Transforming Software Requirements by
Meta-modelling and Graph Transformation

Ximeng Sun and Hans Vangheluwe

School of Computer Science, McGill University
Montreal, Quebec, Canada
{xsunl6, hv} @s.ncgill.ca

Abstract. This article describes transformations of software rezmignts. We
start from requirements (use cases) in textual form. Thesesabsequently en-
coded precisely in UML 2.0 Sequence Diagrams (SD) by a miodeéxpert.
The SD model is automatically transformed back into textaah to allow the
requirements producer to check correct interpretatiorcedhe latter is satisfied,
the SD model is transformed into a Statechart (SC) whiclsfsegithe constraints
specified by the SD model. This SC model can then be used tgzanptop-
erties of the requirements. This may involve adding infaiorasuch as tran-
sition probabilities for dependability analysis, or everifisient refinenment to
allow for code synthesis. We use ATGMo meta-model both SD and SC for-
malisms. From this, visual modelling environments are lsgsized. In addition,
the transformations are modelled graph grammars. We demad@sur complete
approach in an example.

1 Introduction

We proposed a model-driven approach to transform softveaygirements. The model-
driven approach starts with modelling requirements of #sysn Sequence Diagrams,
and the subsequent automatic transformation back intodaésgquirements or into Stat-
echarts.

A visual modelling environment was built in AToMusing Meta-modelling and
Model Transformation to support the model-driven approach. It supports modgitin
Sequence Diagrams, automatic transformation tetatecharts, and automatic genera-
tion of requirements text frorBequence Diagrams.

Section 1 describes a meta-model for $eguence Diagrams formalism. Using
our visual meta-modelling environment ATdlVboth abstract syntax and concrete vi-
sual syntax are modelled. From this, a visual modelling mmment forSequence
Diagrams is synthesized. A similar approach is followed fetatecharts. The meta-
model is not given here. Section 2 describes model transfttom mappingsequence
Diagrams models onto correspondirgfatecharts. The transformation is modelled in
AToM3 in the form of Graph Grammars. A small example demonstrétesiifferent
phases of the transformation. Section 3 demonstratesSlequence Diagrams can also
be transformed into a textual requirements document fqrenogon by a stakeholder.
Section 4 gives related work and a conclusion.



message
Icon:Message — LN

Message

|Attributes:
- name :: String

- message :: String

- isSynchronous :: Boolean
- ion:: String

0.1
TteractionOperandContains
I (&
0.1 0.1

0.1 0.N
“YlnteractionUse

tributes:
- guard :: String
- name :: String

|Attributes:
- name :: Strin
- refersTo :: String

0.7
0.1

‘ombinedF ragmentContain:

[tributes: 0.1 0.1
- name :: String

ActionFragment

CombinedFragment

0-N Rtributes
~interactionOperator :: Enum
~name :: String

Attributes:
~name - String

guard
instarfceName : classNgme interactionOperator
name refersTo
T

Icon:Lifeline Icon:ActionFragment

0.N
Icon:ActionConnection  [Tifeline

[Attributes:
- className : String
- instanceName :: String 0.1
- name :: String

Icon:InteractionUse

Icon:InteractionOperand Icon:Interaction Icon:CombinedFragment

Fig. 1. Sequence Diagrams meta-model in th€lass Diagrams formalism
2 Meta-modelling Sequence Diagrams

2.1 Sequence Diagrams Meta-Model

We start by modelling the abstract and concrete visual syrifithe Sequence Di-
agrams formalism in our meta-modelling and model transformatioal tAToM3 [1].
Figure 1 shows the meta-model in ATGM Class Diagrams formalism. The latter is
similar to UML Class Diagrams. The AToM? version allows one to immediately gener-
ate a formalism-specific editor, with a generic visual médglenvironment, from the
Class Diagram and some extra information about visual eie@yntax (shown at the
bottom of the figure). The classes and the meaning of theibaits are:

— Interaction is a representation of the entire model. All other entitiés ne con-
tained by this entity, since it is responsible for providimagsic Ul handling.

— Lifeline represents an individual participant in the InteractiorLifeline has two
attributes which represent the name of the participansdlasanceName) and the
name of an instance of that clastassName) respectively.

— ActionFragment is used to hold syntactic points (called OccurrenceSpetifios
in UML) at the ends of Messages. The ActionFragment is thebioation of an
atomic ExecutionSpecification and an OccurrenceSpedditaf UML 2.0. The
main reason for the combination is to simplify the definitafithe Graph Grammar
rules for transforming Sequence Diagrams to Statechagtsc(ibed in Section 3).

