Parallel DEVS & DEVSJAVA

Presented by Ximeng Sun Mar 16, 2005

Bernard P. Zergler, Herbert Praehofer, and Tag Gon Kim.

Theory of Modeling and Simulation.

Academic Press, 2000.

Bernard P. Zergler, Hessam S. Sarjoughian. Introduction to DEVS Modeling and Simulation with JAVA.

http://www.acims.arizona.edu/SOFTWARE/software.shtml#DEVSJAVA

Outline

- Classic DEVS quick review
- Why Parallel DEVS
- Parallel DEVS Formalism
 - Atomic Model
 - Coupled Model
 - Closure under Coupling
- Parallel DEVS Simulation Protocol
- DEVSJAVA

- Classic DEVS quick review
- Why Parallel DEVS
- Parallel DEVS Formalism
 - Atomic Model
 - Coupled Model
 - Closure under Coupling
- Parallel DEVS Simulation Protocol
- DEVSJAVA

Classic DEVS formalism

$$M = \langle X, S, Y, \delta_{int}, \delta_{ext}, \lambda, ta \rangle$$

Where

 \boldsymbol{X} is the set of **inputs**

S is a set of **states**

Y is the set of **outputs**

 $\delta_{\scriptscriptstyle int}:S \to S$ is the internal transition function

 $\delta_{\rm ext}: Q \times X \to S$ is the **external transition function**, where

$$Q = \{(s,e) \mid s \in S, 0 \le e \le ta(s)\}$$
 is the **total state** set

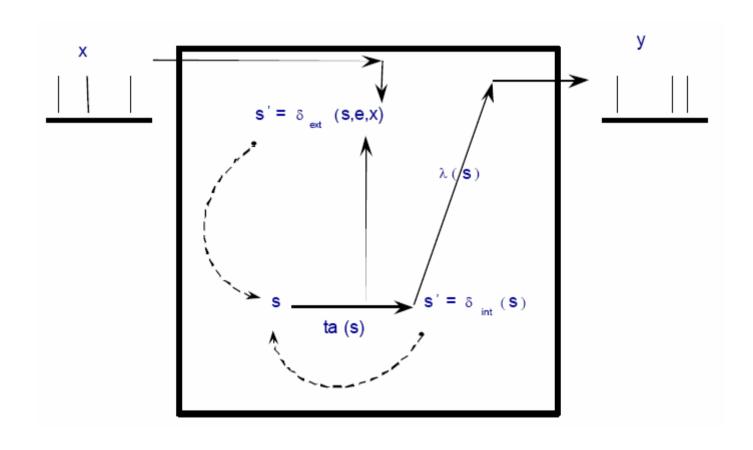
e is the **time elapsed** since last transition

