
Transforming Software Requirements by
Meta-modelling and Graph Transformation

Ximeng Sun and Hans Vangheluwe

School of Computer Science, McGill University
Montreal, Quebec, Canada

{xsun16, hv} @cs.mcgill.ca

Abstract. This article describes transformations of software requirements. We
start from requirements (use cases) in textual form. These are subsequently en-
coded precisely in UML 2.0 Sequence Diagrams (SD) by a modelling expert.
The SD model is automatically transformed back into textualform to allow the
requirements producer to check correct interpretation. Once the latter is satisfied,
the SD model is transformed into a Statechart (SC) which satisfies the constraints
specified by the SD model. This SC model can then be used to analyze prop-
erties of the requirements. This may involve adding information such as tran-
sition probabilities for dependability analysis, or even sufficient refinenment to
allow for code synthesis. We use AToM3 to meta-model both SD and SC for-
malisms. From this, visual modelling environments are synthesized. In addition,
the transformations are modelled graph grammars. We demonstrate our complete
approach in an example.

1 Introduction

We proposed a model-driven approach to transform software requirements. The model-
driven approach starts with modelling requirements of a system in Sequence Diagrams,
and the subsequent automatic transformation back into textual requirements or into Stat-
echarts.

A visual modelling environment was built in AToM3 using Meta-modelling and
Model Transformation to support the model-driven approach. It supports modelling in
Sequence Diagrams, automatic transformation toStatecharts, and automatic genera-
tion of requirements text fromSequence Diagrams.

Section 1 describes a meta-model for theSequence Diagrams formalism. Using
our visual meta-modelling environment AToM3, both abstract syntax and concrete vi-
sual syntax are modelled. From this, a visual modelling environment forSequence
Diagrams is synthesized. A similar approach is followed forStatecharts. The meta-
model is not given here. Section 2 describes model transformation mappingSequence
Diagrams models onto correspondingStatecharts. The transformation is modelled in
AToM3 in the form of Graph Grammars. A small example demonstrates the different
phases of the transformation. Section 3 demonstrates howSequence Diagrams can also
be transformed into a textual requirements document for inspection by a stakeholder.
Section 4 gives related work and a conclusion.

Fig. 1. Sequence Diagrams meta-model in theClass Diagrams formalism

2 Meta-modelling Sequence Diagrams
2.1 Sequence Diagrams Meta-Model

We start by modelling the abstract and concrete visual syntaxt of the Sequence Di-
agrams formalism in our meta-modelling and model transformation tool AToM3 [1].
Figure 1 shows the meta-model in AToM3’s Class Diagrams formalism. The latter is
similar to UML Class Diagrams. The AToM3 version allows one to immediately gener-
ate a formalism-specific editor, with a generic visual modelling environment, from the
Class Diagram and some extra information about visual concrete syntax (shown at the
bottom of the figure). The classes and the meaning of their attributes are:

– Interaction is a representation of the entire model. All other entities will be con-
tained by this entity, since it is responsible for providingbasic UI handling.

– Lifeline represents an individual participant in the Interaction. ALifeline has two
attributes which represent the name of the participant class (instanceName) and the
name of an instance of that class (className) respectively.

– ActionFragment is used to hold syntactic points (called OccurrenceSpecifications
in UML) at the ends of Messages. The ActionFragment is the combination of an
atomic ExecutionSpecification and an OccurrenceSpecification of UML 2.0. The
main reason for the combination is to simplify the definitionof the Graph Grammar
rules for transforming Sequence Diagrams to Statecharts (described in Section 3).

– CombinedFragment is defined by an interaction operator and corresponding inter-
action operands. Depending on what kind of operator is defined, specific constraints
can be imposed on the number of operands a CombinedFragment can contain. For
example, “option (opt)” or “loop” must have exactly one operand.

– InteractionOperand is contained in a CombinedFragment. An InteractionOperand,
with an optional guard expression, represents one operand of the expression given
by the enclosing CombinedFragment.

