visual
settings based on their descriptive names.

B.2.3 To DEVS Button

The To DEVS button converts a Statechart model to an equivalent DEVS model. The output is
written in python and is for usage with the pythonDEVS-RT package. The output file containing
the pythonDEVS code is set using the global model attribute devs output dir. The DEVS model
which is output is a subclass of CoupledDEVS. This represents the root of the Statechart. It is the
responsibility of the modeler to combine this model with the Executor and any other desired
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Figure B.1: The starting screen.

Figure B.2: The visual settings dialog.
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Figure B.3: The connect dialog.

packages to construct a working application. This will be discussed in more detail.

B.3 Operational Overview

Now that you know how to put basic components on the canvas, a discussion on how to connect
them in various ways, is given. The following sub-sections discuss simple operations and how to
perform them.

B.3.1 Connecting States with a Hyperedge

In order to connect two states with a Hyperedge, first click the connect button located on the
top toolbar. Next click the source state and then the destination state. If the source state is of type
Basic, then the Hyperedge will be drawn automatically. If the source state is of type Composite
The modeler will be presented with another dialog as seen in Figure B.3.

Choosing the Hyperedge option will draw the desired connection between the states. If you wish
to create an n-ary Hyperedge, simply perform this operation again. However, first click the middle
segment of the transition as the source, and the desired state as the destination.

B.3.2 Nesting States

Nesting a state within a Composite state is very similar to connecting them via a Hyperedge.
However, when presented with the connection dialog, choose the contains option. This will nest
the destination state within the source state. The container state will automatically resize to envelop
everything within itself.

B.3.3 Destroying a contains Relation

If you wish to destroy the contains relation between two states, you should use the visual settings
component. Put a visual settings on the canvas, and edit it. Set the contains links visible
option and click OK. Now you will be able to see the contains links. Simply click the Delete button
on the top toolbar then on the link you wish to delete.

B.3.4 Adding History

To add a history state, simply add the history state anywhere on the canvas, then nest it within
the desired composite state. You can connect hyperedges to the history state, but outgoing history
hyperedges are not supported in this version. Remember that the history state is not a state at all.
Rather it represents a section of a transition.

B.3.5 Editing States

Editing states requires clicking the edit button, then on the component to be edited. When editing
a state, the modeler will be presented with the dialog in Figure B.4. The options presented in this
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Figure B.4: The edit state dialog.

dialog are explained in table B.1.

Table B.1: Options for the state editing dialog.
Option Description
name The name of the state.
is default Indicates if the state is default.
visible Will hide/reveal the interior of a Composite

state.
auto adjust Should always be set.
enter action The action to be executed upon entering the

state.
exit action The action to be executed upon exiting the

state.

B.3.6 Creating n-ary Transitions

To create a transition with more than one source state and/or more than one destination state
perform the following steps. To create another source state simply click on the source state, then
on the transition. A link will be created. To add a destination state click on the transition, then on
the destination state and a link will be created. Recall that these hyperedges move the system from
a state, x, which is the product of x 4 basic states where x 4k¾ 1, to a new state y which is the product
of y 4 basic states where y 4 ¾ 1. This means that you must ensure that each individual source and
destination state resides in a separate orthogonal component.

B.3.7 Editing Transitions

Editing transitions requires clicking the edit button, then on said transition. The dialog in Figure
B.5 is presented when editing transitions. Each option is explained in Table B.5.
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Figure B.5: The edit transition dialog.

Table B.2: Options for the transition editing dialog.
Option Description
trigger The transition trigger. See section B.3.8 for

more information.
guard Valid python boolean expression.
action The action to be executed when the transition

fires.
broadcast Used to broadcast or narrowcast events. See

section B.3.7 for more information.
broadcast to Deprecated.
name Deprecated.
display The text to be displayed for the transition.

B.3.8 Broadcasting

The broadcast field of the transition edit dialog is used to narrowcast and broadcast events. The
modeler can write python code to construct an event in a variable, x. Then the last statement should
be return x which will indicate that x is the instance to be broad or narrowcasted.

The x instance should somehow be an instance of RT DEVS.EVENT (you can also use RT DEVS.DEVSevent
which is an alias for the same class). This object has special methods for setting and getting event
fields. These methods are get param(name) which returns the field value associated with name.
The method set param(name, value) sets the field name to value.

Any parameters may be added to an event, but there are some special parameters that the modeler
should know. These special parameters are listed in table B.3.
Note that the modeler may use both the address parameter to narrowcast an event coupled with
broadcasting. The effect is that once the event reaches its destination via the address parameter,
it will then be broadcast only within the destination state.