 $\lambda: S \to Y$ is the **output function**

 $ta: S \to R_{0,\infty}^+$ is the **time advance** function

4

DEVS in action



4

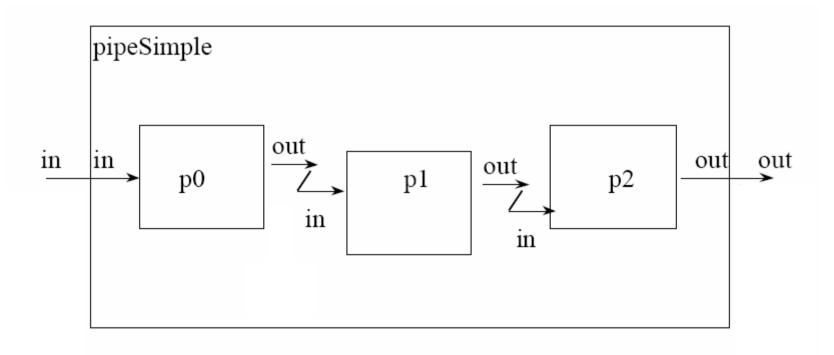
Classic DEVS Coupled Model

 $N = \langle X, Y, D, \{M_d | d \in D\}, EIC, EOC, IC, Select \rangle$

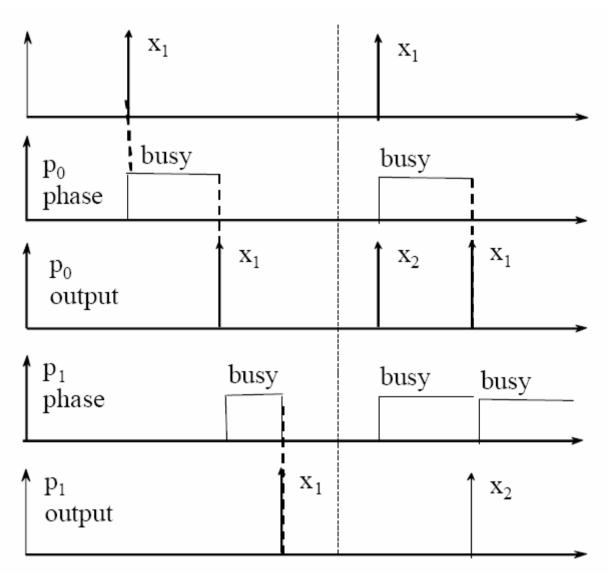
- $X = \{(p, v) | p \in IPorts, v \in X_p\}$ is the set of input ports and values
- $Y = \{(p, v) | p \in OPorts, v \in Y_p\}$ is the set of output ports and values
- D: the set of the components names.
- Md: component DEVS models
- EIC: external input coupling connects external inputs to component inputs
- EOC : external output coupling connects component outputs to external outputs
- IC: internal coupling connects component outputs to component inputs
- $Select: 2^D \{\} \to D$, the tie-breaking function for imminent components

- Classic DEVS quick review
- Why Parallel DEVS
- Parallel DEVS Formalism
 - Atomic Model
 - Coupled Model
 - Closure under Coupling
- Parallel DEVS Simulation Protocol
- DEVSJAVA

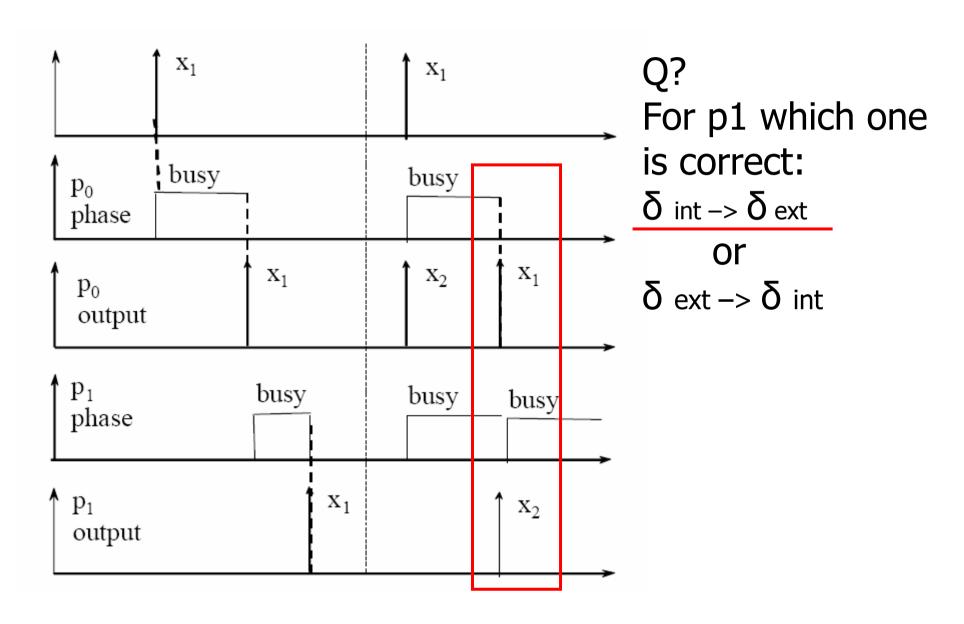
Simple Pipeline model



In Action



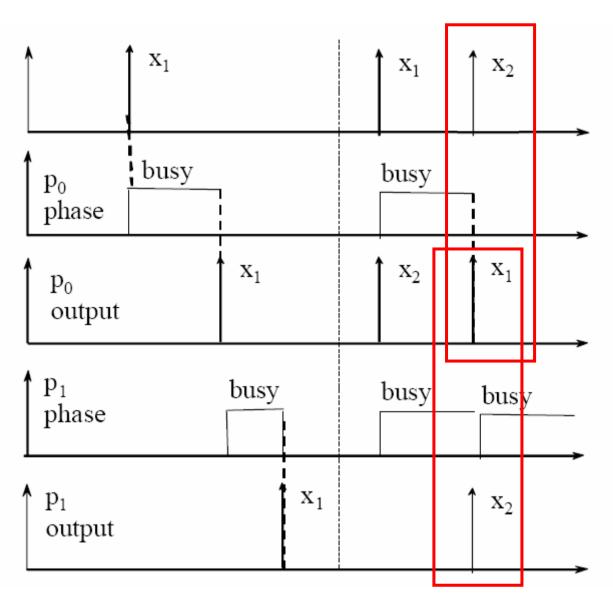
Simultaneous events



Indirect control

- In Classic DEVS, only one would be chosen to execute by Select function.
 - Select: s -> p1 internal-transition-first
 - Select: s -> p0 external-transition-first

If there's a feedback...



