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Model-Driven Engineering (MDE) is a recent approach to designing, developing, and

maintaining large, software-intensive, and safety-critical systems. In MDE, a domain

expert encodes his knowledge in models, which are abstractions of the problem do-

main. Using domain concepts instead of computation concepts as central entities in

the development process increases the understandability and maintainability of software

artefacts. Current MDE solutions allow a language expert to create modelling languages

and allow domain experts to encode their knowledge in models and transformations in

these modelling languages, using a textual or visual concrete syntax. Modelling lan-

guages are a faithful abstraction of the problem domain; if the domain changes, the

modelling language needs to be adapted as well. Modelling languages are often assumed

to be static, however, and most MDE solutions do not explicitly support modelling lan-

guage evolution. Modelling language adaptations could invalidate existing modelling

artefacts and leave the MDE system in an inconsistent state. It is therefore critical for

the advancement of MDE that a systematic, efficient, and semi-automatic method sup-

porting modelling language evolution is developed. In the last decade, the co-evolution

of modelling languages and modelling artefacts has been researched extensively. In this

thesis, we propose a novel approach to support co-evolution, which uses model transfor-

mations to co-evolve modelling languages and their artefacts. The proposed approach

supports modelling language evolution by explicitly modelling evolution and co-evolution

operations as model transformations and supports both model and transformation co-

evolution through the use of higher-order transformations. The solution is implemented

and integrated in Ark, the metamodelling kernel for the MDE tool AToMPM, which is

currently under development in the MSDL research group.
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Modeltransformatie voor de Evolutie van Modelleertalen

door Simon Van Mierlo

Model-Driven Engineering (MDE) is een recente methode voor het ontwerpen, ontwikke-

len en onderhouden van grote, software-intensieve en veiligheidskritische systemen. In

MDE codeert een domeinexpert zijn kennis in modellen, die abstracties van het prob-

leemdomein vormen. Door het gebruik van domeinconcepten als centrale entiteiten in het

ontwikkelingsproces in plaats van implementatieconcepten verhoogt de begrijpbaarheid

en onderhoudbaarheid van de software-artefacten. Huidige MDE oplossingen onders-

teunen het creëren van modelleertalen, en maken het mogelijk voor een domeinexpert

om zijn kennis te coderen in modellen en tranformaties in deze modelleertalen, gebruik

makende van een tekstuele of visuele concrete syntax. Modelleertalen zijn een trouwe

abstractie van het probleemdomein; als het domein wijzigt, moet de modelleertaal ook

aangepast worden. In de meeste MDE oplossingen worden modelleertalen echter als

statische entiteiten beschouwd en er is vaak geen expliciete ondersteuning voor de evolu-

tie van modelleertalen. Wijzigingen aan een modelleertaal kunnen bestaande artefacten

ongeldig maken, wat het MDE systeem in een inconsistente staat brengt. Het is daarom

van kritiek belang voor de verdere vordering van MDE dat een systematische, efficiënte

en semi-automatische methode wordt ontwikkeld die de evolutie van modelleertalen on-

dersteund. In het voorbije decennium is de co-evolutie van een modelleertalen en bi-

jhorende modelleerartefacten uitgebreid onderzocht. In deze thesis stellen wij een nieuwe

benadering voor die deze co-evolutie ondersteund, door gebruik te maken van model-

transformaties om modelleertalen en hun artefacten te co-evolueren. De voorgestelde be-

nadering ondersteund de evolutie van modelleertalen door het expliciet modelleren van

evolutie en co-evolutie operaties als modeltransformaties en ondersteunt zowel model- als

transformatie co-evolutie door het gebruik van hogere orde transformaties. De oplossing

is gëımplementeerd en gëıntegreerd in Ark, de metamodelleerkernel van de MDE tool

AToMPM, die op dit moment ontwikkeld wordt binnen de onderzoeksgroep MSDL.
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Chapter 1

Introduction to Modelling

Language Evolution

1.1 Model-Driven Engineering

The systems which are analysed, designed and constructed today are characterized by

an ever increasing complexity. While development and production costs must be kept

minimal, the demand on quality grows. Model-Driven Engineering (MDE) [1] is a recent

approach to tackle the inherent complexity faced when designing and constructing large

and complex software-intensive systems. MDE raises the level of abstraction by focusing

on domain concepts, rather than implementation or computing concepts. In doing so,

it strives to lower the ’accidental’ (as opposed to ’essential’) complexity [2] by captur-

ing only the essence of a problem. In particular, in Domain-Specific Modelling (DSM)

[3], domain experts encode their knowledge in models in a Domain-Specific Modelling

Language (DSML) which separates domain knowledge from implementation knowledge.

The grammatical structure of a modelling language is defined by a metamodel, which

contains the concepts of the language and the relations between them. This metamodel

defines the abstract syntax and static semantics of the modelling language and must

be accompanied by a definition of the concrete syntax, which can be textual or visual.

Instance models of the metamodel (which are models created in the modelling language

defined by the metamodel) are said to conform to the metamodel. The dynamic se-

mantics of a language are defined by model transformations, which transform a model

1
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MMD

mD

<<conforms to>>

MMI

mI

<<conforms to>>

T

Figure 1.1: An example of a modelling system.

into another model. Once the semantics of a modelling language are defined, models

created in that language can be used, amongst others, for verification of properties [4],

automatic test case generation [5], and code synthesis [6].

Figure 1.1 shows a typical example of a modelling system. It consists of two modelling

languages, whose syntax and static semantics are defined by the metamodels MMD

and MMI . Two models, mD and mI , conform to these metamodels and are related

by the transformation T. This transformation can either be endogenous when MMD

and MMI are the same metamodel or exogenous, when they differ [7]. An endogenous

transformation is typically used to build a simulator, able to generate execution traces

of the modelling system. An exogenous transformation is used to attach semantics to a

model by transforming the model to a model in a formalism with known semantics (such

as PetriNets [8]) or for full code generation, where program code is regarded as a model

written in a general-purpose programming language and conforming to the grammar of

that language. An important note to make is that a transformation can be regarded as

a special kind of model, conforming to a transformation metamodel. This enables the

transformation of transformations by so-called Higher-Order Transformations (HOTs).

This is discussed in detail in Chapter 5.
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1.2 Modelling Language Evolution

In software engineering, evolution is common. Requirements, data, programs, . . . may

all evolve during the life cycle of a system [9]. In MDE, evolution occurs at the level of

models, when models that comprise a system are adapted to meet the project demands.

Evolution also occurs at the level of modelling languages, when the metamodel of the

language is adapted. This is contrary to general-purpose programming languages, which

rarely evolve, and if they do, they avoid evolving in a non-breaking way. Functions

which are no longer supported are often marked as deprecated, which signals users of the

language that the function should no longer be used. Deprecated functions still work, to

avoid breaking programs which are no longer maintained. A DSML has to be a faithful

abstraction of the problem domain. If the problem domain or the implementation target

domain changes, it must be reflected in the DSML. A DSML is often created for a specific

application (such as the process management system of a factory, or a management

application for rail road networks) and as such is closely tied to the development process

of the application. It is therefore necessary and useful to make breaking changes to these

languages and fix the problems that arise in existing artefacts. A DSML should also

be kept minimal, to avoid keeping concepts in the language which are no longer in the

domain and to decrease maintenance costs.

Changes made to a modelling language can break the conformance relation between

models created in the initial version of the language and the evolved metamodel. To

bring the modelling system in a consistent state, these conformance relations have to

be repaired. This is called the (syntactic) co-evolution of models and metamodels, as

models have to be co-evolved together with their metamodels. The term co-evolution

emphasises the simultaneous nature of the evolution process: models and metamodels

are evolved at the same time. The term model migration is used when models are

migrated to the new version of the language after language evolution has taken place.

Syntactic evolution brings the modelling system in a consistent state, where each model

conforms to its metamodel. As we explained in the previous section, the semantics of

a modelling language are defined by a transformation, also called a semantic mapping

function. This function maps each model of a modelling language to a model in a seman-

tic domain. This mapping function allows us to evaluate certain properties of the model,

which are equal to the properties evaluated in its semantic domain. When the original
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MM MM'

m m'

<<conforms to>> <<conforms to>>

ΔMM

E

(a) A metamodel adaptation and model co-
evolution example

MMD MMI

<<conforms to>> <<conforms to>>

T

MM'D

m'D

<<conforms to>>

ΔMMD

E

T'

mD mI

(b) A domain metamodel adaptation, resulting
in the co-evolution of a conforming model and
a transformation

Figure 1.2: Two language evolution scenarios.

model is migrated, those properties should stay the same, except for those semantic

changes which were introduced on purpose as part of the evolution of the language.

When two versions of a modelling system are (1) equal, modulo their intended syntactic

and semantic changes and (2) syntactically consistent, the evolution of a system is said

to be continuous [10]. Only continuous evolutions of a system are useful evolutions, as

no unwanted alterations to the semantics of the system are made.

Figure 1.2 shows two example evolution scenarios. In Figure 1.2(a), a metamodel MM

is evolved to metamodel MM ′. In both cases, the adaptations are captured in the dif-

ference model ∆MM . For each change performed on the original metamodel, a suitable

migration operation has to be found for all modelling artefacts. All migration opera-

tions are captured in a migration transformation. In Figure 1.2(a), this transformation

is called E, which makes sure model m conforms to the new version of the metamodel.

Figure 1.2(b) depicts a more involved evolution scenario. The modelling system consists

of two modelling languages, whose syntax and static semantics are defined by the meta-

models MMD and MMI . A transformation T transforms models conforming to the

former into models conforming to the latter. The domain metamodel of the transforma-

tion, MMD, is adapted, resulting in a new version of the metamodel called MM ′
D. As in

Figure 1.2(a), the models conforming to the original metamodel have to be adapted in

order to repair the conformance relation. The transformation T also has to be migrated,

however, as its domain metamodel has changed. The migrated transformation is called

T´ and has been adapted to the new version of the metamodel.
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1.3 Research Agenda

The research goal of this thesis is to provide techniques for modelling language evolution,

by making extensive use of model transformation. The aim is to support both metamodel

and model co-evolution as well as metamodel and transformation co-evolution. Our

focus will be on providing tool support to explicitly model evolution and co-evolution

operators. As such, we can formulate one central research goal:

To construct a metamodelling framework, capable of explicitly modelling and executing

model transformations and to use this framework to support the evolution of modelling

systems which consists of metamodels, models, and transformations, by modelling mi-

gration operators and combining them into a migration transformation, which can either

be a regular model transformation or a higher-order transformation.

The remainder of this thesis is constructed as follows. Chapter 2 details the current

state-of-the art in metamodel and model/transformation co-evolution. It presents the

solutions which have been proposed, along with their advantages and disadvantages.

At the end of the chapter, proposals for future research are made, some of which have

been included in our research goal. Chapter 3 presents a running example which is used

to demonstrate the techniques presented in this thesis. Chapter 4 introduces Ark, our

metamodelling framework of choice. Chapter 5 explains how model transformations are

developed in Ark. Chapter 6 explains how the example modelling language evolution

scenario is implemented in Ark. Lastly, Chapter 7 concludes the thesis and makes

suggestions for future work.



Chapter 2

Related Work

The evolution of modelling languages and the co-evolution of modelling artefacts has

been studied extensively in the last decade. In this chapter, an exhaustive literary review

of these studies is presented. It is an unmodified reproduction of our work in [11] and

is included in this thesis for completeness.