— CombinedFragment is defined by an interaction operator and corresponding-inte
action operands. Depending on what kind of operator is défspecific constraints
can be imposed on the number of operands a CombinedFragarenbntain. For
example, “option (opt)” or “loop” must have exactly one oped.

— InteractionOperand is contained in a CombinedFragment. An InteractionOperand
with an optional guard expression, represents one operitg @xpression given
by the enclosing CombinedFragment.



Fig. 2. A simple Sequence Diagrams model in AT&M

— InteractionUse refers to another Interaction. The InteractionUse is atblamd for
copying the contents of the referred Interaction where ttierbctionUse is. It is
common to want to share portions of an interaction betwegarakother inter-
actions. An InteractionUse allows multiple interactiongeference an interaction
that represents a common portion of their specification.

The entities whose icons have a hexagonal shape at the taeaesated as rela-
tionships/edges. They come in two types, which are set vitadedogs. The first type
is the invisible hierarchical relationship. The followiegtities are of this type: Inter-
actionContains, CombinedFragmentContains, InteraCgmrandContains, and Inter-
actionUseCovers. AToRwas extended to internally keep track of such hierarchical
relationships, so finding parents and children is easy. €herwd type of relationship is
the visible arrows, which possess attributes just like thees did. The visual relation-
ships and the meaning of their attributes are as follows:

— ActionConnection represents a connection between a Lifeline and an ActiaiFra
ment, or between two ActionFragments which cover the sarfedihe.

— Message defines a particular communication between Lifelines ofraaraction. A
Message associates two OccurrenceSpecifications - onangeddcurrenceSpec-
ification and one receiving OccurrenceSpecification. Thessage” attribute de-
fines the signature of the Message. A message is shown asfeolin¢he sender
to the receiver with a filled arrow head. The “isSynchroncatsiibute determines
whether the message is synchronous of asynchronous.

Figure 2 shows an exampequence Diagrams model in the visual modelling envi-
ronment synthesized from the above meta-model. We usexhia@e to illustrate the
key concepts and algorithms throughout this paper. On tthéded side of the figure
is the interactionnteraction_1 which contains three lifelines: A, b: B andc: C, three
messagebefore, after anddolt, and one interaction use between the two messages
which refers to interactiomteraction_2 and covers lifelinea: Aandb: B. On the right
hand side of the figure is tHeteraction_2 which contains two lifelinea: Aandb: B as
Interaction_1 does and one combined fragment whose operator is “alttdértbe “alt”
combined fragment, there are two alternative operands; 0” and “x <= 0", which
contain two message®o andbar respectively. Note that number labels are added for
action fragments which are not in the original models foresaithe illustration.



3 Transformation Sequence Diagrams into Statecharts

Transformation of models is a crucial element in all modatdxd endeavors [2]. As
models and meta-models are essentially attributed andl typsphs, we can transform
them using graph rewriting. Transformation models are gigelcin the form ofGraph
Grammars. Graph grammars are a natural, formal, visual, declaraive high-level
representation of the transformation. A Graph Grammar {ioM3) is composed of an
ordered set of rules. A rule consists of a Left Hand Side (Lt&ph and a Right Hand
Side (RHS) graph. Rules can have applicability conditigme-conditions) and actions
(post-actions) which are checked and performed respégivgen the rule is applied.

Rules are evaluated in order against a host graph which septe the model to
be transformed. If a graph matching is found between the LE#plgof a rule and a
subgraph of the host graph, the rule is eligible to be appli¢dn, the pre-condition
of the rule is evaluated. If it is true, the rule is applied. &iha rule is applied, the
matching subgraph of the host graph is replaced by the RH$hgrhthe rule. After a
rule matching and subsequent application, the graph riegritystem starts the search
again. The graph grammar execution ends when no more mgtallegs remain.

Nodes and links in LHSs and RHSs are identified by means of ew{labels). If
a number appears on both the LHS and the RHS of a rule, the noznoection is
retained when the rule is applied. If the number appears onlthe LHS, the node or
connection is deleted when the rule is applied. Finallhéfmumber appears only on the
RHS, the node or connection is created when the rule is appliede and connection
attributes in LHSs must be provided with attribute valuesolvlwill be compared with
the node and connection attributes of the host graph dunmgiatching process. These
attributes can be set to ANY, or may have specific values.¢rRHS, we can specify
changed attribute values for those nodes which also appeaeiLHS. In AToM, we
can either copy the value of the attributes of the LHS, spexifew value, or associate
arbitrary Python code to compute the attribute value, pbg&iased on other nodes’
attributes.