Lose input anyway

- In Classic DEVS, always make the same choice among imminent components.
 - Select: $s \rightarrow p0|p1$ p0|p1 loses input

- Classic DEVS quick review
- Why Parallel DEVS
- Parallel DEVS Formalism
 - Atomic Model
 - Coupled Model
 - Closure under Coupling
- Parallel DEVS Simulation Protocol
- DEVSJAVA

Parallel DEVS Atomic Model

$$DEVS = \left(X_M, Y_M, S, \delta_{ext}, \delta_{int}, \delta_{con}, \lambda, ta\right)$$
 where
$$X_M = \left\{(p, v) \mid p \in IPorts, v \in Xp\right\} \quad \text{is the set of } input \ ports \ and \ values;$$

$$Y_M = \left\{(p, v) \mid p \in OPorts, v \in Yp\right\} \quad \text{is the set of } output \ ports \ and \ values;$$

$$S \quad \text{is the set of sequential states;}$$

$$\delta_{ext} : Q \times X_M^b \to S \quad \text{is the } external \ state \ transition \ function;}$$

$$\delta_{int} : S \to S \quad \text{is the internal state transition } function;$$

$$\delta_{con} : S \times X_M^b \to S \quad \text{is the } confluent \ transition \ function;}$$

$$\lambda : S \to Y^b \quad \text{is the output function;}$$

$$ta : S \to R_0^+ \cup \infty \quad \text{is the } time \ advance \ function;}$$

$$With \ Q := \left\{(s,e) \mid s \in S, 0 \le e \le ta(s)\right\} \ \text{the set of } total \ states.$$

Xb is a set of bags over elements in X.

Extensions of Classic DEVS

- Allowing bags of inputs to the external function
 - Inputs may arrive in any order
 - Inputs with the same identity may arrive from one or more sources
- Introducing confluent transition function
 - Localize collision tie-breaking control

Confluent Transition Function

- Collision: e = ta(s)
- Classic DEVS: by Select function, at coupled model level – Global decision
- Parallel DEVS: by δ_{con} , to each individual component Local decision
 - Default: con(s,x) = ext(int(s),0,x)
 - Or: con(s,x) = int(ext(s,ta(s),x))

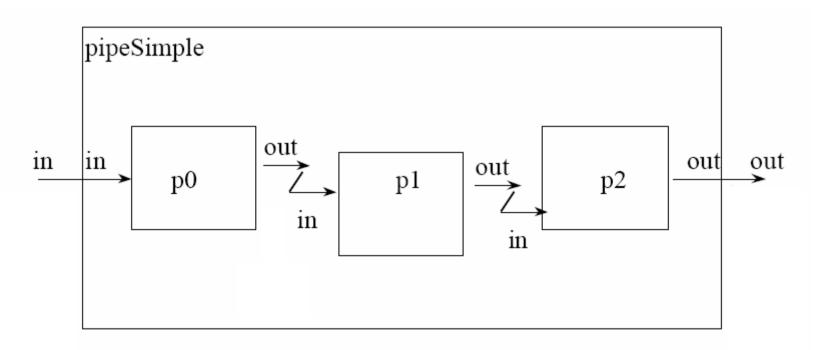
1

Parallel DEVS Coupled Model

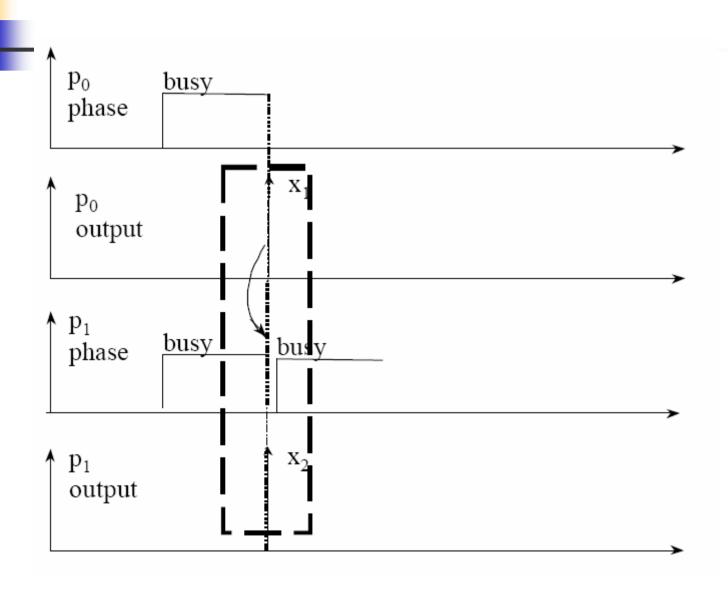
```
N = \langle X, Y, D, \{M_d\}, \{I_d\}, \{Z_{i,d}\} \rangle
```