Fig. 2. A simple Sequence Diagrams model in AToM3

– InteractionUse refers to another Interaction. The InteractionUse is a shorthand for
copying the contents of the referred Interaction where the InteractionUse is. It is
common to want to share portions of an interaction between several other inter-
actions. An InteractionUse allows multiple interactions to reference an interaction
that represents a common portion of their specification.

The entities whose icons have a hexagonal shape at the top aregenerated as rela-
tionships/edges. They come in two types, which are set via edit dialogs. The first type
is the invisible hierarchical relationship. The followingentities are of this type: Inter-
actionContains, CombinedFragmentContains, InteractionOperandContains, and Inter-
actionUseCovers. AToM3 was extended to internally keep track of such hierarchical
relationships, so finding parents and children is easy. The second type of relationship is
the visible arrows, which possess attributes just like the nodes did. The visual relation-
ships and the meaning of their attributes are as follows:

– ActionConnection represents a connection between a Lifeline and an ActionFrag-
ment, or between two ActionFragments which cover the same Lifeline.

– Message defines a particular communication between Lifelines of an Interaction. A
Message associates two OccurrenceSpecifications - one sending OccurrenceSpec-
ification and one receiving OccurrenceSpecification. The “message” attribute de-
fines the signature of the Message. A message is shown as a linefrom the sender
to the receiver with a filled arrow head. The “isSynchronous”attribute determines
whether the message is synchronous of asynchronous.

Figure 2 shows an exampleSequence Diagrams model in the visual modelling envi-
ronment synthesized from the above meta-model. We use this example to illustrate the
key concepts and algorithms throughout this paper. On the left hand side of the figure
is the interactionInteraction 1 which contains three lifelinesa : A, b : B andc : C, three
messagesbe f ore, a f ter anddoIt, and one interaction use between the two messages
which refers to interactionInteraction 2 and covers lifelinesa : A andb : B. On the right
hand side of the figure is theInteraction 2 which contains two lifelinesa : A andb : B as
Interaction 1 does and one combined fragment whose operator is “alt”. Inside the “alt”
combined fragment, there are two alternative operands, “x > 0” and “x <= 0”, which
contain two messagesf oo andbar respectively. Note that number labels are added for
action fragments which are not in the original models for ease of the illustration.

3 Transformation Sequence Diagrams into Statecharts

Transformation of models is a crucial element in all model-based endeavors [2]. As
models and meta-models are essentially attributed and typed graphs, we can transform
them using graph rewriting. Transformation models are specified in the form ofGraph
Grammars. Graph grammars are a natural, formal, visual, declarativeand high-level
representation of the transformation. A Graph Grammar (in AToM3) is composed of an
ordered set of rules. A rule consists of a Left Hand Side (LHS)graph and a Right Hand
Side (RHS) graph. Rules can have applicability conditions (pre-conditions) and actions
(post-actions) which are checked and performed respectively when the rule is applied.

Rules are evaluated in order against a host graph which represents the model to
be transformed. If a graph matching is found between the LHS graph of a rule and a
subgraph of the host graph, the rule is eligible to be applied. Then, the pre-condition
of the rule is evaluated. If it is true, the rule is applied. When a rule is applied, the
matching subgraph of the host graph is replaced by the RHS graph of the rule. After a
rule matching and subsequent application, the graph rewriting system starts the search
again. The graph grammar execution ends when no more matching rules remain.

Nodes and links in LHSs and RHSs are identified by means of numbers (labels). If
a number appears on both the LHS and the RHS of a rule, the node or connection is
retained when the rule is applied. If the number appears onlyon the LHS, the node or
connection is deleted when the rule is applied. Finally, if the number appears only on the
RHS, the node or connection is created when the rule is applied. Node and connection
attributes in LHSs must be provided with attribute values which will be compared with
the node and connection attributes of the host graph during the matching process. These
attributes can be set to ANY, or may have specific values. In the RHS, we can specify
changed attribute values for those nodes which also appear in the LHS. In AToM3, we
can either copy the value of the attributes of the LHS, specify a new value, or associate
arbitrary Python code to compute the attribute value, possibly based on other nodes’
attributes.

