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Abstract 

 
Traffic, a timed visual formalism for vehicle traffic 

networks, is introduced. The syntax of Traffic models 
is meta-modelled [2] in the Entity-Relationship 
Diagrams formalism. The semantics of the Traffic 
formalism is modelled by mapping Traffic models onto 
Parallel DEVS [1] models. From this, codes which 
are suitable for simulation by the PythonDEVS [4] 
simulator (an implementation of the standard Classic 
DEVS simulation algorithm) can be generated. Based 
on the simulation, analyses (i.e., performance analysis) 
of a user-defined traffic network can be performed. 
Graph rewriting is used to transform models. All of 
these are implemented in AToM3, A Tool for Multi-
formalism and Meta-Modelling [5]. 
 
1. Introduction 
 

DEVS formalism [1] is a well known for modelling 
and simulation discrete-event systems. Some of the 
advantages of the DEVS formalism are that it allows 
the hierarchical description of systems, that it provides 
natural ways for modular design and implementation 
of systems, and that there are efficient algorithms for 
their simulation. The basic DEVS formalism is also 
called Classic DEVS [1] which has some limitations 
for parallel implementation. For example, the select 
function used in Classic DEVS coupled model for 
collision tie-breaking, is less controllable as the tie-
breaking decision can only be made in the global level. 
Parallel DEVS [1], as an extension to Classic DEVS, 
which eliminates the select function in coupled model 
and introduces the confluent function in atomic model, 
gives the modeller complete control over the collision 
behavior. Parallel DEVS also uses bags as the message 
structures. This allows that inputs of a component 
arrive in any order and that more than one input with 
the same identity may arrive from one or more sources. 

In this project, the DEVS formalism we meta-
modelled is Parallel DEVS; and so are the 

automatically generated models from mapping Traffic 
models to DEVS models by using graph 
transformation. Due to the time limitation of this 
project, code generation is only capable of generating 
codes suitable for simulation by PythonDEVS so far. 
However, based on the transformed DEVS models, the 
implementation of code generation for other DEVS 
simulation frameworks (i.e., DEVSJAVA [7]) is only a 
practical issue. 

Traffic and DEVS meta-modelling, model 
transformation and simulation code generation are 
implemented in AToM3 V0.3 [5]. 

The rest of the report is organized as follows. 
Section 2 presents the Traffic formalism for modelling 
vehicle traffic networks and Traffic meta-modelling in 
AToM3. Section 3 presents the Parallel DEVS 
formalism and meta-modelling in AToM3. Section 4 
presents model transformation which maps Traffic 
models to DEVS models in AToM3. Finally, section 5 
presents the code generation from DEVS models to 
PythonDEVS. 
 
2. Traffic formalism and meta-modelling 
 

The Traffic formalism discussed here is an 
extension of the one described in [2]. This extension is 
also called the Timed Traffic formalism because we 
add timing elements to the original Traffic formalism. 
Based on our extension, the simulation of traffic 
system is more reasonable and more realistic. 

Figure 1 shows a traffic system in which vehicles 
arrive into the system via a source Start1 or Start2; go 
along road sections Lorne and Milton, or go along 
Pine; then go across an intersection to Parc which has 
entries from Milton and Pine (each of both controlled 
by a traffic light and synchronized with each other); 
finally leave via an exit End. 



 

Figure 1: A Traffic model 

Vehicle arrival is denoted by a filled circle which 
has three other properties besides its name: 
inter_arrival_time (IAT), number_vehicles and 
infinite_supply (an invisible boolean property). Vehicle 
departure is denoted by a filled rectangle which has 
two properties: name and number_vehicles. A cross 
denotes a road section which has four other properties 
besides its name: length, velocity_limit, state (normal 
or jammed), and number_vehicles (a time-varying 
number of vehicles in it). Road sections are connected 
by arrows. Multiple arrows departing from a single 
road section indicates a divergence; multiple arrows 
arriving to a single road section indicates a 
convergence which should be coordinated by several 
synchronized traffic lights. A traffic light is denoted by 
a black rectangle in which there are a red circle and 
green circle. The traffic light has no name but three 
properties: state (green or red), green_time, red_time. 
A capacity constrain circle may be connected to a 
number of road sections. The total number of vehicles 
in all those sections may not exceed the capacity. 

