
Himesis Representation of ArkM3 Structures

Simon Van Mierlo

June 30, 2013

1 Introduction

AToMPM, A Tool for Multi-Paradigm Modelling is a (meta)modelling tool currently un-
der development. The tool allows the explicit modelling of modelling language, through
the construction of a metamodel. A model created in a language is said to conform to
the metamodel of that language.
Models are related to each other by model transformations. A transformation receives a
model in the domain language as input and produces a model in the target language as
output. A transformation is modelled by a number of rules and their scheduling. Each
rule rewrites a part of the input model, resulting in a part of the output model.
Transformations are a special kind of model, conforming to the transformation meta-
model. As such, they can be transformed by so-called Higher-Order Transformations
(HOTs). These transformation models, however, contain condition code, describing in-
put model constraints for each rule, and action code, describing a set of actions to be
executed after rewriting the input model. From this, it follows that action and condition
code should conform to a metamodel as well, and not be coded in, for instance, a string.
ArkM3 is the new metamodel kernel of AToMPM. In ArkM3, every element is explicitly
modelled and conforms to its metamodel. In particular, action and condition code is
metamodelled explicitly. ArkM3 structures are physically represented as Python objects.
A textual notation (i.e. visual concrete syntax) has been developed, including a parser,
which creates Python structures from a textual definition, and a pretty printer, which
does exactly the opposite. An interpreter and compiler have been developed, attaching
semantics to the models of actions and constraints.
In AToMPM, transformations are implemented as graph rewriting algorithms. To enable
transformation of ArkM3 structures, a second physical level is introduced in this report.
Each ArkM3 structure is represented as a graph or a set of nodes in a graph. The graph
structure of our choice is Himesis, which is an abstraction layer on top of the graph library
igraph. For each ArkM3 element, a suitable mapping onto Himesis nodes and/or graphs
has to be made. This mapping is then used to construct the physical representation in
Himesis of each element when that element is constructed. This allows the ArkM3 struc-
ture to be manipulated on two different levels: the ArkM3 level (for instance, executing
an action which changes the value of a model property in ArkM3) and the Himesis level,
by executing a transformation.
This report is structured as follows. In Section 2, the layered structure of ArkM3 is further
explained. In Section 3, the design choices of the mapping implementation is detailed.

1

Lastly, in Section 4, the actual mappings of ArkM3 elements onto Himesis structures are
presented.

2 ArkM3 Layered Structure

In this section, the layered structure of ArkM3 is introduced, using an example. In Section
2.1, the example is explained. In Section 2.2, the example is represented in concrete visual
syntax, both visually and textually. Lastly, in Section 2.3, the physical representation of
the ArkM3 structures is given, both in ArkM3 and Himesis.

2.1 Example

The example features one top-level package called atompm, which contains a sub-package
test. This package contains a class called A, which in turn contains an action with one
statement. Although the example is small, it is representative, as it contains most major
ArkM3 structures. In the next section, the concrete syntax of the example is given.

2.2 Concrete Syntax: Textual and Visual

The concrete textual syntax of the example is shown in Listing 1. This textual notation
is parsed, which results in the object diagram shown in Figure 1. The object diagram
is an instantiation of the ArkM3 metamodel presented in [1]. As can be seen, a number
of SetValues and SequenceValues are introduced to implement one-to-many relations
between objects.

package atompm
package t e s t

c l a s s A:
ac t i on a :

r e turn 1 + 5 < 4

Listing 1: Textual Concrete Syntax

2

atompm : Package

: StringValue

value = 'atompm'

: SetValue

name

ownedActions

ownedConstraints
ownedElements

: SetValue

value = {}

: SetValue

value = {}

test : Package

: StringValue

value = 'test'

: SetValue

name

ownedActions

ownedElements

value[0]

: SetValue

value = {}

: SetValue

value = {}

A: Clabject

: StringValue

value = 'A'

: BooleanValue

value = False

: SetValue

value = {}

: SetValue

ownedConstraints

: SetValue

value = {}

: SetValue

value = {}

: SetValue

value = {}

: SetValue

value = {}

: TypeType

name isAbstract
associations

ow
nedProperties

specialise

superClass

ownedActionstype

value[0]

ownedConstraints

a: Action

: StringValue

value = 'a'

: SequenceValue: ReturnStatement : VoidValue

: M3SymbolTable : AnyType

value[0]name

ownedStmt

symbolTable type

returnValue
value[0]

: LessThan

: SequenceValue: IntegerValue

value = 2

: StringValue

value = 'op'

: AnyType

: AnyValue

expression

name

type

value

childNumber child

: Plus: IntegerLiteral

value[0]value[1]

: StringValue

value = 'name'

name

: IntegerValue

value = 4

: IntegerType

typevalue

: SequenceValue

: IntegerValue

value = 2

: StringValue

value = 'op'

