
Coding Conventions for
Python

Shahla Almasri
(salmas1@cs.mcgill.ca)

June 10th, 2005

2

References

Most of the materials in this presentation
are taken directly from:

G. van Rossum and B. Warsaw, “Style Guide
for Python Code”,
http://www.python.org/peps/pep-0008.html
D. Goodger and G. van Rossum, “Docstring
Conventions”,
http://www.python.org/peps/pep-0257.html

http://www.python.org/peps/pep-0008.html
http://www.python.org/peps/pep-0257.html

3

Outline
Naming Conventions
Organizing imports
Indentions and line length
Break lines
White space
Programming Recommendations
Comments
Documentation Strings
Example

4

Naming Conventions
Module Names:
– Short, lowercase names, without underscores.

Example: myfile.py

Class Names:
– CapWords convention.

Example: MyClass

Exception Names:
– If a module defines a single exception raised for all

sorts of conditions, it is generally called "Error".
Otherwise use CapWords convention (i.e. MyError.)

5

Naming Conventions (cont.)
Method Names and Instance Variables:
– The “Style Guide for Python Code” recommends using

lowercase with words separated by underscores (example:
my_variable). But since most of our code uses mixedCase, I
recommend using this style (example: myVariable)

– Use one leading underscore only for internal methods and
instance variables (i.e. protected).
Example: _myProtectedVar

– Use two leading underscores to denote class-private names
Example: __myPrivateVar

– Don’t use leading or trailing underscores for public attributes
unless they conflict with reserved words, in which case, a single
trailing underscore is preferrable (example: class_)

6

Outline
Naming Conventions
Organizing imports
Indentions and line length
Break lines
White space
Programming Recommendations
Comments
Documentation Strings
Example

7

Organizing Imports
They should be always put at the top of the file,
just after any module comments and docstrings,
and before module globals and constants.
Imports should be on separate lines.
Wrong: import sys, os
Right: import sys

import os

The following is OK, though:
from types import StringType, ListType

8

Organizing Imports (cont.)

Imports should be grouped in the following
order with a blank line between each
group of imports:
– standard library imports
– related major package imports
– application specific imports

9

Outline
Naming Conventions
Organizing imports
Indentions and line length
Break lines
White space
Programming Recommendations
Comments
Documentation Strings
Example

10

Indentions and Line Length

Indentions:
– 2 spaces (no tabs!)
– Avoid using more than five levels of indention.

Line length:
– Maximum of 72 characters (never exceed 79

characters)
– You can break a long line using “\”.

11

Outline
Naming Conventions
Organizing imports
Indentions and line length
Break lines
White space
Programming Recommendations
Comments
Documentation Strings
Example

12

Break Lines

Leave one line between functions in a class.
Extra blank lines may be used to separate
groups of related functions
Blank lines may be omitted between a bunch
of related one-liners.
Use blank lines in functions, sparingly, to
indicate logical sections.

13

Outline
Naming Conventions
Organizing imports
Indentions and line length
Break lines
White space
Programming Recommendations
Comments
Documentation Strings
Example

14

White Space

Multiple statements on the same line are
discouraged.

WRONG:
if foo == 'blah': doBlahThing()

CORRECT:
if foo == 'blah':

doBlahThing()

15

White Space (cont.)

No white space immediately before an
open parenthesis.

WRONG: spam (1)

CORRECT: spam(1)

WRONG: dict ['key'] = list [index]

CORRECT: dict['key'] = list[index]

16

White Space (cont.)
No white space inside parentheses, brackets or
braces.
WRONG: spam(ham[1], { eggs: 2 })
CORRECT: spam(ham[1], {eggs:2})

No white space immediately before a comma,
semicolon, or colon.
WRONG:

if x == 4 :
print x , y ; x , y = y , x

CORRECT:
if x == 4:

print x, y; x, y = y, x

17

White Space (cont.)
No more than one space around an
operator.

WRONG:
x = 1
yVal = 2
longVariable = 3

CORRECT:
x = 1
yVal = 2
longVariable = 3

18

White Space (cont.)
Always surround the following operators with a
single space on either side
– assignment (=)
– comparisons (==, <, >, !=, <>, <=, >=, in, not in, is, is

not)
– Booleans (and, or, not)
– Arithmetic operators (+, -, *, /, %)

WRONG:
if (x==4)or(x==5):

x=y+5
CORRECT:

if (x == 4) or (x == 5):
x = y + 5

19

White Space (cont.)
Don't use spaces around the '=' sign when
used to indicate a keyword argument or a
default parameter value.

