Parallel DEVS Modelling of Traffic in AToM?

Ximeng Sun
School of Computer Science, McGill University
xsunlé6@cs.mcgill.ca

Abstract

Traffic, a timed visual formalism for vehicle traffic
networks, is introduced. The syntax of Traffic models
is meta-modelled [2] in the Entity-Relationship
Diagrams formalism. The semantics of the Traffic
formalism is modelled by mapping Traffic models onto
Parallel DEVS [1] models. From this, codes which
are suitable for simulation by the PythonDEVS [4]
simulator (an implementation of the standard Classic
DEVS simulation algorithm) can be generated. Based
on the simulation, analyses (i.e., performance analysis)
of a user-defined traffic network can be performed.
Graph rewriting is used to transform models. All of
these are implemented in AToM®, A Tool for Multi-
formalism and Meta-Modelling [5].

1. Introduction

DEVS formalism [1] is a well known for modelling
and simulation discrete-event systems. Some of the
advantages of the DEVS formalism are that it allows
the hierarchical description of systems, that it provides
natural ways for modular design and implementation
of systems, and that there are efficient algorithms for
their simulation. The basic DEVS formalism is also
called Classic DEVS [1] which has some limitations
for parallel implementation. For example, the select
function used in Classic DEVS coupled model for
collision tie-breaking, is less controllable as the tie-
breaking decision can only be made in the global level.
Parallel DEVS [1], as an extension to Classic DEVS,
which eliminates the select function in coupled model
and introduces the confluent function in atomic model,
gives the modeller complete control over the collision
behavior. Parallel DEVS also uses bags as the message
structures. This allows that inputs of a component
arrive in any order and that more than one input with
the same identity may arrive from one or more sources.

In this project, the DEVS formalism we meta-
modelled is Parallel DEVS; and so are the

automatically generated models from mapping Traffic
models to DEVS models by using graph
transformation. Due to the time limitation of this
project, code generation is only capable of generating
codes suitable for simulation by PythonDEVS so far.
However, based on the transformed DEVS models, the
implementation of code generation for other DEVS
simulation frameworks (i.e., DEVSJAVA [7]) is only a
practical issue.

Traffic and DEVS meta-modelling, model
transformation and simulation code generation are
implemented in AToM® V0.3 [5].

The rest of the report is organized as follows.
Section 2 presents the Traffic formalism for modelling
vehicle traffic networks and Traffic meta-modelling in
AToM®. Section 3 presents the Parallel DEVS
formalism and meta-modelling in AToM®. Section 4
presents model transformation which maps Traffic
models to DEVS models in AToM®. Finally, section 5
presents the code generation from DEVS models to
PythonDEVS.

2. Traffic formalism and meta-modelling

The Traffic formalism discussed here is an
extension of the one described in [2]. This extension is
also called the Timed Traffic formalism because we
add timing elements to the original Traffic formalism.
Based on our extension, the simulation of traffic
system is more reasonable and more realistic.

Figure 1 shows a traffic system in which vehicles
arrive into the system via a source Startl or Start2; go
along road sections Lorne and Milton, or go along
Pine; then go across an intersection to Parc which has
entries from Milton and Pine (each of both controlled
by a traffic light and synchronized with each other);
finally leave via an exit End.

Startz
14T 330

Vel Limit (Krm/h) ana Vellimit (Km/h Vel Limit (Km/h) 0.0

0 Lorme L 0 i _Nhilton L 0 Parc » .
Length (Km) 1.0 T Tength (Km] 50 T Tength(Km) T 10.0

) 500
oW o

@
1 ap_2

Figure 1: A Traffic model

Vehicle arrival is denoted by a filled circle which
has three other properties besides its name:
inter_arrival_time (IAT), number_vehicles and
infinite_supply (an invisible boolean property). Vehicle
departure is denoted by a filled rectangle which has
two properties: name and number_vehicles. A cross
denotes a road section which has four other properties
besides its name: length, velocity_limit, state (normal
or jammed), and number_vehicles (a time-varying
number of vehicles in it). Road sections are connected
by arrows. Multiple arrows departing from a single
road section indicates a divergence; multiple arrows
arriving to a single road section indicates a
convergence which should be coordinated by several
synchronized traffic lights. A traffic light is denoted by
a black rectangle in which there are a red circle and
green circle. The traffic light has no name but three
properties: state (green or red), green_time, red_time.
A capacity constrain circle may be connected to a
number of road sections. The total number of vehicles
in all those sections may not exceed the capacity.