During formalism transformation we have a model in a soumrenflism that is
transformed to a model in a target formalism. The model etémin the source for-
malism could be related to each other. The application ofl@a may introduce the
counterpart model element from the target formalism for aled@lement in the source
formalism. Removing the source formalism model elementbiatstage will destroy
all its relationships and hence we have no way to find out whainnects to. To pre-
cisely keep track of source formalism elements and theintapart elements in the
target formalism, we use@enericGraph formalism which acts as a “helper” during the
transformation. The&senericGraph formalism consists of only two types of elements,
GenericGraphNode and GenericGraphEdge.

3.1 Sequence Diagrams Model to Statecharts Model

TheSequence Diagrams formalism is used to show the interactions between objgcts b
means of messages arranged in in a (partially) time-ordsggdence. One of the uses
of sequence diagrams is to, during the requirements phas@mafject, transition from
requirements expressed as use cases to the next and moleddetael of refinement.



Statecharts are a core formalism for describing behavipexXcuting (or simulat-
ing) the model, we can learn the behavior of the system pc® the requirements of
the system can be validated. The transition from interaafiagrams (e.gSequence
Diagrams, Live Sequence Charts [3] andUse Case Charts [4]) to Finite State Machines
(e.g.,Statecharts) which satisfy the constraints specified in the interactimyrams has
become one of the key activities in object-oriented analgsid design.

Since the release of the UML 2.0 [6] specification, Seguence Diagrams formal-
ism has become more powerful and rigorous as it provides meledefined constructs
than before. For example, structured control constructsr(@ined Fragments) such as
loops, conditionals, and parallel execution, are intratljevhich provide a precise way
to model complex flow of control. The introduction of Intetian Uses —a reference
to another interaction, which is usually defined in its owguence diagram— provides
a natural way to re-use existing sequence diagrams and gms@more complex se-
guences into simpler ones.

The richness of constructs of ti8equence Diagrams formalism is definitely one
advantage, but also a big challenge for its transformationther formalisms such
as Statecharts. For example, since combined fragments are actually nesttadtures
which can form a series of nested scopes inside an intera¢tie transformation pro-
cedure needs to be able to transform recursively inside sembe and combine results
with outer scope ones. This is not an easy nor intuitive taskther challenge is how to
transform interaction uses, i.e., replacing them with akinteractions and combining
them for ultimate transformation to other formalisms. Thédwing will explain the
strategy and algorithms for tackling these problems initieta

3.2 Four Phase Transformation

We now present the Graph Grammar rules used to transfo8agaence Diagram
model to aStatechart model. The graph grammar consists of forty-six rules. Ineord
to explain them clearly, these rules are grouped into fotegmies according to their
function and different phases in which they are executethda transformation. These
four phases will be explained in the subsequent sectiorey &te summarized here.

1. Initialization. In this phase, the source model is parsed, and some glothébeal
data structures used in the following phases to help to obtite transformation
flow are initialized.

2. Importation. In this phase, all Interaction Use fragments are dereta@n.e., re-
placed by the actual Interaction referred to. This is anamati phase, since an
interaction is valid without any interaction use. As an ratgion use can refer to an
interaction which in turn contains other interaction ugki process can be recur-
sive. However, an interaction can not contain an interaatige which refers to the
interaction itself to avoid infinite looping. This consmaispecified in the meta-
model of theSequence Diagrams formalism) is checked when a model is saved.
Because importation will change the original model by addiew elementdni-
tialization is needed again after this phase.

3. Transformation. This is the core of the transformation. The transformagimteeds
in two dimensions. The horizontal dimension follows theerdf appearance of



different objects. The vertical dimension follows the ardeoccurrence of a series
(flow) of messages. The procedures ensure the processimghie correct order in
the presence of nested control constructs.

4. Optimization. After the previous two phases, a Statecharts model is gester
However, a number of redundant elements were added to et taodel in those
phases. These are now removed.

3.3 Transformation lllustration by Example

In this section, we use the example shown in Figure 2 to ithtistthe key concepts and
algorithms of the model transformation.

Phase One: Initialization This phase aims to initialize some data structures (othrers a
initialized in other phases when necessary) used in thepteades to help the control
of the transformation flow.

