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Abstract

Sketching is an important natural activity that
helps people to quickly write their ideas before they
forget them. Most current modeling tools constrain
users to having to use traditional GUIs to draw
diagrams (i.e. buttons, drop-down lists, etc.).

TSS is a sketch-based tool for drawing Statecharts
diagrams. Its on-line recognition engine interprets
diagrams as they are drawn. This paper presents the
first iteration in the development of this tool. The
motivation behind developing TSS is to explore the
main challenges that are faced when developing a
sketch-based modeling tool. Our research’s long-term
goal is to expand AToM3 to have a sketch-based meta-
modeling tool.

1. Introduction

People tend to sketch their ideas before
implementing them or even before using any
computer-based tool. Sketching help us to brainstorm.
Studies have shown that when people sketch freely,
after a new idea is born most likely other ideas will
follow. Vinod Goel [3] ran an experiment asking a
group of designers to solve design problems using
sketching with pen and paper, and asked another
group of designers to solve problems using a
computer-based drawing tool. He found that designers
who used drawing tools spent most of their effort on
working on the same idea. On the other hand, the
group who sketched their ideas on paper were able to
think more creatively.

Sketching is an important aspect of the modeling
process. However, paper-based sketching lacks
interactivity which makes it hard to modify diagrams
as the model evolves [7]. Thus, modelers usually
sketch their design on paper first and then they use a

computer-based tool to refine their original model and
possibly generate a code from it1.

My project aims at combining these two steps
together in one tool. The idea is that as the modeler
sketches their diagram using the tool, the diagram is
automatically recognized. This approach will save
modelers the time of entering their sketches into a
computer-based tool.

The Modelling, Simulation, and Design Lab of the
School of Computer Science at McGill University is
developing a Tool for Multi-formalism and Meta-
Modelling called ATOM3 [4]. The goal of my research
is to extend AToM3 to give modelers the flexibility of
either sketching their diagrams, or using the
traditional GUIs and their traditional interaction
behavior.

As a proof of concept, I developed TSS (Tool for
Sketching Statecharts). TSS is simply a prototype to
demonstrate how diagrams can be recognized and
processed. The Statecharts formalism [5] was chosen
because it is simple enough to reveal the challenges of
developing a sketch-based modeling tool without
adding too much complexity to the problem. This
paper describes TSS and outlines the limitations that
can be faced when developing a sketch-based
modeling tool.

2. Related Work

There are some sketch-based applications in areas
like User Interface Design, Website Design, and
Architecture. SILK [7] is a sketch-based tool for the
early stages of user interface design. The idea is that
the user interface designers would sketch their design
using a stylus and it will be immediately ready for
testing. A similar concept applies to DENIM [8],
which is a sketch-based tool for website design.

1 More studies need to be done to confirm this work model.
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In the area of sketch-based modeling tools, there
are some tools that support UML diagrams. Tahuti
[10] is a tool that allows sketching UML Class
Diagrams. It recognizes multi-stroke objects by
examining their geometric properties rather than
monitoring the way they were drawn. There is another
tool developed at Queen’s University (Kingston, ON)
for sketching UML’s Class Diagrams, Use Case
Diagrams, and Sequence Diagrams [11]. There are
also few commercial sketch-based UML tools like
Ideogramic UML [12] and Tablet UML [13]. In
addition to UML-related tools, there is also Sim-U-
Sketch [9], which is an experimental sketch-based
interface for MatLab’s SimuLink.

Our approach is different in that it supports sketch-
based meta-modelling and not just built-in
formalisms.

3. Introduction to Statecharts

In the late 1980s, David Harel introduced
Statecharts [5], which is an extension of State
Transition Diagram. In 1997, Harel’s Statecharts was
adopted by UML for describing reactive behavior.

Harel introduced two new types of states in his new
formalism: Composite and Orthogonal states.
Composite states allow us to define hierarchy and thus
allow viewing the system at different level of
abstractions.  On the other hand, orthogonal states add
concurrency to the system, which can dramatically
simplify a diagram. Harel also introduced the concept
of broadcasting a message in an orthogonal state.