For example, consider the statechart model in Figure B.6. The transition from state PASSED FF to
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Table B.3: Special Event Fields.
Field Description
broadcast "TRUE" or "FALSE". Indicates if the event

is to be broadcasted or not. If not specified,
”FALSE” is implied.

address List of port names. The list is used by DEVS
atomic relays to route events to be narrow-
casted. The special name " PARENT " is used
to indicate the containing state. The name
" ROOT " is a direct route to the " ROOT " out-
port of the root coupled DEVS.

WAIT SEEK DONE generates a SEEK event. This indicates synchronization between the Audio com-
ponent and the Display component. Note that the only transition which responds to the SEEK event
is that which emanates from the SEEKING state. Thus, broadcasting the event is not needed, since
its exact route is known. Thus in order to route the event from its place of origin to the SEEKING
state, the address parameter should be specified as [" PARENT ", " PARENT ", " PARENT ",
" PARENT ", "Audio", "SEEKING"].

Notice that this forces the event to travel from PASSED FF to TIME PASSED to TIME to Display to
the ROOT to Audio to SEEKING. Note that if you wish an event to be heard without broadcasting
you should narrowcast it to the source state of the desired transition.

B.3.9 Triggers

Triggers can either be a string indicating the name of the trigger or an after expression. To
specify an event name, simply enter it without quotes. A timed trigger has the following syntax:
AFTER(exp) where exp is a valid python expression evaluating to a number. Be sure to enter
AFTER in capitals.

B.4 Executing a Generated DEVS Model

A pythonDEVS model on its own will not do anything. It must be linked with an Executor
in order to put it into motion. This is as simple as passing an instance of your model to the
RT DEVS.Executor constructor. Once you have constructed an Executor instance it can be exe-
cuted by calling the execute() method. This will execute your Statechart model in real-time.

B.5 Building Larger Applications

In this section, the example in Figure B.7 will be used. This Statechart is meant to be the control
layer between the MP3 decoder/audio hardware and the player’s graphical interface (See Figure
B.8. The MP3 decoder and audio hardware as well as the graphical interface are implemented as
DEVS components themselves. This makes it very easy to combine generated Statechart models
with these DEVS models. All the files used in the application are listed in table B.4.

Each of the main components or globally scoped variables may be needed in various places thus
it is best to instantiate them in another file, config.py, so they may be included later using the
import statement.

import DEVS_DEVSamp, DEVSampGUI, MP3AudioDriver
GUI = DEVSampGUI.DEVSampGUI()
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Figure B.6: An MP3 Player.
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Figure B.7: The MP3 Player Control Layer Statechart.
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Figure B.8: Application layers.
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Table B.4: Other files used in the DEVSamp application.
File Description
main.py The file which glues everything together.
config.py Contains globals.
MP3AudioDriver.py MP3 decoder and audio hardware interface.
DEVSampGUI.py The application’s graphical interface.
DEVS DEVSamp.py The Statechart pythonDEVS model.

MP3 Decoder
Audio Hardware

IN

OUT

Control
Layer

Graphical
Interface

OUT

ROOT

IN

IN

Figure B.9: Port connections among the high level components.

DEVS = DEVS_DEVSamp.ROOT()
DRIVER = MP3AudioDriver.Driver()

The three main components in the application are each DEVS objects. Thus, they can be coupled
within a Main coupled DEVS. This will be written in the main.py file along with the code to
execute() the Main model.

import config, RT_DEVS
class Main(RT_DEVS.CoupledDEVS):
def __init__(self):

RT_DEVS.CoupledDEVS.__init__(self)
self.addSubModel(config.GUI)
self.addSubModel(config.DEVS)
self.addSubModel(config.DRIVER)
self.connectPorts(config.GUI.ports[’OUT’], config.DEVS.ports[’_IN_’])
self.connectPorts(config.DRIVER.ports[’OUT’], config.DEVS.ports[’_IN_’])
self.connectPorts(config.DEVS.ports[’_ROOT_’], config.GUI.ports[’IN’])
self.connectPorts(config.DEVS.ports[’_ROOT_’], config.DRIVER.ports[’IN’])

E = RT_DEVS.Executor(Main())
E.execute()

Each connection is now visible in the high level diagram in Figure B.9. Notice that the ROOT port
is connected to the IN ports of both the graphical and the driver components. It would probably
be better plug the ROOT port into an atomic DEVS which filters the events so they are not sent
to the adjacent models when not needed. This is a non-crucial optimization. Optimizations will be
discussed further in the following sections.