- Identical to Classic DEVS, except for the absence of the Select function
 - X: a set of input events
 - Y: a set of output events
 - D: a set of component references
 - Md: a Parallel DEVS model, for each $d \in D$
 - Id: a set of influencers of d, $I_d \subseteq D \cup \{N\}, d \notin I_d$ for each $d \in D \cup \{N\}$
 - $Z_{i,d}$: a set of output-to-input translation functions, for each $i \in I_d$

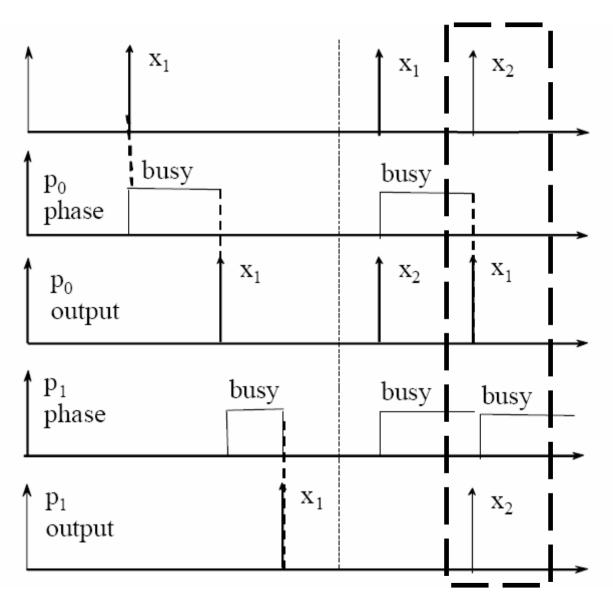
Previous example



Handling of imminent components in Parallel DEVS



Problem in Classic DEVS solved



Closure under Coupling of Parallel DEVS

Resultant of the coupled model:

$$DEVS_N = \langle X, S, Y, \delta_{int}, \delta_{ext}, \delta_{con}, \lambda, ta \rangle$$

Partition components into 4 sets:

```
ta(s) = minimum \{ \sigma_d | d \in D \},
    where s \in S and \sigma_d = ta(s_d) - e_d
  IMM(s) = \{d | \sigma_d = ta(s)\}
                                                      imminent components
  INF(s) = \{d | i \in I_d, i \in IMM(s) \land x_d^b \neq \Phi\},\
                                                      components about to
   where x_b^d = \{Z_{i,d(\lambda_i(s_i))|i\in IMM(s)\cap I_d}\}
                                                      receive inputs
CON(s) = IMM(s) \cap INF(s)
                                                      (confluent components)
                                                      (imminent components
• INT(s) = IMM(s) - INF(s)
                                                       receiving no input)
\bullet EXT(s) = INF(s) - IMM(s)
                                                   (components receiving input
                                                    but not imminent)
• UN(s) = D - IMM(s) - INF(s)
                                                      (remaining components)
```

4

Closure under Coupling of Parallel DEVS

- Functions of the Resultant:
 - Output Function: $\lambda(s) = \{Z_{d,N}(\lambda_d(s_d)) | d \in IMM(s) \land d \in I_N\}$
 - Internal Transition Function:

We define

$$\delta_{int}(s) = (..., (s'_d, e'_d), ...),$$

where

$$(s'_{d}, e'_{d}) = (\delta_{int,d}(s_{d}), 0)$$
 for $d \in INT(s)$,
 $(s'_{d}, e'_{d}) = (\delta_{ext,d}(s_{d}, e_{d} + ta(s), x_{d}^{b}), 0)$ for $d \in EXT(s)$,
 $(s'_{d}, e'_{d}) = (\delta_{con,d}(s_{d}, x_{d}^{b}), 0)$ for $d \in CONF(s)$,
 $(s'_{d}, e'_{d}) = (s_{d}, e_{d} + ta(s))$ otherwise

