Evolution of Domain-Specific Languages
A Literary Study

Simon Van Mierlo

University of Antwerp, Belgium

Abstract. Model-Driven Engineering (MDE) is gaining popularity as
an approach to building large software projects. Using models as first
class entities in the development process, the level of abstraction is raised
which leads to better understandability and maintainability of software
artefacts. Current MDE solutions allow for the use of modelling lan-
guages to create models and transformations, either visually or textu-
ally. However, most approaches assume a static modelling language and
do not support the evolution of such languages explicitely. This area of
research has gained popularity in the last decade and in this paper cur-
rent solutions to support the co-evolution of languages and their related
artefacts in an MDE context are discussed. A set of criteria is introduced
and used to classify these solutions. Using this classification, we try to
dicover areas in which current solutions lack support. These findings are
then used to point out areas in which future research is needed for a
better support of language evolution.

Keywords: Model-Driven Engineering, Domain-Specific Languages,
Evolution

1 Introduction

Throughout the years, model-driven engineering (MDE) [34] has
grown in importance and has been adopted in several industrial soft-
ware projects. The core concept of MDE is the creation of models us-
ing specialized modelling languages. Models raise the level of abstrac-
tion when compared to artefacts written in programming languages,
leading to implementation-independent representations of different
aspects of a software system such as requirements, design, logic, etc.
Domain-specific modelling languages (DSMLs) are a subset of mod-
elling languages which are used to represent the various facets of a
software system using domain-specific concepts. The models created
in a DSML can be used, amongst others, for automatic test case gen-
eration [7], code generation [12] and verification of properties [33].

Usually, a domain-specific language is created by a language devel-
oper through the construction of a metamodel [21]. The metamodel
of a language defines all the concepts that exist in the language and
which can be insantiated in models created using that language, as
well as well-formedness rules that restrict the number of valid mod-
els. These well-formedness rules are also called the static semantics
of the DSML [11]. Once the concepts and static semantics of a DSML
are defined, models representing aspects of the system being built can
be created using the DSML. These models are said to conform to the
metamodel of the DSML. Besides models, another essential aspect of
MDE is model transformation [24]. Model transformations are used
to transform a model created in a certain language to another model,
either in the same language (endogenous transformation) or in an-
other language (exogenous transformation). These transformations
can be used to attach semantics to a model, either by transforming
it to a model in a language with known semantics (denotational se-
mantics) or by a succession of transformations to models in the same
language (operational semantics), which are capable of simulating or
executing models [24].

As a DSML is tied closely to its domain and this domain or the
requirements of the language users may change, the DSML has to
be updated from time to time as well. This task is performed by
the language developer by changing the metamodel of the language.
This may, however, break the conformance relationship between the
models and transformations created using the initial version of the
language and the new version of the language. A concept may have
been deleted in the metamodel, or a well-formedness rule altered.
Once one or more conformance relations are broken between models
and metamodel, the MDE system as a whole is said to be incon-
sistent. A primitive solution to re-establish consistency would be to
migrate all models manually such that they conform to the new ver-
sion of the metamodel. However, this is a tedious and error-prone
job. Firstly, it may be possible that the models cannot be loaded into
the normally used development environment anymore, because they
do not conform to the newest version of the metamodel which has
been installed in that environment. This results in the need to manu-
ally alter the source code of models and transformations, if this is at
all possible. Secondly, correctness is not guaranteed. Even if all mod-

els conform to the new metamodel after migration, their semantics
may have been changed involuntarily. Lastly, sometimes hundreds or
thousands of models have been created in the initial version of the
language. In that case, it may not be practically possible to migrate
all of them.

A second solution to the problem of keeping an MDE system consis-
tent, which is employed by programming language developers when
such a language evoles, consists of ensuring the new version of the
language is backwards compatible with the initial version and mark-
ing structures which should not be used anymore as deprecated. In
doing so, no migration of models has to be performed. However, this
is not a practical solution. It restricts the language developer in such
a way that it may no longer be possible to keep the DSML as closely
tied to the domain as possible. This is one of the main characteristics
of a DSML and it should be possible to make such changes. An MDE
system can be seen as a faithful representation of a domain and if
that domain or its requirements change, the MDE system should
evolve as a whole to represent that change.

There is thus need for a structured, semi-automatic method with
which metamodels, models and transformations can be kept syn-
chronized. This is called co-evolution of metamodels, models and
transformations, since models and transformations have to evolve
together with the metamodel. In the last decade, this topic has been
given a lot of attention in the software engineering community, as
it is seen as one of the obstacles to overcome in order for MDE to
become a mainstream development method [25]. As such, different
algorithms have been proposed, case studies have been performed
and tools have been developed to investigate the possibility of sup-
porting language evolution. These solutions differ greatly on several
key aspects. For example, some approaches start from a difference
model of the two versions of the metamodel and derive a migration
transformation (semi-)automatically. Others provide dedicated evo-
lution languages with which to specify the different steps taken to
evolve the metamodel. In this paper, all approaches that have been
proposed up to this point in time will be discussed. A categorization
will be made using a set of criteria to compare these approaches.
As such, we try to discover research topics that have not been suffi-

ciently given attention in the literature, which may lead to a better
understanding and support for the co-evolution problem.

The general idea of model co-evolution is presented in Figure
1. A metamodel MM is adapted which results in a new version of
the metamodel, called MM’. The adaptations are depicted as AMM.
All conforming models M have to be migrated as to re-establish the
conformance relationship with MM’ which is achieved by executing
transformation E.

MM - - - - -2 - > MM
/ A

\

<<confofms to>> <<confgrms to>>

E

M ----------- - M'

Fig. 1: Adaptation of a Metamodel

Figure 2 presents a more advanced case. There, a transformation
T has been defined which maps models conforming to metamodel
M Mp onto models conforming to metamodel M M;. These meta-
models are respectively called the domain metamodel and image
metamodel of the transformation. In this example M Mp is adapted,
which means conforming models M have to be migrated to reflect
these changes, as was discussed previously. In this case, however, the
transformation logic may need to be adapted as well. For example, if
a new concept is introduced in the domain metamodel extra trans-
formation logic will need to be added, and if a concept is removed
from the domain metamodel certain transformation logic will have
to be removed. The resulting transformation is called T" and is ca-
pable of transforming models conforming to the evolved metamodel
MM’ to models conforming to the image metamodel M M;.

The paper is structured as follows. In Section 2, the different
approaches are discussed. The solutions are classified using five eval-

4

MM, MM,

AMM, _ -~

‘-
MM’
D <<conforms to>> <<confdrms to>>
<<confolys to>>
T
7777777 >
Mp M,
| _
E —
| - -
! V- 7 - T
M'p

Fig. 2: Adaptation of a Domain Metamodel

uation criteria: the discussed types of metamodel adaptations and
which of these are supported by the method proposed by the paper,
the types of migration which are supported by the solution (model
and/or transformation), the automatibility of the proposed solution
and its completeness, whether intention (semantics/properties of a
model) is preserved and whether tool support is present. Section 3
aggregates the findings of Section 2 and points out where current
solutions lack functionality or which aspects of language evolution
have not been discussed in the literature. Section 4 concludes the

paper.

2 A C(Classification of Solutions

The solutions proposed for co-evolving metamodels, models and trans-
formations differ significantly. In this section, we propose a set of cri-
teria to categorize and differentiate between these solutions. This will
allow us to decide where current solutions lack functionality or fur-
ther validation of these solutions is needed and make suggestions for
future work. The first criterium, which is discussed in Section 2.1, is
how authors categorize the adaptations performed on a metamodel.
If such a categorization is present, it is based on how the metamodel
is adapted and what the consequences are for the related models
and transformations. If a categorization is used in the paper and
a solution is proposed, we will mention which of the adaptations
the authors acknowledge are supported in their solution. Section 2.2
lists which migrations the proposed solutions support, which is either

model migration, transformation migration or both. In Section 2.3
the automatibility and completeness of each solution will be dis-
cussed. This is more often than not a trade-off: either the solution is
complete but not fully automatic, or the solution is fully automatic
but not complete. Section 2.4 discusses how intention (i.e. proper-
ties) of models are preserved during migration. Section 2.5, lastly,
looks at tool support of the proposed solutions. This will prove to be
one of the most important criteria of all, because a proposed solution
cannot be properly tested without a tool that implements it.

2.1 Metamodel Adaptations

Classifying metamodel adaptations is done by most authors that
propose solutions for the co-evolution problem. On the one hand, it
is useful as a way to determine the effects of different types of adap-
tations on related artefacts like models and transformations, which
leads to different types of actions to migrate these artefacts to the
new version of the metamodel. On the other hand, it forces authors
to acknowlegde which types of adaptations are supported by the
proposed solution. If no classification is present, it is no trivial task
to discover whether the solution supports all possible adaptations
performed on a metamodel. In the next paragraph the classifications
found in the literature are discussed. If a solution uses a certain type
of classification, we will also discuss whether all types of adaptation
are supported.