During formalism transformation we have a model in a source formalism that is
transformed to a model in a target formalism. The model elements in the source for-
malism could be related to each other. The application of a rule may introduce the
counterpart model element from the target formalism for a model element in the source
formalism. Removing the source formalism model elements atthis stage will destroy
all its relationships and hence we have no way to find out what it connects to. To pre-
cisely keep track of source formalism elements and their counterpart elements in the
target formalism, we use aGenericGraph formalism which acts as a “helper” during the
transformation. TheGenericGraph formalism consists of only two types of elements,
GenericGraphNode and GenericGraphEdge.

3.1 Sequence Diagrams Model to Statecharts Model

TheSequence Diagrams formalism is used to show the interactions between objects by
means of messages arranged in in a (partially) time-orderedsequence. One of the uses
of sequence diagrams is to, during the requirements phase ofa project, transition from
requirements expressed as use cases to the next and more detailed level of refinement.

Statecharts are a core formalism for describing behavior. By executing (or simulat-
ing) the model, we can learn the behavior of the system precisely so the requirements of
the system can be validated. The transition from interaction diagrams (e.g.,Sequence
Diagrams, Live Sequence Charts [3] andUse Case Charts [4]) to Finite State Machines
(e.g.,Statecharts) which satisfy the constraints specified in the interactiondiagrams has
become one of the key activities in object-oriented analysis and design.

Since the release of the UML 2.0 [6] specification, theSequence Diagrams formal-
ism has become more powerful and rigorous as it provides morewell-defined constructs
than before. For example, structured control constructs (Combined Fragments) such as
loops, conditionals, and parallel execution, are introduced, which provide a precise way
to model complex flow of control. The introduction of Interaction Uses –a reference
to another interaction, which is usually defined in its own sequence diagram– provides
a natural way to re-use existing sequence diagrams and decompose more complex se-
quences into simpler ones.

The richness of constructs of theSequence Diagrams formalism is definitely one
advantage, but also a big challenge for its transformation to other formalisms such
asStatecharts. For example, since combined fragments are actually nestedstructures
which can form a series of nested scopes inside an interaction, the transformation pro-
cedure needs to be able to transform recursively inside eachscope and combine results
with outer scope ones. This is not an easy nor intuitive task.Another challenge is how to
transform interaction uses, i.e., replacing them with actual interactions and combining
them for ultimate transformation to other formalisms. The following will explain the
strategy and algorithms for tackling these problems in details.

3.2 Four Phase Transformation

We now present the Graph Grammar rules used to transform aSequence Diagram
model to aStatechart model. The graph grammar consists of forty-six rules. In order
to explain them clearly, these rules are grouped into four categories according to their
function and different phases in which they are executed during a transformation. These
four phases will be explained in the subsequent sections. They are summarized here.

1. Initialization. In this phase, the source model is parsed, and some global and local
data structures used in the following phases to help to control the transformation
flow are initialized.

2. Importation. In this phase, all Interaction Use fragments are dereferenced, i.e., re-
placed by the actual Interaction referred to. This is an optional phase, since an
interaction is valid without any interaction use. As an interaction use can refer to an
interaction which in turn contains other interaction uses,this process can be recur-
sive. However, an interaction can not contain an interaction use which refers to the
interaction itself to avoid infinite looping. This constraint (specified in the meta-
model of theSequence Diagrams formalism) is checked when a model is saved.
Because importation will change the original model by adding new elements,Ini-
tialization is needed again after this phase.

3. Transformation. This is the core of the transformation. The transformationproceeds
in two dimensions. The horizontal dimension follows the order of appearance of

different objects. The vertical dimension follows the order of occurrence of a series
(flow) of messages. The procedures ensure the processing is in the correct order in
the presence of nested control constructs.

4. Optimization. After the previous two phases, a Statecharts model is generated.
However, a number of redundant elements were added to the target model in those
phases. These are now removed.

3.3 Transformation Illustration by Example

In this section, we use the example shown in Figure 2 to illustrate the key concepts and
algorithms of the model transformation.