4

Closure under Coupling of Parallel DEVS

External Transition Function:

We define

$$\delta_{ext}(s, e, x^b) = (..., (s'_d, e'_d), ...),$$

where

$$(s'_d, e'_d) = (\delta_{ext,d}(s_d, e_d + e, x_d^b), 0)$$
 for $N \in I_d \land x_d^b \neq \Phi$,
 $(s'_d, e'_d) = (s_d, e_d + e)$ otherwise

Confluent Transition Function:

$$INF'(s) = \{d | (i \in I_d, i \in IMM(s) \lor N \in I_d) \land x_d^b \neq \Phi\},$$
where $x_b^d = \{Z_{i,d}(\lambda_i(s_i)) | i \in IMM(s) \land i \in I_d\} \cup \{Z_{N,d}(x) | x \in x^b \land N \in I_d\}$

Then we have

$$CON'(s) = IMM(s) \cap INF'(s)$$

 $INT'(s) = IMM(s) - INF'(s)$
 $EXT'(s) = INF'(s) - IMM(s)$

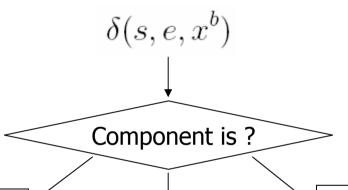
We define

$$\delta_{con}(s, x^b) = (..., (s'_d, e'_d), ...),$$

where

$$(s'_{d}, e'_{d}) = (\delta_{int,d}(s_{d}), 0)$$
 for $d \in INT'(s)$,
 $(s'_{d}, e'_{d}) = (\delta_{ext,d}(s_{d}, e_{d} + ta(s), x_{d}^{b}), 0)$ for $d \in EXT'(s)$,
 $(s'_{d}, e'_{d}) = (\delta_{con,d}(s_{d}, x_{d}^{b}), 0)$ for $d \in CONF'(s)$,
 $(s'_{d}, e'_{d}) = (s_{d}, e_{d} + ta(s))$ otherwise

Generic Transition Function

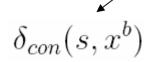


Confluent:

$$e = ta(s) \& x^b \neq \Phi$$

Recipient only:

$$e < ta(s) \& x^b \neq \Phi$$



Imminent only:

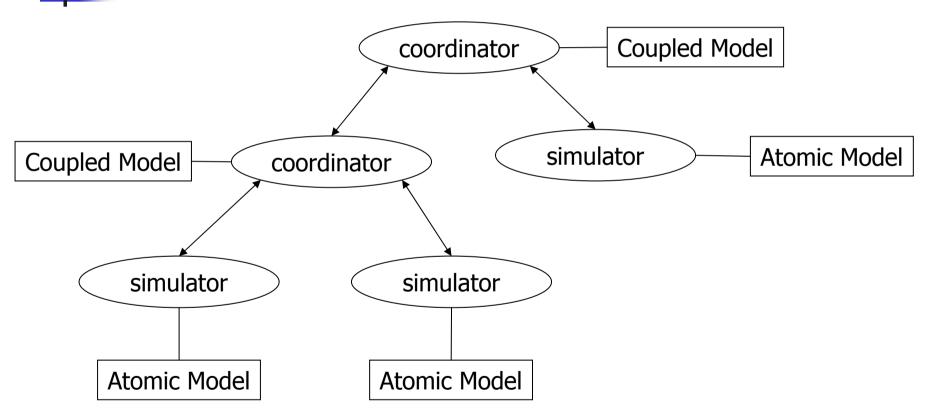
$$e = ta(s) \& x^b = \Phi$$

$$\delta_{int}(s)$$

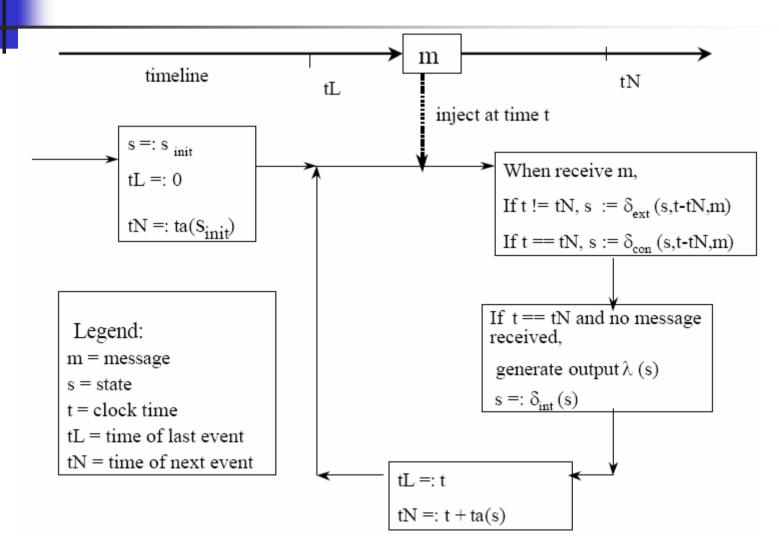
$$\delta_{ext}(s,e,x^b)$$

- Classic DEVS quick review
- Why Parallel DEVS
- Parallel DEVS Formalism
 - Atomic Model
 - Coupled Model
 - Closure under Coupling
- Parallel DEVS Simulation Protocol
- DEVSJAVA

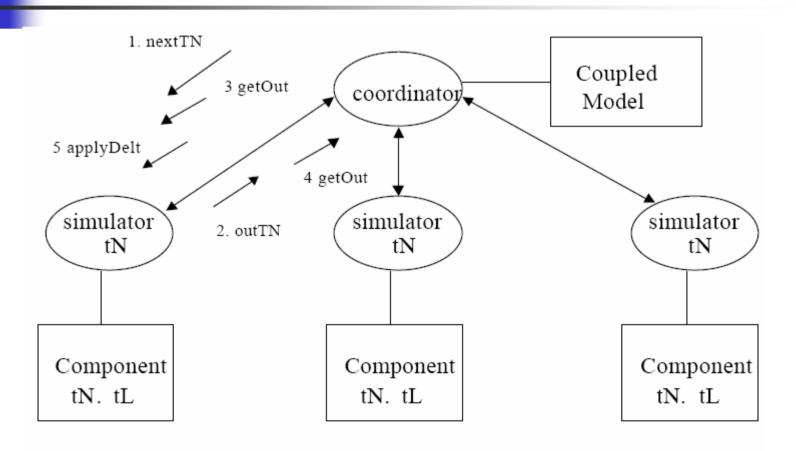
Hierarchical Model



Atomic Model Simulator



Coupled Model Simulator



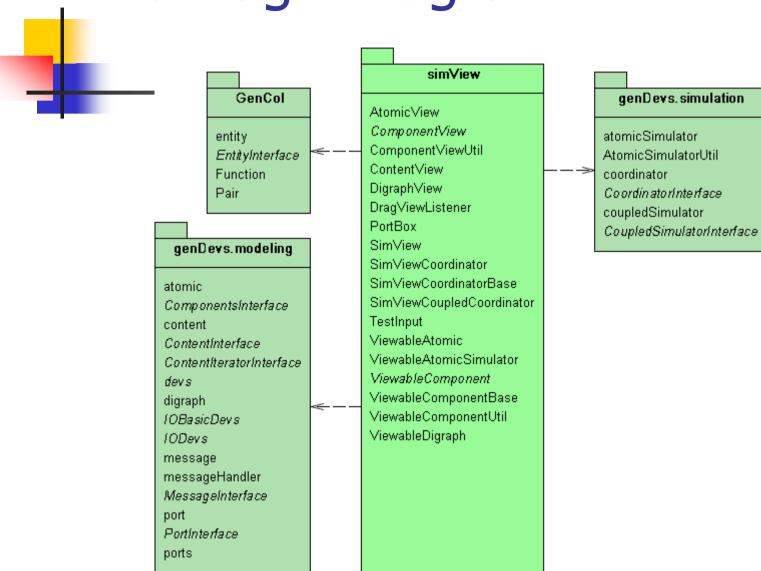
After each transition tN = t + ta(), tL = t

- Classic DEVS quick review
- Why Parallel DEVS
- Parallel DEVS Formalism
 - Atomic Model
 - Coupled Model
 - Closure under Coupling
- Parallel DEVS Simulation Protocol
- DEVSJAVA