 
2.1. Traffic Meta-Model 
 

To build a meta-model for the Traffic formalism 
with AToM3, we use the default meta-formalism 
Entity Relationship Diagrams. The Traffic meta-
model shown in Figure 2 describes which entities are 
allowed in the formalism with their attributes, how 
they may be connected, and what cardinalities between 
them are. For example, a source can only connect into 
one road section and a road section can only have 
single source connected into; the cardinality between 
road section and sink is the same as the previous. Not 
shown is the definition of the graphical appearance 
(seen in Figure 1) of these entities, global attributes 
(such as the model name and author), actions, nor are 
constraints.  

 
Figure 2: Traffic meta-model 

 
3. Parallel DEVS formalism and meta-
modelling 
 

The Parallel DEVS formalism discussed here is an 
extension of the one described in [6]. Figure 3 shows a 
DEVS model which is transformed from the traffic 
system described in Figure 1. The top-level DEVS 
model Traffic is a coupled model which is a 
composition of several sub-models (atomic or coupled). 
For our traffic system example, all sub-models are 
atomic DEVS models. Each entity in Traffic formalism, 
such as source, sink, or road section is transformed 
into a corresponding atomic DEVS model. A group of 
synchronized traffic lights are transformed into a 
single traffic light atomic DEVS model; each of 
unsynchronized traffic lights is transformed into a 
traffic light atomic DEVS model. A capacity entity is 
eliminated after transformation.  

Sub-models have ports which are connected by 
channels. There are two types of ports: input and 
output. A channel must go from an output port of some 
model to an input pot of a different model, from an 
input port in a coupled model to an input port of one of 
its sub-models, or from an output port of a sub-model 
to an input port of its parent model. For our traffic 
system example, we have only the first situation, a 
channel connects the two atomic DEVS model. There 
are two channels between a source model and a road 
section model: the one from source to road section for 
sending messages of cars and the one from road 
section to source for sending messages of road section 
state; every two consecutive road section models have 
a couple of similar channels. There is only one channel 
between a road section model and a sink model which 
goes from the former to the later. There is one channel 



starts from a traffic light model to each of controlled 
road section models. 
 

 
Figure 3: A DEVS model transformed from figure 1 

 
An atomic model has, in addition to ports, a set of 

states, one of which is the initial state, and three types 
of transitions between states: internal, external and 
confluent. Associated with each state are a time-
advance and an output function. A source atomic 
DEVS model has two states: passive and active, four 
internal transitions, and three external transitions; the 
active is the initial state. A sink atomic DEVS model 
has one state: passive, and one external transition. A 
road section atomic DEVS model has four states: 
empty, advancing, waiting and ready, ten internal 
transitions, and fourteen external transitions; the initial 
state is empty. A traffic light atomic DEVS model has 
two states: passive and active, and two internal 
transitions. 
 
3.1. Parallel DEVS Meta-Model 
 

To build a meta-model for the Parallel DEVS 
formalism with AToM3, we use the default meta-
formalism Entity Relationship Diagrams. The 
Parallel DEVS meta-model shown in Figure 4 
describes which entities are allowed in the formalism 
with their attributes, how they may be connected, and 
what cardinalities between them are. For example, a 
coupled model can contain multiple atomic models or 
multiple coupled models. Not shown is the definition 
of the graphical appearance (seen in Figure 1) of these 
entities, global attributes (such as the model name and 
author), actions, nor are constraints. The Parallel 
DEVS meta-model we build here is base on the project 
work done by Denis Dube [6]. 