Phase One: Initialization This phase aims to initialize some data structures (others are
initialized in other phases when necessary) used in the nextphases to help the control
of the transformation flow.

We do not give the complete list of the initialized data structures (or variables) in
this paper. In summary, there are two categories:Global andLocal. The global ones
are linked with the model graph under transformation and canbe accessed anytime and
anywhere. For example,maxScope keeps the information about the maximum num-
ber of scopes an Interaction model currently has, which is determined by how many
levels of nested structured control constructs (e.g., Combined Fragments) the model
contains. The local ones are linked to specific graph elements which normally can only
be accessed when these elements appear in a rule. For example, the scope of a Com-
bined Fragment element remembers the number of the scope theelement itself is at. For
instance, if a Combined Fragment elementCF1 is directly contained inside an Interac-
tion, thenCF1.scope = 0; and if another Combined FragmentCF2 is insideCF1, then
CF2.scope = 1. One important use of thisscope is to determine whether the element
of a matched subgraph is in the right scope the transformation is currently working on.
This is one of the pre-conditions to be evaluated to determine if a rule can be executed.

The main procedure of the initialization in the post-actionhas three steps. We refer
to [7] for the details.

1. setPosition(graph). Set the vertical position of each of the Action Fragment and
Combined Fragment elements along a Lifeline.

2. setScope(graph). Set the scope of each of the Action Fragment and Combined Frag-
ment elements.

3. initiateGlobals. Set default values of other unset global variables.

Phase Two: Importation In this phase, all Interaction Use fragments are replaced by
the actual referred to Interactions. This is an optional phase, since an interaction is valid
without containing any interaction use. As an interaction use can refer to an interaction
which in turn contains other interaction uses, this processcan be recursive. Because
the importation will modify the original model by adding newelements,Phase One is
repeated after this phase.

To combine the two interactions, two things need to be determined for each of the
lifelines in the imported interaction. First, which actionfragment is in the head position
along a lifeline, and which one is the tail (they could be the same one). Second, which
action fragment is in the position just before the interaction use along the lifeline in
the original interaction, and which one is just after that interaction use (there could be
none) .

It would be hard to achieve this task in a simple way if we only use the graph
matching of graph grammars. So, we use some auxiliary data structures which are
not shown in this paper. The procedure of the task is used in the post-action of rule
importInteraction. Seee [7] for details of the algorithm.

The list of rules, their execution order and short descriptions are given in Table 1.
Note that some rules have the same order which can have two meanings. First, it means
that there is a mutually exclusive choice between conditions of these rules. For exam-
ple, only one ofconnectHeadAFFirst andconnectHeadAFFirstPrime will be executed
in one process iteration. If this is not the case, the execution order of these rules is ir-
relevant and is determined randomly. For example, the ruleswith order of 8. Rule 2
connectHeadAFFirst is shown in Figure 3.

Table 1.Graph Grammar rules in execution order in Phase Two

Order Rule Name Description
1 importInteraction Import the Interaction model referredto by a current target Interaction Use

and initialize helper data structures used in the next steps.
2 connectHeadAFFirst Connect the head ActionFragment of a Lifeline in the imported Interaction

with the proper one of the same Lifeline (with the same class name and in-
stance name) but in the original Interaction.

2 connectHeadAFFirstPrime Connect the head ActionFragment of a Lifeline in the imported Interaction
directly with the same Lifeline but in the original Interaction. The checking
specified in the meta-model is done when the model is saved.

3 connectHeadAFSecond Disconnect the ActionFragment of the Lifeline in the original Interaction
affected by previous rules from its old successor.

4 connectTailAFFirst Remove the Lifeline from the importedInteraction as there is no ActionFrag-
ment of the same Lifeline in the original Interaction need tobe connected.

5 connectTailAFSecond Connect the tail ActionFragment of aLifeline in the imported Interaction
with the proper one of the same Lifeline (with the same class name and in-
stance name) but in the original Interaction.

6 connectTailAFThird Disconnect the ActionFragment of theLifeline in the original Interaction
affected by previous rules from its old predecessor.