Unfortunately, in this first prototype of TSS, I am
not supporting composite and orthogonal states. This
is because I wanted to focus on the main challenges in
developing a sketch-based application. Nevertheless,
the second iteration of TSS will definitely support
hierarchy and concurrency.

4. Implementation Details

TSS was written in Java (JDK 1.5) using SATIN’s
[1] framework. Although JDK 1.5 was used, TSS can
be run on any machine that has JDK 1.4 or higher
(this is a SATIN’s requirement.) This is due to the fact
that I did not use any of the new features in JDK 1.5.

4.1. SATIN

SATIN [1] is an open-source toolkit for building
informal 2D pen-based applications. It was built using

Java JDK 1.3, and later JDK 1.4. It is a layer on top of
Java Swing.

The architecture of SATIN handles pen input by
providing recognizers, interpreters, and multi-
interpreters. SATIN comes with Quill [2], which is a
tool for designing gestures. SATIN’s recognition
engine uses Rubine’s algorithm [14], however other
recognition algorithms can be plugged in.

SATIN has support for manipulating and
rendering objects. It also offers many of the common
commands in pen-based applications, such as select,
cut, copy, paste, delete, undo and redo.

The fact that SATIN is an open-source toolkit
allows it to be easily extended and customized to meet
any application’s need.

4.2. Quill

Quill [2] is a training tool for designing gestures
for pen-based applications. It facilitates the gesture
design process by giving gesture designers suggestions
on improving gestures so that they can be recognized
more easily.

The Group of User Interface Research at University
of California at Berkley (the group that developed
Quill) wants to expand Quill to allow designers to use
the gesture recognizer of their choice. However, for
the time being, Quill only supports Rubine’s
recognizer [14]. Consequently, each gesture has to be
trained by an average of 10-15 examples.

Quill saves gestures in a textual format that can be
parsed later by SATIN or any other application.

4.3. Rubine’s Recognizer

Rubine's recognizer [14] is a single-stroke feature-
based recognizer. It categorizes gestures by measuring
different features of the gesture. Some of these features
are2:

• Length: The total length of the gesture.
• Distance between first and last points: The

distance between the first and last points
of the gesture.

• Total angle: The total amount of counter-
clockwise turning. It is negative for
clockwise turning.

• Total absolute angle: The total amount of
turning that the gesture does in either
direction.

2 The explanation of the features is taken from Quill’s Reference
Manual.



• Cosine of the initial angle: This feature is
how rightward the gesture goes at the
beginning. This feature is highest for a
gesture that begins directly to the right,
and lowest for one that begins directly to
the left. Only the first part of the gesture
(the first 3 points) is significant.

• Sine of the initial angle: This feature is
how upward the gesture goes at the
beginning. This feature is highest for a
gesture that begins directly up, and lowest
for one that begins directly down. As in
the previous feature, only the first part of
the gesture (the first 3 points) is
significant.

• Size of the bounding box: The length of
the bounding box diagonal. The bounding
box for a gesture is the smallest upright
rectangle that encloses the gesture.

• Angle of the bounding box: The angle that
the bounding box diagonal makes with the
bottom of the bounding box.

• Cosine of angle between first and last
points: This feature is the horizontal
distance that the end of the gesture is from
the start, divided by the distance between
the ends. If the end is to the left of the
start, this feature is negative.

• Sine of angle between first and last points:
This feature is the vertical distance that
the end of the gesture is from the start,
divided by the distance between the ends.
If the end is below of the start, this feature
is negative.

• Sharpness: This feature is intuitively how
sharp, or pointy, the gesture is. A gesture
with many sharp corners will have a high
sharpness. A gesture with smooth, gentle
curves will have a low sharpness. A
gesture with no turns or corners will have
the lowest sharpness.