: AnyType

: AnyValue

type

value

child

childNumber

name

: IntegerLiteral

: StringValue

value = 'name'

name

: IntegerValue

value = 5

: IntegerType

typevalue

: IntegerLiteral

: StringValue

value = 'name'

name

: IntegerValue

value = 1

: IntegerType

type

value

value[0]

value[1]

Figure 1: Visual Concrete Syntax: Object Diagram

3

2.3 Physical Realization

ArkM3 structures are physically realized on two levels. First, there is the Python level,
where the ArkM3 classes to create the necessary structures are implemented. Second,
each ArkM3 structure is physically realized as a (number of) Himesis node(s) and graphs.
Himesis allows the creation of attributed graphs containing attributed nodes which are
connected by directed, attributed edges. It also supports hierarchical graphs, by allow-
ing a node in a Himesis graph to contain another Himesis graph. In Section 3.1, the
graph kernel Himesis is further explained. In the next two subsections, both the physical
realization in Python and in Himesis of the example are explained.

2.3.1 ArkM3

In Listing 2, the physical realization of the example in Python is shown. It shows the
Python code which is used to construct the ArkM3 structure. The resulting object graph
is visually represented in the object diagram of Figure 1.

expression = LessThan(

Plus(

IntegerLiteral(

value = IntegerValue(1)

),

IntegerLiteral(

value = IntegerValue(5)

)

),

IntegerLiteral(

value = IntegerValue(4)

)

)

statement = ReturnStatement(expression)

action_a = Action(StringValue(’a’))

action_a.add_statement(statement)

class_A = Clabject(StringValue(’A’))

class_A.get_ownedActions().add(action_a)

pkg_test = Package(’test’)

pkg_test.add_ownedElement(class_A)

pkg_atompm = Package(’atompm’)

pkg_atompm.add_ownedElement(pkg_test)

Listing 2: Physical Realization: Python

4

role: 'owned_actions' role: 'owned_constraints'

GUID__: UUID('aeb45020-2db3-45d7-be28-cd4a7da6c4f5')
root_element_id: UUID('dfb83cc4-b5eb-4a0b-ab5d-d22fcb2137fb')

mm__: arkm3.Object.Package

GUID__: aeb45020-2db3-45d7-be28-cd4a7da6c4f5

mm__: arkm3.DataValue.SetValue

GUID__: UUID('9baa8b77-06e5-414f-85b8-cd86ecf5d38f)

role: 'set_value'

mm__: arkm3.DataValue.StringValue
GUID__: UUID('a409b998-fa1d-4106-9400-6b951ff21477')
value: 'atompm'

mm__: arkm3.DataType.StringType

GUID__: UUID('adb44903-014d-4734-8655-e944df8377c1')

mm__: arkm3.DataType.SetType

GUID__: UUID('8bb07404-7c2b-4fe9-97b8-f62a373134c7')

mm__: arkm3.DataType.AnyType

GUID__: UUID('15ce76e9-c0ef-4545-951c-18aa0e885923')

mm__: arkm3.Element.HierarchicalElement

GUID__: UUID('53532a6b-96ae-49ac-99a2-6088f9033dea')

owned_container: <Himesis representation of Package 'test'>

mm__: arkm3.DataValue.SetValue

GUID__: UUID('aa63ae5e-7326-418a-b9ac-5c6aab6ae054')

mm__: arkm3.DataType.SetType

GUID__: UUID('4c14ad48-b944-42e6-9d82-053a79aa2920')

mm__: arkm3.DataType.AnyType

GUID__: UUID('c215cb37-5bd9-4a65-9cc3-8c9027917ad0')

mm__: arkm3.DataValue.SetValue

GUID__: UUID('2900dcc6-c1a3-4371-9c5d-4824fc807e9d')

mm__: arkm3.DataType.SetType

GUID__: UUID('e097bd68-9556-45a0-830d-aa4691dec7c4')

mm__: arkm3.DataType.AnyType

GUID__: UUID('b941f469-e09d-45e5-a784-27889e28d6a7')

role: 'type'

role: 'type'

role: 'base_type'

role: 'name'role: 'owned_elements'

role: 'type' role: 'type'

role: 'base_type'role: 'base_type'

Figure 2: Physical Realization: Himesis

2.3.2 Himesis

In Figure 2, a part of the example’s physical realization in Himesis is shown. Due to space
constraints, only the top-level package is shown. A package is represented by a Himesis
graph, denoted by the large double-sided square. Inside of the graph, its contained nodes
are represented by squares.
The graph has two attributes: a unique identifier and a root element id, which points to
the root node of this graph (in this example, the node of the ’atompm’ package).
Every ArkM3 element is mapped onto exactly one Himesis node, possibly connected to a
set of other Himesis nodes in the same graph. This results in the Package being mapped
onto a graph, containing one root node which is connected to a set of other nodes.
A Himesis node contains a number of attributes. Each Himesis node representing an
ArkM3 element has at least two attributes. The first is called mm , which is the fully
expanded class name of the corresponding ArkM3 element. The second is a unique
identifier.
An ArkM3 element has a number of child elements. For instance, a Package has a
child StringValue, representing its name. In the corresponding Himesis graph, a child
is represented as an edge between the source node (corresponding to the Package) and
the target node (corresponding to the StringValue). Every edge has a ’role’ attribute.

