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Naming Conventions
Module Names:
– Short, lowercase names, without underscores.

Example: myfile.py

Class Names:
– CapWords convention.

Example: MyClass

Exception Names:
– If a module defines a single exception raised for all 

sorts of conditions, it is generally called "Error". 
Otherwise use CapWords convention (i.e. MyError.)
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Naming Conventions (cont.)
Method Names and Instance Variables:
– The “Style Guide for Python Code” recommends using 

lowercase with words separated by underscores (example: 
my_variable). But since most of our code uses mixedCase, I 
recommend using this style (example: myVariable)

– Use one leading underscore only for internal methods and 
instance variables  (i.e. protected).
Example: _myProtectedVar

– Use two leading underscores to denote class-private names 
Example: __myPrivateVar

– Don’t use leading or trailing underscores for public attributes 
unless they conflict with reserved words, in which case, a single 
trailing underscore is preferrable (example: class_)
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Organizing Imports
They should be always put at the top of the file, 
just after any module comments and docstrings, 
and before module globals and constants. 
Imports should be on separate lines.
Wrong: import sys, os
Right: import sys

import os

The following is OK, though: 
from types import StringType, ListType
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Organizing Imports (cont.)

Imports should be grouped in the following 
order with a blank line between each 
group of imports:
– standard library imports
– related major package imports
– application specific imports
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Indentions and Line Length

Indentions:
– 2 spaces (no tabs!) 
– Avoid using more than five levels of indention.

Line length:
– Maximum of 72 characters (never exceed 79 

characters)
– You can break a long line using “\”.
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Break Lines

Leave one line between functions in a class.
Extra blank lines may be used to separate 
groups of related functions
Blank lines may be omitted between a bunch 
of related one-liners.
Use blank lines in functions, sparingly, to 
indicate logical sections.
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White Space

Multiple statements on the same line are 
discouraged.

WRONG:
if foo == 'blah': doBlahThing()

CORRECT:
if foo == 'blah': 

doBlahThing()
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White Space (cont.)

No white space immediately before an 
open parenthesis.

WRONG: spam (1)

CORRECT: spam(1)

WRONG:      dict ['key'] = list [index]

CORRECT: dict['key'] = list[index]
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White Space (cont.)
No white space inside parentheses, brackets or 
braces.
WRONG: spam( ham[ 1 ], { eggs: 2 } )
CORRECT: spam(ham[1], {eggs:2})

No white space immediately before a comma, 
semicolon, or colon.
WRONG:

if x == 4 : 
print x , y ; x , y = y , x

CORRECT:
if x == 4: 

print x, y; x, y = y, x
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White Space (cont.)
No more than one space around an 
operator.

WRONG:
x            = 1
yVal         = 2
longVariable = 3

CORRECT:
x = 1
yVal = 2
longVariable = 3
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White Space (cont.)
Always surround the following operators with a 
single space on either side
– assignment (=) 
– comparisons (==, <, >, !=, <>, <=, >=, in, not in, is, is 

not)
– Booleans (and, or, not)
– Arithmetic operators (+, -, *, /, %)

WRONG:
if (x==4)or(x==5): 

x=y+5
CORRECT:

if (x == 4) or (x == 5): 
x = y + 5
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White Space (cont.)
Don't use spaces around the '=' sign when 
used to indicate a keyword argument or a 
default parameter value.

WRONG:
def complex(real, imag = 0.0):

return magic(r = real, i = imag)

CORRECT:
def complex(real, imag=0.0):

return magic(r=real, i=imag)
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Programming 
Recommendations

Comparisons to singletons like None should always be 
done with 'is' or 'is not‘.
Wrong:

if x:
y = 6

Right:
if x is not None:

y = 6

Don't compare boolean values to True or False.
Wrong:

if greeting == True:
y = 6

Right:
if greeting:

y = 6
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Programming 
Recommendations (cont.)
Avoid slicing strings when checking 
for prefixes or suffixes. Use 
startswith() and endswith() instead.
Wrong:

if foo[:3] == 'bar':
Right:

if foo.startswith('bar'):
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Comments
Block Comments:
– They are indented to the same level as the code they 

apply to.
– Each line of a block comment starts with a # and a 

single space.
– Paragraphs inside a block comment are separated by 

a line containing a single #. 
– Block comments are best surrounded by a blank line 

above and below them

Example:
# Compensate for border. This is done by incrementing x
# by the same amount

x += 1
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Comments (cont.)

Inline Comments:
– They should start with a # and a single space.
– Should be separated by at least two spaces 

from the statement they apply to.

Example:
x += 1  # Compensate for border
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Documentation Strings
Write docstrings for all public modules, 
functions, classes, and methods.
Docstrings are not necessary for non-
public methods, but you should have a 
comment that describes what the method 
does.  This comment should appear after 
the "def" line. 
Insert a blank line before and after all 
docstrings that document a class.
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Documentation Strings 
(cont.)

One-line Docstrings:
– The opening and closing """ are on the same 

line.
– There is no blank line either before or after 

the docstring.
– Describes the function or method's effect as a 

command ("Do this", "Return that"), not as a 
description. 
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Documentation Strings 
(cont.)

Multi-line Docstrings:
– The """ that ends a multiline docstring should be on a 

line by itself.
– Script: The docstring of a script should be usable as 

its "usage" message. It should document the script's 
function, the command line syntax, and the 
environment variables.

– Module: The docstring for a module should 
generally list the classes, exceptions and functions 
(and any other objects) that are exported by the 
module, with a one-line summary of each.
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Documentation Strings 
(cont.)

– Class:
• The docstring for a class should summarize its 

behavior and list the public methods and instance 
variables. 

• If the class is intended to be subclassed, and has 
an additional interface for subclasses, this 
interface should be listed separately. 

• If a class subclasses another class and its 
behavior is mostly inherited from that class, its 
docstring should mention this and summarize the 
differences.

• The class constructor should be documented in the 
docstring for its __init__ method.
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Documentation Strings 
(cont.)

– Function or method:
• The docstring should summarizes its behavior and 

document its arguments, return value, side effects, 
exceptions raised, and restrictions on when it can 
be called. 

• Optional arguments should be indicated. 
• Use the verb "override" to indicate that a subclass 

method replaces a superclass method and does 
not call the superclass method; use the verb 
"extend" to indicate that a subclass method calls 
the superclass method.

• The docstring should contain a summary line, 
followed by a blank line, followed by a more 
elaborate description.
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