7 createWrapperCF Create a CombinedFragment (together with an InteractionOperand inside)
for holding all ActionFragments, CombinedFragments and InteractionUses
inside the imported Interaction in order to move them into the original Inter-
action in one time.

8 connectAFWithWrapperCF Wrap ActionFragments inside theCombinedFragment.
8 connectCFWithWrapperCF Wrap CombinedFragments inside the CombinedFragment.
8 connectIUWithWrapperCF Wrap InteractionUses inside theCombinedFragment.
9 cleanImportedLifeline Remove Lifeline of the imported Interaction.
10 cleanImportedInteraction Connect the wrapper CombinedFragment created earlier with the original

Interaction, then remove the imported one and the Interaction Use that refers
to it.

The result of the transformation on the example sequence diagram is shown in Fig-
ure 4. Note that number labels are added for action fragmentswhich are not in the
original models for illustration. Note how a special “seq” combined fragment which
has only one operand is added by rulecreateWrapperCF to enclose all elements im-

Fig. 3. Graph Grammar ruleconnectHeadAFFirst in Phase Two

ported fromInteraction 2. It is redundant after this phase and will be removed by the
optimization described in Section 3.3.

Fig. 4.Transformation result of Phase Two

As an interaction may contain more than one interaction use,the strategy to control
the flow of the transformation is to ensure we transform one interaction use at a time.
That is, one iteration of the set of rules in this phase corresponds to the transformation
of one interaction use. This is implemented by evaluating and manipulating the global
variableg currentInteractionUse.

Phase Three: Transformation This is the core phase which maps Sequence Diagrams
to Statecharts. The transformation proceeds in two dimensions. The horizontal dimen-
sion follows the order of appearance of different lifelines. The vertical dimension fol-

lows the order of occurrences of a series of messages. The procedures ensure both
dimensions are processed in correct order with respect to nested control constructs.

The strategy is depicted in Figure 5. Each iteration starts with finding an unpro-
cessed lifeline element. It then proceeds with messages andfragments along the lifeline
from top to bottom. If the interaction contains nested fragments, the process continues
from the outermost to the innermost of nested scopes.

Fig. 5. The strategy of Phase Three

The list of rules, their execution order and short descriptions are given in Table 2.
Rule 13combinedFragment is shown in Figure 6.

Fig. 6. Graph Grammar rulecombinedFragment in Phase Three

Rule msgIn states that a message directed towards a lifeline becomes a trigger-
ing event in the Statecharts. RulemsgOut states that a message directed away from
a lifeline becomes an action to send that message in the Statecharts. Both of these
rules result in a transition to a new state. A combined fragment results in a transi-
tion to a new composite state which is a container of enclosedorthogonal compo-

Table 2.Graph Grammar rules in execution order in Phase Three

Order Rule Name Description
11 interaction Transform an Interaction element to a DChartelement, with two new state

nodes and one new composite node enclosed and a link to the original Inter-
action element.

12 lifeline Transform a Lifeline node to an Orthogonal node,with two new state nodes
enclosed and a link to the original Lifeline node.

13 combinedFragment Transform a CombinedFragment element, which is in the current transform-
ing level, to a composite node, with two new state nodes enclosed and one
new state node concatenated and a link to the original CombinedFragment
element.

14 interactionOperand Transform an InteractionOperand element, enclosed in a transformed Com-
binedFragment element, to an new Orthogonal element enclosed in a new
composite element, with two new state nodes enclosed.