5

This attribute represents the role which the target node fulfils in the source node. For
instance, the role of the Package’s StringValue is ’name’.
The ’atompm’ package has exactly one owned element: the ’test’ package. In Himesis, this
is realized by using hierarchy. A HierarchicalElement is introduced, which is mapped onto
a node containing an attribute ’owned container’. The value of that attribute is another
Himesis graph, in this case the Himesis representation of the ’test’ package.
Note that there is a one-to-one mapping of each element in Figure 1 to an element in
Figure 2. A detailed explanation of all ArkM3-to-Himesis mappings can be found in
Section 4. There, a visual syntax is introduced to represent the mappings, which is more
clear and generalized than the one used in this example.

3 Design

This section presents a number of design choices made during the development of the
ArkM3-to-Himesis mappings. Firstly, in Section 3.1, Himesis, the graph structure onto
which each ArkM3 element is mapped, is introduced. Next, Section 3.2 lists the design
considerations and choices which were made during the development of the ArkM3-to-
Himesis mappings. Lastly, Section 3.3 presents a performance analysis of a number of
possible ArkM3-to-Himesis mappings. The results of this analysis ultimately lead to the
mappings presented in 4.

3.1 Himesis: an igraph Abstraction Layer

Himesis, introduced in [2], is a kernel for graph-based model representation and manip-
ulation. It is implemented using the igraph library, as described in [3]. This has a few
consequences when considering what a good ArkM3-to-Himesis mapping is. For instance,
Himesis allows for hierarchical graphs, which means that a node in one graph can con-
tain another Himesis graph. It also allows for nodes and edges to have arbitrary Python
structures as attributes. There are a number of decisions to make: how much information
is represented as attributes of nodes and edges? How many nodes and edges do we want
a typical graph to contain? Do we regularly want to make use of hierarchy? In this and
later subsections, a number of rules are constructed that guide the ArkM3-to-Himesis
mappings.
The choice of Himesis and igraph has a few advantages and drawbacks, as described
in [3]. The ones that are important for constructing the ArkM3-to-Himesis mappings are
repeated here.

• In igraph, nodes are not explicitly stored. The internal structure only keeps track of
the total number of nodes. As a result, the attribute values of a node are not stored
in the node itself, but in a vector which is globally assigned to the graph. This
means that the required memory space for each attribute is assigned for all nodes.
This leads to our first conclusion, which is to avoid excessive use of attributes.
What should definitely be avoided is the use of attributes which are dependent on
a run-time property of the system (for instance, the identifier of a node), as this
would lead to an explosion in the number of attributes as the size of the graph
increases.

6

• Both nodes and edges can have attributes. In constructing possible ArkM3-to-
Himesis mappings, this fact should be taken into account. It may be that having
particular attributes on edges instead of nodes is more efficient. This is examined
in Section 3.3.

• As was said previously, Himesis allows for hierarchical graphs. Whether or not
hierarchy should be regularly used is explored in the following subsections and
Section 3.3.

3.2 Design Choices

This section describes the design choices made when implementing the mapping of ArkM3
elements to Himesis graphs. Each ArkM3 structure is represented by a Himesis (sub)graph,
which is used for executing transformations (using T-Core [3]) and (de)serialization. This
section does not explain how each ArkM3 element is mapped onto Himesis, but rather
how the design of the solution that implements it was constructed. The choices which
are made here will influence what the final ArkM3-to-Himesis mappings will look like.
Section 3.2.1 explains the advantages and disadvantages of using different levels of hi-
erarchy in the Himesis representation. Section 3.2.2 explains how ArkM3 elements are
(de)serialized and Section 3.2.3 deals with transformations and how they are performed
on ArkM3 structures.