1. Non-Breaking and Breaking Changes: In [10] and [1], Gruschko
et al. introduce a classification of metamodel adaptations into three
categories: Not Breaking Changes, Breaking and Resolvable
Changes and Breaking and Unresolvable Changes. The first
category consists of adaptations which occur in metamodels but do
not break the conformance relation between models and the meta-
model. As such, models that conform to the initial version of the
metamodel also conform to the new version of the metamodel. An ex-
ample of this type of adaptation is the addition of a non-mandatory
class in the metamodel, as all models not containing an instance
of this class conform to the new version of the metamodel as well.
The second category consists of adaptations which breaks the confor-
mance relation between the models conforming to the initial version

of the metamodel and the new version of the metamodel, but can
be resolved by automatic means. An example adaptation is the re-
naming of a class. This change results in all models containing an
instance of the renamed class to not conform to the new version of the
metamodel anymore. It is however possible to create an automatic
renaming mechanism that renames all instances of the renamed class
to reflect the name change. The last category consists of adaptations
that break the conformance relation between models and metamodel
and are not resolvable automatically. An example change is the ad-
dition of a mandatory class to the metamodel. None of the models
conforming to the initial version of the metamodel will contain an in-
stance of this class, which means an instance of the class will need to
be added to every model. However, we cannot automatically decide
how and where to add an instance of a class and as such a developer
will have to manually edit each model.

This change classification has become a popular choice for authors
to use and is the basis for many of the proposed solutions. In the pa-
per by Gruschko et al. a solution is proposed which uses the change
classification to take different types of actions based on the type of
metamodel adaptation. It consists of a change recording phase in
which a difference model is built, a classification phase in which the
adaptations represented in the change model are classified in the
categories presented here and a manual edit phase for unresolvable
changes. After that a transformation is constructed which migrates
instance models. The solution proposed by the paper thus supports
all adaptations using the categorization the authors have introduced.
In [3], Cicchetti et al. use a similar approach. There, a difference
model is constructed as well and the adaptations are classified. How-
ever, this classification leads to two non-overlapping difference mod-
els which are used to construct two migrations (one automatically,
the other with the intervention of the user) which are executed con-
currently to migrate models. This technique can be applied if all
adaptations in the two difference models are independent of each
other. If a dependency exists, certain migration steps need to be ex-
ecuted before others. The authors resolve this problem in [4], which
makes this solution complete in the sense that it supports all cate-
gories of changes.

The classification has also been used for solutions that migrate trans-

7

formations. In [9], Garcia and Diaz use the classification to support
transformation migration. A difference model is created to repre-
sent the metamodel adaptations, which is used by an ATL higher-
order transformation to migrate the transformation. All categories
of changes are discussed and supported by their solution.

In [26], Meyers and Vangheluwe build a framework that supports
the evolution of modelling languages in general. This encompasses
metamodels, models, transformations and their visual representa-
tions. They make use of the classification proposed by Gruschko and
support all of the categories of changes. They achieve this by break-
ing down the evolution of languages into primitive scenarios, which
encompass the consequences of evolution and the required remedial
actions. By combining these primitives in a high level framework, all
possible evolutions are supported.

Van Den Brand et al. extend the original classification in [37] by
dividing Breaking and Unresolvable Changes into Breaking
and Semi-Resolvable Changes and Breaking and Human-
Resolvable Changes. The first category encompasses metamodel
adaptations that cannot be resolved automatically but can be re-
solved by configuring the evolution process. The adaptations in the
second category can only be resolved by a user in a differences-
resolution environment. All of these changes are supported by the
solution proposed in the paper.

2. Metamodel and Model Independent and Specific Changes: In [14],
Hermannsdoerfer et al. introduce COPE, a tool used to incremen-
tally evolve a domain-specific language by employing coupled opera-
tors. They use a change classification which is similar to the one
described in the previous paragraph. Metamodel adaptations are
classified into four categories: Metamodel Only Changes, Meta-
model Independent Changes, Metamodel Specific Changes
and Model Specific Changes. The first category encompasses
changes that only have an effect on metamodels. This category cor-
responds to Not Breaking Changes discussed above which means
no co-evolution has to be performed on models. For the second cate-
gory, generic and reusable coupled operators can be defined. This is
a core concept in COPE: the more reusable coupled operators that
are defined, the more useful the solution becomes, because it saves

the user from having to define his own specific operators. An ex-
ample of such an operator is the renaming of a property of a class
in the metamodel. It is possible to define a generic, reusable cou-
pled operator for this adaptation as the operations performed on
the metamodel and conforming models are always the same, irre-
spective of the specific metamodel the operator is applied on. In
[16], an extensive catalog of coupled reusable operators is defined to
demonstrate the usability of the operator-based approach. The third
category encompasses metamodel adaptations which need the defi-
nition of a custom coupled operation because the operator cannot
be reused for other metamodels. They can, however, be defined in a
model-independent way. COPE allows the user to define metamodel-
specific coupled operators by applying a set of primitives for both
metamodel adpatation and model migration. This set of primitives
is complete which means every possible metamodel adaptation and
model migration can be specified with them. The last category con-
sists of metamodel adaptations that have to be resolved on a per-
model basis. This means no coupled operator can be defined (either
reusable or custom) that evolves the metamodel and migrates the
instance models automatically. The developer has to manually in-
tervene in the migration process, which was not supported in the
first version of COPE. In [15], Herrmannsdoerfer et al. introduce
constructs that allow the user to choose for each model which action
has to be taken to migrate it. As such, COPE supports all types of
changes described by this classification.

3. Metamodel Isomorphism, FExtension, Projection, Factoring: In
[17], Hossler et al. classify metamodel adaptations based on relations
between the two versions of the metamodel. The relations discussed
in the paper are Metamodel Isomorphism, Metamodel Exten-
sion, Metamodel Projection and Metamodel Factoring, which
are defined as follows. Two metamodels are said to be isomorphic
if the set of their instance models is equivalent. All instances con-
forming to the initial version of the metamodel also conform to an
extension of that metamodel. This resulting metamodel is then
called a super-metamodel of the original metamodel. Conversely,
the original metamodel is a sub-metamodel of the resulting meta-
model. A metamodel is a projection of another metamodel if the

size of the set of instance models reduces by deleting a metamodel el-
ement. Metamodel Factoring encompasses more complex patterns
of metamodel evolution, including property movement and amalga-
mation and class splitting and amalgamation. The paper mentions
how to deal with each of the relations, but no proof is presented that
every possible metamodel adaptation can be categorized using this
classification. Because of this, we cannot conclude that the solution
is complete.

4. Construction, Destruction and Refactoring In [39], Wachsmuth
proposes one of the most elaborate classifications of metamodel adap-
tations. First, preservation properties for metamodels are presented
by defining metamodel relations like equivalence, variation, sub- and
super-metamodel. These are then used to derive semantics- and
instance-preservation properties for metamodel relations. Then, a
set of edit operations are classified into Construction, Destruc-
tion and Refactoring operations. Each operation is associated with
a semantics-preservation property which defines what the result on
the metamodel and its instance models is when the operation is
executed. For each of these categories, co-evolution operations are
defined which migrate models in response to the changes performed
on the metamodel. In that sense, all adaptations which are described
are supported by the solution. However, as will be seen further on, it
may be possible that not all possible metamodel adaptations can be
categorized using this classification. Performing an additive change
may not necessarily mean that the set of instances becomes larger.
For instance, if a relation is added between two classes with multi-
plicity 1..1, all instance models containing instances of those classes
will have to be adapted, adding a relation between the instances.
This means the set of valid instances reduces instead of increases.
None of the metamodel relations defined by Wachsmuth describe
this.

5. Fully Automated, Partially Automated and Fully Semantic In [22]
a solution is proposed for the semi-automatic migration of model
transformations. There, a classification is made which consists of
three categories: Fully Automated Changes, Partially Auto-
mated Changes and Fully Semantic Changes. The first category

10

consists of adaptations for which migrations can be automatically
constructed, like the renaming of an attribute. The second category
consists of adaptations for which information is lacking to migrate
transformations. The example of deleting an attribute is given. If
the attribute is used in a transformation, we do not know how the
transformation should be adapted to compensate for the missing at-
tribute. It is the task of the developer to fill in this missing semantic
information. The last category consists of adaptations for which the
developer needs to supply all semantic information. An example for
such an adaptation is the addition of an element. No transformation
rules are yet defined for this new element and as such the developer
will have to supply all needed information in the transformations.
The proposed solution performs an automated pass for adapations
in the first category, followed by a manual pass for adapations in the
last two categories.

In Table 1 a set of commonly occuring metamodel adaptations
are classified according to the five aforementioned classifications. It
attempts to clarify the presented classifications and by no means
forms a complete set of metamodel adaptations. As can be seen,
some classifications cannot deal with certain metamodel adaptations.
These cells are marked with a question mark.