Also notice that it is easy to instantiate the three high-level components within the config.py file.
This makes it easy to access them in various parts of the program. However, beware of breaking



B.5 Building Larger Applications 109

the compositional structure of the DEVS semantics. It is easy to import the driver instance at any
point of the program and simply call some of its methods. However, if the DEVS model is meant
to be executed on a network or in low-level electronic components, you may not have this luxury.
You should always use events to communicate between components.

B.5.1 The IN Port

The most important port of the top-level DEVS generated from a Statechart is IN . This is only
way to ensure events are heard within the walls of the Statechart model. Remember that events
pushed through the IN port can use the address parameter to provide narrowcasting. Otherwise,
you may wish to set the broadcast parameter to "TRUE" which will broadcast the event across
the entire Statechart.

B.5.2 The PARENT Port

This port refers to the containing composite Statechart state or orthogonal component. The " PARENT "
port will never be routed to a DEVS representing a basic state.

B.5.3 Substate Ports

There exist an output port for each substate of a particular composite Statechart state. The output
port x will connect to the input port IN of the substate (or orthogonal region) named x.

B.5.4 The ROOT Port

An important port when linking top-level DEVS components is ROOT . You may want an output
for a particular transition to be sent to one of the adjacent top-level components. Instead of fully
specifying the path of the address parameter, you can simply set it to ROOT . This is a special
port which pushes an event directly to the ROOT output port of the coupled DEVS representing
the root of the Statechart. This is merely an optimization. That is, you can also specify the full
address path, if desired.

B.5.5 Dynamically Changing an Event Path

This is made possible by intercepting a particular event, modifying its address parameter, then
ensuring its output. However, this is the equivalent to responding to an event and outputting another
event which happens to be the same as trigger event and has a different address.

B.5.6 The Top-level DEVS Component Interfaces

The modeler must have a full working knowledge of the DEVS components they are using in their
application. In this case, the other top-level components are MP3AudioDriver and DEVSampGUI. A
high-level description of their semantics is enough to allow the modeler to successfully interface
them in an application.

The MP3AudioDriver Interface

The class to instantiate is MP3AudioDriver.Driver. This atomic model has one input port IN and
one output port OUT. Table B.5 is a description of the events which may be passed to the driver to
change its state.

Table B.6 is a description of events which may come out of the OUT port. A brief description is
also given, so the modeler may interpret the event’s meaning and rough timing.
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Table B.5: Reactive Events for MP3AudioDriver.
Event Name Parameters Description
LOADFILE filename:The

name of the file to
be loaded.

Loads an MP3 file.

PLAY Starts playback from the current
file pointer.

PAUSE Stops playback.
STOP Stops playback and sets the file

pointer to the beginning of the
file.

SEEK offset ms: The
driver will set
the file pointer
such that the cur-
rent time will be
offset ms.

Move the file pointer freely.
If offset ms is less than 0,
the driver will move to a
STOPPED state. If offset ms
is greater than the total track
time, the driver will output an
END OF TRACK event.

CLOSE Closes the driver.

Figure B.10: The DEVSamp Graphical Interface.

The DEVSampGUI Interface

The class to be instantiated is DEVSampGUI.DEVSampGUI which is a sub-class of RT DEVS.AtomicDEVS.
The appearance of this component can be seen in Figure B.10. Notice that, each of the widgets
used are labeled in red. Table B.7 describes the possible inputs you may give to this component.
Table B.8 lists all the possible outputs from this component. Each output basically corresponds
to a button click. Note that the parameters are not specified because each event has the same pa-
rameters. These parameters are broadcast which is set to "TRUE" and address which is set to
[].

B.6 Simple Examples

Some simple Statecharts will be examined as well as how to build them in the Statechart modeling
environment. The first example is seen in Figure B.11.

Start up the AToM3 that came with the Statechart package you downloaded. Statecharts will be the

after(1)
A B

Figure B.11: A Simple Statechart.
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Table B.6: Output Events for MP3AudioDriver.
Event Name Parameters Description
PLAYING PULSE TIME offset ms:The

current time in
ms. broadcast:
"TRUE". address:
[].

Once the driver is put into the
playing state, these events are
pulsed out approximately every
0.2 s in order to indicate the cur-
rent time.

LOADING PULSE TIME total ms:The
total track time in
ms. broadcast:
"TRUE". address:
[].

This event is only output right
after receiving a LOADFILE
event. It indicates the total time
of the track just loaded.

END OF TRACK Indicates the end of the current
track has been reached. Can be
output while playing or seeking.