 
Figure 4: Parallel DEVS meta-model 

 
4. Model transformation 
 

As models and meta-models are all in essence 
attributed and typed graphs, we can transform them by 
means of graph rewriting. The rewriting is specified in 
the form of Graph Grammar models. A graph 
grammar is composed of rules. Each rule consists of 
Left Hand Side (LHS) and Right Hand Side (RHS) 
graphs [2].  
 
4.1. Traffic Semantics 
 

To model the semantics of Traffic formalism we 
build a Graph Grammar model of its dynamics. In 
this project, we map Traffic models onto Parallel 
DEVS models.  

Figure 5, 6, 7, 8, 9 and 10 depict our Graph 
Grammar model of the mapping. The model starts 
with an initial action followed by nine rules. Each rule 
has a LHS and a RHS as well as an optional pre-
condition and post-action. Nodes and connections in 
LHSs and RHSs are identified by means of labels 
(numbers). See [2] for the details of how these work in 
AToM3. 

In the initial action of our model, to avoid infinite 
application of several following rules, we set a global 
flag variable rootTrafficGenerated as false which 
means the top-level coupled model hasn’t generated; 
and this trick is also used for all nodes, such as Source, 
Sink, RoadSection, TrafficLight and Capacity. Rule 1 
creates a top-level coupled model for the whole traffic 
system. Rule 2 transforms Traffic Source nodes into 
DEVS Generator atomic models, with a link to the 
original Source node. Rule 3 transforms Traffic Sink 
nodes into DEVS Collector atomic models, with a link 
to the original Sink node. Rule 4 transforms Traffic 
RoadSection nodes into DEVS Road atomic models, 
with a link to the original RoadSection node. Rule 5 
transforms Traffic Source2Section connections 



between Source nodes and RoadSection nodes into 
DEVS channels with appropriate DEVS ports. Rule 6 
transforms Traffic Section2Sink connections between 
RoadSection nodes and Sink nodes into DEVS 
channels with appropriate DEVS ports. Rule 7 
transforms Traffic FlowTo connections between 
RoadSection nodes into DEVS channels with 
appropriate DEVS ports. Rule 8 copies the capacity 
attribute of Traffic Capacity node into the 
corresponding DEVS Road atomic model. Rule 9 
removes the no longer needed Traffic Capacity nodes. 
Rule 10 transforms Traffic synchronized TrafficLight 
nodes into DEVS TrafficLight atomic model, with 
links to the original TrafficLight nodes. Rule 11 is 
similar to Rule 10 except that the DEVS TrafficLight 
atomic model already exists. Rule 12 transforms 
Traffic unsynchronized TrafficLight nodes into DEVS 
TrafficLight atomic models, with a link to the original 
TrafficLight node. Rule 13 transforms Traffic 
ControlledSection connections between TrafficLight 
nodes and RoadSection nodes into DEVS channels 
with appropriate DEVS ports. Rule 14 removes the 
special link between DEVS TrafficLight model and 
Traffic TrafficLight node. Rule 15 removes the no 
longer needed Traffic TrafficLight nodes. Rule 16 
removes the special link between DEVS Road model 
and Traffic RoadSection node. Rule 17 removes the 
no longer needed Traffic RoadSection nodes. Rule 18 
connects DEVS Road atomic models with DEVS 
Traffic coupled models. Rule 19 connects DEVS 
TrafficLight atomic models with DEVS Traffic 
coupled models. Finally, rule 20 connects DEVS 
Generator atomic models and Collector atomic models 
with DEVS Traffic coupled models. 

Appendix A illustrates the application of the rules. 
It starts from a very simple Traffic model with a source, 
two connected road segments, a sink, and a traffic light. 
The transformation ends with a DEVS representing the 
behavior of the Traffic model. 