2.1 A Classification of Solutions

The solutions proposed for co-evolving metamodels, models and transformations differ

significantly. In this section, we propose a set of criteria to categorize and differenti-

ate between these solutions. This will allow us to decide where current solutions lack

functionality or further validation of these solutions is needed and make suggestions for

future work. The first criterion, which is discussed in Section 2.1.1, is how authors cat-

egorize the adaptations performed on a metamodel. If such a categorization is present,

it is based on how the metamodel is adapted and what the consequences are for the

related models and transformations. If a categorization is used in the paper and a so-

lution is proposed, we will mention which of the adaptations the authors acknowledge

are supported in their solution. Section 2.1.2 lists which migrations the proposed solu-

tions support, which is either model migration, transformation migration or both. In

Section 2.1.3 the automatibility and completeness of each solution will be discussed.

This is more often than not a trade-off: either the solution is complete but not fully

automatic, or the solution is fully automatic but not complete. Section 2.1.4 discusses

6
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how intention (i.e. properties) of models are preserved during migration. Section 2.1.5,

lastly, looks at tool support of the proposed solutions. This will prove to be one of the

most important criteria of all, because a proposed solution cannot be properly tested

without a tool that implements it.

2.1.1 Metamodel Adaptations

Classifying metamodel adaptations is done by most authors that propose solutions for

the co-evolution problem. On the one hand, it is useful as a way to determine the effects

of different types of adaptations on related artefacts like models and transformations,

which leads to different types of actions to migrate these artefacts to the new version

of the metamodel. On the other hand, it forces authors to acknowledge which types of

adaptations are supported by the proposed solution. If no classification is present, it is no

trivial task to discover whether the solution supports all possible adaptations performed

on a metamodel. In the next paragraph the classifications found in the literature are

discussed. If a solution uses a certain type of classification, we will also discuss whether

all types of adaptation are supported.

1. Non-Breaking and Breaking Changes: In [12] and [13], Gruschko et al. in-

troduce a classification of metamodel adaptations into three categories: Not Breaking

Changes, Breaking and Resolvable Changes and Breaking and Unresolvable

Changes. The first category consists of adaptations which occur in metamodels but

do not break the conformance relation between models and the metamodel. As such,

models that conform to the initial version of the metamodel also conform to the new

version of the metamodel. An example of this type of adaptation is the addition of a

non-mandatory class in the metamodel, as all models not containing an instance of this

class conform to the new version of the metamodel as well. The second category consists

of adaptations which breaks the conformance relation between the models conforming

to the initial version of the metamodel and the new version of the metamodel, but can

be resolved by automatic means. An example adaptation is the renaming of a class.

This change results in all models containing an instance of the renamed class to not

conform to the new version of the metamodel any more. It is however possible to create

an automatic renaming mechanism that renames all instances of the renamed class to
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reflect the name change. The last category consists of adaptations that break the con-

formance relation between models and metamodel and are not resolvable automatically.

An example change is the addition of a mandatory class to the metamodel. None of the

models conforming to the initial version of the metamodel will contain an instance of

this class, which means an instance of the class will need to be added to every model.

However, we cannot automatically decide how and where to add an instance of a class

and as such a developer will have to manually edit each model.

This change classification has become a popular choice for authors to use and is the

basis for many of the proposed solutions. In the paper by Gruschko et al. a solution is

proposed which uses the change classification to take different types of actions based on

the type of metamodel adaptation. It consists of a change recording phase in which a

difference model is built, a classification phase in which the adaptations represented in

the change model are classified in the categories presented here and a manual edit phase

for unresolvable changes. After that a transformation is constructed which migrates in-

stance models. The solution proposed by the paper thus supports all adaptations using

the categorization the authors have introduced.

In [14], Cicchetti et al. use a similar approach. There, a difference model is constructed

as well and the adaptations are classified. However, this classification leads to two

non-overlapping difference models which are used to construct two migrations (one au-

tomatically, the other with the intervention of the user) which are executed concurrently

to migrate models. This technique can be applied if all adaptations in the two difference

models are independent of each other. If a dependency exists, certain migration steps

need to be executed before others. The authors resolve this problem in [15], which makes

this solution complete in the sense that it supports all categories of changes.

The classification has also been used for solutions that migrate transformations. In [16],

Garcia and Dı́az use the classification to support transformation migration. A differ-

ence model is created to represent the metamodel adaptations, which is used by an ATL

higher-order transformation to migrate the transformation. All categories of changes

are discussed and supported by their solution.

In [10], Meyers and Vangheluwe build a framework that supports the evolution of mod-

elling languages in general. This encompasses metamodels, models, transformations and

their visual representations. They make use of the classification proposed by Gruschko

and support all of the categories of changes. They achieve this by breaking down the

evolution of languages into primitive scenarios, which encompass the consequences of
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evolution and the required remedial actions. By combining these primitives in a high

level framework, all possible evolutions are supported.

Van Den Brand et al. extend the original classification in [17] by dividing Break-

ing and Unresolvable Changes into Breaking and Semi-Resolvable Changes

and Breaking and Human-Resolvable Changes. The first category encompasses

metamodel adaptations that cannot be resolved automatically but can be resolved by

configuring the evolution process. The adaptations in the second category can only

be resolved by a user in a differences-resolution environment. All of these changes are

supported by the solution proposed in the paper.

2. Metamodel and Model Independent and Specific Changes: In [18], Her-

mannsdoerfer et al. introduce COPE, a tool used to incrementally evolve a domain-

specific language by employing coupled operators. They use a change classification

which is similar to the one described in the previous paragraph. Metamodel adaptations

are classified into four categories: Metamodel Only Changes, Metamodel Inde-

pendent Changes, Metamodel Specific Changes and Model Specific Changes.

The first category encompasses changes that only have an effect on metamodels. This

category corresponds to Not Breaking Changes discussed above which means no co-

evolution has to be performed on models. For the second category, generic and reusable

coupled operators can be defined. This is a core concept in COPE: the more reusable

coupled operators that are defined, the more useful the solution becomes, because it

saves the user from having to define his own specific operators. An example of such an

operator is the renaming of a property of a class in the metamodel. It is possible to

define a generic, reusable coupled operator for this adaptation as the operations per-

formed on the metamodel and conforming models are always the same, irrespective of

the specific metamodel the operator is applied on. In [19], an extensive catalogue of

coupled reusable operators is defined to demonstrate the usability of the operator-based

approach. The third category encompasses metamodel adaptations which need the def-

inition of a custom coupled operation because the operator cannot be reused for other

metamodels. They can, however, be defined in a model-independent way. COPE allows

the user to define metamodel-specific coupled operators by applying a set of primitives

for both metamodel adaptation and model migration. This set of primitives is complete
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which means every possible metamodel adaptation and model migration can be speci-

fied with them. The last category consists of metamodel adaptations that have to be

resolved on a per-model basis. This means no coupled operator can be defined (either

reusable or custom) that evolves the metamodel and migrates the instance models auto-

matically. The developer has to manually intervene in the migration process, which was

not supported in the first version of COPE. In [20], Herrmannsdoerfer et al. introduce

constructs that allow the user to choose for each model which action has to be taken to

migrate it. As such, COPE supports all types of changes described by this classification.

3. Metamodel Isomorphism, Extension, Projection, Factoring: In [21],

Hössler et al. classify metamodel adaptations based on relations between the two ver-

sions of the metamodel. The relations discussed in the paper are Metamodel Isomor-

phism, Metamodel Extension, Metamodel Projection and Metamodel Factor-

ing, which are defined as follows. Two metamodels are said to be isomorphic if the

set of their instance models is equivalent. All instances conforming to the initial version

of the metamodel also conform to an extension of that metamodel. This resulting

metamodel is then called a super-metamodel of the original metamodel. Conversely,

the original metamodel is a sub-metamodel of the resulting metamodel. A metamodel

is a projection of another metamodel if the size of the set of instance models reduces

by deleting a metamodel element. Metamodel Factoring encompasses more com-

plex patterns of metamodel evolution, including property movement and amalgamation

and class splitting and amalgamation. The paper mentions how to deal with each of

the relations, but no proof is presented that every possible metamodel adaptation can

be categorized using this classification. Because of this, we cannot conclude that the

solution is complete.

4. Construction, Destruction and Refactoring In [22], Wachsmuth proposes

one of the most elaborate classifications of metamodel adaptations. First, preservation

properties for metamodels are presented by defining metamodel relations like equiva-

lence, variation, sub- and super-metamodel. These are then used to derive semantics-

and instance-preservation properties for metamodel relations. Then, a set of edit op-

erations are classified into Construction, Destruction and Refactoring operations.

Each operation is associated with a semantics-preservation property which defines what



Chapter 2. Related Work 11

the result on the metamodel and its instance models is when the operation is executed.

For each of these categories, co-evolution operations are defined which migrate models

in response to the changes performed on the metamodel. In that sense, all adaptations

which are described are supported by the solution. However, as will be seen further on,

it may be possible that not all possible metamodel adaptations can be categorized using

this classification. Performing an additive change may not necessarily mean that the set

of instances becomes larger. For instance, if a relation is added between two classes with

multiplicity 1..1, all instance models containing instances of those classes will have to be

adapted, adding a relation between the instances. This means the set of valid instances

reduces instead of increases. None of the metamodel relations defined by Wachsmuth

describe this.

5. Fully Automated, Partially Automated and Fully Semantic In [23] a so-

lution is proposed for the semi-automatic migration of model transformations. There, a

classification is made which consists of three categories: Fully Automated Changes,

Partially Automated Changes and Fully Semantic Changes. The first category

consists of adaptations for which migrations can be automatically constructed, like the

renaming of an attribute. The second category consists of adaptations for which infor-

mation is lacking to migrate transformations. The example of deleting an attribute is

given. If the attribute is used in a transformation, we do not know how the transfor-

mation should be adapted to compensate for the missing attribute. It is the task of

the developer to fill in this missing semantic information. The last category consists of

adaptations for which the developer needs to supply all semantic information. An ex-

ample for such an adaptation is the addition of an element. No transformation rules are

yet defined for this new element and as such the developer will have to supply all needed

information in the transformations. The proposed solution performs an automated pass

for adaptations in the first category, followed by a manual pass for adaptations in the

last two categories.

In Table 2.1 a set of commonly occurring metamodel adaptations are classified according

to the five aforementioned classifications. It attempts to clarify the presented classifi-

cations and by no means forms a complete set of metamodel adaptations. As can be
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seen, some classifications cannot deal with certain metamodel adaptations. These cells

are marked with a question mark.

2.1.2 Supported Migrations

When applying an MDE development process and using its full potential, a number of

models and transformations are created. As previously stated, co-evolution for both

models and transformations should be supported in order for MDE to become an ac-

cepted development method. In this section, the proposed solutions will be categorized

according to the types of migration they support. This is either model only, transfor-

mation only or both.

Model Only: In [24] a domain-specific visual language is presented which supports

the evolution of domain-specific modelling languages. This language is used to define

patterns which describe the migration steps to perform when migrating models from one

version of a metamodel to the next.

A similar method was used in the construction of the tool Lever [25]. Language evolu-

tions in Lever are textually specified and used for both metamodel evolution and model

migration. Model migrations created by Lever transform the abstract syntax graph rep-

resentation of a model created in any version of the language to the last version of the

language by keeping track of the history of the language and the evolution operations

performed on the metamodel of the language.