3.2.1 Hierarchy

Starting from the fact that each ArkM3 element should be represented in Himesis, a first
idea would be to represent each ArkM3 element as a separate Himesis graph, as presented
in Figure 3a. This has a few advantages. For one, it is easy to implement, as each ArkM3
element now ’has-a’ Himesis graph. By letting each Element own an instance of a Hime-
sis graph, each element can manage its own graph representation. It also means each
ArkM3 element can be the subject of transformation, as we can transform all Himesis
graphs. However, this may not be exactly what we want. Does it really make sense
to only transform an IntValue without taking into accounts its surrounding context (an
action, a constraint, a property, . . .)?
A number of other disadvantages exist with this approach. As each element is represented
as a Himesis graph, we need to make excessive use of hierarchy. A Himesis graph consists
of a number of nodes and a number of edges, connecting those nodes. The nodes can have
attributes, and these attributes can be arbitrary structures, even other Himesis graphs.
It is, however, not possible to connect two graphs with each other. This means that
whenever an ArkM3 element is associated with other ArkM3 elements (which is often the
case: an Action contains a SequenceValue of Statement, which can contain an Expression,
etc.), we need to represent this as an attribute of the node. As was explained in [3] (and
confirmed by the performance analysis in Section 3.3), we should try to avoid the use
of a large number of attributes. When we look at how Himesis graphs are serialized, a
second disadvantage becomes apparent. When hierarchy is encountered, the serialization
process creates a new file for each Himesis graph. The name of the file corresponds to
the name of the attribute, which means that when two MappingValues are serialized, and
they both have the attribute ’a’, which has as value a Himesis graph, these graphs would

7

arkm3.Element

Himesis

1..1

1..1

(a) All Elements are mapped onto a Hime-
sis graph.

arkm3.Element

+ __init__(Himesis)

Himesis

1..1
0..*

(b) All Elements are mapped onto a set of
Himesis nodes.

arkm3.Element

+ __init__()
+ get_container(): Container
+ set_container(Container): void

Himesis

Container

arkm3.Package

1..1

1..1

1..1

1..1

1..1

0..*

(c) Addition of the Container class.

Figure 3: Different types of ArkM3-to-Himesis mappings.

8

be serialized to the same file, which is of course not possible. A solution here would be to
modify the serialization process, or introduce unique names for each attribute. However,
the names of the attributes would then depend on run-time properties of the system,
which we already decided against.
A second approach regards each ArkM3 element as a (set of) node(s) in a Himesis graph,
presented in Figure 3b. This would mean that when an ArkM3 element is created, these
nodes are created as well. However, Himesis nodes can only be created inside of a Himesis
graph, not independently from it. So, when creating an ArkM3 element, a Himesis graph
should be passed to the constructor of that element, such that it knows where to create
its Himesis nodes.
An advantage of this approach is that excessive use of hierarchy is avoided. We now
somewhere have a ‘root’ Himesis graph, where elements create their nodes and connect
them with each other. Only these ’root’ Himesis graphs can be serialized and trans-
formed. However, then the question arises what these ’root’ graphs are. It should be
those ArkM3 elements that can be the subject of a transformation, such as packages.
A question with this approach is whether all elements should always have a represen-
tation in Himesis. For instance, we could first create an Action and later add it to a
Package. As an action in itself is not a Himesis graph, it first has to add its nodes to
another Himesis graph than the package (as the package is not created yet). When it is
added to the package, it has to move its nodes to the Himesis graph representing that
package. This is double work: do we really want a ’default’ graph where each element not
added to a package can ’park’ its nodes? A solution is to allow ArkM3 elements to not
have a representation in Himesis ’for a while’ and only create the representation when
they are added to an ArkM3 element that is represented by a Himesis graph. This makes
sense: only a small set of ArkM3 elements can be the subject of a transformation, and
we only want to serialize a small set of ArkM3 elements. So, we don’t need the Himesis
representation for the other ArkM3 elements unless they are part of an element which is
in that small set.
We end up with the design in Figure 3c. A class called Container is added as an indi-
rection layer between ArkM3 and Himesis. This class exposes some methods to make
the setting and getting of attributes, creating of edges, etc. easier for ArkM3 elements.
For now, only an ArkM3 Package creates a container on construction. The rest of the e
lements can add their Himesis representation to a container, but the point at which this
happens is decided by the container. For instance, an action could decide that a state-
ment has to add its representation when the ’add statement’ method is called on itself.
The result of all this is that for the user, the interfaces of the ArkM3 elements looks the
same as before. In the background, the Himesis representation is available for those cases
where it is needed. Of course, a number of methods managing the ArkM3 representation
are added to the interface of Element (such as get container and set container). How-
ever, these should not be used outside of the Element class and its subclasses. In other
programming languages, these methods would be protected, but Python does not allow
for such scoping rules. As such, users of the class should be aware that they never should
call these methods.
An advantage of this approach is that an element is free to choose its representation
inside of the Himesis graph. The most optimal can be chosen (see Section 3.3). A second
advantage is that only elements which can be transformed are represented by Himesis

9

graphs. This means that no graph has to be built at runtime, when the transformation
is to be executed. The graph is readily available, as the element itself has the graph.
This representation also allows for the caching of values. Instead of always looking at the
Himesis graph for the correct value, the ArkM3 structure can keep its own data structures
and perform a look-up faster that way.
As we now have a way to create the Himesis representation of ArkM3 elements, we can
look at other functionalities which have to be implemented: (de)serialization of ArkM3
elements and transformations.