2.1. Traffic Meta-Model

To build a meta-model for the Traffic formalism
with AToM?, we use the default meta-formalism
Entity Relationship Diagrams. The Traffic meta-
model shown in Figure 2 describes which entities are
allowed in the formalism with their attributes, how
they may be connected, and what cardinalities between
them are. For example, a source can only connect into
one road section and a road section can only have
single source connected into; the cardinality between
road section and sink is the same as the previous. Not
shown is the definition of the graphical appearance
(seen in Figure 1) of these entities, global attributes
(such as the model name and author), actions, nor are
constraints.

Jineetion: 0

Figure 2: Traffic meta-model

3. Parallel DEVS formalism and meta-
modelling

The Parallel DEVS formalism discussed here is an
extension of the one described in [6]. Figure 3 shows a
DEVS model which is transformed from the traffic
system described in Figure 1. The top-level DEVS
model Traffic is a coupled model which is a
composition of several sub-models (atomic or coupled).
For our traffic system example, all sub-models are
atomic DEVS models. Each entity in Traffic formalism,
such as source, sink, or road section is transformed
into a corresponding atomic DEVS model. A group of
synchronized traffic lights are transformed into a
single traffic light atomic DEVS model; each of
unsynchronized traffic lights is transformed into a
traffic light atomic DEVS model. A capacity entity is
eliminated after transformation.

Sub-models have ports which are connected by
channels. There are two types of ports: input and
output. A channel must go from an output port of some
model to an input pot of a different model, from an
input port in a coupled model to an input port of one of
its sub-models, or from an output port of a sub-model
to an input port of its parent model. For our traffic
system example, we have only the first situation, a
channel connects the two atomic DEVS model. There
are two channels between a source model and a road
section model: the one from source to road section for
sending messages of cars and the one from road
section to source for sending messages of road section
state; every two consecutive road section models have
a couple of similar channels. There is only one channel
between a road section model and a sink model which
goes from the former to the later. There is one channel

starts from a traffic light model to each of controlled
road section models.

D
R S | S
e
$_ = 5 4 Y
* - bk S
= -
. ML Rl
e \ | s
/ : \
ko N \ A
et ~ Iy 1
| N\ L R T W
L o — % ") T
Y- M T _h\:,,‘ Y N

Flgure 3: A DEVS model transformed from figure 1

An atomic model has, in addition to ports, a set of
states, one of which is the initial state, and three types
of transitions between states: internal, external and
confluent. Associated with each state are a time-
advance and an output function. A source atomic
DEVS model has two states: passive and active, four
internal transitions, and three external transitions; the
active is the initial state. A sink atomic DEVS model
has one state: passive, and one external transition. A
road section atomic DEVS model has four states:
empty, advancing, waiting and ready, ten internal
transitions, and fourteen external transitions; the initial
state is empty. A traffic light atomic DEVS model has
two states: passive and active, and two internal
transitions.

3.1. Parallel DEVS Meta-Model

To build a meta-model for the Parallel DEVS
formalism with AToM®, we use the default meta-
formalism Entity Relationship Diagrams. The
Parallel DEVS meta-model shown in Figure 4
describes which entities are allowed in the formalism
with their attributes, how they may be connected, and
what cardinalities between them are. For example, a
coupled model can contain multiple atomic models or
multiple coupled models. Not shown is the definition
of the graphical appearance (seen in Figure 1) of these
entities, global attributes (such as the model name and
author), actions, nor are constraints. The Parallel
DEVS meta-model we build here is base on the project
work done by Denis Dube [6].

Figure 4: Parallel DEVS meta-model

4. Model transformation

As models and meta-models are all in essence
attributed and typed graphs, we can transform them by
means of graph rewriting. The rewriting is specified in
the form of Graph Grammar models. A graph
grammar is composed of rules. Each rule consists of
Left Hand Side (LHS) and Right Hand Side (RHS)
graphs [2].

4.1. Traffic Semantics

To model the semantics of Traffic formalism we
build a Graph Grammar model of its dynamics. In
this project, we map Traffic models onto Parallel
DEVS models.