2.2 Supported Migrations

When applying an MDE development process and using its full po-
tential, a number of models and transformations are created. As
previously stated, co-evolution for both models and transformations
should be supported in order for MDE to become an accepted de-
velopment method. In this section, the proposed solutions will be
categorized according to the types of migration they support. This
is either model only, transformation only or both.

Model Only: In [36] a domain-specific visual language is presented
which supports the evolution of domain-specific modelling languages.
This language is used to define patterns which describe the migra-
tion steps to perform when migrating models from one version of a

11

Adaptation 1 2 3 4 5
Generalize Metaproperty Not Breaking Metamodel-Only Super-Metamodel |Construction|Fully Automated
Add (non-obligatory) Metaclass Not Breaking Metamodel-Only Super-Metamodel |Construction|Fully Automated
Add (non-obligatory) Metaproperty|Not Breaking Metamodel-Only Super-Metamodel |Construction|Fully Automated
Extract (abstract) Superclass Not Breaking Metamodel-Only MM Isomorphism|Refactoring |Fully Automated
Eliminate Metaclass Breaking and Resolvable |Metamodel-Independent| MM Projection |Destruction |Partially Automated
Eliminate Metaproperty Breaking and Resolvable |Metamodel-Independent|MM Projection |Destruction |Partially Automated
Push Metaproperty Breaking and Resolvable |Metamodel-Independent| MM Factoring Destruction |Partially Automated
Flatten Hierarchy Breaking and Resolvable |Metamodel-Independent| MM Factoring Destruction |Partially Automated
Rename Metaelement Breaking and Resolvable |Metamodel-Independent| MM Isomorphism|Refactoring |Fully Automated
Move Metaproperty Breaking and Resolvable |Metamodel-Independent| MM Factoring Refactoring |Partially Automated
Extract Metaclass Breaking and Resolvable |Metamodel-Independent| MM Factoring Refactoring |Fully Semantic
Inline Metaclass Breaking and Resolvable |Metamodel-Independent| MM Factoring Refactoring |Partially Automated
Add Obligatory Metaclass Breaking and Unresolvable|Model-Specific ? ? Fully Semantic

Add Obligatory Metaproperty Breaking and Unresolvable|Model-Specific ? ? Fully Semantic

Pull Metaproperty Breaking and Unresolvable|Model-Specific MM Factoring Construction|Fully Semantic
Restrict Metaproperty Breaking and Unresolvable|Model-Specific Sub-Metamodel |Destruction |Fully Semantic
Extract (non-abstract) Superclass |Not Breaking Metamodel-Only MM Factoring Construction|Fully Automated

Table 1: Adaptation Classifications

12

metamodel to the next.

A similar method was used in the construction of the tool Lever [28].
Language evolutions in Lever are textually specified and used for
both metamodel evolution and model migration. Model migrations
created by Lever transform the abstract syntax graph representation
of a model created in any version of the language to the last version
of the language by keeping track of the history of the language and
the evolution operations performed on the metamodel of the lan-
guage.

In [38] a domain-specific transformation language (DSTL) is derived
from the metametamodel the metamodel conforms to automatically.
This language allows to specify evolution scenarios for the language.
To support co-evolution, a user-defined mapping between primitive
evolution operators in the DSTL and corresponding model migra-
tion steps has to be provided. From the evolution scenario and user-
defined mapping a model migration tranformation is constructed
automatically.

In [27] the model change language (MCL) is used to define meta-
model evolution and model migration patterns. MCL is a visual lan-
guage which is used to specify the patterns which define the evo-
lution scenario. These patterns contain information to evolve the
metamodel and co-evolve conforming models.

Epsilon Flock [30] is a pattern language which is used to specify
patterns that define model migration scenarios. The language devel-
oper creates a model migration transformation using Flock which is
capable of migrating models from one version of the metamodel to
the next.

In [23] existing in-place transformation languages are used to define
model migrations. The first step in the process is to merge the two
versions of the metamodel, as both elements from the initial version
and the evolved version will be used in the transformation patterns.
Using this merged metamodel, a user can define the necessary rules
for instantiating metamodel elements introduced in the evolved ver-
sion of the metamodel. The last step in the process is to remove
elements that are no longer present in the evolved version of the
metamodel automatically.

In [10] and [1] model migration is approached differently. In these
papers, a process model is created with which a metamodel and its

13

instance models are co-evolved (semi-)automatically. First, a change
model is computed which represents the metamodel adaptations.
These adaptations are classified after which user input is gathered if
needed. Then, the necessary model migration algorithms are deter-
mined and the transformation is executed.

In [3] and [4] a similar method is employed. The main difference
is that after change classification, the difference model is split into
two non-overlapping difference models based on the automatibility
of the migration derivation. Two migration transformations are de-
rived from these change models and executed in parallel to migrate
models.

In [8] metamodel adaptations are detected by comparing the two ver-
sions of the metamodel and employing a set of user-chosen and/or
user-defined heuristics which has to be configured for each evolution
scenario. The resulting difference model is then mapped onto a mi-
gration transformation.

In [39], metamodels are evolved by stepwise adaptation. This is done
by so-called coupled operators, which consist of the metamodel adap-
tation and corresponding model migration transformation. The same
approach is used in COPE [14, 15], where reusable coupled operators
are defined in a library. A facility to create custom coupled operators
is also provided.

Transformation Only: There are only a few solutions providing only
transformation migration. In [9] a semi-automatic method is devel-
oped which is based on a generated difference model. The metamodel
adaptations are classified, after which transformations are generated
automatically or with the help from the user if semantic information
is missing.

In [22] the MCL is used to specify metamodel adaptations. Then,
transformation migrations are derived automatically where possible
or provided by the user in the form of MCL patterns.

Model and Transformation: In [26] both model and transformation
migration are discussed. As previously mentioned, the authors cre-
ate a framework for the evolution of languages which is as complete
as possible. To evolve models and transformations a pipeline is built
which defines the different steps of the evolution process. These steps

14

can be found in other solutions as well: change detection and repre-
sentation, automatic transformation generation together with user
input gathering for unresolvable changes and transformation execu-
tion.

[40] discusses both model and interpeter migration. The authors
present an approach in which a specification of the metamodel adap-
tation is mapped onto model and interpeter migration transforma-
tions.

2.3 Automatibility and Completeness

Automatibility of a solution pertains to how much user intervention
is needed: either the solution is fully automatic, only based on user
input or a combination of the two. Completeness is a characteristic
of a solution which is closely tied with automatibility. We regard a
solution as complete if all possible evolution scenarios are supported.
It is closely tied with automatibility because a solution which is fully
automatic often is not complete and a solution which is only based
on user input often is complete, but requires a lot more effort from
the user.

Fully Automatic: Fully automatic solutions usually start from a
model that captures the adapations performed on the metamodel.
This model can either be the result of a change recording mechanism
that keeps track of all adaptations perfomed on the metamodel or
an algorithm that compares the two versions of the metamodel after
the changes have been performed. This change model is then used
to derive a migration transformation which is subsequently executed
on models to migrate them to the new version of the metamodel.

In [8], Garcés et al. attempt to fully automatically migrate instance
models. There, two versions of the metamodel are compared by an al-
gorithm which is the composition of a set of heuristics. These heuris-
tics have to be chosen by the language developer on a per-metamodel
basis to get the best resulting difference model. It is however a non-
trivial task to decide a priori which of the heuristics are required to
produce the best results. In the paper, the derivation of the adap-
tation transformation is given little attention and it is assumed this
mechanism works correctly. These arguments lead to the conclusion

15

that the solution cannot be deemed complete.

In [40], a generative approach to intepreter evolution is proposed.
In their solution, the authors map a specification of the metamodel
adaptations onto interpreter and model migration transformations.
They require that a formal specification of metamodel changes has to
be present, either provided by the user or computed by a differencing
technique from the two metamodel versions. The authors state that
more research has to be performed to evaluate the feasibility of the
approach. It is thus not complete.

Only User Input: This category consists of solutions that require
the user to define a model migration transformation manually. This
migration is either specified in an existing transformation language
or in a newly created domain-specific language for the domain of
model migration.

In [36] a domain-specific visual language is created to specify visually
how models should be migrated in response to metamodel adapta-
tions. A sequence of transformations is created by the user and con-
catenated in a user-specified order. The models are then migrated by
performing each transformation in this order. Primitives for the cre-
ation, deletion and mapping of model elements are provided in the
language. It is not clear, however, whether these primitives form a
complete set and can be used to specify arbitrary complex migration
scenarios. In the example given a rather trivial co-evolution problem
is solved and there is, for example, no change present that could be
described as 'breaking, not resolvable’” which requires user input for
each model that is to be migrated. As such, we can conclude this
solution is not complete.