We do not give the complete list of the initialized data stiwes (or variables) in
this paper. In summary, there are two categon@sibal andLocal. The global ones
are linked with the model graph under transformation andasaaccessed anytime and
anywhere. For examplenaxScope keeps the information about the maximum num-
ber of scopes an Interaction model currently has, which terdéned by how many
levels of nested structured control constructs (e.g., GoathFragments) the model
contains. The local ones are linked to specific graph elesnghich normally can only
be accessed when these elements appear in a rule. For exameszope of a Com-
bined Fragment element remembers the number of the scopéethent itself is at. For
instance, if a Combined Fragment elem€Rj is directly contained inside an Interac-
tion, thenCF;.scope = 0; and if another Combined Fragme®it; is insideCFy, then
CF,.scope = 1. One important use of thiscope is to determine whether the element
of a matched subgraph is in the right scope the transforméiourrently working on.
This is one of the pre-conditions to be evaluated to detegrifia rule can be executed.

The main procedure of the initialization in the post-acti@s three steps. We refer
to [7] for the details.

1. setPosition(graph). Set the vertical position of each of the Action Fragment and
Combined Fragment elements along a Lifeline.

2. setScope(graph). Set the scope of each of the Action Fragment and Combined Fra
ment elements.

3. initiateGlobals. Set default values of other unset global variables.

Phase Two: Importation In this phase, all Interaction Use fragments are replaced by
the actual referred to Interactions. This is an optionakghaince an interaction is valid
without containing any interaction use. As an interactiea oan refer to an interaction
which in turn contains other interaction uses, this proasss be recursive. Because
the importation will modify the original model by adding ne@kementsPhase One is
repeated after this phase.



To combine the two interactions, two things need to be detexdfor each of the
lifelines in the imported interaction. First, which actifsagment is in the head position
along a lifeline, and which one is the tail (they could be tame one). Second, which
action fragment is in the position just before the intei@ttuse along the lifeline in
the original interaction, and which one is just after thaemaction use (there could be
none).

It would be hard to achieve this task in a simple way if we ondg the graph
matching of graph grammars. So, we use some auxiliary datatstes which are
not shown in this paper. The procedure of the task is useddmtst-action of rule
importInteraction. Seee [7] for details of the algorithm.

The list of rules, their execution order and short desavipdiare given in Table 1.
Note that some rules have the same order which can have twaoimgsaFirst, it means
that there is a mutually exclusive choice between conditimithese rules. For exam-
ple, only one oftonnectHeadAFFirst andconnectHeadAFFirstPrime will be executed
in one process iteration. If this is not the case, the exeouider of these rules is ir-
relevant and is determined randomly. For example, the nwids order of 8. Rule 2
connectHeadAFFirg is shown in Figure 3.

Table 1. Graph Grammar rules in execution order in Phase Two

Order Rule Name Description

1 importinteraction Import the Interaction model refertedby a current target Interaction Use
and initialize helper data structures used in the next steps

2 connectHeadAFFirst Connect the head ActionFragment afedirie in the imported Interaction

with the proper one of the same Lifeline (with the same clasaaand in-
stance name) but in the original Interaction.

2 connectHeadAFFirstPrime Connect the head ActionFragofea Lifeline in the imported Interaction
directly with the same Lifeline but in the original Interamt. The checking
specified in the meta-model is done when the model is saved.

3 connectHeadAFSecond Disconnect the ActionFragmenteLifeline in the original Interaction
affected by previous rules from its old successor.

4 connectTailAFFirst Remove the Lifeline from the importatkraction as there is no ActionFrag-
ment of the same Lifeline in the original Interaction neethéoconnected.

5 connectTailAFSecond Connect the tail ActionFragment affeline in the imported Interaction

with the proper one of the same Lifeline (with the same clasaeand in-
stance name) but in the original Interaction.

6 connectTailAFThird Disconnect the ActionFragment of thfeline in the original Interaction
affected by previous rules from its old predecessor.
7 createWrapperCF Create a CombinedFragment (togethbramitinteractionOperand inside)

for holding all ActionFragments, CombinedFragments artdrictionUses
inside the imported Interaction in order to move them in dhiginal Inter-
action in one time.

8 connectAFWithWrapperCF Wrap ActionFragments insideGbenbinedFragment.

8 connectCFWithWrapperCF Wrap CombinedFragments infied€ombinedFragment.

8 connectlUWithWrapperCF Wrap InteractionUses insideGbenbinedFragment.

9 cleanimportedLifeline Remove Lifeline of the importeddraction.

10 cleanimportedinteraction Connect the wrapper Comlbiregiment created earlier with the original
Interaction, then remove the imported one and the Intermadtise that refers
to it.