15 operatorParallel Adjust a transformed “parallel” CombinedFragment.
15 operatorLoop Adjust a transformed “loop” CombinedFragment.
15 operatorOption Adjust a transformed “option” CombinedFragment.
18 msgIn Transform an incoming event (Message) along the current Lifeline, to a tran-

sition and a state node.
18 msgOut Transform an outgoing event (Message) along the current Lifeline, to a tran-

sition and a state node.
19 setScope Increase the scope to start the transformation of another nested level. No

visual syntax.
20 connectWithFinal Connect the last Basic node in any enclosing fragment with a “final” state

node.
21 cleanLifeline Remove Lifelines.
22 cleanActionFragment Remove Lifelines.
23 cleanInteraction Remove Interaction.
24 cleanCombinedFramgment Remove CombinedFramgments.
25 cleanInteractionOperand Remove InteractionOperands.

nents and states transformed from interaction operands andmessages by the following
rules. RuleinteractionOperand is a general rule for all kinds of combined fragment
operators. Based on the result of that rule, more operationsare implemented in rule
operatorParallel, operatorLoop andoperatorOption for some specific operators. For
example, different orthogonal components representing branches of a “parallel” com-
bined fragment are combined into one composite state by ruleoperatorParallel; an
extra transition from “final” state to “default” state of a “loop” combined fragment
is added by ruleoperatorLoop; an extra transition with the opposite guard condition
from “final” state to “default” state of a “option” combined fragment is added by rule
operatorOption. It is easy to find that some constructs are redundant after the transfor-
mation of this phase. For example, for “loop” combined fragment, the corresponding
composite state has no need to contain its own “default” and “final” states and another
enclosed composite state (and even its enclosed orthogonalcomponent), if the “guard”
information can be somehow moved to somewhere at the inside and the loop-back tran-
sition can also be connected between the “default” and “final” states of the inside. We
consider all of such situations and optimize these structures as much as possible in the
next phase, Optimization, to make the generated Statecharts more readable for humans
and more efficient for simulation and analysis. The result ofthe transformation upon the
example Sequence Diagrams is shown in Figure 7. There are many states and many lev-
els of nested composite components. Although this is a correct synthesized statechart,
most states and components are redundant and can be optimized away.

DC_Interaction_1

G_Default

G_Composite
O_A_a

s_0s_2

A: [before]

C_0

s_3

C_1

O_0

s_6

C_2

s_8

C_3

G: x>0

O_1

s_11

s_15

T: [foo]

C_4

G: x<0

O_2

s_13

s_16

A: [bar]

s_10

s_5s_17

T: [after]

O_B_b

s_18s_20

T: [before]

C_5

s_21

C_6

O_3

s_24

C_7

s_26

C_8

G: x>0

O_4

s_29

s_33

A: [foo]

C_9

G: x<0

O_5

s_31

s_34

T: [bar]

s_28

s_23s_35

A: [after]

s_36

A: [doIt]

O_C_c

s_37 s_39

T: [doIt]

Fig. 7.Transformation result of Phase Three
Phase Four: Optimization After the previous two phases, an executable Statecharts
model is generated. However, as discussed earlier, a numberof redundant elements are
also generated in the target model in those phases, which makes it hard to read and
refine. Now it is time to make some optimization to get the finalcompact, readable and
efficient Statecharts model. This phase is analogous to the optimization phase after the
code generation of a compilation.

There are three subphases for the optimization:

1. Orthogonal optimization. Any orthogonal component which is the only enclosed
orthogonal of the parent composite, is considered redundant and is removed. All
states and composites enclosed by the removed orthogonal component become chil-
dren of the parent composite.

2. Composite optimization. Any composite which does not enclose any orthogonal
component is considered redundant and is removed. Again, all enclosed states and

composites become children of the parent component. The enclosed “default” and
“final” state are replaced by normal states and connected with outer states by tran-
sitions. As a parent component could be a composite or an orthogonal component,
there are two sets of rules for this subphase. Since the composites could be nested,
this recursive process starts from the outermost one.

3. Transition and state optimization. Any transition without triggering and action and
its guard always true, is redundant and is removed.

Rule 31compositeOptThird and RulecompositeOptFour are shown in Figure 8.
The list of rules, their execution order and short descriptions are given in Table 3.

Fig. 8.Graph Grammar rulescompositeOptT hird andcompositeOptFour in Phase Four

After these optimizations, the final statecharts transformed from the example of
Figure 2 is shown in Figure 9.