In [28], the tool Lever is created. In Lever, model migrations are
defined textually by the user. The tool keeps track of the history
of the metamodel, which allows a model created in every version of
the language to be loaded into the tool by first interpreting it using
the version of the language it was created in and then migrating
it using the user-defined migration transformations. This solution,
however, does not include mechanisms to deal with model-specific
changes, i.e. those changes for which user intervention is required on
a per-model basis. As no categorization of metamodel adaptations is
employed in the paper, it is a challenging task to prove the solution

16

can deal with every possible metamodel adaptation. Therefore, we
can conclude that this solution is not complete.

In [27], the model change language (MCL) is introduced. MCL is
used to define patterns for model migration using both versions of
the adapted metamodel. A pattern in MCL consists of a left hand
side, defining which element of the initial version of the metamodel
should be matched and a right hand side, where modified elements
in the new version of the language can be used. The user defines rela-
tions between these elements and a model migration is subsequently
derived. The paper is not extensive and it is not clear whether all
complex migration scenarios are supported by MCL. We therefore
conclude that this solution is not complete.

In [31] a different approach altogether is investigated. The authors
observe that models conforming to the old version of an evolved
metamodel often cannot be loaded into the normal development en-
vironment used to create and edit models after installing the new
version of the metamodel. To counter this, the authors propose a so-
lution where models are bound to a generic metamodel. This makes
it possible to load all models, even non-conforming ones. When an
inconsistency is detected in a model, the user is notified and markers
are placed in the places which cause the inconsistency. The user can
then edit the model which has been transformed to the Human Un-
derstandable Textual Notation (HUTN). The solution is complete
but may require a lot of effort from the user as each model has to
be migrated manually.

Epsilon Flock, introduced in [30] is a model-to-model transformation
language which can be used to define migration patterns. The au-
thors analyze ATL, COPE and Ecore2Ecore to derive requirements
for their tool, which tries to combine the advantages of each tool and
avoid their disadvantages. The result is a pattern language which
consists of two elements that either migrate types or delete them. It
automatically copies elements conforming to the new version of the
metamodel language, which is called a conservative copy strategy in
the paper. Flock is complete as it uses the Epsilon Object Language,
which is expressive enough to perform any evolution scenario.

Combination: Solutions that are a combination of the previous two
categories usually use the same approach as can be found in the

17

fully automatic solutions, but consist of an automatic phase and a
phase in which the user can provide missing semantic information.
These approaches are logical consequences from the act of classifying
metamodel adapations based on their effect on conforming models.
As we have seen in Section 2.1, authors always make the distinction
between adapations for which the remedial action can be deducted
automatically and those for which user intervention is required. If
one can then accurately detect all adaptations performed on the
metamodel and classify those adaptations, it is possible to divide the
generation of the migration transformation into two non-overlapping
parts.

A second category consists of operator-based solutions, whereby meta-
models are adapted by the successive application of coupled oper-
ators. Some of these operators can be reused and information re-
garding model migration is attached to these reusable operations,
permitting the automatic deduction of a migration transformation.
Other operators are so specific to a certain language evolution sce-
nario that they have to be defined by the user. That is why operator-
based solutions are classified as solutions which are a combination of
automatic solutions and solutions based on user input: a user evolves
the metamodel by applying operators which are either reusable or
user-defined, and a migration transformation is (semi-)automatically
deduced.

In [10] and [1] a process model is constructed which performs the
steps of the first approach discussed in this paragraph. First, a
change model is constructed, either by change recording during the
editting of the metamodel or by direct comparison of the two versions
of the metamodel. Then the changes are categorized and transforma-
tions are constructed, either automatically for resolvable changes or
by user input gathering for unresolvable changes. Then the transfor-
mation is executed to migrate the model. This solution is complete
in the sense that it should be able to handle all types of changes,
yet it is incomplete because the change detection algorithms and the
algorithms to automatically derive transformations from metamodel
adaptations are largely omitted.

In [3] a similar approach is used. However, the classification of changes
in the proposed approach is made explicit by dividing the change
model into two non-overlapping change models, one for the auto-

18

matically resolvable changes and one for the non-resolvable changes.
From these models, two transformations are generated which can be
run concurrently to migrate models to the new version of the meta-
model. A challenge recognized by the authors with this approach
is dealing with dependent changes. They therefore propose an al-
gorithm in [4] to resolve these dependencies by scheduling transfor-
mation executions correctly. This approach is complete in the sense
that all possible scenarios should be supported. However, the authors
also mention the need for validation on a large set of metamodels
and models, which has yet to be performed.

In [39] the concept of coupled operations is first explored. These
operations are first described on the metamodel level as QVT Rela-
tions that define the adaptations performed. These can be used for
the stepwise adaptation of metamodels. Next to these adaptations,
model co-adaptations are defined in the form of parameterized QVT
Relations. A metamodel adaptation transformation can then call one
of these co-adaptation transformations with the correct parameters
to create a model migration transformation. It is possible for users
to intervene in this process by defining new adaptation transforma-
tions, co-adaptation transformations or OCL queries to fill in missing
semantic information. It is therefore a complete process in the sense
that any scenario could be supported, although only a handful of
adaptation transformations are presented as examples in the paper.
COPE is a tool that supports the co-evolution of metamodels and
models using coupled operators. It is introduced in [14] and expanded
in [15]. In [16] an extensive catalog of reusable coupled operators is
presented with which a language developer should be able to spec-
ify most common language evolution scenarios. A coupled operator
is an operator which performs the metamodel adaptation and con-
tains the migration transformation steps which need to be carried
out in order for models to be migrated to the adapted metamodel.
In COPE, a series of adaptations is performed by executing coupled
operators on a metamodel. During this process, the corresponding
model migrations are recorded. Once a developer is done editing the
metamodel, these model migration steps are combined into one mi-
gration transformation which can be executed to migrate models to
the new version of the metamodel. As COPE supports the definition
of custom coupled operators and is capable of asking for user input

19

when additional semantic information is needed during the migra-
tion process, this is a complete solution.

Vermolen et al. employ the use of a domain-specific language for
evolving metamodels in [38]. The DSL is created starting from the
metametamodel which the metamodel conforms to. This languages
contains primitives for adding, removing and modifying metamodel
elements. Next to the DSL, a user-defined mapping has to be sup-
plied that maps metamodel adaptations to the required model mi-
grations. Using these elements, a metamodel adaptation is created
in the DSL by the language developer, after which a model migra-
tion transformation is automatically calculated. The solution is not
complete, as the definition of the user-supplied mapping is not given
any attention and as such it is not clear whether every possible map-
ping can be specified. There is no mention of support for user input
during the migration process either (for model-specific adaptations).
In [9] a solution is provided which evolves transformations semi-
automatically in response to a metamodel adapation. Only adap-
tations of the source metamodel are considered, as such it is not
complete. The approach classifies changes and either automatically
generates the full transformation code or only a skeleton which re-
quires the user to fill in the missing semantics.

Another approach to semi-automatically migrate transformations is
described in [22]. There, the MCL is used to describe the adaptations
performed on the metamodel. Subsequently, migration transforma-
tions are semi-automatically deduced. A classification is presented
which divides adaptations into categories based on their automati-
bility. Some of the adaptations, like the renaming of a metamodel
element, can be resolved automatically. For others, only the skele-
ton in the resulting transformation can be generated. For others, the
user needs to specify the complete transformation from scratch. The
solution is not complete as the authors do not cover this last class of
adaptations, which are called fully semantic changes in the paper.
In [23] the use of existing in-place transformation languages for spec-
ifying model migration transformations is explored. The user has to
specify rules for elements that have been changed in the new ver-
sion of the metamodel. For this purpose, the two versions of the
metamodel are merged as to allow the use of both outdated and
new elements of the metamodel in these rules. After executing the

20

user-defined rules, outdated elements are removed from models au-
tomatically. There is no support for automatic generation of rules
for resolvable changes and the authors mention this as future work.
However, the solution is complete as it should be possible for users
to specify every pattern needed to perform migration of models. The
approach is not formally validated in the paper.

In [26] the authors attempt to provide a complete framework for the
evolution of modelling languages. The framework supports the semi-
automatic migration of models and transformations in response to
metamodel adaptations. In the paper, every possible evolution sce-
nario is exhaustively explored. The solution uses a migration pipeline
which consists of all necessary steps to be performed in order to
migrate all artefacts related to an evolved metamodel. First, an in-
termediate metamodel is created which is the result of merging the
two versions of the metamodel. Next, from the automatically resolv-
able adaptations, migration transformation steps are constructed. If
needed, user input is gathered and the migration transformation is
executed. It is complete, as it is able to handle every possible evolu-
tion scenario using the proposed approach.

