Code Generation of Class Diagrams in
AToMPM

Simon Van Mierlo

1. Introduction

Class diagrams® are used to model the design of a system visually, containing classes (which have
methods and attributes) and their relationships (inheritance, association, ...). Commercial tools such
as Enterprise Architect’ allow for the creation of class diagrams and the generation of code in a
chosen programming language from these models. This document shows how support for modeling
class diagrams and code generation from these models was added to AToMPM. Section 2 explains
the ClassDiagram formalism as it was created in AToMPM. Section 3 does the same for the
SourceTree formalism, which allows for the modeling of a directory structure. Section 4 explains how
the code generation process works. This process consists of two parts: first a SourceTree model is
generated from a ClassDiagram model, then code is generated from this SourceTree model. In
Section 5, lastly, open issues are discussed.

2. The ClassDiagram Formalism

Firstly, a formalism which allows for the creation of class diagrams has to be created in AToOMPM. The
metamodel of the ClassDiagram formalism is shown in Figure 1.

Class

name Association
attributes

cardinalities
abstract
methods

A\PackageContents

Package

name

|PackageContents

Figure 1: ClassDiagram metamodel.

! http://www.agilemodeling.com/artifacts/classDiagram.htm
2 http://www.sparxsystems.com.au/

The attributes of Class are shown below.

"name": "name",
"type": "String"/
"default": "Class "

by

{
"name": "attributes",
"type": "1ist<$ATTRIBUTE>",

"default": []

"name": "cardinalities",
"type": "1ist<$SCARDINALITY>",
"default": []

"name": "abstract",
"type": "boolean",
"default": false

"name": "methods",
"type": "list<S$SMETHOD>",
"default": []

Where the type SMETHOD is defined as follows in types.js:
'"SARG': 'map<[name, type], [string,string]>",
"SARGS':'1ist<S$SARG>',

'SMETHOD' : "map< [name, returnType, args,body], [string, string, SARGS, code]>"

Currently, there is support for Inheritance and Association relationships between classes. A Package
has a name and can contain zero or more classes and/or packages.

This allows for the creation of class diagram models. An example is shown in Figure 2.

~ wa

fFarmalismsGenericGraph/GenericGraph.defaultlcons.metamodel === -

Mypackage MyClass

+acint=0
+ b : string = myString
+ test(iiint, J:int) : string

A

L\

MySubPackage

MySubClass

+Cc:int=0
+ bla(a:string) : int

Figure 2: An example of a ClassDiagram model.

It would be possible to create a code generator which generates code in a certain programming
language starting from this class diagram. However, this would mean that a generator has to be
created for every programming language we might want to generate code for, as each language has
its own specific syntax for specifying inheritance relationships, method declarations, etc. For this
reason, first an intermediary model will be generated from the class diagram. All language-specific
behavior will then be encoded in the transformation which generates this model. This intermediary
formalism will be explained in the next section.

3. The SourceTree Formalism

The SourceTree formalism allows for the creation of models which represent a directory structure.

Directories contain files and other directories, while files have content. The metamodel of this
formalism is shown in Figure 3.

=t - -

| FllesystemElement

comments

SRS - Bl el ol ey el o el

pnﬂi‘til}ln n.-w.-u.e,_k\-_-su_..\e;...ng

T AL
- ~
o "n.,
- LY
. L
Fla | & mldllare
(=) ¥ RGN
contents

Figure 3: SourceTree metamodel.

An example of such a model, modelling the root ATOMPM source folder, is shown in Figure 4.

Raot folder, contains the
javascript back-and.
dataurize js —tofs __fst+js __worker js asworker.js csworker js
Retumn a data URI encoding Contains utility functions such Contains functions to access Handles user requests and Abstract syntax worker. A concrete syntax worker
of the resource at the given URL.. as parallel, chain, map, filter, ... file system functionality in contains soms utility functions Contains functionality to alter contains functionality to alter
a platform-independent way. for back-end functionality and abstract syntax of a model. the concrete syntax of a model.
client responding. Also has a link with an mtworker. It is subscribed to an asworker.
]] ¥ } 1 T
httpwsd js libmt js libsvg js mmmk js typesjs utils js
Cantains the server to which the Contains functionality to Contains utility functions for CGontains back-end functionality Contains spacial type definitions Contains utlity functions for
front-and connects. Contains transform a model of AS into scalable vector graphics for (meta)modelling. Loading of for purposes. array manipulation and such.
i to files a and ramify an manipulation, such as rotation. (meta)models, CUD operations,
and spawn workars. Forward existing metamodal. running of actions and checking
other client requests to workers. of constraints all happens here.

Figure 4: Model of the root AToMPM source folder.

The next section explains how the ClassDiagram and SourceTree formalisms are used in tandem to
generate source code from a ClassDiagram model.

4. Code Generation

This section will explain how, starting from a ClassDiagram model, source code is generated. The
language of choice is Python, but transformations can be developed for every (object-oriented)

programming language. First, the ClassDiagram model is transformed to a SourceTree model, as
explained in Section 4.1. Then, the code is generated by an AToMPM plugin.

4.1. Transforming ClassDiagram Models to SourceTree Models
To transform ClassDiagram models to SourceTree models, the transformation shown in Figure 5 was
created.

ClassZFile
R_Generatelnit
R_Package2Folder
R_PackageContentsPToFolderCo 8
R_PackageContentsToFolderCo
R_Subclass2File

Figure 5: CDtoST transformation.

The transformation generates a SourceTree structure containing Python files. It generates a file for
each class and a folder for each package. It supports subclassing across packages, but does not do
anything with association relationships.

4.2. Generating Code from FileSystem Models
AToMPM allows for the creation of plug-ins, which intercept HTTP requests and perform an action in
response. A code generator plug-in was created, intercepting POST HTTP requests to the
/generatecode URL. It allows for the specification of a ‘root’ directory, in which all generated code
will be placed. The root will itself be a subfolder of the ‘generated_code’ folder, which is located in
the root AToMPM folder. A toolbar was created with one button, performing the following action:

_openDbialog (
_CUsTOM,
{'title':'Insert the name of the root folder.',
'widgets':[{'id':'folder name',

'type':'input',
'label':'Folder Name',
'default':"''}]

}y
function (data) {
_httpReqg('POST',
'/plugins/codegenerator/generatecode?wid="'+ context.wid,
{'root':data['folder name']});

5. Issues
Currently, the body of a method has to be specified as a string. This means that each line has to be
ended explicitly by a ‘\’, and each tab has to be encoded by a ‘\t'. During the transformation, each
line is stripped of leading whitespaces and tabs, because this would otherwise lead to syntax errors
in the Python files.