3.2.2 Serialization

There are two options for serialization of ArkM3 structures: either a completely new
serialization process is created, tailored to ArkM3. Or, we reuse the already existing
serialization process for Himesis graphs.
When using the already existing serialization process for Himesis graphs, no extra work
has to be performed when serializing an ArkM3 element. Only elements that have a
container, such as Package, can be serialized, as only they are represented by a graph in
Himesis.
However, when we deserialize this Himesis graph, we may be interested in rebuilding the
ArkM3 structure represented by that Himesis graph. So, extra work has to be performed.
One solution is to add two extra (optional) parameters to the constructor of each ArkM3
element, specifying the container and identifier of a specific node in that container, which
is the physical representation of the ArkM3 element. The element ’knows’ what its rep-
resentation looks like, so starting from that node, it can rebuild its internal structure. A
factory is created which creates the ArkM3 element starting from the deserialized Himesis
graph. The Himesis graph needs to save what the ’root’ of the graph is (for instance, a
Package), and the factory then uses this information to build the ’root’ ArkM3 element.
This element subsequently creates its children, by traversing the Himesis structure (for
instance, a Package instantiates a SetValue for its owned Elements, this SetValue instan-
tiates its child elements, and so on). A prerequisite for this to work is that a Himesis
node contains sufficient meta-information to construct the ArkM3 element with which it
corresponds.
A disadvantage of this approach is that each Element requires two new parameters in its
constructor and all other parameters have to be made optional. This could be confusing
for the user, as we may want to make some parameters obligatory.
Creating a completely new (de)serialization process requires extra work at the point of
serialization, instead of at the point of deserialization. Instead of saving the Himesis
structure, we save the ArkM3 structure. This could be implemented as a visitor, which
visits the top-level element (a container), then traverses down the tree and makes sure
all elements are added to the correct container.
From these two, we chose to use the existing Himesis serialization process, as it allows
a Himesis structure to be deserialized independently of ArkM3. This means that with-
out knowledge of ArkM3, a serialized Himesis graph can be deserialized, rewritten, and
serialized again.

10

3.2.3 Transformations

Transformations are performed on Himesis structures. As was said in previous sections,
some ArkM3 structures have containers, which are Himesis graphs. These containers can
be transformed. However, the changes on the Himesis level should be reflected on the
ArkM3 level. As the ArkM3 structures cache their values instead of always querying the
Himesis structure (as this would lead to very inefficient code), there should be a way to
invalidate this cache.
One way to achieve this would be making the Himesis structure representing the ArkM3
structure and the transformation engine ArkM3-aware: the Himesis nodes keep a refer-
ence to the ArkM3 structure they represent (this reference should not be serialized, for
obvious reasons) and the transformation engine would then edit the ArkM3 structures in
its rewrite phase.
Another, much easier, solution would be to introduce a ’dirty’ attribute on each Himesis
node. The ArkM3 structure should then check whether this flag is set each time it is
accessed. If the flag is set, it should rebuild its internal structure. It remains to be
investigated how efficient this approach is. However, it is clear that transformations are
not performed very frequently, and that rebuilding part of the ArkM3 structure should
not introduce a significant performance hit.

3.3 Performance Analysis

This secion describes the results of analysing the performance of different of ArkM3-to-
Himesis mappings. Two ArkM3 structures were included in the test: SequenceValue and
MappingValue. These are representative cases, as they require iteration and should be
optimized for various frequent CRUD operations.

3.3.1 A Note on String Comparisons

The performance of String comparisons was tested in Python, to see whether performance
could be gained by replacing all Strings by integers in the Himesis structures. This was
done on two levels: first, we investigated the difference between String and integer keys in
Python dictionaries. Then, String and integer comparisons were compared by searching
for a certain value in a list.
For the first test, we found that Python’s dictionary implementation is optimized for
String keys. We conclude that using String keys instead of integer keys improves the
overall performance.
For the second test, we compared the performance of comparing four different types of
values: unique identifiers (UUIDs), integers, strings, and strings that were mapped onto
integers (so to find such a string, we looked up the integer it was mapped onto, and looked
up that value in the list). The list of strings consisted of strings with a fixed (random)
18-character prefix, a fixed (random) 18-character postfix and a number in the middle.
When searching for a string, the tester was asked to input a value from the list to search
for. The list of UUIDs consisted of randomly generated UUIDs, and the list of integers
consisted of non-zero, increasing values. The results are summarized in Figure 4.

As we can see from the figure, all comparison functions have a linear complexity, which
is to be expected. However, comparing UUIDs is significantly slower than comparing other

11

Figure 4: Performance graph of comparing values of different data types.

data types. Comparing strings and integers have (almost) equal performance. As such,
we can conclude that, performance-wise, it does not make a difference whether we work
with strings or integers when creating the ArkM3-to-Himesis mappings.