Figure 5, 6, 7, 8, 9 and 10 depict our Graph
Grammar model of the mapping. The model starts
with an initial action followed by nine rules. Each rule
has a LHS and a RHS as well as an optional pre-
condition and post-action. Nodes and connections in
LHSs and RHSs are identified by means of labels
(numbers). See [2] for the details of how these work in
AToM?.

In the initial action of our model, to avoid infinite
application of several following rules, we set a global
flag variable rootTrafficGenerated as false which
means the top-level coupled model hasn’t generated,;
and this trick is also used for all nodes, such as Source,
Sink, RoadSection, TrafficLight and Capacity. Rule 1
creates a top-level coupled model for the whole traffic
system. Rule 2 transforms Traffic Source nodes into
DEVS Generator atomic models, with a link to the
original Source node. Rule 3 transforms Traffic Sink
nodes into DEVS Collector atomic models, with a link
to the original Sink node. Rule 4 transforms Traffic
RoadSection nodes into DEVS Road atomic models,
with a link to the original RoadSection node. Rule 5
transforms Traffic Source2Section connections

between Source nodes and RoadSection nodes into
DEVS channels with appropriate DEVS ports. Rule 6
transforms Traffic Section2Sink connections between
RoadSection nodes and Sink nodes into DEVS
channels with appropriate DEVS ports. Rule 7
transforms Traffic FlowTo connections between
RoadSection nodes into DEVS channels with
appropriate DEVS ports. Rule 8 copies the capacity
attribute of Traffic Capacity node into the
corresponding DEVS Road atomic model. Rule 9
removes the no longer needed Traffic Capacity nodes.
Rule 10 transforms Traffic synchronized TrafficLight
nodes into DEVS TrafficLight atomic model, with
links to the original TrafficLight nodes. Rule 11 is
similar to Rule 10 except that the DEVS TrafficLight
atomic model already exists. Rule 12 transforms
Traffic unsynchronized TrafficLight nodes into DEVS
TrafficLight atomic models, with a link to the original
TrafficLight node. Rule 13 transforms Traffic
ControlledSection connections between TrafficLight
nodes and RoadSection nodes into DEVS channels
with appropriate DEVS ports. Rule 14 removes the
special link between DEVS TrafficLight model and
Traffic TrafficLight node. Rule 15 removes the no
longer needed Traffic TrafficLight nodes. Rule 16
removes the special link between DEVS Road model
and Traffic RoadSection node. Rule 17 removes the
no longer needed Traffic RoadSection nodes. Rule 18
connects DEVS Road atomic models with DEVS
Traffic coupled models. Rule 19 connects DEVS
TrafficLight atomic models with DEVS Traffic
coupled models. Finally, rule 20 connects DEVS
Generator atomic models and Collector atomic models
with DEVS Traffic coupled models.

Appendix A illustrates the application of the rules.
It starts from a very simple Traffic model with a source,
two connected road segments, a sink, and a traffic light.
The transformation ends with a DEVS representing the
behavior of the Traffic model.

/INITIAL ACTION: \

self.rootTrafficGenerated = False

for node in graph.listNodes["Source"]:
node.sourceGeneratorGenerated = False

for node in graph.listNodes["Sink"]:
node.sinkCollectorGenerated = False

for node in graph.listNodes["RoadSection"]:
node.roadAtomicGenerated = False

for node in graph.listNodes["Capacity"]:
node.capacitylnfoGenerated = False

for node in graph.listNodes["TrafficLight"]:
node.trafficLightWithRoadGenerated = False
node.trafficLightSyncGenerated = False

kself.TL_count =0 J

Figure 5: Model transformation rules (part 1)

Rule 1 {Ovder 1): RootTraflic

' LHS s

B

/£ \.

Hule 2 {Chpader 20 Souree 2Loonceralog

ANY =
@®...