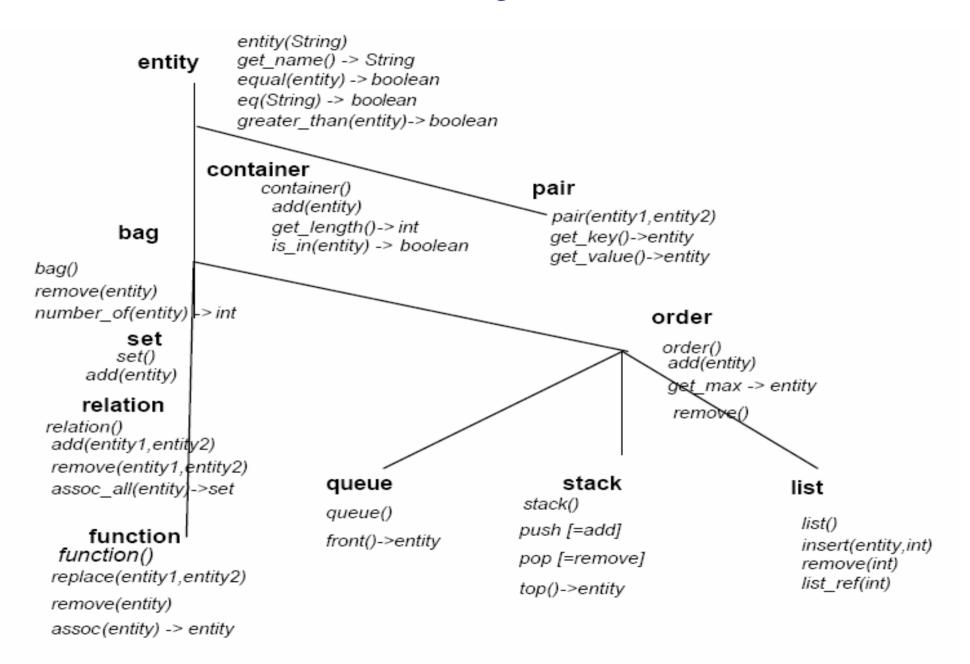
DEVSJAVA

- DEVS-based, Object-Oriented Modeling and Simulation environment.
- Written in Java and supports parallel execution on a uni-processor
- Simulation Viewer for animating simulation in V2.7