In [26] a domain-specific transformation language (DSTL) is derived from the metameta-

model the metamodel conforms to automatically. This language allows to specify evo-

lution scenarios for the language. To support co-evolution, a user-defined mapping

between primitive evolution operators in the DSTL and corresponding model migration

steps has to be provided. From the evolution scenario and user-defined mapping a model

migration transformation is constructed automatically.

In [27] the model change language (MCL) is used to define metamodel evolution and

model migration patterns. MCL is a visual language which is used to specify the pat-

terns which define the evolution scenario. These patterns contain information to evolve

the metamodel and co-evolve conforming models.

Epsilon Flock [28] is a pattern language which is used to specify patterns that define
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model migration scenarios. The language developer creates a model migration trans-

formation using Flock which is capable of migrating models from one version of the

metamodel to the next.

In [29] existing in-place transformation languages are used to define model migrations.

The first step in the process is to merge the two versions of the metamodel, as both

elements from the initial version and the evolved version will be used in the transforma-

tion patterns. Using this merged metamodel, a user can define the necessary rules for

instantiating metamodel elements introduced in the evolved version of the metamodel.

The last step in the process is to remove elements that are no longer present in the

evolved version of the metamodel automatically.

In [12] and [13] model migration is approached differently. In these papers, a pro-

cess model is created with which a metamodel and its instance models are co-evolved

(semi-)automatically. First, a change model is computed which represents the meta-

model adaptations. These adaptations are classified after which user input is gathered if

needed. Then, the necessary model migration algorithms are determined and the trans-

formation is executed.

In [14] and [15] a similar method is employed. The main difference is that after change

classification, the difference model is split into two non-overlapping difference models

based on the automatibility of the migration derivation. Two migration transformations

are derived from these change models and executed in parallel to migrate models.

In [30] metamodel adaptations are detected by comparing the two versions of the meta-

model and employing a set of user-chosen and/or user-defined heuristics which has to be

configured for each evolution scenario. The resulting difference model is then mapped

onto a migration transformation.

In [22], metamodels are evolved by stepwise adaptation. This is done by so-called cou-

pled operators, which consist of the metamodel adaptation and corresponding model

migration transformation. The same approach is used in COPE [18, 20], where reusable

coupled operators are defined in a library. A facility to create custom coupled operators

is also provided.

Transformation Only: There are only a few solutions providing only transformation

migration. In [16] a semi-automatic method is developed which is based on a generated

difference model. The metamodel adaptations are classified, after which transformations
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are generated automatically or with the help from the user if semantic information is

missing.

In [23] the MCL is used to specify metamodel adaptations. Then, transformation mi-

grations are derived automatically where possible or provided by the user in the form of

MCL patterns.

Model and Transformation: In [10] both model and transformation migration are

discussed. As previously mentioned, the authors create a framework for the evolution

of languages which is as complete as possible. To evolve models and transformations a

pipeline is built which defines the different steps of the evolution process. These steps

can be found in other solutions as well: change detection and representation, automatic

transformation generation together with user input gathering for unresolvable changes

and transformation execution.

[31] discusses both model and interpreter migration. The authors present an approach in

which a specification of the metamodel adaptation is mapped onto model and interpreter

migration transformations.

2.1.3 Automatibility and Completeness

Automatibility of a solution pertains to how much user intervention is needed: either

the solution is fully automatic, only based on user input or a combination of the two.

Completeness is a characteristic of a solution which is closely tied with automatibility.

We regard a solution as complete if all possible evolution scenarios are supported. It

is closely tied with automatibility because a solution which is fully automatic often is

not complete and a solution which is only based on user input often is complete, but

requires a lot more effort from the user.

Fully Automatic: Fully automatic solutions usually start from a model that cap-

tures the adaptations performed on the metamodel. This model can either be the result

of a change recording mechanism that keeps track of all adaptations performed on the

metamodel or an algorithm that compares the two versions of the metamodel after the

changes have been performed. This change model is then used to derive a migration

transformation which is subsequently executed on models to migrate them to the new
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version of the metamodel.

In [30], Garcés et al. attempt to fully automatically migrate instance models. There,

two versions of the metamodel are compared by an algorithm which is the composition

of a set of heuristics. These heuristics have to be chosen by the language developer

on a per-metamodel basis to get the best resulting difference model. It is however a

non-trivial task to decide a priori which of the heuristics are required to produce the

best results. In the paper, the derivation of the adaptation transformation is given little

attention and it is assumed this mechanism works correctly. These arguments lead to

the conclusion that the solution cannot be deemed complete.

In [31], a generative approach to intepreter evolution is proposed. In their solution, the

authors map a specification of the metamodel adaptations onto interpreter and model mi-

gration transformations. They require that a formal specification of metamodel changes

has to be present, either provided by the user or computed by a differencing technique

from the two metamodel versions. The authors state that more research has to be

performed to evaluate the feasibility of the approach. It is thus not complete.

Only User Input: This category consists of solutions that require the user to define

a model migration transformation manually. This migration is either specified in an

existing transformation language or in a newly created domain-specific language for the

domain of model migration.

In [24] a domain-specific visual language is created to specify visually how models should

be migrated in response to metamodel adaptations. A sequence of transformations is

created by the user and concatenated in a user-specified order. The models are then

migrated by performing each transformation in this order. Primitives for the creation,

deletion and mapping of model elements are provided in the language. It is not clear,

however, whether these primitives form a complete set and can be used to specify ar-

bitrary complex migration scenarios. In the example given a rather trivial co-evolution

problem is solved and there is, for example, no change present that could be described

as ’breaking, not resolvable’ which requires user input for each model that is to be mi-

grated. As such, we can conclude this solution is not complete.

In [25], the tool Lever is created. In Lever, model migrations are defined textually by the

user. The tool keeps track of the history of the metamodel, which allows a model created

in every version of the language to be loaded into the tool by first interpreting it using
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the version of the language it was created in and then migrating it using the user-defined

migration transformations. This solution, however, does not include mechanisms to deal

with model-specific changes, i.e. those changes for which user intervention is required

on a per-model basis. As no categorization of metamodel adaptations is employed in

the paper, it is a challenging task to prove the solution can deal with every possible

metamodel adaptation. Therefore, we can conclude that this solution is not complete.

In [27], the model change language (MCL) is introduced. MCL is used to define patterns

for model migration using both versions of the adapted metamodel. A pattern in MCL

consists of a left hand side, defining which element of the initial version of the metamodel

should be matched and a right hand side, where modified elements in the new version

of the language can be used. The user defines relations between these elements and a

model migration is subsequently derived. The paper is not extensive and it is not clear

whether all complex migration scenarios are supported by MCL. We therefore conclude

that this solution is not complete.

In [32] a different approach altogether is investigated. The authors observe that models

conforming to the old version of an evolved metamodel often cannot be loaded into the

normal development environment used to create and edit models after installing the new

version of the metamodel. To counter this, the authors propose a solution where models

are bound to a generic metamodel. This makes it possible to load all models, even non-

conforming ones. When an inconsistency is detected in a model, the user is notified and

markers are placed in the places which cause the inconsistency. The user can then edit

the model which has been transformed to the Human Understandable Textual Notation

(HUTN). The solution is complete but may require a lot of effort from the user as each

model has to be migrated manually.

Epsilon Flock, introduced in [28] is a model-to-model transformation language which can

be used to define migration patterns. The authors analyse ATL, COPE and Ecore2Ecore

to derive requirements for their tool, which tries to combine the advantages of each tool

and avoid their disadvantages. The result is a pattern language which consists of two

elements that either migrate types or delete them. It automatically copies elements con-

forming to the new version of the metamodel language, which is called a conservative

copy strategy in the paper. Flock is complete as it uses the Epsilon Object Language,

which is expressive enough to perform any evolution scenario.
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Combination: Solutions that are a combination of the previous two categories usu-

ally use the same approach as can be found in the fully automatic solutions, but consist

of an automatic phase and a phase in which the user can provide missing semantic infor-

mation. These approaches are logical consequences from the act of classifying metamodel

adaptations based on their effect on conforming models. As we have seen in Section 2.1.1,

authors always make the distinction between adaptations for which the remedial action

can be deducted automatically and those for which user intervention is required. If

one can then accurately detect all adaptations performed on the metamodel and classify

those adaptations, it is possible to divide the generation of the migration transformation

into two non-overlapping parts.

A second category consists of operator-based solutions, whereby metamodels are adapted

by the successive application of coupled operators. Some of these operators can be reused

and information regarding model migration is attached to these reusable operations, per-

mitting the automatic deduction of a migration transformation. Other operators are so

specific to a certain language evolution scenario that they have to be defined by the user.

That is why operator-based solutions are classified as solutions which are a combination

of automatic solutions and solutions based on user input: a user evolves the metamodel

by applying operators which are either reusable or user-defined, and a migration trans-

formation is (semi-)automatically deduced.

In [12] and [13] a process model is constructed which performs the steps of the first

approach discussed in this paragraph. First, a change model is constructed, either by

change recording during the editing of the metamodel or by direct comparison of the two

versions of the metamodel. Then the changes are categorized and transformations are

constructed, either automatically for resolvable changes or by user input gathering for

unresolvable changes. Then the transformation is executed to migrate the model. This

solution is complete in the sense that it should be able to handle all types of changes,

yet it is incomplete because the change detection algorithms and the algorithms to au-

tomatically derive transformations from metamodel adaptations are largely omitted.

In [14] a similar approach is used. However, the classification of changes in the proposed

approach is made explicit by dividing the change model into two non-overlapping change

models, one for the automatically resolvable changes and one for the non-resolvable

changes. From these models, two transformations are generated which can be run con-

currently to migrate models to the new version of the metamodel. A challenge recognized

by the authors with this approach is dealing with dependent changes. They therefore
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propose an algorithm in [15] to resolve these dependencies by scheduling transformation

executions correctly. This approach is complete in the sense that all possible scenarios

should be supported. However, the authors also mention the need for validation on a

large set of metamodels and models, which has yet to be performed.

In [22] the concept of coupled operations is first explored. These operations are first

described on the metamodel level as QVT Relations that define the adaptations per-

formed. These can be used for the stepwise adaptation of metamodels. Next to these

adaptations, model co-adaptations are defined in the form of parametrized QVT Rela-

tions. A metamodel adaptation transformation can then call one of these co-adaptation

transformations with the correct parameters to create a model migration transforma-

tion. It is possible for users to intervene in this process by defining new adaptation

transformations, co-adaptation transformations or OCL queries to fill in missing seman-

tic information. It is therefore a complete process in the sense that any scenario could

be supported, although only a handful of adaptation transformations are presented as

examples in the paper.

COPE is a tool that supports the co-evolution of metamodels and models using coupled

operators. It is introduced in [18] and expanded in [20]. In [19] an extensive catalogue of

reusable coupled operators is presented with which a language developer should be able

to specify most common language evolution scenarios. A coupled operator is an operator

which performs the metamodel adaptation and contains the migration transformation

steps which need to be carried out in order for models to be migrated to the adapted

metamodel. In COPE, a series of adaptations is performed by executing coupled op-

erators on a metamodel. During this process, the corresponding model migrations are

recorded. Once a developer is done editing the metamodel, these model migration steps

are combined into one migration transformation which can be executed to migrate mod-

els to the new version of the metamodel. As COPE supports the definition of custom

coupled operators and is capable of asking for user input when additional semantic in-

formation is needed during the migration process, this is a complete solution.