 
Figure 5: Model transformation rules (part 1) 

 

 
Figure 6: Model transformation rules (part 2) 

INITIAL ACTION:  
self.rootTrafficGenerated = False 
for node in graph.listNodes["Source"]: 
   node.sourceGeneratorGenerated = False 
for node in graph.listNodes["Sink"]: 
   node.sinkCollectorGenerated = False 
for node in graph.listNodes["RoadSection"]: 
   node.roadAtomicGenerated = False 
for node in graph.listNodes["Capacity"]: 
   node.capacityInfoGenerated = False 
for node in graph.listNodes["TrafficLight"]: 
   node.trafficLightWithRoadGenerated = False 
   node.trafficLightSyncGenerated = False 
self.TL_count = 0 



 
Figure 7: Model transformation rules (part 3) 

 
Figure 8: Model transformation rules (part 4) 



 

 
Figure 9: Model transformation rules (part 5) 

 
Figure 10: Model transformation rules (part 6) 



5. Code generation 
 

PythonDEVS [4] is a modelling and simulation 
package which provides an implementation of the 
standard classic DEVS simulation algorithm as 
introduced in [3]. The package consists of two files, 
the first of which (DEVS.py) provides a class 
architecture that allows hierarchical classic DEVS 
models to be easily defined by sub-classing the 
AtomicDEVS and CoupledDEVS classes. The codes 
generated from transformed DEVS models are suitable 
for simulation by PythonDEVS. In this project, the 
implementation of code generation is an extension of 
the work described in [3]. Each model (atomic and 
coupled) is compiled into a class, which is a subclass 
of AtomicDEVS or CoupledDEVS. 

Figure 12 shows, as an example, when generating 
codes for a RoadSection atomic model, all parts related 
to the code generation process in AToM3. Each model 
(atomic and coupled) is compiled into a class, which is 
a subclass of AtomicDEVS or CoupledDEVS. To 
avoid infinite states in an atomic model, such as 
RoadSection atomic model, condition scripts are added 
into transitions. For example, when a message of Car 
enters into a RoadSection, to determine which state 
should be the next one, the external transition has to 
check the current length of the queue in which cars are 
stored. This condition script is as follows:  
 
def getDirection(): 
  for outport in outports_list: 
    outport_name = outport[0] 
    if (outport_name[-9:] == "_flow_out"): 
      return outport_name 
  return None 
 
for inport in inports_list: 
  inport_name = inport[0] 
  inport_value = inport[1] 
  if inport_value != None: 
    if (inport_name[-8:] == "_flow_in"): 
      if (len(self.queue) > 0) and (self.changed == "false"): 
        self.current_time = self.current_time + e 
        direction = getDirection() 
        self.queue = [(inport_value, direction, self.current_time)] + 
self.queue 
        self.changed = "true" 
        self.time_left = self.time_left - e 
        return True 
return False 

 
Figure 12: 

 
The above code script also shows that to determine 

from which kind of ports the incoming messages are, 
we have some naming conventions for every generated 
ports:  

For Source atomic model: the name of output port is 
outport and the name of input port is info_in; 

For Sink atomic model: the name of input port is 
inport; 

For Road atomic model: the name of output port to 
which messages of Cars go out is (self model 
name)_(next model name)_flow_out, the name of 
input port from which messages of Cars come in is 
(previous model name)_(self model name)_ flow_in, 
the name of output port to which messages of State 
go out is (self model name)_(previous model 
name)_info_out, the name of input port from which 
messages of Cars come in is (next model name)_(self 
model name)_ info_in and the name of input port 
from which messages of TrafficLightStatus come in is 
(model name controlled by traffic light)_(model name 
directed by traffic light)_ ctrl_in; 

For TrafficLight atomic model: the name of output 
port to which messages of TrafficLightStatus go out is 
(model name controlled by traffic light)_(model name 
directed by traffic light)_ ctrl_in. 

 
6. Conclusions 
 

Domain-specific modelling, such as Traffic 
modelling we showed, can maximally constrains users, 
allowing them, by construction, to only build 
syntactically and semantically correct models.  