In order to be able to calculate a gesture’s features,
Rubine’s algorithm needs to compare an average of 15
examples of that gesture with variations in size and
directions.

5. Handling Strokes in TSS

As in all sketch-based applications, there are three
types of strokes in TSS (see Figure 1), which are ink-
objects’ strokes, gestures’ strokes, and regular ink

strokes. The next sub-sections below give detailed
explanation of each type of these strokes.

Figure 1: Snapshot of TSS

5.1. Ink-objects’ Strokes

Ink-objects’ strokes are the pen strokes that are
recognized as objects and then processed and rendered
on the canvas. There are three types of ink-objects in
TSS: states, transitions, and characters. Table 1
describes the different strokes for drawing Statecharts’
diagrams in TSS and Table 2 describes the strokes for
drawing characters supported in TSS.

As shown in Table 1, states in Harel’s notation are
represented by rounded rectangles. In TSS, any thing
that looks like a shape is considered to be a state. In
other words, a rectangle, a circle, a triangle, or even a
flower-like shape will all be recognized as a state in
TSS. It is important to support this kind of ambiguity
in sketch-based applications. We do not want to
distract modelers by imposing strict rules on them.
The goal is to give them the same freedom they would
get when they use a pen and a paper. Internally, the
shape of a state is stored as a polygon that is built from
the points which constructed the stroke. When a shape
is recognized as a state, it will be filled with yellow to
indicate that.

Default states in Harel’s notations are represented
by a rounded rectangle with a short arrow pointing to
them. In TSS, when a stroke starts from a point
outside a state and it ends on a state, then that state
will become a default state. The default state is filled
with green, to distinguish it from other states.  The
user can change the default state at any time by
drawing a line pointing to the new default state.

Transitions in both Harel’s and TSS notations are
represented by an arrow that starts from the source
state and ends in the target state.  If the transition is a



self-transition then it is  represented  by  a  loop-arrow
starting from and ending in the same state. In TSS,
any stroke that starts in a state and ends in another
will be recognized as a transition.  Likewise, any
stroke that starts  and  ends  in  the  same  state,   and

and it has not been recognized as a character, will be
recognized as a self-transition. We draw recognized
transitions in gray to distinguish them from regular
ink strokes.

Table 1: Statecharts notations in TSS

Notation Harel’s TSS’

States
Recognized as
state, therefore
transformed to

Recognized as
state, therefore
transformed to

Default States

Recognized as
default state,

therefore
transformed to

Recognized as
default state,

therefore
transformed to

Composite
States Not supported

Orthogonal
States Not Supported

Transitions
Recognized as

transition,
therefore

transformed to

Recognized as
transition,
therefore

transformed to

Self-transition

Recognized as
self-transition,

therefore
transformed to

Recognized as
self-transition,

therefore
transformed to

Labels Any combination of characters a – z, ., /, [, and ]
(Refer to Table 2 for more details)



Table 2: Characters supported in TSS

Character Stroke

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

Character Stroke

p

q

r

s

t

u

v

w

x

y

z

[

]

/

. .



5.2. Gestures’ Strokes

Gestures’ strokes are strokes that are recognized as
gestures for commands. Example of these would be
copy and paste commands. TSS makes use of some of
the commands that are provided with SATIN. I had to
modify some of those built-in commands in order for
them to work in TSS; however I was able to use some
others without any modifications. Also, some TSS-
specific commands were added.

The following is a list of all TSS gestures in the
order they are processed:

1. Hold-Select gesture:
a. Gesture: Clicking on an object and

holding the mouse’s left-button for
few seconds.

b. Interpretation: The object that the
user clicked on becomes selected.

2. Circle-Select gesture:
a. Gesture: Drawing a circle-like shape

while holding the mouse’s right-
button. The interpreter does not try
to recognize a circle, but instead it
checks if portions near the beginning
and end of the stroke intersect or are
sufficiently near each other.

b. Interpretation: All objects inside that
circle-like shape become selected.