Vermolen et al. employ the use of a domain-specific language for evolving metamodels

in [26]. The DSL is created starting from the metametamodel which the metamodel

conforms to. This languages contains primitives for adding, removing and modifying

metamodel elements. Next to the DSL, a user-defined mapping has to be supplied that

maps metamodel adaptations to the required model migrations. Using these elements,

a metamodel adaptation is created in the DSL by the language developer, after which
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a model migration transformation is automatically calculated. The solution is not com-

plete, as the definition of the user-supplied mapping is not given any attention and as

such it is not clear whether every possible mapping can be specified. There is no men-

tion of support for user input during the migration process either (for model-specific

adaptations).

In [16] a solution is provided which evolves transformations semi-automatically in re-

sponse to a metamodel adapation. Only adaptations of the source metamodel are consid-

ered, as such it is not complete. The approach classifies changes and either automatically

generates the full transformation code or only a skeleton which requires the user to fill

in the missing semantics.

Another approach to semi-automatically migrate transformations is described in [23].

There, the MCL is used to describe the adaptations performed on the metamodel. Sub-

sequently, migration transformations are semi-automatically deduced. A classification is

presented which divides adaptations into categories based on their automatibility. Some

of the adaptations, like the renaming of a metamodel element, can be resolved automat-

ically. For others, only the skeleton in the resulting transformation can be generated.

For others, the user needs to specify the complete transformation from scratch. The

solution is not complete as the authors do not cover this last class of adaptations, which

are called fully semantic changes in the paper.

In [29] the use of existing in-place transformation languages for specifying model migra-

tion transformations is explored. The user has to specify rules for elements that have

been changed in the new version of the metamodel. For this purpose, the two versions

of the metamodel are merged as to allow the use of both outdated and new elements of

the metamodel in these rules. After executing the user-defined rules, outdated elements

are removed from models automatically. There is no support for automatic generation

of rules for resolvable changes and the authors mention this as future work. However,

the solution is complete as it should be possible for users to specify every pattern needed

to perform migration of models. The approach is not formally validated in the paper.

In [10] the authors attempt to provide a complete framework for the evolution of mod-

elling languages. The framework supports the semi-automatic migration of models and

transformations in response to metamodel adaptations. In the paper, every possible evo-

lution scenario is exhaustively explored. The solution uses a migration pipeline which

consists of all necessary steps to be performed in order to migrate all artefacts related to

an evolved metamodel. First, an intermediate metamodel is created which is the result
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of merging the two versions of the metamodel. Next, from the automatically resolvable

adaptations, migration transformation steps are constructed. If needed, user input is

gathered and the migration transformation is executed. It is complete, as it is able to

handle every possible evolution scenario using the proposed approach.

In [17] a generic metametamodel is constructed. All metamodels can be transformed in

such a way that they conform to this metametamodel. After this transformation, meta-

models can be regarded as a special kind of model. This allows the use of existing model

differencing techniques to obtain a difference model by comparing the two versions of

the metamodel. Using this difference model, the authors generate a difference model for

each model that needs to be migrated. This difference model captures the adaptations

that have to be performed on the model in order for the conformance relation to be re-

established. This approach is complete, as it can deal with all possible types of changes

and is extensible by providing user-defined transformations. A large validation study is

present which shows the solution is applicable in real-life language evolution scenarios.

2.1.4 Intention Preservation

Intention preservation is a somewhat overloaded concept. In [10], the authors introduce

the concept of continuity of software language evolution. This means that the system

is consistent (models conform to their metamodel after metamodel adaptation) and

semantically equal to its previous version, modulo intended changes. Semantics in this

context mean the properties a certain model has and not, as was previously defined,

the denotational or operational semantics attached to a modelling language by model

transformations. The properties of a model correspond to the properties the model has

in its semantic domain. For instance, a possible property for a model created using a

modelling language which is mapped onto Petri Nets is liveness, meaning it never reaches

a deadlock state. In the paper it is mentioned that in order to support continuity, there

has to be some mechanism in place in order for the properties to be checked. As an

example, a constraint on a toy language for constructing train networks is given: if a

constraint exists on the initial version of the language that no two trains should ever be

on the same rail, this should be the case in every subsequent version of the language.

This could be checked by transforming the models to a Petri Net model and running a

reachability analysis. However, this is a rather ad-hoc way of checking properties and

cannot serve as a general mechanism to ensure continuity. As properties are checked after
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migration is performed, it is not possible to decide whether a migration transformation

will preserve the properties of a model before it is executed. The set of models on which

properties are checked is furthermore only a subset of the set of all models which can

be created with the modelling language, and it is not possible using this method to

formally prove that a transformation preserves properties, before or after migration has

been performed. More research has to be done in this area to discover possible solutions

to overcome the challenge of continuity.

Other methods exist to ensure semantic equivalence of models before and after migration.

However, they often defer the responsibility to someone or something else. In the case

of manual specification methods (see Section 2.1.3) the user is responsible for providing

the correct migration patterns and ensuring semantic equivalence. In [24] this fact is

mentioned and the only solution provided is to spend a lot of effort on the development

of the migration transformation. There is, again, no way to check a priori whether a

migration will preserve certain semantic properties of a model.

When using (semi-)automatic methods of generating a transformation migration, the

correct working of the algorithm depends largely on the change recording or differencing

technique which is used to build the difference model. If all changes are represented

faithfully, which requires the difference metamodel to be complete and the technique to

build the difference model to be correct, it should be possible to define remedial actions

for every possible scenario and ensure correctness with respect to semantic preservation.

However, lots of differencing techniques have issues with quite trivial edit operations.

Let’s say we want to move a property from a class to its superclass. We therefore delete

the property of the class and create a new one in the superclass with the same name

and data type. To ensure semantic equivalence, we would like that the value of each

instance of the property be retained in the migrated models. However, the difference

model might not be able to differentiate between this edit operation and two unrelated

edit operations: removing a property and creating a property. If it detects these last two,

there is no way for the system to know that it should keep the value of the properties and

semantic information will be lost. In [30] a substantial effort has been made to accurately

detect metamodel adaptations. However, the process presented in that paper has to be

configured on a per-case basis. The process uses a set of heuristics to compute the

difference model. One of the main characteristics of a heuristic is that it can approach

perfection but never attain it. This may be unacceptable in certain applications that

require rigorous checking of properties using a formal method.
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We can conclude that semantic preservation of models is currently not supported by

language evolution solutions and needs further researching.

2.1.5 Tool Support

Tool support is one of the deciding factors whether a proposed technique will be success-

ful and a way to check its functionality. In this section, we will look at which solutions

are implemented in tools, which we divide into prototypes and fully functional tools.

Prototypes: As was discussed earlier, in [25] the tool Lever is constructed. This is

a prototypical implementation of the techniques presented in the paper which tries to

automatically maintain a layered DSL which undergoes adaptations. The authors have

performed a small case study using the tool, but it is not extensive enough to conclude

that this tool is mature and ready to be used on industrial-sized projects.

In [12] a prototype is built which implements the three-step process of change recording

and exporting, classification and transformation generation and transformation execu-

tion. The prototype only supports the renaming of structural features.

In [26] a prototype is constructed which implements the architecture presented in the

paper and has been applied to the domain of data modelling. The solution in the paper

automatically derives a DSL in which evolution patterns for metamodels can be defined

and derives model migration transformations from these patterns and a user-defined

mapping which specifies how metamodel adaptations should be mapped onto model mi-

grations.

Cicchetti et al. have implemented their approach, which is described in the previous

sections, in a prototype tool [14] [15] on the AMMA [33] platform.

The AMMA platform was also used by Garcés et al. to create a prototype for their solu-

tion in [30]. They use the AtlanMod Model Weaver (AMW) [34] to work with matching

models and ATL is used to implement the heuristics and the higher-order transformation

which is responsible for generating the migration transformation.

In [17] a prototype tool is built which is tested on 10 metamodels, each having 10 con-

forming models. However, the amount of tested metamodel adaptations is rather small.
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Fully Functional: A fully functional tool based on the use of coupled operators is

COPE [18, 20]. It is integrated into the EMF metamodel editor and provides all the nec-

essary functionality for metamodel and model co-evolution. Users can edit a metamodel

using a context-aware editor which presents the library of reusable coupled operators.

Custom operations can be created, edited and subsequently applied on metamodels. The

tool keeps track of the history of the metamodel adaptations. Once a user is done editing

the metamodel, he releases a new version of the language which automatically creates

a migrator capable of migrating models to the new version of the language. COPE has

been tested thoroughly and appears in a couple of industrially sized case studies [35, 36].

In [32], a tool is built which binds models conforming to an EMF metamodel to a generic

metamodel. The authors then generate a report which states whether the model is in-

consistent with its metamodel and if so, which parts of the model are responsible. The

user can edit the inconsistent models as to re-establish the conformance relationship.

Evolving transformations can be accomplished by the tool built in [23]. The tool is

implemented in the GME/GReAT toolset and has been tested in an industrial environ-

ment. Future work which is mentioned in the paper consists of providing tool support

for the addition of missing semantic information. In the current version of the tool, this

information has to be added manually, which may mean a lot of work.

Lastly, Epsilon Flock [28] is a model-to-model transformation language built atop of

the Epsilon Object Language (EOL) [37], which is the core of the Epsilon platform

[38]. Flock is used for defining model migration patterns and has proved its worth in

industrial sized case studies [36].

2.2 Analysis

In this section the results of the previous section are analysed. We will attempt to dis-

cover open research questions which should lead to a better support for the co-evolution

of metamodels and their related artefacts when discussed in future work. In each of

the following subsections, four pairs of evolution criteria will be the basis for four ma-

trices. The matrices consist of an x-axis and a y-axis, each one used for a particular

criteria. For each criteria, a scale has been introduced which rates the solution based

on the findings in the previous section. The criteria used as axes are Migration Sup-

port (Model, Transformation, Both), Tool Support (Prototype, Implemented, Tested),
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Automation (Only User Input, Fully Automatic, Combination), Algorithm (Manual,

Operator Based, Differencing, Change Recording) and Example (Toy, Full Fletched).

In Section 2.2.1, migration support and tool support of solutions are combined into a

matrix. In Section 2.2.2 the same is done for automation and tool support. In Section

2.2.3, the matrix axes are automation and tool support. Using these three matrices,

we can conclude which proposed solutions lack tool support. Lastly, in 2.2.4, we take a

look at the types of supported migrations of each solution and whether an example is

present.

2.2.1 Migration Support vs. Tool Support

A solution can either support model migration, transformation migration or both. In

this section, a matrix is created (see Figure 2.1) which lists the solutions discussed in

Section 2.1 along the x-axis according to this criterion and along the y-axis according to

whether tool support is present. If tool support is present, three categories of tools are

distinguished: a prototype is a tool which implements the solution but has only been

used to migrate toy examples or examples from which cannot be derived that the tool

can deal with arbitrarily complex metamodel adaptations. An implemented tool is a

tool which implements the solution faithfully and should be able to handle most or all

evolution scenarios. A tested tool is a tool which is implemented and tested on a large,

industrial-sized project.

As we can deduct from Figure 2.1 major progress has been made developing tools that

support model migration. This is to be expected as most of the literature on metamodel

evolution deals with the migration of models only. Implementations that have been

tested thoroughly are COPE and Epsilon Flock. In [36] these two tools appear in a

study which compares four tools capable of co-evolving metamodels and models. The

tools are used on two co-evolution scenarios: one toy example (a Petri Net metamodel)

and a larger example taken from a real-world model-driven development project.