4 Requirements Document Generation from Sequence Diagrams
Before requirements are captured in the form of a series of Sequence Diagrams, they
are usually expressed in the form of Use Cases (in plain text or visually) by domain
experts or end users. In this case, it is useful to automate the mapping from a Use Case
to a Sequence Diagram. Li [8] proposed a semi-automatic approach to translate a use
case to message sends. However, in order to reduce the complexity of parsing a natu-
ral language and the vagueness, the approach requires that requirements be normalized
before translation. Our approach to briding the gap betweenUse Cases and Sequence
Diagrams is the inverse of the aforementioned mapping. As mentioned previously, our
model-driven approach supports that well-defined SequenceDiagrams can be used to
generate textual representation of requirements in a natural language the customers are
familiar with. The generated requirements can be used for evaluation and immediate
feedback. This process is fully automatic and provides a useful way to refine require-
ments at an early stage in the development process.

Table 3.Graph Grammar rules in execution order in Phase Four

Order Rule Name Description
26 orthogonalOptFirst Reconnect the enclosed state node ofthe removing orthogonal component

with its parent composite.
27 orthogonalOptSecond Reconnect the enclosed composite node of the removing orthogonal compo-

nent with its parent composite.
28 orthogonalOptThird Remove the orthogonal component which is the only enclosed orthogonal

component of the parent composite.
29 compositeOptFirst Reconnect the enclosed state node of the removing composite with its parent

composite.
30 compositeOptSecond Reconnect the enclosed composite node of the removing composite with its

parent composite.
31 compositeOptThird Copy transitions originally to and from the removing composite to new tran-

sitions of its inside states.
32 compositeOptFour Remove the composite which does not enclose any orthogonal component.
33 setOptimizationScope Increase the scope of nesting for optimization to starts another iteration. No

visual syntax.
34 compositeOptFirstPrime Reconnect the enclosed state node of the removing composite with its parent

orthogonal component.
35 compositeOptSecondPrime Reconnect the enclosed composite node of the removing composite with its

parent orthogonal component.
36 compositeOptThirdPrime Copy transitions originally toand from the removing composite to new tran-

sitions of its inside states.
37 compositeOptFourPrime Remove the composite which does not enclose any orthogonal component.
38 cleanStateFirst Remove state whose only outgoing transition is redundant which has one

incoming transition.
38 cleanStateSecond Remove state whose only outgoing transition is redundant which has two

incoming transitions.
39 finalstateOptFirst Replace each incoming transition of afinal state (except for the one in the

top level) by a copied transition to a new state.
40 finalstateOptSecond Remove final states (except for the one in the top level).

Fig. 9.The final generated Statechart for the example of Figure 2

The generated text description of a message send follows thesimple format:

sourceactor + “sendsmessage” + message + “to” + targetactor

if there is no customized description of the message, i.e., the “description” attribute
of the message is left empty. Otherwise, if a user gives a morenatural description to a

message, the generated text description of the message sendfollows this format:

sourceactor + customizeddescription + targetactor

As one can see, the above format is insufficient to deal with the case when there is a
need that either the “source actor” or “target actor” shouldappear in the middle of a
description. In order to make the generated text more natural to read, we provide two
macro variables, “$SOURCE$” and “$TARGET$”, which can be included anywhere
in a customized description. They represent the real “source actor” and “target actor”
respectively. That is, the generation algorithm will replace a macro variable with the
real actor. “source actor” or “target actor” comes from its lifeline’s “instanceName” or
“className” attribute. If “instanceName” is not empty then“instanceName” is used to
represent the actor; otherwise, “className” is used. The generated text description of
an interaction use follows the simple format:

“ Interaction” + re f ersTo + “ isimportedhere”

We apply our simple algorithm (given in detail in [7]) to the simple Sequence
Diagrams model (shown in Figure 2) to generate textual requirements. The result is
shown below. Note that for this example, messages of Sequence Diagrams models
Interaction 1 andInteraction 2 are all annotated with customized descriptions. Some
of these customized descriptions contains macro variable “$TARGET$” in the middle
of the text. For example, inInteraction 1, the annotated description of message send 1
is “asks $TARGET$ to start a service”, in which “$TARGET$” isthen translated into
“b”.