3. Resize gesture:
a. Gesture: If an object is selected and

the user clicked on one of the small
squares around it then moved the
mouse while the left-button is
clicked.

b. Interpretation: Resize the selected
object. At the present this command
does not always work. There are few
bugs that need to be fixed.

4. Move gesture:
a. Gesture: If an object is selected and

the user clicked on it and moved the
mouse while the left-button is down.

b. Interpretation: Move the selected
object. Note that this command has
been disabled for transitions. This is
because a transition cannot be
moved far away from its source and
target states. Therefore I had the

option of either moving the whole
diagram when a transition is being
moved, or disallowing this command
for transitions. I chose the latter
because the former might be
confusing to the user. When moving
states, however, the associated
transitions are updated accordingly.
This is done by redrawing the
transition’s arrow when a state has
been moved.

5. View-Port gesture:

Figure 2: Scrolling Gestures

a. Gesture: Drawing a line that looks
like one of the lines in Figure 2,
while holding the mouse’s right-
button.

b. Interpretation: The window will be
scrolled in the direction which the
line was drawn in. The amount of
scrolling corresponds to the length
of the line.

6. Copy gesture:

Figure 3: Copy Gesture

a. Gesture: Drawing a symbol similar
to the one in Figure 3 while pressing
the mouse’s right-button.

b. Interpretation: The object will be
copied to the clipboard.

7. Cut gesture:

Figure 4: Cut Gesture



a. Gesture: Drawing a symbol similar
to the one in Figure 4 while pressing
the mouse’s right-button.

b. Interpretation: The object will be
copied to the clipboard and removed
from the canvas.

8. Paste gesture:

Figure 5: Paste Gesture

a. Gesture: Drawing a symbol similar
to the one in Figure 5 while pressing
the mouse’s right-button.

b. Interpretation: The object that is in
the clipboard will be added to the
canvas.

9. Delete gesture:

Figure 6: Delete Gesture

a. Gesture: Drawing a symbol similar
to the one in Figure 6 while pressing
the mouse’s right-button. This
command is accessible through the
keyboard’s delete key as well.

b. Interpretation: The object will be
deleted.

10. Undo gesture:

Figure 7: Undo Gesture

a. Gesture: Drawing a symbol similar
to the one in Figure 7 while pressing
the mouse’s right-button.

b. Interpretation: The last command
will be undone and will be kept in
memory in case the user wants to
redo it later.

11. Redo gesture:

Figure 8: Redo Gesture

a. Gesture: Drawing a symbol similar
to the one in Figure 8 while pressing
the mouse’s right-button.

b. Interpretation: Redo the last undone
command.

12. Edit Label gesture:

Figure 9: Edit Label Gesture

a. Gesture: Drawing a symbol similar
to the one in Figure 9 while pressing
the mouse’s right-button.

b. Interpretation: If this gesture is
drawn over a state or a transition, a
dialog will come up allowing the
user to edit the label of that state or
transition.

Commands 6 through 11 are also available from
the pie menu. In addition to the commands mentioned
previously, there are some commands that are only
available from the pie menu, like Save, and Open.
Choosing Save will save the diagram as an XML file.
Similarly, choosing Open will parse the XML file and
reconstruct the diagram.

5.3. Regular Ink Strokes

These are strokes which were neither recognized as
ink-object strokes, nor as gesture strokes. In TSS,
these types of strokes are drawn as ink without any
kind of processing.

5.4. The Process of Interpreting Strokes

When a stroke is drawn, SATIN passes the stroke
to the gesture interpreter first, to check if this is a
command gesture or not. If it is, then it will be
processed and marked as consumed so other
interpreters will not see it. If it has not been



recognized as a gesture, then SATIN passes the stroke
to the ink-object interpreter to check if this is a gesture
for an object that we should recognize (i.e. state,
transition, or letter.) If the stroke has not been
consumed by neither the gesture interpreter nor the
ink-object interpreter, then the stroke will be drawn as
a regular ink stroke. Figure 10 below demonstrates
this process:

Figure 10: Strokes recognition process

In order to determine whether a stroke is a gesture
or not, SATIN passes the gesture to all interpreters
that were added to the GestureInterpreter in
the order in which they were added. Figure 11 below
illustrates what happens inside the “Is Gesture?”
check in Figure 10 above.