Transformation migration is an area which has not been explored extensively. In [16]

a semi-automatic method is proposed, generating ATL transformations from a differ-

ence model resulting from the comparison of the two metamodel versions. [23] uses the

MCL to describe metamodel adaptations and corresponding transformation migrations.
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Figure 2.1: Migration Support vs. Tool Support

Transformation migrations are constructed semi-automatically in two phases: an auto-

matic phase and a phase in which the user can supply missing semantic information. In

[10] a third approach to transformation migration is explored. The authors use func-

tion composition to create the evolved transformation from the original transformation

and the migration transformation generated to migrate models conforming to the initial

version of the metamodel. For example, in the case of image evolution, the resulting

transformation T’ = E ◦ T . However, because of the projection problem T’ = E ◦ T

does not always hold for image evolution. The projection problem states that E does

not necessarily map models of the old version of the language to the complete set of

models in the new version of the language. For instance, if a non-obligatory concept is

introduced in the language, E will not migrate models to models containing instances

of this class. As such, E ◦ T will not explore the full power of the new version of the

image language, which may be undesirable. User input is required in these cases to fill

in missing semantic information. In the paper, however, only a conceptual framework is

built and therefore it is not listed in the matrix presented in this section.

This section can be concluded by stating that no verified implementation of transfor-

mation migration has been presented yet. No attempt has been made to create a tool

which supports both model and transformation migration.



Chapter 2. Related Work 27

Only User Input Fully Automatic Combination

Prototype

Implemented

Tested

[25] [26]

[32]

[28]

[30]

None

None

[12]
[14] [15]
[16] [17]

[29]
[39] [23]

[18] [20]

Automation

T
o
ol

S
u

p
p

o
rt

Figure 2.2: Automation vs. Tool Support

2.2.2 Automation vs. Tool Support

In this section, we will discuss tools and which level of automation they support. The

automation levels of algorithms we distinguish are user input only, fully automatic and a

combination of these two, which are semi-automatic solutions. These levels correspond to

the ones discussed in Section 2.1.3. Unlike some of the criteria presented in this paper, a

solution is not inherently better if it uses a certain level of automation instead of another

one. As mentioned in Section 2.1.3, each level of automation brings its challenges and

advantages: a fully automatic solution requires no user input, but it is challenging to

create a complete solution using this technique. A solution which requires the user to

manually specify the migration steps requires a lot of involvement of the user, but it is

easier to achieve completeness.

In Figure 2.2 all solutions are presented in a matrix which uses these two criteria as axes.

As can be seen in this matrix, solutions which are only based on user input already have

mature tool support. As in the previous section, COPE and Epsilon Flock are both

implemented and tested on industrial-sized projects. There exists only one prototype

supporting fully automatic migration of instance models, presented in [30]. From previ-

ous sections and this matrix we can conclude that this approach is not popular because

it is a challenging task to completely automate the migration process: some metamodel
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adaptations are simply too specific to resolve automatically by a generic algorithm. Au-

thors have therefore attempted the creation of an algorithm which can automatically

detect metamodel adaptations and create a model migration transformation with, for

some types of adaptations, transformation steps provided by the user. However, it re-

mains to be investigated whether these tools are capable of supporting co-evolution in

industrial-sized projects.

2.2.3 Algorithm vs. Tool Support

This section will discuss tool support for the different types of algorithms identified

in solutions to the co-evolution problem. These algorithms have not been explicitly

discussed in the previous sections, but have been mentioned a number of times. We

distinguish four different algorithms. The first are manual algorithms, which require the

user to manually specify the migration transformation steps (in a language like Epsilon

Flock). Second are operator-based solutions, which allow the user to specify metamodel

adaptations and model/transformation migration steps using coupled operators. The

last two categories are used in solutions which co-evolve metamodels, models and trans-

formations semi-automatically and are in need of a method to build a difference model.

This difference model can either be constructed by comparing the two versions of the

metamodel using a tool like EMF Compare [40] or by keeping track of the changes

performed on the metamodel and generating a change trace.

In Figure 2.3 the resulting matrix is presented (note that some of the solutions are listed

twice: these solutions can either use a differencing or change recording algorithm). A

few interesting results can be concluded from this matrix. Firstly, as is the case in the

preceding matrices as well, COPE and Epsilon Flock are the only tools that have been

thoroughly tested for the manual and operator based approaches, respectively. Sec-

ondly, only prototypes for the differencing and change recording algorithms have been

created. This means these two method of co-evolving metamodel and conforming mod-

els and transformations have never been validated. Most of the approaches which use

a combination of automation and user input employ a three-step algorithm: change

recording/detecting, mapping of change model on model migration steps (either auto-

matically or through user input collection) and execution of migration transformation.
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Figure 2.3: Algorithm vs. Tool Support

A tool which implements this approach and is tested on industrial-sized projects has yet

to be created.

2.2.4 Migration Support vs. Example

Examples are often used to clarify concepts and algorithms used in a paper. In the

case of metamodel and model co-evolution, examples are often given with respect to

categorization of metamodel adaptations (see Section 2.1.1 for the different types of

categorizations employed by authors) and the algorithms used by the proposed solution.

We differentiate between two different types of examples: toy examples and full fledged

examples. Toy examples are examples which either only demonstrate a classification or

algorithm on trivial evolution scenarios or demonstrate the functionality of the solution

on a toy language. A full fletched example demonstrates the working of an algorithm by

executing it on a set of non-trivial evolution scenarios or on an industrial-sized project.

In Figure 2.4 migration support of solutions and the examples presented in the corre-

sponding paper which demonstrate the functionality of the solution are combined into

a matrix. The results are explained below, where we present each type of migration

support and which papers present which type of example.
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Figure 2.4: Migration Support vs. Example

Model: In [24] an example model migration transformation is constructed using the

DSL introduced in the paper. The language being evolved is used to create models in

the domain of signal processing. In its original version three concepts are defined: Ports,

Connections and processing blocks which are connected to each other using Ports and

Connections. In the evolved version of the language Ports are specialized into Input-

Ports and OutputPorts. As a specific semantic meaning to these concepts is attached,

the authors define a migration transformation which maintains the semantic meaning of

models after migration.

[21] presents a classification of metamodel adaptations and presents model migration

algorithms for each identified class of changes. Example metamodel adaptations are

presented visually. However, the examples given neither form a complete set of meta-

model adaptations nor have they been applied to a real-life project.

In [25] a toy example is presented to demonstrate the functionality of Lever. It concerns

an expression language that translates sums to stack machine code. The authors trans-

form the language from infix to postfix notation by specifying a metamodel evolution

which can automatically migrate instance models as well.

[12] introduces a change classification and algorithm based on this classification scheme.

To demonstrate their approach, the authors present an example metamodel of a file sys-

tem. This metamodel is evolved by performing certain adaptations such as renaming,

subclassing and creating or moving of containment references. To capture the semantic

intention behind these changes, the method proposed in the paper constructs migration
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transformations which are capable of maintaining this semantic information.

In [22] an extensive categorization of metamodel adaptation is presented. For each

category, a set of example adaptations are modelled as coupled operators using QVT

Relations. An example Petri Net metamodel evolution is presented, clarifying the gen-

eral concept of metamodel and model co-evolution.

In [26] the concept of metamodel and model co-adaptation is applied to the domain of

data modelling. A set of metamodel adaptations is presented and corresponding model

migration steps are derived. Then, these examples are used to construct a general ar-

chitecture which consists of an automatically constructed DSL for the construction of

metamodel adaptations. The examples are then represented using this general architec-

ture to show its functionality.

The authors in [14] validate their approach by applying it on an evolving Petri Net meta-

model. The metamodel is evolved in two steps using a set of metamodel adaptations

such as ’restrict metaproperty’, ’introduce superclass’ and ’introduce property’. Only

fragments of the resulting model migration transformations are shown in the paper. The

same Petri Net metamodel is used by the authors in [15] which explains how to deal

with dependent metamodel adaptations.

COPE has been tested on a large number of evolution scenarios. As it was not possi-

ble to deal with model-specific adaptations in the first version of COPE, the authors

present the needed constructs in [20]. A toy example is presented to demonstrate these

constructs which evolves an automata metamodel to support initial states. This is a

model-specific adaptation as the modeller has to choose an initial state for each evolved

model.

The MCL is used in [27] to co-evolve metamodel and models. A set of example MCL

patterns is presented for metamodel adaptations such as the introduction of subclasses

and the changing of containment hierarchy.

In [41] a theoretical overview of domain-specific languages is presented. The authors

use their definitions to present the different types of evolution that can be performed

on a system created using a DSL. An example language is used to clarify the concepts

introduced and to argue which metamodel adaptations can be trivially mapped to model

migrations and which are in need of user intervention.

In [42], Rose et al. compare different approaches to model migration. Several exam-

ples are given to clarify migration scenarios for the different approaches (the authors
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distinguish between manual specification, operator based and metamodel matching ap-

proaches).

Rose et al. introduce a model migration approach in [32] which is based on binding

models to a generic metamodel, after which inconsistencies are presented to the user in

a resolution environment. A toy example is presented to clarify the approach and show

the inconsistency report generated by the tool.

In [19], Herrmannsdoerfer presents an extensive catalog of reusable coupled operators.

A number of these coupled operators are clarified by presenting example evolution sce-

narios.

In [29] a running metamodel evolution scenario is used throughout the paper to clarify

the approach of using in place transformation languages to specify model co-evolution.

The example is used at every step of the process: first, the original and evolved meta-

model are used to create a merged metamodel. Then, the co-evolution rules are ex-

pressed as graph transformations, which make use of this merged metamodel. These

graph transformations are then mapped onto ATL transformation rules.

COPE, as has been mentioned in the previous sections, has been tested thoroughly.

In the paper which introduces the tool [18], the authors already demonstrate the full

functionality by presenting different adaptation scenarios of a simple domain-specific

language. These examples are complete in the sense that every supported type of op-

eration (reusable and user-defined) is explained in these examples. Next to these small

examples, a case study is performed on two EMF-based metamodels: one is part of the

Graphical Modelling Framework (GMF), the other is part of the Palladio Component

Model (PCM). Both of these metamodels already have a rich evolution history and this

history has been recreated through the use of COPE. The results have been analysed in

the paper to test the viability of the operator-based approach. A similar case study has

been performed in [35] on two industrial-sized metamodels. The adaptations performed

on these metamodels have been analysed and classified according to the classification of

Herrmannsdoerfer (see Section 2.1.1). From these results, a number of requirements for

automated coupled evolution are formulated, which reappear in the subsequent papers

on COPE.

In [30] a method is proposed based on precise detection of metamodel adaptations

through the use of heuristics. To clarify the approach, a running example is used based
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on an evolution scenario of a Petri Net metamodel. The approach is validated by im-

plementing a prototype tool and testing it on six versions of a Petri Net model and

eight versions of the Netbeans Java metamodel. The matching strategies composed of

a set of heuristics for both metamodels are presented and the results are analysed to

demonstrate that the approach detects most metamodel adaptations correctly.

In [28] Epsilon Flock is introduced. Its functionality is demonstrated using two exam-

ple metamodel adaptation scenarios. The first uses a Petri Net metamodel which is

included as a comparison to other approaches. The other uses the UML metamodel and

the adaptations performed from UML 1.5 to UML 2.0. Flock also appears in [36], where

it is compared to COPE, amongst others. The tools are compared by first applying

them on an example migration of a Petri Nets metamodel. Then they are applied to the

larger example of evolution of the GMF metamodel. It shows both COPE and Epsilon

Flock can deal with the complex evolution of large metamodels.