AT [h); =ANY=

Sy s Do V8
AT mEf . gEAMched graghID, Salf LB sodeWrTELabad il Fh dsse . gerPaleed)

Rule 3 (Order 3): Sink2Caollector

y e

ANY> 4 =)

<ANY>
S

salf perManched (graghll, self 185 nodlithlabal(1)) name getVals

Figure 6: Model transformation rules (part 2)

Rule 4 (Ovder 4): Road 2Rond

LHS - s
CANY <ANY > P — -
Lengin (kmy T _angy-
Vel Limit (Kmih) <ANY = 2

Frocondition:

nede = gelf getMatched{graphlD, salf LHI . nodevithlabel{1)}
return mot pode PosdAlosscCenesated

Matched (graphlD, self LED.podedizhlabelil))
Matched (graphiD, self RN nodelithlabel(2))

atad = Trus

nods_7. comnestadiithCoupled = False
node_ 2. model _type = "road®

Specify: atomicDeos Ve g2

node. 1 = welf . getMatched(graphll, welf LES.nodedizhLabel(1))
node_3 = aelf. getHatched(graphiD, self k0. nodelschiabel(2))

= melf length = * = stripode 1. length getValusi()} = chri10)
1 % » atrineds_1.velseity linit.get¥al
self.traffic light = %

e (10 mels
+ eWE(10) + * salf tine left = G9090° + chr(10)
capacity = BUOBE* + chr(10)

Teturn mEr_return

Spevily: atendeDeos V2 ga

roturn malf getMatched(graphlD, self LHS nodeWithLabel{1)} name. getValua()

Hule 5 {Order G Gooerstor WithiRosd
- T [Ty
F - i
i T=s = . -
o -
L%, o %, i J |

Sgureilyy gpoedllees VB @007

Sguwily: porillees VE #18

wabl grAFLy

Rule (i (Order 6): Road \.,’\-"l

LHS - RHS

[T

{) O]

Spocify: portDers V2 #1511

roturn self.get¥atched (graphlD, aelf.LES.nodeWithlabel(2)).name.gecValuel) + ' To.'
+ self.getMatched(graphlD, salf LES nodeWithLabsl(1)).nome getValue() + *_flow_out’

Rule 7 (Order 7): Flow2Channel

LHS - ItHs

Specify: portDees V2 #10

return oelf. getMatched(graphlD, self.LHS nodeWithLabel(1}).nane. getValue() + *_To_ '
+ salf getMatched(graphlD, self .LHS modeWithLabel(2)). . name.getValue() + *_flow_out’

Specify: portDens V2 #12

return self.getMatched(graphlD, self LH3.nodeWithLabel{1}}.nase getValue(} + * To '
+ aolf, getMatchod (graphlD, self.LHS medsWithlabel(2)).name.getValue() + '_flow_in'

Spec portDevs V2 #17

return self.getMatched{graphlD, self LHS.nodeWithLabel(1)).name getValue() + °_Ta_'
+ s0lf.getHatehod(graphlD, self LHS modeWithLabel(2)).name getValue() + '_info_in’

Specify: portDers V2 #18

return self d{graphlD, self.LHS node’ Label{1}).name.getValue() + °_To_*
+ sel? . getMatchod(graphIl, self LHS modeWithlabel(2)). name.get¥alue() + '_info_out®

Figure 7: Model transformation rules (part 3)

Rule 8 (Order 8): Capacity WithRoad
v [TeHs X
™
- ~

<ANY >

SR
S oRED-
=ANY= = ANY =
Lengih (Km) CANY > <COPIED = COMIED>
Vel Limit (Ke/h) <ANY Langih (Rm) COPIED
- § VelLima (Kmt) | <COPIED>
7 3

L S—

Precondition:

node = sslf.gecHacched (graphiD, self. L. nodeWishiabel (2))
Feturn nat node.capacitylnfoGenarated

ot action:

awlf, getMatched phID, self LK WithLabel(2)} tylnd = Trae
Rule 9 (Order 9): CapacityCleanup
LHS - RHS
<ANY>
<ANY> <ANY > <COPIED: COPIED>
Length (Km) <ANY > Length (Km) + ~OPIED>
Vel Limit (Km/h) <ANY> Vel Limit (Km/h) <COPIED>

Rule 10 (Order 10): TrafficLightSyncl

'd LHS —

'

<ANY > <ANY = \

Precondition:

nodel = self.getMatched(graphlD, self.LHS.nodeWithLabel(1))
node2 = self.getMatched(graphlD, self LHS.nodeWithLabel(2))
return (net medel.trafficLightSyncGenerated) and (net nede. trafficLightSyncGenerated)