3.3.2 SequenceValue

The first ArkM3 structure to be tested was the SequenceValue. A SequenceValue has a
number of children, which are accessed by an index. The currently supported operators
are append and remove. The append operation adds an element to the end of the list,
while the remove operation removes the first value from the list that matches a given
value.
Two mappings to Himesis were tested, as shown in Figure 5. The first has a root node for
the SequenceValue. The contents of the list are represented by nodes which are connected
to this root node. Each child node keeps track of its index in the list. It is easy to deduce
that an append operation has complexity O(1) (we keep track of the length of the list)
and the remove operation O(n) in the worst case (all subsequent neighbors have to have
their ’idx’ attribute updated).
The second mapping also has a root node, but uses a more traditional representation
for a linked list. The SequenceValue keeps track of the head of the list, and each node
has a link to the next. Again, the append operation has complexity O(1). The remove
operation, however, has complexity O(1) as it is possible to retreive the previous and
next neighbor of the deleted node in the Arkm3 structurs, and connect those, in constant
time.
Three tests were run. The first measured the time to initialize the SequenceValue with
a number of elements. These timings are shown in Figure 6. In the figures, ’node idx’
refers to the left mapping of Figure 5 and ’edge attr’ to the right one. As can be seen,
these timings do not differ significantly between mappings. Do note that in both cases it

12

Figure 5: The two mappings which were tested.

Figure 6: The timings for the initialize test.

takes a considerable amount of time for a list to initialize. Future work will investigate
where the largest computational cost is.
The second test measured the time it takes to create a SequenceValue instance starting
from the Himesis structure. This operation will be performed when deserializing a struc-
ture, as only Himesis structures are serialized. Figure 7 shows the results. As we can see,
when we use the approach with ’next’ edges, it takes more than two minutes to read in
a graph of moderate size, while this is not the case for the other approach.
When an element is removed, the approach with the ’next’ edges is again faster. (see Fig-
ure 8). This is to be expected, and can be explained by the complexities of the operations
above.

13

Figure 7: The timings for the read test.

Figure 8: The timings for the remove test.

3.3.3 MappingValue

The second ArkM3 structure to be tested was the MappingValue, which basically has
the same functionality as the Python dictionary. In Figure 9, four mappings which were
tested are shown. The top left one is similar to the first mapping for lists: the values
of the map are connected to the root node, and have as attribute the mapping key (this
mapping is called ’node key’ in the result graphs). In the top right one, the key attribute
is moved to the edge which connects the value to the root nodes (this mapping is called

14

Figure 9: The three mappings which were tested.

Figure 10: The timings for the initialize test.

’edge key’). On the bottom left, all key-value pairs are represented as attributes of the
root node (this mapping is called ’hierarchy’). The attribute name corresponds to the
key, the value corresponds to the mapping value (which is a Himesis node). The bottom
right mapping also has one node for the MappingValue, and only one attribute. This
attribute has the name ’ value’ and the value of this attribute is the Python dictionary
representing the value of this MappingValue. This mapping is called ’attribute’.
Four tests were run. The first test, whose results are shown in Figure 10, initializes
the map with a certain amount of values (this operation has complexity O(n) for all
mappings). The second reads the Himesis structure to build the corresponding ArkM3

15

Figure 11: The timings for the read test.

Figure 12: The timings for the remove test.

(MappingValue) structure - see Figure 11 for results (again, this operation has complex-
ity O(n) for all mappings). The third removes a value from the map (this operation
has complexity O(1) for all mappings) - see Figure 12 for results. The last, shown in
Figure 13, sets the value of a key in the map to a certain value (this operation has com-
plexity O(1) for all mappings). As we can see, the mapping which keeps the mapping
as attributes of the root node is by far the slowest. The time it takes to remove or set a
value grows exponentially with the size of the map. This is most likely caused by the fact
that igraph stores all attributes on all nodes of the graph, which means the amount of

16

Figure 13: The timings for the set test.

Figure 14: The memory usage of the MappingValues.

memory used grows quite rapidly when a node has lots of attributes. The memory usage
of all mappings is visualized in Figure 14. From the other three mappings, the one storing
the whole Python dictionary in one attribute is the fastest. It remains to be investigated
whether this approach is usable when graph matching and rewriting is considered. The
other two mappings are quite close in performance to each other.

17

4 Mapping ArkM3 to Himesis

In this section, the actual mappings of ArkM3 elements to Himesis structures is presented.
Section 4.1 introduces the visual notation which is used in 4.2 to represent the ArkM3-
to-Himesis mappings.

4.1 Notation

To represent the ArkM3-to-Himesis mappings, a combination of two visual syntaxes is
used: class diagrams to represent the ArkM3 classes and relations and a visual syntax
that represents Himesis graphs, which is detailed in Table 1. No graph instances are
represented; rather, the diagrams have a meta-relation to Himesis instances. This relation
corresponds to the relation between class and object diagrams.