Transformation: As for the two papers that introduce methods for transformation

migration, they both clarify their solutions by presenting toy examples.

In [16] an example transformation is described by a number of ATL rules. The transfor-

mation has as its domain an exam language which describes an exam by a list of questions

and as its image an MVC language. When a metamodel adaptation is performed, the

transformation is migrated by a higher-order transformation. Missing semantic infor-

mation may need to be provided manually by the developer.

In [23] the MCL is used to migrate transformations. A case study is presented for the

domain of hierarchical signal flows, which are mapped onto an actor-based language

without hierarchy by a transformation. The domain metamodel is evolved and trans-

formation instances co-evolved by specifying a mapping in MCL. Adaptations that can

be automatically mapped to model migrations are generated and missing semantic in-

formation should be provided by the developer where necessary.

Both: In [31] both model and interpreter evolution is discussed. An architecture is

presented which should be able to migrate models and interpeters starting from a meta-

model evolution specification. A few example metamodel adaptations are presented

together with their remedial actions in models and interpreters. In all of the cases, a

trivial search/replace algorithm is sufficient to migrate these instances.
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In [10] an example language is used throughout the paper. This DSL is used to specify

rail road networks, which are mapped onto Petri Nets by a transformation which at-

taches semantics to the constructed models. The language is used to clarify concepts

introduced in the paper and show limitations of transformation migration (which is

called the projection problem). An example evolution is performed on the metamodel of

the language whereby a migration pipeline is built for the evolution of instance models

and transformations created using the initial version of the language. In the evolu-

tion scenario, only a few operations are performed on the metamodel and as such it is

classified as a toy example.

2.3 Conclusion

This paper has discussed the currently available literature on metamodel, model and

transformation co-evolution using several criteria: change classification and support,

migration support, automatibility and completeness, intention preservation and tool

support. Then, these criteria were combined into a number of matrices which lead to

directions for future work in this area. The following was concluded:

• Additional research is required to construct tools which support transformation

migration and tools which support both model and transformation migration.

• Validation studies are needed to test the correct functioning of tools that (semi-

)automatically migrate instance models or transformations through the construc-

tion of a difference model, as these tools have not been tested on industrial-sized

projects.

• Full fledged examples for solutions that migrate transformations or migrate both

models and transformations have to be presented. Currently, no large case studies

have been performed that validate these solutions.

• The ability to support intention preservation and continuity has to be further

investigated in future tool implementations.

• A standard case study should be created which can be used to test the functionality

of a proposed approach. This case study should include a complex metamodel

evolution scenario which consists of all possible types of changes.
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• It is not possible to construct a fully automatic solution for co-evolving metamod-

els, models and transformations due to the fact that the intention of the language

developer has to be captured in some way. Researchers should focus on semi-

automatic methods instead.

Further research into these fields should increase the general level of understanding of

the subject and lead to full support of the co-evolution of metamodels and their related

artefacts, allowing the adoption of MDE as a mainstream software development method.



Chapter 3

Running Example - The TrainSim

Modelling Language

In this chapter, the TrainSim modelling language is introduced. It will be used as a

running example throughout the rest of the chapters, to demonstrate the techniques for

modelling language evolution. The example has been adopted from [10], where Meyers

and Vangheluwe use it to introduce their framework for modelling language evolution.

We build upon their work and use parts of their proposed framework as a basis for our

research.

3.1 The TrainSim Modelling Language

The TrainSim modelling language is used to model railroad networks consisting of trains

and rail segments. A rail segment can either be a simple rail, or a split, which has one

TrainPlaceTrain

Rail Split

2

*

0..1
0..1

*

1

(a)

Place

- tokens: int

Transition

*

*

*

*

(b)

Figure 3.1: The metamodels used in defining the TrainSim modelling language: (a)
shows the TrainSim metamodel and (b) shows the PetriNet metamodel.
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incoming rail and two outgoing rails. A train can occupy a rail segment. The metamodel

of this language is shown in Figure 3.1(a).

The TrainSim metamodel defines the language’s abstract syntax (i.e., the concepts of

the language) and its static semantics (i.e., the valid combinations of the language’s

concepts). Attaching semantics to the modelling language is done by defining model

transformations which can either be endogenous or exogenous, as explained in Chap-

ter 1. In the example, the latter approach is chosen, and a transformation is developed

which maps TrainSim models onto PetriNet [8] models. A PetriNet model consists of

places which contain tokens and transitions between these places. The metamodel of

the PetriNet language is shown in Figure 3.1(b). PetriNets have well-defined dynamic

semantics and are used to prove safeness and deadlock properties or simulate the be-

haviour of the system. As such, the semantics of a TrainSim model are defined by

the semantics of the PetriNet model resulting from applying the TrainSim-to-PetriNet

transformation. All properties of the PetriNet model are also properties of the original

TrainSim model (i.e., if the PetriNet model is safe, the TrainSim model is safe). In other

words, the PetriNet language is the semantic domain of the TrainSim language.

In Figure 3.2, an example TrainSim model is shown, together with its semantic mapping

onto PetriNets. Figure 3.2(a) is a graphical representation of the model, containing a

small railroad network. Figure 3.2(b) shows the definition of the transformation that

transforms TrainSim models into PetriNet models, given in rules. A rule consists of a

Left-Hand-Side (LHS), which contains the pattern that is to be matched in the source

model, a Right-Hand Side (RHS), which contains the resulting pattern in the target

model, and zero or more Negative-Application Conditions (NACs), which contain for-

bidden patterns in the source graph. Once a rule matches its LHS and none of its NACs

in the source model, it creates the pattern contained in its RHS in the target model.

The rules are executed according to a scheduling strategy. In the example, rules are

executed according to their priority, where rules at the top have highest priority, and

rules on the bottom have lowest priority. As an example, the topmost rule states that a

rail which does not have a train on it is transformed into two PetriNet places and two

PetriNet transitions. The place with label free contains a token when the rail is free,

and the place with label rail contains a token when there is a train on the rail.

For brevity reasons, only the rules mapping the individual TrainSim structures on
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Figure 3.2: (a) An example TrainSim model, (b) The TrainSim-to-PetriNet transfor-
mation (semantic mapping), in the form of rules, (c) The resulting PetriNet model.

PetriNet structures are shown. The PetriNet which is the result of applying the se-

mantic mapping transformation on the model of Figure 3.2(a) is shown in Figure 3.2(c).

There, we see that the individual PetriNet structures are connected by their transitions.

The rules which create these connections are not shown in Figure 3.2(b), although they

are part of the transformation.

3.2 An Example Evolution Scenario

In the development process of the TrainSim language, adaptations have to be made to

answer to the demands of users, developers and domain experts and to react to changes

in the domain, as well as the implementation target domain. In this section, an example

evolution scenario is introduced, in which the metamodel of the TrainSim language is

adapted in a way which breaks the conformance relation between models created in the
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Figure 3.3: The evolved TrainSim metamodel.

initial version of the language and the metamodel of the evolved TrainSim language.

As the TrainSim language is used as the domain language for a transformation (the

TrainSim-to-PetriNet transformation), that transformation has to be adapted as well.

Refer to Figure 1.2(b) for a general overview of domain metamodel evolution.

Figure 3.3 shows the evolved metamodel. Below, all adaptations made are listed and cat-

egorized into non-breaking, breaking and resolvable and breaking, unresolvable changes,

as proposed in [12].

• Non-Breaking Changes

– Addition of the RailStation class as a subclass of the Rail class.

• Breaking, Resolvable Changes

– Renaming of the Split class to Junction.

• Breaking, Unresolvable Changes

– Changing the cardinality of the relation between Train and TrainPlace: now,

every train needs to be on a train place.

– Splitting the relation between Junction and TrainPlace into two relations: a

’left’ and ’right’ relation.

– Addition of the length attribute in the Rail class. Note that for this change,

instance models can be migrated automatically with the construction of a

migration transformation (which replaces each sequence of n rails by a single

rail with length n), but this transformation has to be constructed manually,

it cannot be automatically generated.
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This classification is only valid for metamodel and model co-evolution. A different clas-

sification has to be made when considering metamodel and transformation co-evolution.

For instance, additive changes can no longer be classified as non-breaking changes: in

[23], Levendovszky et al. introduce the category of fully semantic operations: if we

want the transformation to cover the whole input domain (which, in this case, we want,

because each concept should be mapped onto a concept in the semantic domain), then

a rule has to be added manually to the semantic mapping transformation.

In the remaining chapters, this evolution scenario is developed in the metamodelling

kernel Ark. In Chapter 4, the TrainSim language and the examples given in this chapter

are modelled in Ark. In Chapter 5, we delve deeper into the modelling of transformations,

and in particular, we develop the techniques needed to develop transformations in Ark.

In Chapter 6, the evolution scenario presented in this chapter is developed in Ark, using

the techniques introduced in Chapter 4 and Chapter 5.



Chapter 4

Metamodelling in Ark

In this chapter, we will introduce the metamodelling and modelling facilities of Ark, the

metamodelling kernel used throughout this thesis. In Section 4.1, Ark is introduced. In

Section 4.2, we explain the concept of the metaverse, which is a central repository of

modelling artefacts. In Section 4.3, the example TrainSim language, introduced in the

previous chapter, is metamodelled in Ark. In Section 4.4, the semantics of the ArkM3

action language are discussed. In Section 4.5, we explain how each ArkM3 structure is

physically represented. Lastly, Section 4.6 explains how ArkM3 structures are serialised.

4.1 Ark, the Metamodelling Kernel for Domain Specific

Modelling

AToMPM, A Tool for Multi-Paradigm Modelling, is currently under development in

the MSDL research group. It is the successor of AToM3, A Tool for Multi-paradigm

and Meta-Modelling [43]. For AToMPM, the new metamodelling kernel Ark (AToMPM

Reusable Kernel) was developed [44]. The kernel allows to model all aspects of an MDE

system, from metamodels, to models and transformations, to action and constraint code

which is contained in these models. This is a key feature of the kernel: every aspect

of a modelling system is explicitly modelled. This makes it possible to design uniform

methods for transforming all elements of a modelling system, and ultimately to support

evolution of modelling artefacts using model transformation. The metamodel of Ark,

ArkM3 (AToMPM Reusable Kernel Meta-Meta-Model) serves as the metametamodel,

41
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ArkM3 MetamodelM3

Metamodel

<<conforms to>>

M2

Model

<<conforms to>>

M1

<<conforms to>>

Figure 4.1: The metamodelling structure of Ark.

which the metamodels of all languages developed in AToMPM conform to. It is on the

M3 level in the OMG/MOF standard [45].

In Figure 4.1, the metamodelling structure of Ark is shown. The ArkM3 metamodel is

on the M3 level, and conforms to itself. Metamodels of modelling languages created in

Ark conform to the ArkM3 metamodel. Models created in a language created in Ark

conform to the metamodel of that language.

4.2 The Metaverse, and CRUD Operations

The metaverse is the collection of all modelling artefacts (metamodels, models, transfor-

mations, actions, . . . ) which have been created by modellers, developers and users. It

includes every view and version of these elements, and as everything of interest (design

documents, requirements, tests, ...) is explicitly modelled using the appropriate formal-

ism(s) at the right level of abstraction, the metaverse literally covers every aspect of an

MDE system. It is unbounded (i.e., it can contain a virtually infinite amount of MDE

systems, including all versions of these systems) and accessible at all times.