Post action:
seli.getMatched(graphID, self .LES.nodeWithlebel(1)).traificLightSyncGenerated = True
self.getMatched(graphID, self .LES.nodeWithlabel(2)).trafficLightyncenerated = True

node_4 = self.getMatched (graphID, self RHS.nodeWithLabel(4))
node_4.connectedWithCoupled = False
node_4.model_type = "trafficlight"

self.graphCremmer .TL_count = self.grephCrammar.TL count + 1

Specify: atomicDevsV2 £

return "

Specify: atomicDevsV2 £{

return "TL" + str(self.graphCrammar.TL_count)

Figure 8: Model transformation rules (part 4)

Rule 11 (Order 11): TraflicLightSync2
' LHS " RS N

<ANY> % <ANY >

PIED

N i °/
Rule 12 (Orvder 12): TraflicLightSync3

~ LIS - RS ™
-~

Marchod (graphlD, aelf LES.sodeWithlabel(i))
return mot medel.trafficlightSyncGensrated

aelf, get anlf LNS aodeWithiabel(1}) . teafficligh =Trus

gotMatched(graphll, self RS nodeMithlabel(2))

=

salf graphlrsssae TL_count = self graphGrssmar TL count = 1

Sim atenmic Dnva Vi g2

return

Spoecify: atomicllevs Ve #2
return "TL" + striself . graphGrsemsr, TL.count)

Hale 13 (Owddior 1380 TreallleLighe Wit hiRoad

'd LHs S N
| i o =
| / | /
% ", - " =

Prvvvssl il

e w gl gt ol (g
BeTErE e aods readfial

won | L b ') A e [}
R L1 s w1 07 il

Tt ot b nii

T LT T e Y

o sl AEE, wedainl i F11 mam o
LI, ey 1 e |

Rule 14 (Order 14): TrafficLightCleanupl

e 1]

LHs - RHS
<AMY AN “IED. 1=
[T e ey ¥

Vol Lt (Kl <ANY. el Limit (K
{ |

Figure 9: Model transformation rules (part 5)

Rule 15 (Orvder 15): TraficLight Cleanup2

LHs - Iths
COPIEDS COPIED
'l::‘,,',l,,_ f ey Lange otm) . comen
Vel Lt] ANV el Limit {Kinh) COPYELY
s an
g Pome—— COMED
el it (e Ay Longeh iy T
A s Vel Limat (K

Rule 16 (Order 16): RoadCleanupl
i LHS - 1tHs

((—
Lo i #

Vi Lot ity aax L sty on

b

_ L |

Hule 17 (Order 17): RoadCleanup2

N

[XIE] TEELS

o~
ARY AN
Longth (ke T _any
Vol Lirnit (Kb} < ANY = . = Ay

Hule 18 (Crvder 18): Connect Atomic2Caupled]

s Liis [Tt N

| %
T

sl L graph 3. LE, daid i b]

code . consecteddi taCreplad) wnd (ncde_acdal_typs == Tyosd®

Tewst sart s
sl gt St cbed (praphlD, sulf LHA. sedebitblabal (21) sommmctndiitiConpled = Tras

Rule 19 (Order 19): Connect Atomic2Coupled?2

LHS — [1]

Precondition:

node = melf.getMatched(graphll, self LHS. nodeNithLabel(2))
return (not neds.connectodVithCoupled) and (nods model_type == “trafficlight®)

Post action:
welf getMatched (graphlD, self LHS nodeWithLabel(2)).connectedWithCoupled = Trus

Rule 20 (Order 20): Connect Atomic2Coupled3

LH& IS

e | = 3 e \ —

Precondition

modu = self. gutiazched (graphlD, self LIS sodelithlabel{z)}
return (20t node, comsectedVithCoupled) and (node sodel.type == “genetater® of sode.medel typs == “collector”)

Post action:

L85 noduiithiabel{1}}. conm

salf gutiatched (graphll,

Figure 10: Model transformation rules (part 6)

diithCoupled = Trus

5. Code generation

PythonDEVS [4] is a modelling and simulation
package which provides an implementation of the
standard classic DEVS simulation algorithm as
introduced in [3]. The package consists of two files,
the first of which (DEVS.py) provides a class
architecture that allows hierarchical classic DEVS
models to be easily defined by sub-classing the
AtomicDEVS and CoupledDEVS classes. The codes
generated from transformed DEVS models are suitable
for simulation by PythonDEVS. In this project, the
implementation of code generation is an extension of
the work described in [3]. Each model (atomic and
coupled) is compiled into a class, which is a subclass
of AtomicDEVS or CoupledDEVS.