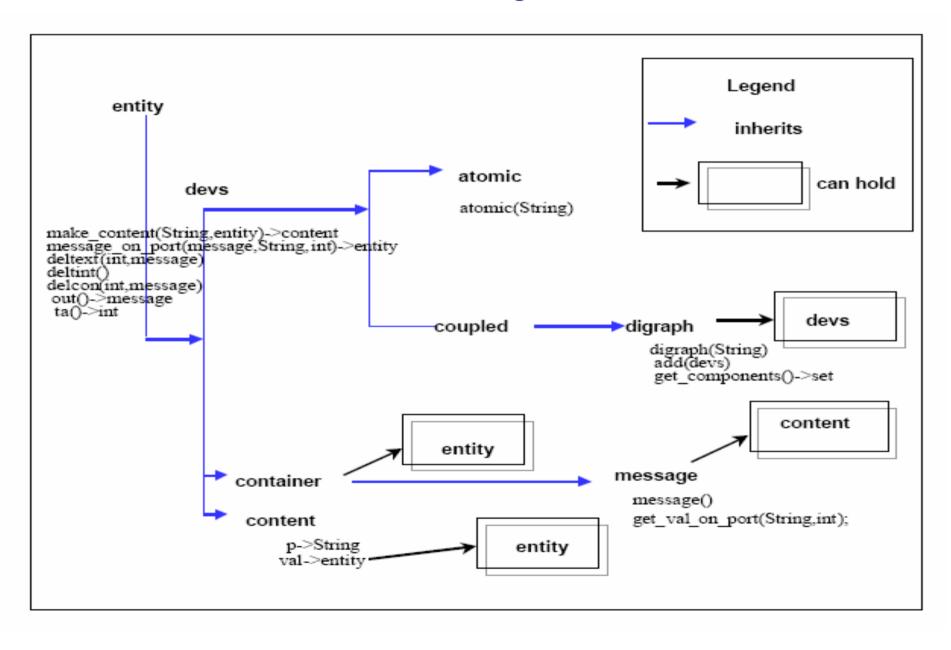
Package Diagram



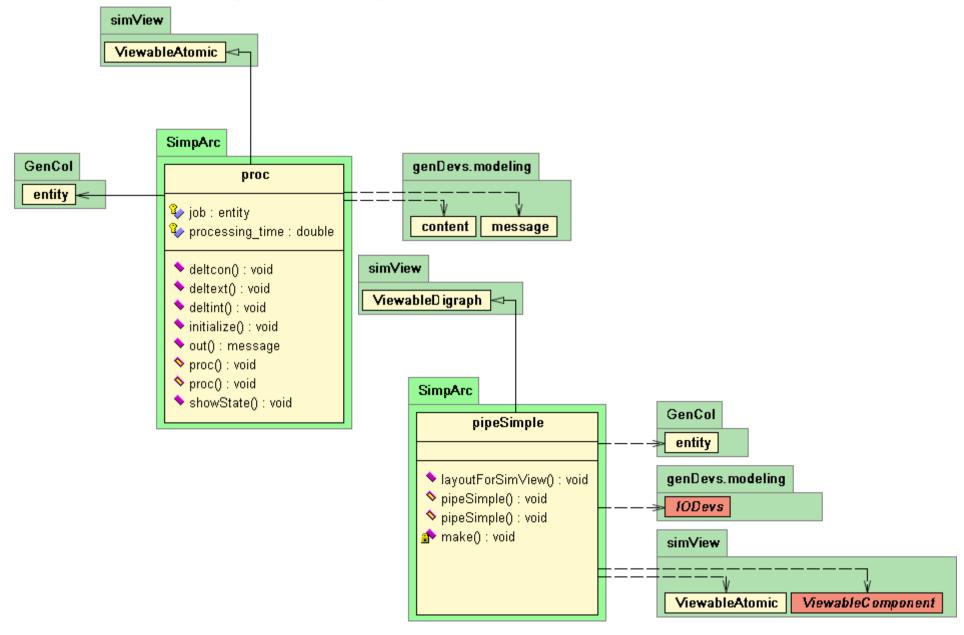
DEVSJAVA Class hierarchy of container classes



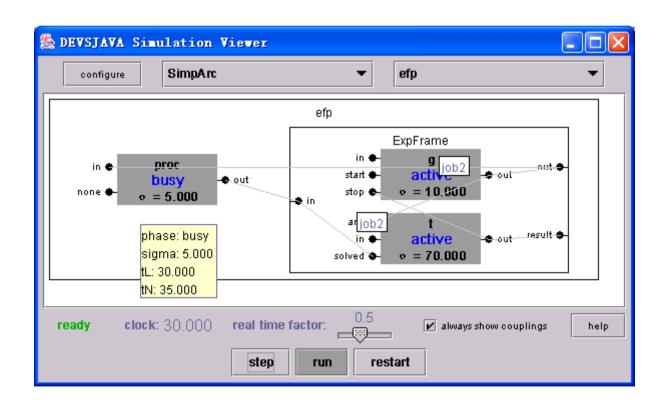
DEVSJAVA Class hierarchy of DEVS classes



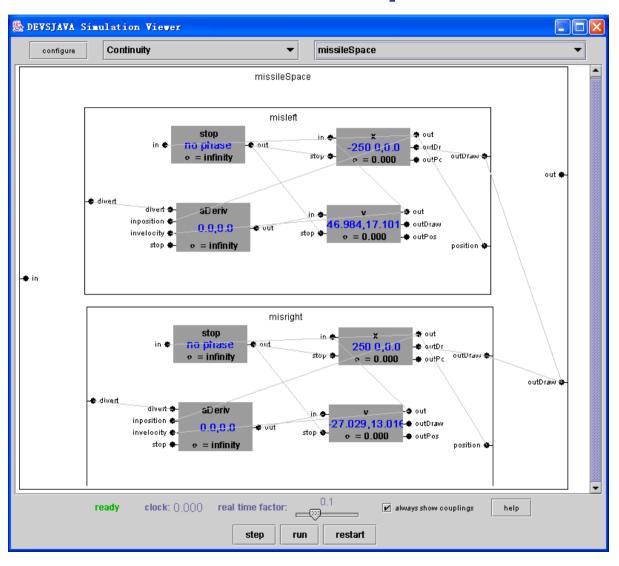
Simple Pipeline in DEVSJAVA

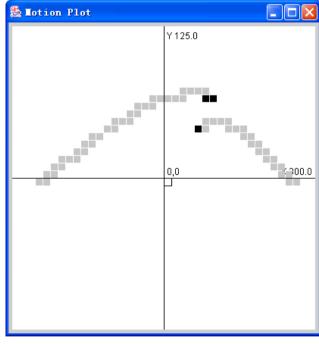


Simulation Viewer



More complicated example





Sources

- DEVSJAVA Modeling and Simulation environment for developing DEVS-based models by Hessam Sarjoughian, Bernard Zeigler.
 - http://www.acims.arizona.edu/SOFTWARE/software.s
 html#DEVSJAVA (need a license)