Figure 4.2 is a visual representation of the metaverse. A central aspect of the metaverse

is its support for Create, Read, Update and Delete (CRUD) operations. By using these

four basic operations, a modeller can manipulate the metaverse in different ways:

• Create: Creates an element in a specified location. To create an element, we

need to know what kind of element it is (a package, a type, an instance of a type,

...), what the type of the element is (either a type defined in ArkM3 or a user-

defined type), the location where the element is to be created and any parameters

specific to the kind of element we are creating (for instance, the two endpoints of
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Figure 4.2: The conceptual metaverse.

an association instance). By creating an element, the correct ArkM3 elements are

instantiated in the metaverse and they are directly accessible by other operations.

• Read: Obtain a reference to a previously created element. To read an element,

it is sufficient to know its location. Once a reference to an element is obtained, it

can be manipulated through other operations.

• Update: Update any meta-property of an element.

• Delete: An element can be deleted from a specified location. Once the element is

deleted, it is no longer possible to obtain a reference to it.

A CRUD operation is currently received and executed immediately by the metaverse.

A CRUD operation is irreversible and there is no logging of operations implemented.

Future work consists of implementing an event-based approach to CRUD operations.

Then, a CRUD operation is received by the metaverse and stored as an event. A

number of such CRUD events can form an event trace, which can be serialised to disk,

or duplicated and re-executed on another machine. This method of grouping events

into event traces and saving then eventually makes it possible to support logging and

rollbacking of operations.
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From the modeller’s point of view, all elements in the metaverse are directly accessible by

referencing its location. For instance, if a modeller wants to create a model conforming

to a metamodel, he needs to know the location of the metamodel. There is no need for

an explicit import statement, as everything is available in the metaverse from the point

it is defined by referencing its location.

formalisms.ExampleLanguage.A

models.ExampleLanguage.a

models.ExampleLanguage.a.attr

Listing 4.1: Paths in Ark.

In Listing 4.1, three example paths are shown. A path is used to navigate through the

package structure of the metaverse. For instance, the path on line 1 refers to the class A

found in the package ExampleLanguage, which in its turn can be found in the top-level

package formalisms. On line 2, a path is shown that refers to the instance a in the

ExampleLanguage package, which is located in the models package. Lastly, on line 3, a

reference is made to the attribute attr of the a instance. In this way, we can navigate

the package, class, and property structure of the metaverse.

formalisms.ExampleLanguage.A a

Listing 4.2: An example instantiation of a class in A.

When a path is used to refer to an element in the metaverse, a reference is constructed

internally, containing the string representation of the path. Only when the element

referred to by the path is needed, is it read from the metaverse to obtain the actual

element referenced by the path. This is a form of lazy evaluation. For instance, in

Listing 4.2, class A is instantiated, and the instance is called a. Behind the scenes, the

instance a only contains a reference to its type, and that reference only contains the

path to the class A. On the moment an operation is executed on a that requires its type

to be accessed (for instance, a get type operation), the kernel obtains a reference to that

type. This is a useful feature, as elements may dynamically be adapted. In this way,

always the most recent version of the element referred to by a path is obtained.
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Package MM

Package M

conforms_to ? 

   => Y/N

Package M'
conforms_to ? 

   => Y/N

Figure 4.3: Conformance checking in Ark.

4.3 Metamodels and Models

Central to any MDE system are metamodels, which describe the concepts of a modelling

language and the relations between them, and models, conforming to the metamodels

of the language they were created in. In Ark, the ”conforms-to”-relation is not enforced

by the kernel. In other words, it is possible to create non-conforming models. Allowing

non-conforming models has a number of advantages. First, it allows the modeller to

incrementally build a model, saving intermediate (possibly non-conforming) versions of

the model. Second, it allows the loading of models which no longer conform to their

metamodel, which is necessary when the metamodel of a language evolves and the model

is migrated at a later point in time.

Metamodels and models are represented in Ark as a package. The package contains

all elements (classes, associations and properties) of the metamodel or model. In the

case of a metamodel, it contains all definitions of concepts in the defined modelling

language and their relations. In the case of models, it contains instances of the concepts

and relations in the metamodel of the language in which the model is created. As the

conformance relation is not enforced at creation time, it will be possible (in the future)

to check algorithmically whether one package (the model’s package) conforms to another

package (the metamodel’s package). This is visually represented in Figure 4.3. Note that

the check can be performed on any two packages: this enables a model to also act as a

metamodel (in the example shown in the figure, the package M could both conform to

package MM and be a metamodel, to which package M’ conforms).

1 package formalisms.trainsim

2 package trainsimMM

3 class Train

4

5 abstract class TrainPlace

6 class Rail(TrainPlace)
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7 class Split(TrainPlace)

8

9 association T on TP

10 t: from Train<0..1>

11 tp: to TrainPlace<0..1>

12

13 association R to TP

14 r: from Rail<0..∗>

15 tp: to TrainPlace<1..1>

16

17 association S to TP

18 s: from Split<0..∗>

19 tp: to TrainPlace<2..2>

Listing 4.3: The TrainSim metamodel in the textual syntax of Ark.

At this point in time, (meta)models in Ark are specified using a textual syntax [46].

In Section 3.1, we introduced the TrainSim modelling language. Listing 4.3 shows the

TrainSim metamodel, modelled in the textual syntax of Ark. The location of the meta-

model is the package with path formalisms.trainsim.trainsimMM, as defined on

lines 1-2. In that package, the concepts of the language (Train, TrainPlace, Rail, and

Split) are modelled as classes (lines 3-7). The relations between classes are modelled

as associations (lines 9-19). As the metamodel is an instance of (conforms to) the

metametamodel ArkM3, constructing a metamodel is achieved by instantiating concepts

of that metametamodel: classes, associations and properties.

1 package models.trainsim

2 package example

3 formalisms.trainsim.trainsimMM.Rail r1

4 formalisms.trainsim.trainsimMM.Rail r2

5 formalisms.trainsim.trainsimMM.Rail r3

6 formalisms.trainsim.trainsimMM.Rail r4

7

8 formalisms.trainsim.trainsimMM.Split s1

9
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10 formalisms.trainsim.trainsimMM.Train t1

11 formalisms.trainsim.trainsimMM.Train t2

12

13 formalisms.trainsim.trainsimMM.R to TP r1 to r2

14 r = r1

15 tp = r2

16 formalisms.trainsim.trainsimMM.R to TP r2 to r4

17 r = r2

18 tp = r4

19 formalisms.trainsim.trainsimMM.R to TP r3 to r4

20 r = r3

21 tp = r4

22 formalisms.trainsim.trainsimMM.R to TP r4 to s1

23 r = r4

24 tp = s1

25

26 formalisms.trainsim.trainsimMM.S to TP s1 to r1

27 s = s1

28 tp = r1

29 formalisms.trainsim.trainsimMM.S to TP s1 to r2

30 s = s1

31 tp = r2

32

33 formalisms.trainsim.trainsimMM.T on TP t1 on r2

34 t = t1

35 tp = r2

Listing 4.4: An example TrainSim model in the textual syntax of Ark.

In Listing 4.4, the example model which was presented in Section 3.1 (see Figure 3.2(a))

is modelled in the textual syntax of Ark. The location of the model’s package is mod-

els.trainsim.example. As this is a model in the TrainSim language, it contains in-

stances of the concepts defined in the TrainSim metamodel. An instance of a class

defined in a metamodel is created by explicitly referencing the location of the class.
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The main difference between the metamodel shown in Listing 4.3 and the model shown

in Listing 4.4 is that in the metamodel, ArkM3 concepts such as classes and associations

are instantiated, while in the model, concepts from the metamodel are instantiated,

such as Rail and Train. This is to ensure that the model conforms to the metamodel

and the metamodel conforms to ArkM3. The main similarity is that under the hood,

instances of classes and associations are represented in the same way as their types,

which are classes and associations (both classes and their instances are instantiations of

the ArkM3 class Clabject). This makes it possible to build a model conforming to the

model in Listing 4.4, effectively changing the role of the latter to that of a metamodel.

In a model, it is also possible to define constraints and actions on instances, or to define

properties on instances which are not present in their type. It is not, however, possible

to define new cardinalities in instances of associations.

4.4 Action Language Semantics

1 package formalisms.petrinet

2 package petrinetMM

3 class Place

4 int tokens

5

6 constraint t c:

7 return tokens >= 0

8

9 class Transition

10

11 association P to T

12 p: from Place<0..∗>

13 t: to Transition<0..∗>

14

15 association T to P

16 t: from Transition<0..∗>

17 p: to Place<0..∗>

Listing 4.5: The PetriNet metamodel in the textual syntax of Ark.
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Ark is designed in a way which enables every aspect of an MDE system to be modelled

explicitly. It includes a metamodel of an action language, which is used to define actions

and constraints on models and modelling elements. As an example, consider the PetriNet

metamodel shown in Listing 4.5. There, a constraint is defined on the class Place, stating

that a place can only contain a positive amount of tokens at all times. The kernel can

check this constraint when the model is created, edited or transformed. The constraint

itself is metamodelled explicitly and conforms to the ArkM3 metametamodel, which

contains classes such as ReturnStatement, effectively making the constraint a model

itself. This enables instances of the action language (actions and constraints) to be

the subject of structural model transformation, without the modeller resorting to other

methods of transforming action code, such as using regular expressions, which would be

necessary if actions are modelled as a regular string value. The structure of an action

or a constraint is similar to an abstract syntax tree: the textual definition is parsed,

and an abstract syntax tree, consisting of ArkM3 elements, is created from this textual

definition. In Ark, transformations can be developed which match the structure of the

action or constraint and transform it structurally, by creating, deleting or updating the

ArkM3 structures that make up the action or constraint.

1 package formalisms.examples

2 package example function MM

3 class A

4 int val = 0

5

6 {A, int : int} do plus

7 do plus = {A self, int p : int}:

8 return self.val + p

9

10 class B

11 int val = 0

12 {B, A : bool} is valid

13

14 package example function M

15 B b:

16 val = 10
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17 is valid = {B self, A a : bool}:

18 return a.do plus(self.val) > 15

19

20 do computation = {A a, B b : void}:

21 if (b.is valid()):

22 b.val = a.do plus(b.val)

Listing 4.6: Example uses of the action language in Ark.

The action language is used for other purposes as well. It is possible to define functions

(in packages) and methods (in classes, as properties of those classes). In Listing 4.6,

examples uses of the ArkM3 action language are shown.

A method or a function always has to be declared and defined. In class A, a method

called do plus is declared, accepting two parameters (an instance of class A and an

integer), and returning an integer. On line 7 and 8, the function is defined. To define a

function, the parameters are given names and a function body is provided. This function

can be called on every instance of A and will always perform the same actions. In other

words, the function do plus cannot be redefined in instances of class A. It can, however,

be overridden in subclasses of A.

In class B, a function called is valid is declared, but not defined. In this case, instances

of class B are allowed to provide the function definition, which can be seen on line 17

and 18. On line 18, moreover, we see a call to the function do plus on the instance of

class A which is passed as a parameter.

A function’s definition in a package includes its declaration. It can be directly defined, as

can be seen on line 20. The function is accessible from all elements in the metaverse by

referencing its path. The function do computation accepts two parameters and returns

nothing. It calls the previously defined methods on instances of classes A and B.