The result of the transformation on the example sequenggatiais shown in Fig-
ure 4. Note that number labels are added for action fragmehish are not in the
original models for illustration. Note how a special “segincbined fragment which
has only one operand is added by rateateWrapperCF to enclose all elements im-



Rule 2 : connectHeadAFFirst

LHS — RHS
Pre-condition:
interaction = LHS.getNodeWithLabel(1]
S.getNodeWithLabel(1)
lifeline = LHS.getNodeWithLabel(2)
ANY> 5 <COPIED>, 4 | headAr = LHS getNodeWithLabei(3)

)
return (interaction == g_currentimportedinteraction) and
(ot lifeline._headAFConnected) and
(headAF ==lifeline.headAF) and

beforeAF = LHS.getNodeWithLabel(4
H (beforeAF == lifeline.beforeAF)

ANY> <ANY> COPIED=COPIED
? H

[

Post-action:
lifeline = LHS.getNodeWithLabel(2)
3 lifeline._headAFConnected = True

Fig. 3. Graph Grammar ruleonnectHeadAF First in Phase Two

ported frominteraction_2. It is redundant after this phase and will be removed by the
optimization described in Section 3.3.

Interaction_1

seq

alt

x<=0

bar

after

dolt

Fig. 4. Transformation result of Phase Two

As an interaction may contain more than one interactiontigestrategy to control
the flow of the transformation is to ensure we transform oneraction use at a time.
That is, one iteration of the set of rules in this phase cpwads to the transformation
of one interaction use. This is implemented by evaluatindjmanipulating the global
variableg_currentl nteractionU se.

Phase Three: Transformation This is the core phase which maps Sequence Diagrams
to Statecharts. The transformation proceeds in two dino@issiThe horizontal dimen-
sion follows the order of appearance of different lifelin€ke vertical dimension fol-



lows the order of occurrences of a series of messages. Theeguees ensure both
dimensions are processed in correct order with respectdt@de&ontrol constructs.

The strategy is depicted in Figure 5. Each iteration staith finding an unpro-
cessed lifeline element. It then proceeds with messageBagments along the lifeline
from top to bottom. If the interaction contains nested fragits, the process continues
from the outermost to the innermost of nested scopes.

Process Interaction

Has Unprocessed Lifeline?
[No]

Clean SD Elements

[Yes]

Process Lifeline

[No]

Has More Scope?

Has Unprocessed Combined Fragment?

Process Combined Fragment

[No]

Has Unprocessed Message?
[No]

[Yes]

Process Message

Fig. 5. The strategy of Phase Three

The list of rules, their execution order and short desaipdiare given in Table 2.
Rule 13combinedFragment is shown in Figure 6.

Rule 13 : combinedFragment

LHS — RHS Pre-condition:
pria

= bel(1)
if not cf.coveredLifelinesMap.has_key(g_currentLifeline):

v 1r=coren} return False
[position, processed] = cf.coveredLifelinesMaplg_currentLifeline]
preState = LHS getNodeWithLabel(3)

return (not processed) and (position == g_currentPosition) and

2 2 (cfscope == g_currentScope) and (cf.scope == preState.scope)
<ANY> _m <COPIED>, nd (CFggparent == prestate.ggparenty - ©
35 <COPIED> Post-action:

of = LHS.getNodeWithLabel(1)
Cl.coveredLifelinesMaplg currentlifelinel[1] = True
|<SPECIFIED> preState = LHS.getNodeWithLabel(3)
composite = LtiS.getNodeWithLabel(4)
@] LHS getNodeWithLabel(5) ggParent = composite
<SPECIFIED> LHS getNodeWithLabel(§) ggParent = composite
abel(7).ggParent = preState.ggParent
" 7 LHS getNodeWithLabel(7).Scope = preState.scope
— composite.belongsTo = g_currentLifeline
—{<SPECIFIED>| composite.totalChildren = 0
composite.unprocessedChildren = 0

Fig. 6. Graph Grammar ruleombinedFragment in Phase Three

Rule msgin states that a message directed towards a lifeline becoméggart
ing event in the Statecharts. RulesgOut states that a message directed away from
a lifeline becomes an action to send that message in thecBsats. Both of these
rules result in a transition to a new state. A combined fragimesults in a transi-
tion to a new composite state which is a container of enclasttbgonal compo-



Table 2. Graph Grammar rules in execution order in Phase Three

Order Rule Name Description

11 interaction Transform an Interaction element to a DChhment, with two new state
nodes and one new composite node enclosed and a link to theadrinter-
action element.