In [37] a generic metametamodel is constructed. All metamodels can
be transformed in such a way that they conform to this metameta-
model. After this transformation, metamodels can be regarded as
a special kind of model. This allows the use of existing model dif-
ferencing techniques to obtain a difference model by comparing the
two versions of the metamodel. Using this difference model, the au-
thors generate a difference model for each model that needs to be
migrated. This difference model captures the adaptions that have to
be performed on the model in order for the conformance relation to
be re-established. This approach is complete, as it can deal with all
possible types of changes and is extensible by providing user-defined
transformations. A large validation study is present which shows the
solution is applicable in real-life language evolution scenarios.

2.4 Intention Preservation

Intention preservation is a somewhat overloaded concept. In [26],
the authors introduce the concept of continuity of software language
evolution. This means that the system is consistent (models conform

21

to their metamodel after metamodel adaptation) and semantically
equal to its previous version, modulo intented changes. Semantics
in this context mean the properties a certain model has and not,
as was previously defined, the denotational or operational semantics
attached to a modelling language by model transformations. The
properties of a model correspond to the properties the model has in
its semantic domain. For instance, a possible property for a model
created using a modelling language which is mapped onto Petri Nets
is liveness, meaning it never reaches a deadlock state. In the paper
it is mentioned that in order to support continuity, there has to be
some mechanism in place in order for the properties to be checked.
As an example, a constraint on a toy language for constructing train
networks is given: if a constraint exists on the initial version of the
language that no two trains should ever be on the same rail, this
should be the case in every subsequent version of the language. This
could be checked by transforming the models to a Petri Net model
and running a reachability analysis. However, this is a rather ad-hoc
way of checking properties and cannot serve as a general mechanism
to ensure continuity. As properties are checked after migration is
performed, it is not possible to decide whether a migration transfor-
mation will preserve the properties of a model before it is executed.
The set of models on which properties are checked is furthermore
only a subset of the set of all models which can be created with
the modelling language, and it is not possible using this method to
formally prove that a transformation preserves properties, before or
after migration has been performed. More research has to be done
in this area to discover possible solutions to overcome the challenge
of continuity.

Other methods exist to ensure semantic equivalence of models before
and after migration. However, they often defer the responsibility to
someone or something else. In the case of manual specification meth-
ods (see Section 2.3) the user is responsible for providing the correct
migration patterns and ensuring semantic equivalence. In [36] this
fact is mentioned and the only solution provided is to spend a lot
of effort on the development of the migration transformation. There
is, again, no way to check a priori whether a migration will preserve
certain semantic properties of a model.

When using (semi-)automatic methods of generating a transforma-

22

tion migration, the correct working of the algorithm depends largely
on the change recording or differencing technique which is used to
build the difference model. If all changes are represented faithfully,
which requires the difference metamodel to be complete and the
technique to build the difference model to be correct, it should be
possible to define remedial actions for every possible scenario and
ensure correctness with respect to semantic preservation. However,
lots of differencing techniques have issues with quite trivial edit op-
erations. Let’s say we want to move a property from a class to its
superclass. We therefore delete the property of the class and create
a new one in the superclass with the same name and data type. To
ensure semantic equivalence, we would like that the value of each
instance of the property be retained in the migrated models. How-
ever, the difference model might not be able to differentiate between
this edit operation and two unrelated edit operations: removing a
property and creating a property. If it detects these last two, there
is no way for the system to know that it should keep the value of the
properties and semantic information will be lost. In [8] a substantial
effort has been made to accurately detect metamodel adaptations.
However, the process presented in that paper has to be configured
on a per-case basis. The process uses a set of heuristics to compute
the difference model. One of the main characteristics of a heuristic
is that it can approach perfection but never attain it. This may be
unacceptable in certain applications that require rigurous checking
of properties using a formal method.

We can conclude that semantic preservation of models is currently
not supported by language evolution solutions and needs further re-
searching.

2.5 Tool Support

Tool support is one of the deciding factors whether a proposed tech-
nique will be succesful and a way to check its functionality. In this
section, we will look at which solutions are implemented in tools,
which we divide into prototypes and fully functional tools.

Prototypes: As was discussed earlier, in [28] the tool Lever is con-
structed. This is a prototypical implementation of the techniques

23

presented in the paper which tries to automatically maintain a lay-
ered DSL which undergoes adaptations. The authors have performed
a small case study using the tool, but it is not extensive enough to
conclude that this tool is mature and ready to be used on industrial-
sized projects.

In [10] a prototype is built which implements the three-step process
of change recording and exporting, classification and transformation
generation and transformation execution. The prototype only sup-
ports the renaming of structural features.

In [38] a prototype is constructed which implements the architecture
presented in the paper and has been applied to the domain of data
modelling. The solution in the paper automatically derives a DSL in
which evolution patterns for metamodels can be defined and derives
model migration transformations from these patterns and a user-
defined mapping which specifies how metamodel adaptations should
be mapped onto model migrations.

Cicchetti et al. have implemented their approach, which is described
in the previous sections, in a prototype tool [3] [4] on the AMMA [2]
platform.

The AMMA platform was also used by Garcés et al. to create a proto-
type for their solution in [8]. They use the AtlanMod Model Weaver
(AMW) [5] to work with matching models and ATL is used to im-
plement the heuristics and the higher-order transformation which is
responsible for generating the migration transformation.

In [37] a prototype tool is built which is tested on 10 metamodels,
each having 10 conforming models. However, the amount of tested
metamodel adaptations is rather small.

Fully Functional: A fully functional tool based on the use of coupled
operators is COPE [14, 15]. It is integrated into the EMF metamodel
editor and provides all the necessary functionality for metamodel
and model co-evolution. Users can edit a metamodel using a context-
aware editor which presents the library of reusable coupled operators.
Custom operations can be created, edited and subsequently applied
on metamodels. The tool keeps track of the history of the metamodel
adaptations. Once a user is done editting the metamodel, he releases
a new version of the language which automatically creates a migra-
tor capable of migrating models to the new version of the language.

24

COPE has been tested thoroughly and appears in a couple of indus-
trially sized case studies [13,29].

In [31], a tool is built which binds models conforming to an EMF
metamodel to a generic metamodel. The authors then generate a
report which states whether the model is inconsistent with its meta-
model and if so, which parts of the model are responsible. The user
can edit the inconsistent models as to re-establish the conformance
relationship.

Evolving transformations can be accomplished by the tool built in
[22]. The tool is implemented in the GME/GReAT toolset and has
been tested in an industrial environment. Future work which is men-
tioned in the paper consists of providing tool support for the addition
of missing semantic information. In the current version of the tool,
this information has to be added manually, which may mean a lot
of work.

Lastly, Epsilon Flock [30] is a model-to-model transformation lan-
guage built atop of the Epsilon Object Language (EOL) [19], which is
the core of the Epsilon platform [20]. Flock is used for defining model
migration patterns and has proved its worth in industrial sized case
studies [29].

3 Analysis

In this section the results of the previous section are analyzed. We
will attempt to discover open research questions which should lead to
a better support for the co-evolution of metamodels and their related
artefacts when discussed in future work. In each of the following sub-
sections, four pairs of evolution criteria will be the basis for four ma-
trices. The matrices consist of an x-axis and a y-axis, each one used
for a particular criteria. For each criteria, a scale has been introduced
which rates the solution based on the findings in the previous sec-
tion. The criteria used as axes are Migration Support (Model, Trans-
formation, Both), Tool Support (Prototype, Implemented, Tested),
Automation (Only User Input, Fully Automatic, Combination), Al-
gorithm (Manual, Operator Based, Differencing, Change Recording)
and Ezxample (Toy, Full Fletched). In Section 3.1, migration support
and tool support of solutions are combined into a matrix. In Section
3.2 the same is done for automation and tool support. In Section

25

3.3, the matrix axes are automation and tool support. Using these
three matrices, we can conclude which proposed solutions lack tool
support. Lastly, in 3.4, we take a look at the types of supported
migrations of each solution and whether an example is present.

3.1 Migration Support vs. Tool Support

A solution can either support model migration, transformation mi-
gration or both. In this section, a matrix is created (see Figure 3)
which lists the solutions discussed in Section 2 along the x-axis ac-
cording to this criterium and along the y-axis according to whether
tool support is present. If tool support is present, three categories
of tools are distinguished: a prototype is a tool which implements
the solution but has only been used to migrate toy examples or ex-
amples from which cannot be derived that the tool can deal with
arbitrarily complex metamodel adaptations. An implemented tool is
a tool which implements the solution faithfully and should be able to
handle most or all evolution scenarios. A tested tool is a tool which
is implemented and tested on a large, industrial-sized project.