Figure 12 shows, as an example, when generating
codes for a RoadSection atomic model, all parts related
to the code generation process in AToM?®. Each model
(atomic and coupled) is compiled into a class, which is
a subclass of AtomicDEVS or CoupledDEVS. To
avoid infinite states in an atomic model, such as
RoadSection atomic model, condition scripts are added
into transitions. For example, when a message of Car
enters into a RoadSection, to determine which state
should be the next one, the external transition has to
check the current length of the queue in which cars are
stored. This condition script is as follows:

def getDirection():
for outport in outports_list:
outport_name = outport[0]
if (outport_name[-9:] =="_flow_out"):
return outport_name
return None

for inport in inports_list:
inport_name = inport[0]
inport_value = inport[1]
if inport_value != None:
if (inport_name[-8:] ==""_flow_in""):
if (len(self.queue) > 0) and (self.changed == "false™"):
self.current_time = self.current_time + e
direction = getDirection()
self.queue = [(inport_value, direction, self.current_time)] +
self.queue
self.changed = "true"
self.time_left = self.time_left - e
return True
return False

external transition

Figaré 12:

The above code script also shows that to determine
from which kind of ports the incoming messages are,
we have some naming conventions for every generated
ports:

For Source atomic model: the name of output port is

outport and the name of input port is info_in;

For Sink atomic model: the name of input port is
inport;

For Road atomic model: the name of output port to
which messages of Cars go out is (self model
name)_(next model name)_ flow out, the name of
input port from which messages of Cars come in is
(previous model name)_(self model name)_ flow_in,
the name of output port to which messages of State
go out is (self model name)_(previous model
name)_info_out, the name of input port from which
messages of Cars come in is (next model name)_(self
model name)_ info_in and the name of input port
from which messages of TrafficLightStatus come in is
(model name controlled by traffic light) _(model name
directed by traffic light)_ ctrl_in;

For TrafficLight atomic model: the name of output
port to which messages of TrafficLightStatus go out is
(model name controlled by traffic light) _(model name
directed by traffic light)_ ctrl_in.

6. Conclusions

Domain-specific modelling, such as Traffic
modelling we showed, can maximally constrains users,
allowing them, by construction, to only build
syntactically and semantically correct models.

The Parallel DEVS formalism as an extension of
Classic DEVS from which all its advantages that
allows the rigorous description of complex dynamic
systems, the definition of component-based models
and the efficient simulation algorithms for these

models are inherited, also overcomes some limitations
of Classic DEVS for parallel simulation.

Meta-modelling which alleviates the problem of
building and interconnecting a plethora of different
tools when modelling complex systems, combined
with model transformation which is based on Graph
Grammar, smoothly bridges between domain-specific
modelling (i.e., Traffic) and general modelling and
simulation (i.e., Parallel DEVS).

This project shows how the whole process from
Traffic modelling, to Traffic models to DEVS models
mapping, and to PythonDEVS simulation code
generation can be done in AToM?.

Future work will address code generation for other
DEVS simulation framework (i.e., DEVSJAVA) and
in other languages (i.e., Java). Another line of work
that needs attention is the use of a neutral language for
specifying transition conditions, time-advancing and
output functions of atomic DEVS models in AToM?.

Acknowledgments

We wish to thank Denis Dube and Sagar Sen for
their suggestions and helps in this project.

References

[1] Bernard P. Zeigler, Herbert Praehofer, and Tag Gon Kim,
Theory of Modeling and Simulation, Academic Press, 2000.

[2] Hans Vangheluwe, Juan de Lara, Computer Automated
Multi-Paradigm Modelling for Analysis and Design of
Traffic Networks, Proceedings of the 2004 Winter Simulation
Conference.

[3] Ernesto Posse and Jean-Sebastien Bolduc, Generation of
DEVS Modeling and Simulation Environments, Proceedings
of the 2003 Summer Simulation MultiConference, 2003.