12 lifeline Transform a Lifeline node to an Orthogonal nodéh two new state nodes
enclosed and a link to the original Lifeline node.
13 combinedFragment Transform a CombinedFragment elemvaith is in the current transform-

ing level, to a composite node, with two new state nodes srd@nd one
new state node concatenated and a link to the original CeedBirmgment
element.

14 interactionOperand Transform an InteractionOperardheht, enclosed in a transformed Com-
binedFragment element, to an new Orthogonal element esttlivsa new
composite element, with two new state nodes enclosed.

15 operatorParallel Adjust a transformed “parallel” ConggFragment.

15 operatorLoop Adjust a transformed “loop” CombinedFragim

15 operatorOption Adjust a transformed “option” Combineiffent.

18 msgln Transform an incoming event (Message) along threwtitifeline, to a tran-
sition and a state node.

18 msgOut Transform an outgoing event (Message) along thierdw.ifeline, to a tran-
sition and a state node.

19 setScope Increase the scope to start the transformatianother nested level. No
visual syntax.

20 connectWithFinal Connect the last Basic node in any eimgofragment with a “final” state
node.

21 cleanLifeline Remove Lifelines.

22 cleanActionFragment Remove Lifelines.

23 cleaninteraction Remove Interaction.

24 cleanCombinedFramgment Remove CombinedFramgments.

25 cleaninteractionOperand Remove InteractionOperands.

nents and states transformed from interaction operandsn@sdages by the following
rules. RuleinteractionOperand is a general rule for all kinds of combined fragment
operators. Based on the result of that rule, more operatoasmplemented in rule
operatorParallel, operatorLoop andoperatorOption for some specific operators. For
example, different orthogonal components representiagdires of a “parallel” com-
bined fragment are combined into one composite state byapéeatorParallel; an
extra transition from “final” state to “default” state of aohp” combined fragment
is added by ruleperatorLoop; an extra transition with the opposite guard condition
from “final” state to “default” state of a “option” combinedafgment is added by rule
operatorOption. It is easy to find that some constructs are redundant akdramsfor-
mation of this phase. For example, for “loop” combined fragm the corresponding
composite state has no need to contain its own “default” éindl” states and another
enclosed composite state (and even its enclosed orthogomglonent), if the “guard”
information can be somehow moved to somewhere at the inaidléhe loop-back tran-
sition can also be connected between the “default” and “fistates of the inside. We
consider all of such situations and optimize these strestas much as possible in the
next phase, Optimization, to make the generated Statescmarte readable for humans
and more efficient for simulation and analysis. The resulheftransformation upon the
example Sequence Diagrams is shown in Figure 7. There arg stees and many lev-
els of nested composite components. Although this is a cosggithesized statechart,
most states and components are redundant and can be opltiamizy.



.. Fig. 7. Transformation_result of Phase Three
Phase Four: Optimization After the previous two phases, an executable Statecharts

model is generated. However, as discussed earlier, a nushbeglundant elements are
also generated in the target model in those phases, whiclesriakard to read and
refine. Now it is time to make some optimization to get the fowhpact, readable and

efficient Statecharts model. This phase is analogous togtimization phase after the
code generation of a compilation.

There are three subphases for the optimization:

1. Orthogonal optimization. Any orthogonal component which is the only enclosed
orthogonal of the parent composite, is considered reduralahis removed. All
states and composites enclosed by the removed orthoganpbeent become chil-
dren of the parent composite.

2. Composite optimization. Any composite which does not enclose any orthogonal
component is considered redundant and is removed. Agaienelosed states and



composites become children of the parent component. THesat“default” and
“final” state are replaced by normal states and connectddaviter states by tran-
sitions. As a parent component could be a composite or angotiel component,
there are two sets of rules for this subphase. Since the csitep@ould be nested,
this recursive process starts from the outermost one.

3. Transition and state optimization. Any transition without triggering and action and
its guard always true, is redundant and is removed.

Rule 31compositeOptThird and RulecompositeOptFour are shown in Figure 8.
The list of rules, their execution order and short desaripdiare given in Table 3.

Rule 31 : compositeOptThird

LHS — RHS
1 1 Compomte o
posite = LHS.getNodeWithLabel(1)
<ANY> <COPIED> default = LHS getNodeWithLabel(5)
final = LHS.getNodeWithLabel(6)
<COPIED> return (not default, compositeOptimized) and
2 @) 2 (not final._compositeOptimized) and
(Composite.scope == §. currentO pe)
<ANY> F$PECIFIED> -
3 ¥ 3, Post-action:

compositeParent = LHS.getNodeWithLabel(1)
composite = LHS.getNodeWithLabel(3)
default = LHS. getNodeWithLabel(5)

final = LHS. getNodeWithLabel(6)
default._compositeOptimized = True

50 6.