Figure 11: The process of gestures
recognition in TSS

If the stroke was not recognized by any gesture’s
interpreter, it is then passed to interpreters that were
added to the InkInterpreter, by  the  order  in
which they were added. Figure 12 illustrates the
details of the “Is Ink-object?” check in Figure 10.

Figure 12: The process of ink-objects
recognition in TSS

6. Diagram Validation

A Statecharts diagram in TSS is valid if it passed
the following two checks.

6.1. Default State Checking

In Harel’s Statecharts [5], there has to be a default
state at each level of abstraction and in each sub-
diagram in an orthogonal state. However, the fact that
TSS does not support hierarchy and concurrency as yet
means that there must be only one default state in the
diagram in order for it to be valid. The validation
process can be illustrated by the model in Figure 13.

Figure 13: Validation of Statecharts Diagram
in TSS

TSS will warn the user if they tried to save a
diagram that does not have a default state (i.e. an
invalid diagram.)



6.2. States’ Labels Checking

According to Harel’s [5] specifications, each state
has to have a unique label in a level of abstraction.
Furthermore, states must have a unique label in a sub-
diagram of an orthogonal state. Once again, since we
do not have composite and orthogonal states in TSS,
then we only need to worry about labels’ uniqueness at
one level.

As in default state checking, TSS warns the user of
duplicate labels of states when they try to save an
invalid diagram. It also warns them if they left some
states unlabeled.

7. Limitations

The major issue in TSS is its pattern recognition
algorithm. As explained in Section 4, TSS uses
SATIN’s framework which uses Rubine’s recognizer.
Evaluation of other applications that use Rubine’s
recognizer, like SILK [7], DENIM [8], and Quill [2]
has exposed similar recognition problems. On a
second note, when evaluating Quill, studies have
shown that users who are accustomed to using PDAs
are better at drawing “good” gestures [2].

Consequently, further study of other recognition
algorithms is needed. I need to explore the
effectiveness of approaches like JavaSketchIt [16],
SKETCHIT [17], SmartSketchpad [19], and the Novel
Constraint-Based Approach [15]. I especially need to
explore LADDER [18], which is a language for
describing how sketched diagrams in a domain are
drawn, displayed, and edited.

8. Future Work

As mentioned previously in Section 7 above, we
need to improve the recognition engine in TSS by
either finding an algorithm that fits our needs better
than Rubine’s recognizer, or by developing an
algorithm on our own. Since we are not experts in the
pattern recognition field, then we must go with the
first option.

Morever, as explained in Section 3, TSS lacks
support for composite and orthogonal states. This is
something that I need to address in our next iteration
of TSS since it might reveal some problems that I am
unaware of at this time.

I would also like to start integrating TSS with
AToM3 [4], as this is the final goal of this project.

9. Conclusion

In this paper, I discussed the importance of
sketching and how users who use traditional drawing
tools that do not support sketching usually end up
spending most of the time working on refining the
same idea [3]. Thus what modelers often do is that
they sketch their diagrams on papers first and then
they redraw them using a modeling tool.

Our research proposes having a sketch-based meta-
modelling tool and TSS is our first step in that
direction. In this first iteration of TSS, I have come
across some limitations in the recognition engine that
SATIN uses, which is Rubine’s algorithm. In the
Limitations section (Section 7) I highlighted some
alternative approaches to Rubine’s recognizer and
suggested further exploration of these algorithms.

My future plan is to integrate my work into AToM3

[4] to enable meta-modelers to benefit from a sketch-
based interface.
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