[14] [15] [30) None Nome
Tested | ° ° %
-
2
= 31) [23] |6 22
& Implemented | 131] [o 1 16] [.} N%ne
E
&=
(28] [10] [38]
8] [4] 8] [37] 9] one
Prototype | ° e !
Model Transformation Both
Migration

Fig. 3: Migration Support vs. Tool Support

26

As we can deduct from Figure 3 major progress has been made
developing tools that support model migration. This is to be ex-
pected as most of the literature on metamodel evolution deals with
the migration of models only. Implementations that have been tested
thoroughly are COPE and Epsilon Flock. In [29] these two tools ap-
per in a study which compares four tools capable of co-evolving
metamodels and models. The tools are used on two co-evolution
scenarios: one toy example (a Petri Net metamodel) and a larger
example taken from a real-world model-driven development project.
Transformation migration is an area which has not been explored
extensively. In [9] a semi-automatic method is proposed, generat-
ing ATL transformations from a difference model resulting from
the comparison of the two metamodel versions. [22] uses the MCL
to describe metamodel adaptations and corresponding transforma-
tion migrations. Transformation migrations are constructed semi-
automatically in two phases: an automatic phase and a phase in
which the user can supply missing semantic information. In [26] a
third approach to transformation migration is explored. The authors
use function composition to create the evolved transformation from
the original transformation and the migration transformation gen-
erated to migrate models conforming to the initial version of the
metamodel. For example, in the case of image evolution (refer to
Figure 2 for a case of domain evolution), the resulting transforma-
tion T" = E o T. However, because of the projection problem T’ =
EoT does not always hold for image evolution. The projection prob-
lem states that E does not necessarily map models of the old version
of the language to the complete set of models in the new version of
the language. For instance, if a non-obligatory concept is introduced
in the language, E will not migrate models to models containing in-
stances of this class. As such, E'oT will not explore the full power of
the new version of the image language, which may be undesirable.
User input is required in these cases to fill in missing semantic infor-
mation. In the paper, however, only a conceptual framework is built
and therefore it is not listed in the matrix presented in this section.
This section can be concluded by stating that no verified imple-
mentation of transformation migration has been presented yet. No
attempt has been made to create a tool which supports both model
and transformation migration.

27

3.2 Automation vs. Tool Support

In this section, we will discuss tools and which level of automation
they support. The automation levels of algorithms we distinguish
are user input only, fully automatic and a combination of these two,
which are semi-automatic solutions. These levels correspond to the
ones discussed in Section 2.3. Unlike some of the criteria presented
in this paper, a solution is not inherently better if it uses a certain
level of automation instead of another one. As mentioned in Section
2.3, each level of automation brings its challenges and advantages: a
fully automatic solution requires no user input, but it is challenging
to create a complete solution using this technique. A solution which
requires the user to manually specify the migration steps requires a
lot of involvement of the user, but it is easier to achieve completeness.

[30] None [14] [15]
Tested ° ° °
:
= 31 23] (6] [22
& Implemented | [o} N(zne 23] [o] 122]
E
E
(10] (3]
(28] [38] (8] (4] [9] [37]
Prototype + ° ° °
Only User Input Fully Automatic Combination

Automation

Fig.4: Automation vs. Tool Support

In Figure 4 all solutions are presented in a matrix which uses
these two criteria as axes. As can be seen in this matrix, solutions
which are only based on user input already have mature tool sup-
port. As in the previous section, COPE and Epsilon Flock are both

28

implemented and tested on industrial-sized projects. There exists
only one prototype supporting fully automatic migration of instance
models, presented in [8]. From previous sections and this matrix we
can conclude that this approach is not popular because it is a chal-
lenging task to completely automate the migration process: some
metamodel adaptations are simply too specific to resolve automati-
cally by a generic algorithm. Authors have therefore attempted the
creation of an algorithm which can automatically detect metamodel
adaptations and create a model migration transformation with, for
some types of adaptations, transformation steps provided by the
user. However, it remains to be investigated whether these tools are
capable of supporting co-evolution in industrial-sized projects.

3.3 Algorithm vs. Tool Support

This section will discuss tool support for the different types of al-
gorthms identified in solutions to the co-evolution problem. These
algorithms have not been explicitly discussed in the previous sec-
tions, but have been mentioned a number of times. We distinguish
four different algorithms. The first are manual algorithms, which
require the user to manually specify the migration transformation
steps (in a language like Epsilon Flock). Second are operator-based
solutions, which allow the user to specify metamodel adaptations
and model/transformation migration steps using coupled operators.
The last two categories are used in solutions which co-evolve meta-
models, models and transformations semi-automatically and are in
need of a method to build a difference model. This difference model
can either be constructed by comparing the two versions of the meta-
model using a tool like EMF Compare [18] or by keeping track of
the changes performed on the metamodel and generating a change
trace.

In Figure 5 the resulting matrix is presented (note that some of
the solutions are listed twice: these solutions can either use a dif-
ferencing or change recording algorithm). A few interesting results
can be concluded from this matrix. Firstly, as is the case in the
preceding matrices as well, COPE and Epsilon Flock are the only
tools that have been thorougly tested for the manual and operator
based approaches, respectively. Secondly, only prototypes for the dif-

29

(30] [14] [15] None None
Tested | ° ° ° °

U% Implemented + [22]0 23] N(zne N(zne N(%ne
E
110 3] [4 10 (3
Protot, 28] [38] (8] [9] [37] (4] [37]
rototype { @ ° /| .

Manual Operator Based Differencing Change Recording
Algorithm

Fig. 5: Algorithm vs. Tool Support

ferencing and change recording algorithms have been created. This
means these two method of co-evolving metamodel and conforming
models and transformations have never been validated. Most of the
approaches which use a combination of automation and user input
employ a three-step algorithm: change recording/detecting, mapping
of change model on model migration steps (either automatically or
through user input collection) and execution of migration transfor-
mation. A tool which implements this approach and is tested on
industrial-sized projects has yet to be created.

3.4 Migration Support vs. Example

Examples are often used to clarify concepts and algorithms used
in a paper. In the case of metamodel and model co-evolution, ex-
amples are often given with respect to categorization of metamodel
adaptations (see Section 2.1 for the different types of categoriza-
tions employed by authors) and the algorithms used by the proposed
solution. We differentiate between two different types of examples:
toy examples and full fledged examples. Toy examples are examples

30

which either only demonstrate a classification or algorithm on trivial
evolution scenarios or demonstrate the funcionality of the solution
on a toy language. A full fletched example demonstrates the work-
ing of an algorithm by executing it on a set of non-trivial evolution
scenarios or on an industrial-sized project.

[14] 8] [13]

30] [29
Full Fledged | [].[] None None

(36] [17]
(28] [10] [39]
(1] [38] [3]
[4] [15] [27]
35] [32] [31]

[16].[23] [9] .[22] [40]. [26]

Example

Model Transformation Both
Migration

Fig. 6: Migration Support vs. Example

In Figure 6 migration support of solutions and the examples pre-
sented in the corresponding paper which demonstrate the function-
ality of the solution are combined into a matrix. The results are
explained below, where we present each type of migration support
and which papers present which type of example.

Model: In [36] an example model migration transformation is con-
structed using the DSL introduced in the paper. The language being
evolved is used to create models in the domain of signal processing.
In its original version three concepts are defined: Ports, Connections
and processing blocks which are connected to each other using Ports
and Connections. In the evolved version of the language Ports are
specialized into ImputPorts and QutputPorts. As a specific semantic
meaning to these concepts is attached, the authors define a migration
transformation which maintains the semantic meaning of models af-

31

ter migration.

[17] presents a classification of metamodel adaptations and presents
model migration algorithms for each identified class of changes. Ex-
ample metamodel adaptations are presented visually. However, the
examples given neither form a complete set of metamodel adpata-
tions nor have they been applied to a real-life project.

In [28] a toy example is presented to demonstrate the functionality
of Lever. It concerns an expression language that translates sums to
stack machine code. The authors transform the language from infix
to postfix notation by specifying a metamodel evolution which can
automatically migrate instance models as well.

[10] introduces a change classification and algorithm based on this
classification scheme. To demonstrate their approach, the authors
present an example metamodel of a file system. This metamodel is
evolved by performing certain adaptations such as renaming, sub-
classing and creating or moving of containment references. To cap-
ture the semantic intention behind these changes, the method pro-
posed in the paper constructs migration transformations which are
capable of maintaining this semantic information.

In [39] an extensive categorization of metamodel adaptation is pre-
sented. For each category, a set of example adaptations are modelled
as coupled operators using QVT Relations. An example Petri Net
metamodel evolution is presented, clarifying the general concept of
metamodel and model co-evolution.

In [38] the concept of metamodel and model co-adaptation is applied
to the domain of data modelling. A set of metamodel adaptations
is presented and corresponding model migration steps are derived.
Then, these examples are used to construct a general architecture
which consists of an automatically constructed DSL for the construc-
tion of metamodel adaptations. The examples are then represented
using this general architecture to show its functionality.

The authors in [3] validate their approach by applying it on an evolv-
ing Petri Net metamodel. The metamodel is evolved in two steps us-
ing a set of metamodel adaptations such as 'restrict metaproperty’,
‘introduce superclass’ and ’introduce property’. Only fragments of
the resulting model migration transformations are shown in the pa-
per. The same Petri Net metamodel is used by the authors in [4]
which explains how to deal with dependent metamodel adaptations.