4 $<ANY>

Rule 32 : compositeOptFour

<COPIEDs || default.ggParent = compositeParent
final.ggParent = compositeParent

LHS — RHS

<COPIED> composite = LHS. getNodeWithLabel(1)
return (composite.scope == g_current0 op

<COPIED>
2

7

5 6
8
4 <copien>

Fig. 8. Graph Grammar rulesompositeOptT hird andcompositeOptFour in Phase Four

After these optimizations, the final statecharts transtmfrom the example of
Figure 2 is shown in Figure 9.

4 Requirements Document Generation from Sequence Diagrams

Before requirements are captured in the form of a series qti&ece Diagrams, they
are usually expressed in the form of Use Cases (in plain textsoally) by domain
experts or end users. In this case, it is useful to automatmtpping from a Use Case
to a Sequence Diagram. Li [8] proposed a semi-automaticomgprto translate a use
case to message sends. However, in order to reduce the cadtypjpleparsing a natu-
ral language and the vagueness, the approach requiregthatements be normalized
before translation. Our approach to briding the gap betwéssn Cases and Sequence
Diagrams is the inverse of the aforementioned mapping. Astioreed previously, our
model-driven approach supports that well-defined SequBiegrams can be used to
generate textual representation of requirements in a aldamguage the customers are
familiar with. The generated requirements can be used faluation and immediate
feedback. This process is fully automatic and provides &uligeay to refine require-
ments at an early stage in the development process.



Table 3.Graph Grammar rules in execution order in Phase Four

Order Rule Name Description

26 orthogonalOptFirst Reconnect the enclosed state notleealemoving orthogonal component
with its parent composite.

27 orthogonalOptSecond Reconnect the enclosed compasieeai the removing orthogonal compo-
nent with its parent composite.

28 orthogonalOptThird Remove the orthogonal componentkwis the only enclosed orthogonal
component of the parent composite.

29 compositeOptFirst Reconnect the enclosed state notie aétoving composite with its parent
composite.

30 compositeOptSecond Reconnect the enclosed composigeafithe removing composite with its
parent composite.

31 compositeOptThird Copy transitions originally to anainfrthe removing composite to new tran-
sitions of its inside states.

32 compositeOptFour Remove the composite which does ntasnany orthogonal component.

33 setOptimizationScope Increase the scope of nestingptimization to starts another iteration. No
visual syntax.

34 compositeOptFirstPrime Reconnect the enclosed staeeafdhe removing composite with its parent
orthogonal component.

35 compositeOptSecondPrime Reconnect the enclosed caepode of the removing composite with its
parent orthogonal component.

36 compositeOptThirdPrime Copy transitions originallyatwd from the removing composite to new tran-
sitions of its inside states.

37 compositeOptFourPrime Remove the composite which doiesntlose any orthogonal component.

38 cleanStateFirst Remove state whose only outgoing tiamss redundant which has one
incoming transition.

38 cleanStateSecond Remove state whose only outgoingtimanis redundant which has two
incoming transitions.

39 finalstateOptFirst Replace each incoming transition fifia state (except for the one in the
top level) by a copied transition to a new state.

40 finalstateOptSecond Remove final states (except for thénche top level).

[PC_Tteraction_1

G,ggmﬁ\ N

G_Composite

OAa

Fig. 9. The final generated Statechart for the example of Figure 2

The generated text description of a message send followairtipde format:

sourceactor + “sendsmessage”’ + message+ “to” +targetactor

if there is no customized description of the message, he.,'description” attribute
of the message is left empty. Otherwise, if a user gives a mangral description to a



message, the generated text description of the messagéoflend this format:

sourceactor + customizeddescription 4+ targetactor

As one can see, the above format is insufficient to deal wighcdise when there is a
need that either the “source actor” or “target actor” shaayghear in the middle of a

description. In order to make the generated text more natoirgad, we provide two
macro variables, “6SOURCES$” and “$TARGETS$", which can beliled anywhere
in a customized description. They represent the real “soactor” and “target actor”
respectively. That is, the generation algorithm will reqdaa macro variable with the
real actor. “source actor” or “target actor” comes from ifsline’s “instanceName” or
“className” attribute. If “instanceName” is not empty tligrstanceName” is used to
represent the actor; otherwise, “className” is used. Therg#ed text description of
an interaction use follows the simple format:

“Interaction” + refersTo+ “isimportedhere”