[4] Jean-Sebastien Bolduc and Hans Vangheluwe, A
modelling and simulation package for classic hierarchical
DEVS, Technical report, McGill University, School of
Computer Science, 2002.

[5] Modelling, Simulation and Design Lab, AToM3 V0.3: A
Tool for Multi-formalism and Meta-Modelling,
http://msdl.cs.mcgill.ca/MSDL/research/

[6] Denis Dube, GenGed vs. AToM3: Creating a visual
DEVS modelling environment,
http://moncs.cs.mcgill.ca/people/hv/teaching/MSBDesign/pr
esentations/050324.DenisDube.pdf

[7] Bernard P. Zeigler, Hessam S. Sarjoughian, Introduction
to DEVS Modeling and Simulation with JAVA,

http://www.acims.arizona.edu/SOFTWARE/software.shtml#
DEVSJAVA

Appendix A - An example of the
application of the transformation rules
described in Section 4.1

The initial Traffic model:

%QD,NDU ap_Mo1

5 0, oad Mol ,o 0 J?oad Jlot
q_tan_NUU Cengim) .5 0 "Cength (Kmj© 80
AT LD Vel Limit (Km/h) 400 Wel Limit (Krmvh) 50.0

0
-HELNDEI

RED
After creating a top-level coupled model (rule 1):

ratfic

) EngamRT, EL
WTmL0 Vel Limit (Kmih) S00

After transforming Traffic Source nodes into DEVS Generator atomic
models (rule 2):

h F: [

o

3 { poad Mol 0 Eoad Mo
&r_Hol angiTRm] T, ST Length (Rm]" - 24 !
wrmne | Vellimit (Kmh) 400 VelLimit (kb 500 Dakad
\\.
M
.
RED

After transforming Traffic Sink nodes into DEVS Collector atomic
models (rule 3):

iratic CTCT
" i
‘F.. Pt et
5 o aid Mo 0 Eaad dol m "
e e Lengliyrrn] . 50 Lengh (lkmy' 510 -
WIMe VelLimd (Kmih) =400 el Limit fkmin) £0.0 Lol
t R
e
RED

After transforming Traffic RoadSection nodes into DEVS Road atomic
models (rule 4):

Talic wd_Hall

e s

') 0]
“Fap_to e

(. 0, - [poad hob

T TR 31

wimne VelLimid (Kmh) 400
A

) goad Hol o
W O T .
Vel Lierel (Kb} 500 d_piad

Fioad_ran RED

After transforming Traffic RoadSection nodes into DEVS Road atomic
models (rule 4):

=

£l I
Fap_roa io_tiot

o . Bt 2ot o
T Tt v s T, G - o
Wil Limit {Kmm)y ‘Wl Limit {Kmvh) S0¢ e
shee
" BED W

After transforming Traffic Source2Section connections between Source
nodes and RoadSection nodes into DEVS channels (rule 5):

@ (T b
Tip_Mon Tae_Hot
o foad non , | — o
Longth jrmffe o LI
el Lirrut (K} VerLirmt (Kt b - 500 a_riso

After transforming transforms Traffic Section2Sink connections between
RoadSection nodes and Sink nodes into DEVS channels (rule 6):

TraMic o

4 ®...

o _WaT
Fisad_Nod" To_Ead_

‘H1an_Molf o
After transforming Traffic FlowTo connections between RoadSection
nodes into DEVS channels (rule 7):

Tl = o0

+ ®...

“Fienon Fan_ ot

oad_MNold 0
it 5 Langth (Wn

5D "
400 el Limut (imuh

y ive .
active Tand_Hatl RED
Sart [Moinkd_Nolf| Te_Faad Faad_Hol
b Asad_Nod|To_fend Fond_Wo
Stast

After copying the capacit); attribute of Traffic Capacity node into the
corresponding DEVS Road atomic model (rule 8):

v Rl
-..!f.. g
QO LC;
“Fae_toD “Fie_Mot
0 oad, 0 goa
Lengeh (km Langn (Km]
Vel Limit (Kmi) Vil Limit (Km)
. .
I|r A aber "~
- .
e o T = -
Star o0t N Road Mol To_Foad |
b ruu_u.’le_nnu
Start

After copying the capacity attribute of Traffic Capacity node into the
corresponding DEVS Road atomic model (rule 8):

After removing the special link between DEVS TrafficLight model and
Traffic TrafficLight node (rule 14):

Tramic WAl

+ ...