32

COPE has been tested on a large number of evolution scenarios. As
it was not possible to deal with model-specific adaptations in the first
version of COPE, the authors present the needed constructs in [15].
A toy example is presented to demonstrate these constructs which
evolves an automata metamodel to support initial states. This is a
model-specific adpatation as the modeller has to choose an initial
state for each evolved model.

The MCL is used in [27] to co-evolve metamodel and models. A set
of example MCL patterns is presented for metamodel adaptations
such as the introduction of subclasses and the changing of contain-
ment hierarchy.

In [35] a theoretical overview of domain-specific languages is pre-
sented. The authors use their definitions to present the different
types of evolution that can be performed on a system created using a
DSL. An example language is used to clarify the concepts introduced
and to argue which metamodel adaptations can be trivially mapped
to model migrations and which are in need of user intervention.

In [32], Rose et al. compare different approaches to model migra-
tion. Several examples are given to clarify migration scenarios for
the different approaches (the authors distinguish between manual
specification, operator based and metamodel matching approaches).
Rose et al. introduce a model migration approach in [31] which is
based on binding models to a generic metamodel, after which incon-
sistencies are presented to the user in a resolution environment. A
toy example is presented to clarify the approach and show the in-
consistency report generated by the tool.

In [16], Herrmannsdoerfer presents an extensive catalog of reusable
coupled operators. A number of these coupled operators are clarified
by presenting example evolution scenarios.

In [23] a running metamodel evolution scenario is used throughout
the paper to clarify the approach of using inplace transformation
languages to specify model co-evolution. The example is used at ev-
ery step of the process: first, the original and evoled metamodel are
used to create a merged metamodel. Then, the co-evolution rules are
expressed as graph transformations, which make use of this merged
metamodel. These graph transformations are then mapped onto ATL
transformation rules.

33

COPE, as has been mentioned in the previous sections, has been
tested thoroughly. In the paper which introduces the tool [14], the
authors already demonstrate the full functionality by presenting dif-
ferent adaptation scenarios of a simple domain-specific language.
These examples are complete in the sense that every supported type
of operation (reusable and user-defined) is explained in these exam-
ples. Next to these small examples, a case study is performed on
two EMF-based metamodels: one is part of the Graphical Modelling
Framework (GMF), the other is part of the Palladio Component
Model (PCM). Both of these metamodels already have a rich evolu-
tion history and this history has been recreated through the use of
COPE. The results have been analyzed in the paper to test the via-
bility of the operator-based approach. A similar case study has been
performed in [13] on two industrial-sized metamodels. The adapta-
tions performed on these metamodels have been analyzed and classi-
fied according to the classification of Herrmannsdoerfer (see Section
2.1). From these results, a number of requirements for automated
coupled evolution are formulated, which reappear in the subsequent
papers on COPE.

In [8] a method is proposed based on precise detection of metamodel
adaptations through the use of heuristics. To clarify the approach,
a running example is used based on an evolution scenario of a Petri
Net metamodel. The approach is validated by implementing a proto-
type tool and testing it on six versions of a Petri Net model and eight
versions of the Netbeans Java metamodel. The matching strategies
composed of a set of heuristics for both metamodels are presented
and the results are analyzed to demonstrate that the approach de-
tects most metamodel adaptations correctly.

In [30] Epsilon Flock is introduced. Its functionality is demonstrated
using two example metamodel adaptation scenarios. The first uses
a Petri Net metamodel which is included as a comparison to other
approaches. The other uses the UML metamodel and the adapta-
tions performed from UML 1.5 to UML 2.0. Flock also appears in
[29], where it is compared to COPE, amongst others. The tools are
compared by first applying them on an example migration of a Petri
Nets metamodel. Then they are applied to the larger example of
evolution of the GMF metamodel. It shows both COPE and Epsilon
Flock can deal with the complex evolution of large metamodels.

34

Transformation: As for the two papers that introduce methods for
transformation migration, they both clarify their solutions by pre-
senting toy examples.

In [9] an example transformation is described by a number of ATL
rules. The transformation has as its domain an exam language which
describes an exam by a list of questions and as its image an MVC
language. When a metamodel adaptation is performed, the transfor-
mation is migrated by a higher-order transformation. Missing seman-
tic information may need to be provided manually by the developer.
In [22] the MCL is used to migrate transformations. A case study
is presented for the domain of hierarchical signal flows, which are
mapped onto an actor-based language without hierarchy by a trans-
formation. The domain metamodel is evolved and transformation
instances co-evolved by specifying a mapping in MCL. Adaptations
that can be automatically mapped to model migrations are gener-
ated and missing semantic information should be provided by the
developer where necessary.

Both: In [40] both model and interpreter evolution is discussed. An
architecture is presented which should be able to migrate models
and interpeters starting from a metamodel evolution specification.
A few example metamodel adaptations are presented together with
their remedial actions in models and interpreters. In all of the cases,
a trivial search/replace algorithm is sufficient to migrate these in-
stances.

In [26] an example language is used throughout the paper. This
DSL is used to specify railroad networks, which are mapped onto
Petri Nets by a transformation which attaches semantics to the
constructed models. The language is used to clarify concepts intro-
duced in the paper and show limitations of transformation migration
(which is called the projection problem). An example evolution is
performed on the metamodel of the language whereby a migration
pipeline is built for the evolution of instance models and transforma-
tions created using the initial version of the language. In the evolu-
tion scenario, only a few operations are performed on the metamodel
and as such it is classified as a toy example.

35

4 Conclusion

This paper has discussed the currently available literature on meta-
model, model and transformation co-evolution using serval criteria:
change classification and support, migration support, automatibility
and completeness, intention preservation and tool support. Then,
these criteria were combined into a number of matrices which lead
to directions for future work in this area. The following was con-

cluded:

— Additional research is required to construct tools which support
transformation migration and tools which support both model
and transformation migration.

— Validation studies are needed to test the correct functioning of
tools that (semi-)automatically migrate instance models or trans-
formations through the construction of a difference model, as
these tools have not been tested on industrial-sized projects.

— Full fletched examples for solutions that migrate transformations
or migrate both models and transformations have to be presented.
Currently, no large case studies have been performed that validate
these solutions.

— The ability to support intention preservation and continuity has
to be further investigated in future tool implementations.

— A standard case study should be created which can be used to
test the functionality of a proposed approach. This case study
should include a complex metamodel evolution scenario which
consists of all possible types of changes.

— It is not possible to construct a fully automatic solution for co-
evolving metamodels, models and transformations due to the fact
that the intention of the language developer has to be captured in
some way. Researchers should focus on semi-automatic methods
instead.

Further research into these fields should increase the general level
of understanding of the subject and lead to ful support of the co-
evolution of metamodels and their related artefacts, allowing the
adoption of MDE as a mainstream software development method.

36

References

10.

11.

12.

13.

Steffen Becker, Thomas Goldschmidt, Boris Gruschko, and Heiko Koziolek. A
process model and classification scheme for semi-automatic meta-model evolution.
In Proc. 1st Workshop MDD, SOA und IT-Management (MSI’07). GiTO-Verlag,
2007.

. Jean Bézivin, Frédéric Jouault, Peter Rosenthal, and Patrick Valduriez. Modeling

in the large and modeling in the small. In Model Driven Architecture, pages 33—46.
2005.

Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso Pierantonio.
Automating co-evolution in model-driven engineering. In Proceedings of the 2008
12th International IEEE Enterprise Distributed Object Computing Conference,
EDOC 08, pages 222-231, Washington, DC, USA, 2008. IEEE Computer Soci-
ety.

Antonio Cicchetti, Davide Di Ruscio, and Alfonso Pierantonio. Managing depen-
dent changes in coupled evolution. In Richard F. Paige, editor, Proc. 2nd Inter-
national Conference on Model Transformation (ICMT’09), volume 5563 of LNCS,
pages 35-51, Zurich, Switzerland, 2009. Springer.

M. D. Del Fabro, J. Bézivin, F. Jouault, E. Breton, and G. Gueltas. Amw: A
generic model weaver. Proc. of the 1éres Journées sur l’Ingénierie Dirigée par les
Modeéles, 2005.

. Davide Di Ruscio, Ralf Ldmmel, and Alfonso Pierantonio. Automated co-evolution

of gmf editor models. In Proceedings of the Third international conference on
Software language engineering, SLE’10, pages 143-162, Berlin, Heidelberg, 2011.
Springer-Verlag.

Peter Fr hlich and Johannes Link. Automated test case generation from dynamic
models. In Elisa Bertino, editor, ECOOP 2000 Object-Oriented Programming,
volume 1850 of Lecture Notes in Computer Science, pages 472—491. Springer Berlin
/ Heidelberg, 2000. 10.1007/3-540-45102-1_23.