The Parallel DEVS formalism as an extension of 
Classic DEVS from which all its advantages that 
allows the rigorous description of complex dynamic 
systems, the definition of component-based models 
and the efficient simulation algorithms for these 

internal transition

external transition output function 

initParams 

time advance 



models are inherited, also overcomes some limitations 
of Classic DEVS for parallel simulation. 

Meta-modelling which alleviates the problem of 
building and interconnecting a plethora of different 
tools when modelling complex systems, combined 
with model transformation which is based on Graph 
Grammar, smoothly bridges between domain-specific 
modelling (i.e., Traffic) and general modelling and 
simulation (i.e., Parallel DEVS).  

This project shows how the whole process from 
Traffic modelling, to Traffic models to DEVS models 
mapping, and to PythonDEVS simulation code 
generation can be done in AToM3. 

Future work will address code generation for other 
DEVS simulation framework (i.e., DEVSJAVA) and 
in other languages (i.e., Java). Another line of work 
that needs attention is the use of a neutral language for 
specifying transition conditions, time-advancing and 
output functions of atomic DEVS models in AToM3. 
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Appendix A – An example of the 
application of the transformation rules 
described in Section 4.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



The initial Traffic model: 

 
After creating a top-level coupled model (rule 1): 

 
After transforming Traffic Source nodes into DEVS Generator atomic 
models (rule 2): 

 
After transforming Traffic Sink nodes into DEVS Collector atomic 
models (rule 3): 

 
After transforming Traffic RoadSection nodes into DEVS Road atomic 
models (rule 4): 

 

After transforming Traffic RoadSection nodes into DEVS Road atomic 
models (rule 4): 

 
After transforming Traffic Source2Section connections between Source 
nodes and RoadSection nodes into DEVS channels (rule 5):  

 
After transforming transforms Traffic Section2Sink connections between 
RoadSection nodes and Sink nodes into DEVS channels (rule 6):  

 
After transforming Traffic FlowTo connections between RoadSection 
nodes into DEVS channels (rule 7):  

 
After copying the capacity attribute of Traffic Capacity node into the 
corresponding DEVS Road atomic model (rule 8): 

 



After copying the capacity attribute of Traffic Capacity node into the 
corresponding DEVS Road atomic model (rule 8): 

 
After removing the no longer needed Traffic Capacity nodes (rule 9):  

 
After removing the no longer needed Traffic Capacity nodes (rule 9):  

 
After transforming Traffic unsynchronized TrafficLight nodes into 
DEVS TrafficLight atomic models (rule 12):  

 
After transforming Traffic ControlledSection connections between 
TrafficLight nodes and RoadSection nodes into DEVS channels (rule 13): 

 

After removing the special link between DEVS TrafficLight model and 
Traffic TrafficLight node (rule 14):  

 
After removing the no longer needed Traffic TrafficLight nodes (rule 15): 

 
 After removing the special link between DEVS Road model and Traffic 
RoadSection node (rule 16):  

 
After removing the special link between DEVS Road model and Traffic 
RoadSection node (rule 16): 

 
After removing the no longer needed Traffic RoadSection nodes (rule 
17):  

 



After removing the no longer needed Traffic RoadSection nodes (rule 
17): 

 
After connecting DEVS Road atomic models with DEVS Traffic coupled 
models (rule 18): 

 
After connecting DEVS Road atomic models with DEVS Traffic coupled 
models (rule 18): 

 
After connecting DEVS TrafficLight atomic models with DEVS Traffic 
coupled models (rule 19): 

 

After connecting DEVS Generator atomic models and Collector atomic 
models with DEVS Traffic coupled models (rule 20): 

 
After connecting DEVS Generator atomic models and Collector atomic 
models with DEVS Traffic coupled models (rule 20): 

 
The final model after some adjustments:  

 