Table B.7: Inputs to DEVSampGUI.
Event Name Parameters Description
DISPLAY time:A tuple of the

form (mins,secs)
[7]. info: A
string [8]. state:
A string which
should indicate the
state of the player
[9]. playpause: A
string indicating
which to write on
the PLAY/PAUSE
button.

Sets the various display widgets
on the graphical interface.

default meta-model loaded. Next put two Basic states on the canvas. Name the first A, the other B
and make sure that A is the default state. Create a transition between the two of them and set the
trigger as X . You can also set the display as X . Your statechart should now look like the one in
figure B.12. Recall that there is an implicit composite state enveloping this model, named ROOT.
Next specify some enter/exit actions for both A and B which simply print something. For example
the edit dialog for A should look something like the one if Figure B.13. You can do the same for
the transition from A to B. Its edit dialog should look something like the one in figure B.14.

Now, this Statechart model will be transformed to a DEVS model. First the output directory must
be specified. Select ”Edit Model Attributes” from the ”Model” menu. Specify a full physical path
filename, of a path relative to the current directory in the space for ”devs output file”. Finally, click
the ”To DEVS” button on the left toolbar. You will see some output on stdout which should look
something like the following.

START TRANSFORMATION
ABOUT TO BUILD STATECHART
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A

B

AFTER(1)

Figure B.12: The Statechart in AToM3.

Figure B.13: A’s edit dialog in AToM3.

Figure B.14: Transition dialog in AToM3.
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Table B.8: DEVSampGUI Outputs.
Event Name Description
PLAY Button 1 click.
STOP Button 4 click.
LOAD Button 3 click.
QUIT Button 6 click.
RW DOWN Button 2 down.
RW UP Button 2 up.
FF DOWN Button 5 down.
FF UP Button 5 up.

ABOUT TO VERIFY SYNTAX
ABOUT TO BUILD DEVS
ABOUT TO EMIT DEVS
END TRANSFORMATION

This means everything went according to plan. If you see any python errors, then something went
wrong and you must retrace your steps.
You can now examine the output file, in this case THEMODEL.py, for the presence of the Statechart
model as a DEVS model. In the same directory as the output file you should place the RT DEVS.py
package. Finally, a main.py file is constructed where everything is glued together. The main.py
file should look something like the following.

from RT_DEVS import Executor
from THEMODEL import ROOT
Executor(ROOT()).execute()

Now execute the main file using the command python main.py. This will start by producing the
following output.

ENTER A

Then after about a second, you will see the rest of the output.

TRANSITION FROM A TO B
EXIT A
ENTER B

Now suppose a small modification is made to the original Statechart design (Figure B.15). The
transition from A to B is now triggered by the event X . The transition edit dialog should looking
something like the one in figure B.17. Your Statechart should now look like the one in Figure B.17.
Again, click the ”To DEVS” button and the Statechart model has been transformed to a DEVS
model. However, if an attempt is made to execute this model, state A will never be exited. This
is due to the fact that an X event is never generated. In order to generate an X event, another
AtomicDEVS model could be contructed which would output an event to the ROOT Statechart.
This model can be placed into the main.py specified below.
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X
A B

Figure B.15: The Simple Statechart slightly modified.

A

B

X

Figure B.16: The modified Statechart in AToM3.

Figure B.17: Modified transition dialog in AToM3.
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Notice that after 5 seconds the event X is output with a zero length address parameter and a set
broadcast parameter. This event is poked out the OUT port. Thus, there must be a coupled DEVS
which connects this OUT port to the IN port of the ROOT. This coupled DEVS will be called Main
and should also be placed in the main.py file specified below.

The final main.py file looks like the following.

from RT_DEVS import Executor,AtomicDEVS,CoupledDEVS,INFINITY,EVENT
from THEMODEL import ROOT

class Generator(AtomicDEVS):
def __init__(self):

AtomicDEVS.__init__(self)
self.states = {"A":1,"B":2}
self.ports = {"OUT":self.addOutPort("OUT")}
self.state = self.states["A"]

def timeAdvance(self):
if self.state == self.states["A"]: return 5
else: return INFINITY

def outputFnc(self):
if self.state == self.states["A"]:

self.poke(self.ports["OUT"], EVENT("X", [("address", []), ("broadcast", "TRUE")]))
def intTransition(self):

if self.state == self.states["A"]: return self.states["B"]
else: return self.state

class Main(CoupledDEVS):
def __init__(self):

CoupledDEVS.__init__(self)
G = self.addSubModel(Generator())
R = self.addSubModel(ROOT())
self.connectPorts(G.ports["OUT"], R.ports["_IN_"])

Executor(Main()).execute()

Notice that instead of executing the ROOT model, the Main model is executed.
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