4.2 Mappings

In this section, all ArkM3 packages are are modelled visually in UML class diagrams.
The notation introduced in the previous section is then used to represent the mapping of
each class to a (set of) Himesis node(s). A few notes:

• A one-to-one association between classes in the UML class diagram is represented
either by a UML association with multiplicities 1..1 on both sides, or as an attribute
in the source of the association. Both representations have equal semantics.

• In cases where a large inheritance hierarchy exists (for instance, there are a large
amount of classes inheriting from the Operator class), but where all subclasses have
the same instance variables as their superclass, the representation of the subclasses
in Himesis is omitted. In such cases, the node to which the subclasses are mapped
is equal to the node to which the superclass is mapped, with the exception that the
mm attribute of the node correctly references the subclass.

• One-to-many relations in the class diagram are implemented either as SetValues or
SequenceValues in ArkM3. Subsequently, it are these SetValues and SequenceValues
that are mapped onto Himesis nodes.

• In practice, the mapping of SequenceValue and MappingValue is constructed differ-
ently than any of the mappings described in in Section 3.3. It was decided to only
have one attribute on each edge, ’role’. This allows for fast lookups of the values
of a list, or a dictionary. Then, the node corresponding to the ArkM3 structure
contains an attribute which allows for the efficient rebuilding of the ArkM3 struc-
ture starting from the Himesis graph. For instance, the node which corresponds
to a SequenceValue has an ’index list’ attribute, which is an ordered list of the
identifiers of its child elements.

• When constructing the final ArkM3-to-Himesis mapping, both the design choices
of Section 3.2 and the performance analysis results of Section 3.3 were taken into
account. By design, each ArkM3 element is mapped onto one Himesis node, possibly
connected to a number of other Himesis nodes. This results in a one-to-one mapping
of ArkM3 elements to Himesis nodes.

18

Graphical Notation Semantics

Represents a Himesis node, which is always contained in a
Himesis graph. A Himesis node can have a number of at-
tributes.

Represents a Himesis graph, which contains a number of
Himesis nodes. A Himesis graph can have a number of at-
tributes.

attr-name: attr-type
(comment)

Represents an attribute of a Himesis node or graph. An at-
tribute has a name and a type, as well as an optional comment.
The comment clarifies what the attribute is used for.
While it is true that each Himesis node contains all attributes
of all nodes, the notation used here signifies that an attribute
is meaningful for that particular nodes. In other words, for
all nodes that do not contain this attribute, the value of that
attribute in Himesis is undefined.

role x..y

Represents an edge between two Himesis nodes. Each Hime-
sis edge has a role attribute, which is a string value, repre-
senting the role of the target node in the source node. The
role annotation of an edge represents such a key. The edge
is also annotated by a multiplicity, which indicates the mini-
mum and maximum number of nodes that can be connected
to the source node with this particular role.

Represents inheritance between two Himesis nodes or two
Himesis graphs. The source inherits the (meaningful) at-
tributes and connected nodes of the target. This is necessary
as we are drawing ’meta’-diagrams of graphs.

Represents the mapping of an ArkM3 structure to a Himesis
structure, which is either a graph or a node whose graphical
representation is made bold. When an ArkM3 structure is
mapped onto a graph, the graph contains at least one root
node. That node is represented bold as well.

When the Himesis representation of an ArkM3 structure is
needed, but defined in a different diagram, this notation is
used. It relates an ArkM3 structure to its Himesis represen-
tation (node or graph), but the actual detailed representation
is given elsewhere, using the previous notation.

Table 1: ArkM3-to-Himesis: Mapping Notation

19

mm_: string
(fully expanded class name of Element)

GUID__: UUID
(Node ID)

0..1

TypedElement

ElementPackage Constraint

Action

owned_actions

owned_constraints

parent

ownedElements
1..1

0..*

0..1

ownedActions

ownedConstraintshostElement

1..1
hostElement

1..1

0..*

0..*

1..1
ActionableElement

Type type

type1..1

SetValue

1..1

StringValue

name

1..1

1..1

nam
e

1..1

NamedElement

dirty: boolean
(when this node is rewritten, this

attribute should be set to true)

Figure 15: Mapping to Himesis: Element Package

References

[1] X. Dong, “Ark, the metamodelling kernel for domain specific modelling,” Master’s
thesis, McGill University, 2011.

[2] M. Provost, “Himesis: A hierarchical subgraph matching kernel for model driven
development.,” Master’s thesis, McGill University, 2005.

[3] E. Syriani, A Multi-Paradigm Foundation for Model Transformation Language Engi-
neering. PhD thesis, McGill University, 2011.