Kelly Garcés, Frédéric Jouault, Pierre Cointe, and Jean Bézivin. Managing model
adaptation by precise detection of metamodel changes. In Proceedings of the 5th
European Conference on Model Driven Architecture - Foundations and Applica-
tions, ECMDA-FA ’09, pages 34-49, Berlin, Heidelberg, 2009. Springer-Verlag.
Jokin Garcia and Oscar Daz. Adaptation of transformations to metamodel
changes. Library, 2:1-9, 2010.

Boris Gruschko, Dimitrios S. Kolovos, and Richard F. Paige. Towards synchroniz-
ing models with evolving metamodels. In In Proc. Int. Workshop on Model-Driven
Software Fvolution held with the ECSMR, 2007.

David Harel and Bernhard Rumpe. Meaningful modeling: What’s the semantics
of ”semantics”? Computer, 37(10):64-72, October 2004.

Zef Hemel, Lennart Kats, and Eelco Visser. Code generation by model transfor-
mation. In Antonio Vallecillo, Jeff Gray, and Alfonso Pierantonio, editors, Theory
and Practice of Model Transformations, volume 5063 of Lecture Notes in Computer
Science, pages 183-198. Springer Berlin / Heidelberg, 2008. 10.1007/978-3-540-
69927-9_13.

Markus Herrmannsdoerfer, Sebastian Benz, and Elmar Juergens. Automatability
of coupled evolution of metamodels and models in practice. In Proceedings of
the 11th international conference on Model Driven Engineering Languages and
Systems, MoDELS ’08, pages 645—-659, Berlin, Heidelberg, 2008. Springer-Verlag.

37

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Markus Herrmannsdoerfer, Sebastian Benz, and Elmar Juergens. Cope - automat-
ing coupled evolution of metamodels and models. In Proceedings of the 23rd Furo-
pean Conference on ECOOP 2009 — Object-Oriented Programming, Genoa, pages
52-76, Berlin, Heidelberg, 2009. Springer-Verlag.

Markus Herrmannsdoerfer and Daniel Ratiu. Limitations of automating model mi-
gration in response to metamodel adaptation. In Sudipto Ghosh, editor, MoDELS
Workshops, volume 6002 of Lecture Notes in Computer Science, pages 205—-219.
Springer, 2009.

Markus Herrmannsdoerfer, Sander D. Vermolen, and Guido Wachsmuth. An ex-
tensive catalog of operators for the coupled evolution of metamodels and models.
In Proceedings of the Third international conference on Software language engi-
neering, SLE’10, pages 163-182, Berlin, Heidelberg, 2011. Springer-Verlag.
Joachim Hssler, Michael Soden, and Hajo Eichler. Coevolution of Models, Meta-
models and Transformations, chapter Coevolution of Models, Metamodels and
Transformations. Wissenschaft und Technik Verlag, Berlin, 2005.

Dimitrios S. Kolovos, Davide Di Ruscio, Alfonso Pierantonio, and Richard F. Paige.
Different models for model matching: An analysis of approaches to support model
differencing. In Proceedings of the 2009 ICSE Workshop on Comparison and Ver-
sitoning of Software Models, CVSM ’09, pages 1-6, Washington, DC, USA, 2009.
IEEE Computer Society.

Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. The epsilon object
language (eol). In Proceedings of the Second European conference on Model Driven
Architecture: foundations and Applications, ECMDA-FA’06, pages 128-142, Berlin,
Heidelberg, 2006. Springer-Verlag.

D.S Kolovos. An Extensible Platform for Specification of Integrated Languages for
Model Management. PhD thesis, University of York, United Kingdom, 2009.
Thomas Kiihne. Matters of (meta-) modeling. Software and Systems Modeling,
5:369-385, 2006. 10.1007/s10270-006-0017-9.

Tihamer Levendovszky, Daniel Balasubramanian, Anantha Narayanan, and Gabor
Karsai. A novel approach to semi-automated evolution of dsml model transforma-
tion. In Proceedings of the Second international conference on Software Language
Engineering, SLE’09, pages 23—41, Berlin, Heidelberg, 2010. Springer-Verlag.

J. Schénbock W. Retschitzegger W. Schwinger G. Kappel M. Wimmer, A. Kusel.
On using inplace transformations for model co-evolution. In Proceedings of the
2nd International Workshop on Model Transformation with ATL (MtATL 2010),
2010.

Tom Mens, Krzysztof Czarnecki, and Pieter Van Gorp. A taxonomy of model
transformation. In Proc. Dagstuhl Seminar on ”Language Engineering for Model-
Driven Software Development”. Internationales Begegnungs- und Forschungszen-
trum (IBFI), Schloss Dagstuhl. Electronic, 2005.

Tom Mens, Michel Wermelinger, Stphane Ducasse, Serge Demeyer, Robert
Hirschfeld, and Mehdi Jazayeri. Challenges in software evolution. In Proc. 8th
Intl Workshop on Principles of Software Evolution, pages 13—22. IEEE, Septem-
ber 2005.

Bart Meyers and Hans Vangheluwe. A framework for evolution of modelling lan-
guages. Sci. Comput. Program., 76(12):1223-1246, December 2011.

Anantha Narayanan, Tihamer Levendovszky, Daniel Balasubramanian, and Gabor
Karsai. Automatic domain model migration to manage metamodel evolution. In
Proceedings of the 12th International Conference on Model Driven Engineering

38

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Languages and Systems, MODELS ’09, pages 706711, Berlin, Heidelberg, 2009.
Springer-Verlag.

Markus Pizka and Elmar Jurgens. Automating language evolution. In Proceedings
of the First Joint IEEE/IFIP Symposium on Theoretical Aspects of Software Engi-
neering, TASE ’07, pages 305-315, Washington, DC, USA, 2007. IEEE Computer
Society.

Louis Rose, Markus Herrmannsdoerfer, James Williams, Dimitrios Kolovos, Kelly
Garcés, Richard Paige, and Fiona Polack. A comparison of model migration tools.
In Dorina Petriu, Nicolas Rouquette, and @Qystein Haugen, editors, Model Driven
Engineering Languages and Systems, volume 6394 of Lecture Notes in Computer
Science, chapter 5, pages 61-75—75. Springer Berlin / Heidelberg, Berlin, Heidel-
berg, 2010.

Louis M. Rose, Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack.
Model migration with epsilon flock. In Proceedings of the Third international
conference on Theory and practice of model transformations, ICMT 10, pages 184—
198, Berlin, Heidelberg, 2010. Springer-Verlag.

Louis M. Rose, Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack. En-
hanced automation for managing model and metamodel inconsistency. Automated
Software Engineering, International Conference on, 0:545-549, 2009.

Louis M. Rose, Richard F. Paige, Dimitrios S. Kolovos, and Fiona A. C. Polack.
An analysis of approaches to model migration. In Proc. Models and FEvolution
(MoDSE-MCCM) Workshop, 12th ACM/IEEE International Conference on Model
Driven Engineering, Languages and Systems, October 2009.

Akos Schmidt and Déniel Varré. Checkvml: A tool for model checking visual mod-
eling languages. In Perdita Stevens, Jon Whittle, and Grady Booch, editors, UML
2008 - The Unified Modeling Language. Modeling Languages and Applications, vol-
ume 2863 of Lecture Notes in Computer Science, pages 92-95. Springer Berlin /
Heidelberg, 2003. 10.1007/978-3-540-45221-8_8.

Douglas C. Schmidt. Guest editor’s introduction: Model-driven engineering. Com-
puter, 39:25-31, 2006.

Jonathan Sprinkle, Jeffrey Gray, and Marjan Mernik. Fundamental limitations in
domain-specific language evolution. IEEE Transactions on Software Engineering,
2009.

Jonathan Sprinkle and Gabor Karsai. A domain-specific visual language for do-
main model evolution. Journal of Visual Languages €& Computing, 15(3-4):291—
307, June 2004.

Mark Van Den Brand, Zvezdan Proti¢, and Tom Verhoeff. A generic solution for
syntax-driven model co-evolution. In Proceedings of the 49th international confer-
ence on Objects, models, components, patterns, TOOLS’11, pages 36-51, Berlin,
Heidelberg, 2011. Springer-Verlag.

Sander Vermolen and Eelco Visser. Heterogeneous coupled evolution of software
languages. In Proceedings of the 11th international conference on Model Driven
Engineering Languages and Systems, MoDELS ’08, pages 630—-644, Berlin, Heidel-
berg, 2008. Springer-Verlag.

Guido Wachsmuth. Metamodel adaptation and model co-adaptation. In Erik
Ernst, editor, Proceedings of the 21st European Conference on Object-Oriented
Programming (ECOOP’07), volume 4609 of Lecture Notes in Computer Science,
pages 600-624. Springer-Verlag, July 2007.

Jing Zhang, Jeff Gray, and Yuehua Lin. A generative approach to model interpreter
evolution.

39