WRONG:
def complex(real, imag = 0.0):

return magic(r = real, i = imag)

CORRECT:
def complex(real, imag=0.0):

return magic(r=real, i=imag)

20

Outline
Naming Conventions
Organizing imports
Indentions and line length
Break lines
White space
Programming Recommendations
Comments
Documentation Strings
Example

21

Programming
Recommendations

Comparisons to singletons like None should always be
done with 'is' or 'is not‘.
Wrong:

if x:
y = 6

Right:
if x is not None:

y = 6

Don't compare boolean values to True or False.
Wrong:

if greeting == True:
y = 6

Right:
if greeting:

y = 6

22

Programming
Recommendations (cont.)
Avoid slicing strings when checking
for prefixes or suffixes. Use
startswith() and endswith() instead.
Wrong:

if foo[:3] == 'bar':
Right:

if foo.startswith('bar'):

23

Outline
Naming Conventions
Organizing imports
Indentions and line length
Break lines
White space
Programming Recommendations
Comments
Documentation Strings
Example

24

Comments
Block Comments:
– They are indented to the same level as the code they

apply to.
– Each line of a block comment starts with a # and a

single space.
– Paragraphs inside a block comment are separated by

a line containing a single #.
– Block comments are best surrounded by a blank line

above and below them

Example:
Compensate for border. This is done by incrementing x
by the same amount

x += 1

25

Comments (cont.)

Inline Comments:
– They should start with a # and a single space.
– Should be separated by at least two spaces

from the statement they apply to.

Example:
x += 1 # Compensate for border

26

Outline
Naming Conventions
Organizing imports
Indentions and line length
Break lines
White space
Programming Recommendations
Comments
Documentation Strings
Example

27

Documentation Strings
Write docstrings for all public modules,
functions, classes, and methods.
Docstrings are not necessary for non-
public methods, but you should have a
comment that describes what the method
does. This comment should appear after
the "def" line.
Insert a blank line before and after all
docstrings that document a class.

28

Documentation Strings
(cont.)

One-line Docstrings:
– The opening and closing """ are on the same

line.
– There is no blank line either before or after

the docstring.
– Describes the function or method's effect as a

command ("Do this", "Return that"), not as a
description.

29

Documentation Strings
(cont.)

Multi-line Docstrings:
– The """ that ends a multiline docstring should be on a

line by itself.
– Script: The docstring of a script should be usable as

its "usage" message. It should document the script's
function, the command line syntax, and the
environment variables.

– Module: The docstring for a module should
generally list the classes, exceptions and functions
(and any other objects) that are exported by the
module, with a one-line summary of each.

30

Documentation Strings
(cont.)

– Class:
• The docstring for a class should summarize its

behavior and list the public methods and instance
variables.

• If the class is intended to be subclassed, and has
an additional interface for subclasses, this
interface should be listed separately.

• If a class subclasses another class and its
behavior is mostly inherited from that class, its
docstring should mention this and summarize the
differences.

• The class constructor should be documented in the
docstring for its __init__ method.

31

Documentation Strings
(cont.)

– Function or method:
• The docstring should summarizes its behavior and

document its arguments, return value, side effects,
exceptions raised, and restrictions on when it can
be called.

• Optional arguments should be indicated.
• Use the verb "override" to indicate that a subclass

method replaces a superclass method and does
not call the superclass method; use the verb
"extend" to indicate that a subclass method calls
the superclass method.

• The docstring should contain a summary line,
followed by a blank line, followed by a more
elaborate description.

32

Outline
Naming Conventions
Organizing imports
Indentions and line length
Break lines
White space
Programming Recommendations
Comments
Documentation Strings
Example

	Coding Conventions for Python
	References
	Outline
	Naming Conventions
	Naming Conventions (cont.)
	Outline
	Organizing Imports
	Organizing Imports (cont.)
	Outline
	Indentions and Line Length
	Outline
	Break Lines
	Outline
	White Space
	White Space (cont.)
	White Space (cont.)
	White Space (cont.)
	White Space (cont.)
	White Space (cont.)
	Outline
	Programming Recommendations
	Programming Recommendations (cont.)
	Outline
	Comments
	Comments (cont.)
	Outline
	Documentation Strings
	Documentation Strings (cont.)
	Documentation Strings (cont.)
	Documentation Strings (cont.)
	Documentation Strings (cont.)
	Outline