20

ElementPackage

TypedElementNamedElement

Container MultiplicityElement

lower: IntegerValue

upper: IntegerValue

isOrdered: BooleanValue

isUnique: BooleanValue

parent

ownedElements
1..1

0..*

Property

isDerived: BooleanValue
isComposite: BooleanValue

isReadOnly: BooleanValue

default: Type

Type

Classifier

isAbstract: BooleanValue

Clabject

Association

0..*associations

0..*

ownedProperties

1..1 1..1

inCardinality

outCardinality

specialise

superClass

0..*

0..*

hostClass1..1

IntegerValue

BooleanValue

root_element_id: UUID

GUID__: UUID

name: string

(references the Element which is the

root of this container)

(Container ID)

1..10..*

is_abstract

is_derived

is_abstract

is_read_only

is_ordered

is_unique

lower

upper

SetValue

specialis
e

1..1

super_class

owned_propertiesassociations

in_cardinality

out_cardinality

1..1

1..1

1..1

1..1

1..1

1..1

1..1

1..1

1..1

1..1

1..1

1..1

1..1

ActionableElement

default

owned_

element

Composition

PropertyValue

1..1
value

value

1..1

Figure 16: Mapping to Himesis: Object Package

21

TypedElement

value: <Any>

DataValue

PrimitiveValue

value: integer |

float | boolean |

string

CompositeValue

value: list |

dictionary | tuple

SequenceValue

TupleValue

SetValue

MappingValue

Element 0..*

0..*
0..*

0..*

index_list: list
(ordered list of child

element UUIDs)

index_list: list
(ordered list of child

element UUIDs)

value: integer |

float | boolean |

string

list_value

tuple_value

set_value

0
..

*

0
..

*
0

..
*

0
..

*

mapping_

key

mapping_

value

0..*

1..1

Figure 17: Mapping to Himesis: Data Value Package

22

k
e
y
_
ty
p
e

Type

Element

TypeType DataType

PrimitiveType SingleBaseType

TupleType

SequenceType

UnionType

MappingType SequenceValue

baseType1..1

1..1
0..*
0..*

1..1

ty
p
e
L
is
t

ty
p
e
L
is
t

keyType

valueType

base_type

type_list

type_list

v
a
lu
e
_
ty
p
e

1..1

1..1

1..1

IntegerValue

size1..1

size

1..1

1..1 1..1

TypeReference

AnyType

StringValue

CustomType

NamedElement

path

1..1

path

1..1

Figure 18: Mapping to Himesis: Data Type Package

23

Expression

DataValue value

1..1

StringValue

name

Literal

1..1

name

1..1

Figure 19: Mapping to Himesis: Literals

24

Constraint

Function

Parameter

TypedElement

Action

_symbolTable: M3SymbolTable

NamedElement

Statement

Element

Expression1..1
returnValue

1..*

_symbolTable: M3SymbolTable

SequenceValue

owned_

statements

return_value

1..1

HierarchicalElement

Container

ownedContainer1..1

1..1

owned_container:

himesis

ownedStm
t

parameters

0..*

Type
returnType 1..1

parameters

return_type

1..1

1..1

Figure 20: Mapping to Himesis: Action and Constraint

25

Statement

Element TypedElement

DeclarationStatement Identifier1..1

WhileStatement ConditionStatement

Expression

ForStatement ExpressionStatement

e
x
p
re
s
s
io
n

1..11..1 te
s
t

1..1 it
e
ra
b
le

1..1 te
s
t

if
b
o
d
y

e
ls
e
b
o
d
y

Identifier
1..1

body 1..*
body

SequenceValue

e
x
p
re
s
s
io
n 1..1

id
e
n
ti
fi
e
r

1..1

te
s
t

1..1

b
o
d
y

b
o
d
y

1..11..1

id
e
n
ti
fi
e
r

it
e
ra
b
le

te
s
t

1..11..1 1..1

if
b
o
d
y

e
ls
e
b
o
d
y

1..11..1

1..*

1..* 1..*

BreakStatement

ContinueStatement

Figure 21: Mapping to Himesis: Statements

26

TypedElement

Expression

DataValue

value 1..1

Identifier

isReference: BooleanValue

Operator

childNumber: IntegerValue
ReferenceCallExpr

1..1

re
fe

re
n

c
e

1..1

AssignmentExpr

NamedElement

c
a

lle
d

F
u

n
c
ti
o

n

1..1

a
rg

u
m

e
n

ts

0..*

id

1..1

rh
s

1..1

ch
ild

1..*

value

SequenceValue

child

rh
s

id
ar

gu
m

en
ts

c
a
lle

d
_
fu

n
c
ti
o
n

re
fe

re
nce

1..1

1..1

1..1
1..11..1

1..1

NamedElementBooleanValue

is_reference
1..1

IntegerValue

child_

number

1..1

c
a

lle
d

E
x
p

re
s
s
io

n

1..1

c
a
lle

d
_
e
x
p
re

s
s
io

n

1..1

ReadAttribute

TypeCast

StringValue

expression

expression

attributeName

1..1

1..1

1..1

1..1

expression

attribute_name
1..1

1..1expression

Figure 22: Mapping to Himesis: Expressions

27