LW, [CY,
The_Nol The_not

0ad_hot
(lfmjg L m;
N vou i IKrn'h S wall |mkm)1i 10
paaive
[|
acthvn ™ laad Wail
T tma_
s1an eoneums ol
, n--a.u-t
Stan_|

rafic
i} 0 i\' Mo 1
Langth [Langth (T,
. Wl L.m.lcmm)i el Lirrat [iomul 00
.' .."
Baksive
[acave " e RED L N
St (Ne 0Pkl N o _Foad Aoad_ N u‘nua'
s !r ;-:_N Ta_Fosd Moad i To_Rosd
After removing the no longer needed Traffic Capacity nodes (rule 9):
TraMic Ml
4 B
O oad_Nol
o i vz g,
-
!
wctrve " !lu_uu_
Star,
To_Foad
Etan_|

After transforming Traffic unsynchronized TrafficLight nodes into
DEVS TrafficLight atomic models (rule 12):

rattic] TG wd_ Wl

"'1t" ssive
. (&" & oad_Mold e _P
L0 mit 51 Len th (] o
.\ Wl Lirmat (Wrmvh) ™ 411 o WL mqu (Kmlhl} 500
NG
sive ™
active " TR
Start (Mo DFikd N X
. nnu_m’ X
Stan_Nod-

After transforming Traffic- ControlledSection connections between
TrafficLight nodes and RoadSection nodes into DEVS channels (rule 13):

ratlic

Frd_Holl

+ @

oad N\J
K

\ U’elen u< mm) A \4-:-

k50"

’IO_I.M_

Traitie

After removing the no Ionger needed Traffic TrafficLight nodes (rule 15):

el

Traliic

3

4 ..

Jpoad._
engen (Kmf
Vol Lirni (K

h'm.;i r

Ayl
Start ’umn_u.’

b Rul_Nli To_Road

to_tmd_

Etan |
After removing the special link between DEVS Road model and Traffic
RoadSection node (rule 16):

fratiic

et

a o
Leangth (Km| ath (K m; &0
el Lemut {limi A0.0 el L-mltiKm"!) W00

™
7 pashee
in
ethve Ay ad Fioad_ ol
- 2 Tlaad_Naf To_End
Stant i Orut_ Mol T Tlamd Tiand_Hall To_Foad
j, Pasd_Holl]To_fand Tlasd_ Wil To_fasd
Stant_MallF

After removing the special_lihk between DEVS Road model and Traffic
RoadSection node (rule 16):

rafic.

et

angin pemf®

L
~ el Lamit gkernn)

[m}k:""‘

ngth
el Lirmit frrim)

Pro_tad_

Tamic

o rg\.\.:
Length (k]
el Lieret (Kmvh}

To_End_

After removing the no longer needed Traffic RoadSection nodes (rule

17):

After connecting DEVS Road atomic models with DEVS Traffic coupled

models (rule 18):

Road No¥ To Road

Flaad_to

firatiic

Raad_Nal

[_Nalh

£

poss

Tuad ol
Flaad Mof To End

To_Read

Foad_Nel

“Tao_Road

Tn_Rand

Road_Na

| To_Rnal

After connecting DEVS Road atomic models with DEVS Traffic coupled

models (rule 18):

[Traffic

After connecting DEVS Generator atomic models and Collector atomic
models with DEVS Traffic coupled models (rule 20):

Trafflc

(]

fEni_Hal

Foad_Nail Te_Fnad

Ruad_Nell Te_Rual

After connecting DEVS Generator atomic models and Collector atomic
models with DEVS Traffic coupled models (rule 20):

Trafflc

(]

fEni_Hal

Foad_Nall Te_Fnad

Ruad_Nell Te_Rual

[Ena_wnn

ausive
&
: i
dil” To_Foad
[flead Mol 1
Paad_NeT Ta End
Tu_Road Ruad_Noll To_Raad
Tn_fland Hoad_Noll To_Hand

After connecting DEVS TrafficLight atomic models with DEVS Traffic

coupled models (rule 19):

ratlic.

o
passive acive

Cmil_Nalh

Tt
Faad Mol To_End

Hosid_Nal

| To_Rnai

Roail_Na

7o Rual

Traific