We apply our simple algorithm (given in detail in [7]) to themple Sequence
Diagrams model (shown in Figure 2) to generate textual requénts. The result is
shown below. Note that for this example, messages of Sequbiagrams models
Interaction_1 andinteraction_2 are all annotated with customized descriptions. Some
of these customized descriptions contains macro variéblARGETS$" in the middle
of the text. For example, imteraction_1, the annotated description of message send 1
is “asks $STARGETS to start a service”, in which “$TARGET$"tlsen translated into

ubn.
Use Case: Interaction_1

Actors: a, b, ¢

Scenari o:

1. a asks b to start a service

2. Interaction 'Interaction_2 is inported here
3. b reports status to a

4. b asks ¢ to log the status

Use Case: Interaction_2

Actors: a, b

Scenari o:

1. If x>0

2. b returns a service handler to a
3. Else if x<=0:

4. a asks b to start another service

5 Related work and Conclusions

We proposed a model-driven approach to transform softveaygirements. The model-
driven approach starts with modelling requirements of aesysn Sequence Diagrams,
and the subsequent automatic transformation back intodaésgquirements or into Stat-
echarts. A visual modelling environment was built in ATONsingMeta-modelling and
Model Transformation to support the model-driven approach. It supports modgitin
Sequence Diagrams, automatic transformation tStatecharts, and automatic genera-
tion of requirements text frorBequence Diagrams.

Sutcliffe et. al. [9] proposed a method and a tool for speaifin of use cases, au-
tomatic generation of scenarios from use cases and sewrratit validation based-on



generated scenarios. Harel et. al. [10, 11] proposed aiplalay-out approach to cap-
ture behavioral requirements. The Play-Engine autonigticanstructs corresponding
requirements in the scenario-based languagevefSequence Charts (LSCs) [3], and
finally semi-automatically synthesizing a collection ofiténstate machines. Whittle et
al. propose use case charts in [4] which is a 3-level notdtas®ed on extended activity
diagrams used for specifying use cases. In [12], algoritamespresented that trans-
form use case charts into a set of hierarchical state maghihéh then can be used
for simulation, test generation and validation. The altni starts with the conversion
to hierarchical state machines for a level-3 sequence a@mgthen proceeds with the
combination of a set of hierarchical state machines geeérfar each scenario node at
level-2, and finally completes the synthesis of the finaldrighical state machine for the
level-1 use case chart by further combining generated tuki@al state machines. The
core of the algorithm is the synthesis of hierarchical staéehines from a sequence di-
agram. Our approach is very similar to that of Whittle and degeloped concurrently.
We have chosen to use the full power of sequence diagram$alieviates the need
for a 3-level notation. We plan to provide support for Wil process and notation in
the near future.

References

1. de Lara, J., Vangheluwe, H., Alfonseca, M.: Meta-modglind graph grammars for multi-
paradigm modelling in AToM. Software and System Modelirg§3) (2004) 194-209

2. Vangheluwe, H., de Lara, J.: Computer automated mutagigm modelling for analysis
and design of traffic networks. In: Winter Simulation Comfiece. (2004) 249-258

3. Damm, W., Harel, D.: Lscs: Breathing life into messageausege charts. Formal Methods
in System Desigri9(1) (2001) 45-80

4. Whittle, J.: Specifying precise use cases with use camgcHn: MoODELS Satellite Events.

(2005) 290-301

. Rhapsody. I-Logix, Inc., http://mww.ilogix.com/prochs/

. Modeling Language 2.0 Specification, U., http://www.oang. (2005)

7. Ximeng Sun: A model-driven approach to scenario-basegdirements engineering. Mas-

ter’s thesis, McGill University (2007)
. Li, L.: Translating use cases to sequence diagrams. |&. A&&Z00) 293-296
9. Sutcliffe, A.G., Maiden, N.A., Minocha, S., Manuel, Dugorting scenario-based require-
ments engineering. Software Engineer2®f12) (1998) 1072—-1088

10. David Harel and Rami Marelly: Come, Let’s Play: Scen@@ased Programming Using
LSCs and the Play-Engine. Springer-Verlag (2003)

11. Harel, D., Kugler, H., Pnueli, A.: Synthesis revisit&knerating statechart models from
scenario-based requirements. In: Formal Methods in Tharlk$! Software and Systems
Modeling. (2005) 309-324

12. Whittle, J., Jayaraman, P.K.: Generating hierarchitate machines from use case charts.
Proceedings of the 14th IEEE International Requirementirieering Conference (RE’'06)
0(2006) 16-25

o o

oo