Use Case: Interaction_1
Actors: a, b, c
Scenario:
1. a asks b to start a service
2. Interaction ’Interaction_2’ is imported here
3. b reports status to a
4. b asks c to log the status

Use Case: Interaction_2
Actors: a, b
Scenario:
1. If x>0:
2. b returns a service handler to a
3. Else if x<=0:
4. a asks b to start another service

5 Related work and Conclusions

We proposed a model-driven approach to transform software requirements. The model-
driven approach starts with modelling requirements of a system in Sequence Diagrams,
and the subsequent automatic transformation back into textual requirements or into Stat-
echarts. A visual modelling environment was built in AToM3 usingMeta-modelling and
Model Transformation to support the model-driven approach. It supports modelling in
Sequence Diagrams, automatic transformation toStatecharts, and automatic genera-
tion of requirements text fromSequence Diagrams.

Sutcliffe et. al. [9] proposed a method and a tool for specification of use cases, au-
tomatic generation of scenarios from use cases and semi-automatic validation based-on

generated scenarios. Harel et. al. [10, 11] proposed a play-in/play-out approach to cap-
ture behavioral requirements. The Play-Engine automatically constructs corresponding
requirements in the scenario-based language ofLive Sequence Charts (LSCs) [3], and
finally semi-automatically synthesizing a collection of finite state machines. Whittle et
al. propose use case charts in [4] which is a 3-level notationbased on extended activity
diagrams used for specifying use cases. In [12], algorithmsare presented that trans-
form use case charts into a set of hierarchical state machines which then can be used
for simulation, test generation and validation. The algorithm starts with the conversion
to hierarchical state machines for a level-3 sequence diagram, then proceeds with the
combination of a set of hierarchical state machines generated for each scenario node at
level-2, and finally completes the synthesis of the final hierarchical state machine for the
level-1 use case chart by further combining generated hierarchical state machines. The
core of the algorithm is the synthesis of hierarchical statemachines from a sequence di-
agram. Our approach is very similar to that of Whittle and wasdeveloped concurrently.
We have chosen to use the full power of sequence diagrams which alleviates the need
for a 3-level notation. We plan to provide support for Whittle’s process and notation in
the near future.

References

1. de Lara, J., Vangheluwe, H., Alfonseca, M.: Meta-modelling and graph grammars for multi-
paradigm modelling in AToM3. Software and System Modeling3(3) (2004) 194–209

2. Vangheluwe, H., de Lara, J.: Computer automated multi-paradigm modelling for analysis
and design of traffic networks. In: Winter Simulation Conference. (2004) 249–258

3. Damm, W., Harel, D.: Lscs: Breathing life into message sequence charts. Formal Methods
in System Design19(1) (2001) 45–80

4. Whittle, J.: Specifying precise use cases with use case charts. In: MoDELS Satellite Events.
(2005) 290–301

5. Rhapsody. I-Logix, Inc., http://www.ilogix.com/products/
6. Modeling Language 2.0 Specification, U., http://www.omg.org. (2005)
7. Ximeng Sun: A model-driven approach to scenario-based requirements engineering. Mas-

ter’s thesis, McGill University (2007)
8. Li, L.: Translating use cases to sequence diagrams. In: ASE. (2000) 293–296
9. Sutcliffe, A.G., Maiden, N.A., Minocha, S., Manuel, D.: Supporting scenario-based require-

ments engineering. Software Engineering24(12) (1998) 1072–1088
10. David Harel and Rami Marelly: Come, Let’s Play: Scenario-Based Programming Using

LSCs and the Play-Engine. Springer-Verlag (2003)
11. Harel, D., Kugler, H., Pnueli, A.: Synthesis revisited:Generating statechart models from

scenario-based requirements. In: Formal Methods in Thanksa lot! Software and Systems
Modeling. (2005) 309–324

12. Whittle, J., Jayaraman, P.K.: Generating hierarchicalstate machines from use case charts.
Proceedings of the 14th IEEE International Requirements Engineering Conference (RE’06)
0 (2006) 16–25