Methods, functions, actions and constraints written in Ark action language can be ex-

ecuted. The textual definition is parsed and an abstract syntax tree is generated. It is

possible to either interpret the action language, or compile it to, for instance, Python

code. The latter is more optimized than the former, but it has a few challenges to deal

with in the dynamic environment of Ark. As explained before, it is possible to trans-

form action language fragments using model transformations. If a compiled version of
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that fragment exists, it has to be recompiled in order for the transformed version to be

executed instead of the original version. A solution is provided by Ark, by allowing to

remove the compiled version of a fragment written in the Ark action language. During

execution, the kernel will check whether a compiled version is present. If it is, that

version is executed. If it is not, either the fragment is interpreted, or the fragment is

compiled and run.

4.5 Physical Representation of ArkM3 Structures

At the conceptual level, from the modeller’s point of view, ArkM3 consists of all needed

meta-classes to create metamodels, models and other modelling artefacts of an MDE

system. All ArkM3 structures also have a physical representation. This representation

is used for serialisation (see Section 4.6) and can be operated upon by algorithms. The

typed, attributed graph structure Himesis [47] was chosen for the physical representation

of ArkM3 structures. In [48], we describe how each ArkM3 structure is mapped onto a

Himesis structure.

A Himesis graph consists of a number of nodes and edges. Himesis graphs, nodes and

edges all contain attributes, and the value of these attributes can be of any data type.

Every ArkM3 structure has a representation in Himesis, and each ArkM3 element ’knows’

what its physical representation looks like. In essence, the ArkM3 elements form a thin

layer (interface) on top of Himesis structures, while they query and update this struc-

ture through the CRUD operations they receive from the user. Only ArkM3 packages

are Himesis graphs. Other elements, belonging to that package, add their Himesis rep-

resentation (consisting of a number of nodes and/or edges) to the package’s Himesis

graph.

The physical representation of an ArkM3 element contains all meta-information related

to that element. The name and location of the ArkM3 class of the element is stored,

along with all its attributes. This makes it possible to build an ArkM3 structure, starting

from its physical representation in Himesis.

The result is that each modelling artefact created in Ark is a graph structure, consist-

ing of typed, attributed nodes and edges. This makes it possible to develop efficient
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algorithms that perform graph matching and graph rewriting, which is required for the

efficient execution of transformations. This will be further explained in Chapter 5.

4.6 Serialisation

It is possible to serialise ArkM3 structures, in order to send them to a remote host or save

the state of the metaverse at any point in time. The serialisation process is not tailored

to ArkM3: the Himesis compilation algorithm is reused. As a result, the serialised

version of an ArkM3 structure is its physical representation in Himesis, compiled to a

file. The serialisation process is defined in more detail in [48]. In short, this is the

serialisation procedure, followed by the de-serialisation procedure:

1. The Himesis serialisation algorithm is capable of serialising Himesis graphs. As

only ArkM3 packages are represented physically as a Himesis graph, only packages

can be serialised. When a serialisation request is received, the package delegates

the call to its Himesis representation. The graph, containing all nodes and edges

representing the elements in the package, is compiled to a file.

2. The file can be stored on an external device as a backup, or sent to a remote

machine.

3. When the user wants to de-serialise the file, the ArkM3 structure represented by

the serialised Himesis graph has to be rebuilt. The de-serialisation process iterates

over all the nodes of the graph and builds the Himesis classes which are represented

by these nodes and edges. By using the meta-information stored in the nodes and

edges of the Himesis graph, it is able to rebuild the correct ArkM3 structure.
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Developing Model

Transformations in Ark

Model transformations are called the heart and soul of MDE systems [49]. They have

different purposes and uses in an MDE system, as explained in [7]. They are used,

amongst others, for model refactoring, refinement, simulation and code synthesis. In

this chapter, we explain how model-to-model transformations, either endogenous (the

source and target model are the same) or exogenous (the source and target model differ)

are developed in Ark. The approach presented here supports both types of transforma-

tion, but we focus on exogenous model transformations. This chapter is organized as

follows. Section 5.1 explains how to explicitly model rule-based model-to-model trans-

formations, meaning that transformations can be regarded as a special model, modelled

in a domain-specific modelling (transformation) language, whose syntactic structure is

defined in a metamodel. A positive consequence of this approach is that Higher-Order

Transformations (HOTs) are facilitated - how these are modelled is explained in Sec-

tion 5.2. Lastly, Section 5.3 explains how we developed a (naive) graph matching and

rewriting algorithm which is capable of executing a model-to-model transformation. The

algorithm is first developed in Python, and later in the ArkM3 action language.

53



Chapter 5. Developing Model Transformations in ArkM3 54

LHS RHS
Rule 1

Rule 2

Rule N

... Scheduling

NAC M
...

NAC 1

NAC 2

<<expanded>>

Rule 1
v

x

Rule 2
Rule 3

... Rule Nv

v

Figure 5.1: A rule-based specification of a transformation.

5.1 Explicit Modelling of Rule-Based Model-to-Model Trans-

formations

In [50], Kühne et al. advocate the explicit modelling of transformations. By doing so, the

advantages of metamodelling in general apply to the modelling of transformations as well:

(1) the specification is not hidden in the code of a tool, making it easier to understand

and correct, (2) one can reason about the specifications and the instance models they

describe, (3) one may synthesize modelling environments from the specification and (4)

this makes it easy for users to alter the specification instead of requiring a new tool

release.

Model-to-model transformations can be specified in a number of ways. We focus on

rule-based model-to-model transformations. This is visualized in Figure 5.1. A trans-

formation consists of a number of rules and the order in which they need to be applied

(known also as scheduling). A rule consists of a Left-Hand-Side (LHS), containing the

pattern to be matched in the source model, a Right-Hand-Side (RHS), specifying how

the matched part of the model should be rewritten and zero or more Negative Applica-

tion Conditions (NACs), specifying the patterns that, when found, should stop the rule

from being applied.

Of course, the patterns which appear in the LHS, RHS and NACs are very similar to the

models (created in a particular modelling language) we want to transform. Therefore, we

would like to reuse the metamodels of the domain and image modelling language for these

pattern languages, instead of creating them from scratch. Starting from the original

metamodel of the language creates a highly specialized transformation language, which

only allows patterns specific to the modelling languages involved in the transformation,

including the language-specific (visual) notations. The metamodel of the transformation

language allows for the generation of a syntax-directed editing environment, which is
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more constrained than a textual freehand-editing environment. At this moment, Ark

does not allow for the generation of these editing environments, so all examples are still

developed textually.

We cannot simply copy the metamodels of the source and target languages and use

them as a pattern language, however. Firstly, patterns that appear in LHS, RHS and

NACs are not necessarily well-formed models in the original modelling language. For

instance, in the TrainSim modelling language an instance of the Split class needs exactly

two outgoing associations to two TrainPlaces. However, it may be interesting to have

a pattern which only contains an instance of a Split (as can be seen in Figure 3.2(b),

where one of the rules’ LHS contains only an instance of a Split). In the original

TrainSim language, that is not a well-formed model. This means that the metamodel’s

constraints should be relaxed, in order for such patterns to be specified. Secondly, a

few additions have to be made to the elements of the metamodel. It should be possible

to identify elements across LHS, RHS and NACs: for endogenous transformations, we

may want to update the attribute of an element in a rule, which means that we must

have a way to denote that an element in the LHS corresponds to an element in the

RHS. This is done by augmenting the metamodel by adding labels to the elements of

the pattern metamodel. Thirdly, the data type of model element properties should be

modified to allow the definition of constraints on properties (in precondition patterns)

as well as actions to compute the new value of a property (in postcondition patterns).

These are the three main concepts of RAMification: Relaxation, Augmentation and

Modification. The authors of the paper describe an automatic process which creates a

customized pattern language with minimal effort, starting from the original metamodel

of the language.

1 package formalisms.transformations

2 package transformation

3 abstract class Step

4 bool isStart = False

5

6 class Transformation(Step)

7 string location

8 class Rule(Step)

9 string location
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10 class Exhaust(Step)

11 {string} locations

12 class ExhaustRandom(Step)

13 {string} locations

14

15 association OnFailure

16 from step: from Step<0..1>

17 to step: to Step<1..1>

18

19 association OnNotApplicable

20 from step: from Step<0..1>

21 to step: to Step<1..1>

22

23 association OnSuccess

24 from step: from Step<0..1>

25 to step: to Step<1..1>

Listing 5.1: The transformation metamodel in Ark. Adapted from [51].

We applied this pattern to our example TrainSim language, modelled in Ark. First,

we developed a transformation metamodel which covers the scheduling part of a trans-

formation, shown in Listing 5.1. A transformation consists of a number of Steps. A

step is specified by its location, which is the package in which the step is modelled.

This means that a transformation has explicit references to its steps, but the steps are

modelled independently of the transformation. This encourages reuse of steps in other

transformations. A step can either be another transformation (which means that the

step executes the referenced transformation), a rule, or a set of rules which are exe-

cuted until none of them matches. A difference is made between random and sequential

execution of these rules. Steps are connected to each other by three different relations:

• OnFailure, which signifies that the target Step should be executed when there is a

failure in the source Step (for instance, an exception which prevents the Step from

being executed);
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• OnNotApplicable, which signifies that the target Step should be executed when the

source Step cannot be applied (for instance, there is no match to be found for the

LHS of a rule);

• OnSuccess, which signifies that the target Step should be executed when the source

Step has been successfully executed: i.e., the source model has been rewritten

according to the specifications in the LHS and RHS of a rule.

This allows a modeller to specify complex model transformations as a combination of

rules.

1 package formalisms.transformations

2 package rule

3 abstract class PreConditionPattern

4 {{int: arkm3.object.Clabject}: bool} p constraint

5 abstract class PostConditionPattern

6 {{int: arkm3.object.Clabject}: void} p action

7

8 abstract class PatternElement

9 int pLabel

10 abstract class PreConditionPatternElement(PatternElement)

11 abstract class PostConditionPatternElement(PatternElement)

12

13 abstract association PatternAssociation

14 int pLabel

15 abstract association PreConditionPatternAssociation(PatternAssociation)

16 abstract association PostConditionPatternAssociation(PatternAssociation)

17

18 class NAC(PreConditionPattern)

19 string name

20 class LHS(PreConditionPattern)<1..1>

21 class RHS(PreConditionPattern)<1..1>

22

23 composition PreConditionPatternContents<0..∗>

24 pattern: from PreConditionPattern<1..1>
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25 element: to PreConditionPatternElement<0..∗>

26

27 composition PostConditionPatternContents<0..∗>

28 pattern: from PostConditionPattern<1..1>

29 element: to PostConditionPatternElement<0..∗>

Listing 5.2: The rule metamodel in Ark.

We need to be able to specify rules as well. In Listing 5.2, the rule metamodel as we

modelled it in Ark is shown. There are two types of patterns: PreConditionPatterns

(LHS and NACs) and PostConditionPatterns (RHS).

A precondition pattern has a p constraint attribute, which is a function, receiving a

match object (which is a mapping between pattern labels and the matched elements

in the source model) as parameter and returning a boolean value. In this function, a

global condition is specified which has to be satisfied in order for the pattern to match. A

postcondition pattern has a p action attribute, which specifies the action to be executed

after the LHS has been rewritten according to the RHS pattern.

1 package example

2 package MM

3 class A

4 int test

5

6 package MM Pre

7 class A(formalisms.transformations.rule.PreConditionPatternElement)

8 {{int: arkm3.object.Clabject}: bool} test

9

10 package MM Post

11 class A(formalisms.transformations.rule.PostConditionPatternElement)

12 {{int: arkm3.object.Clabject}: void} test

13

14 package rule:

15 # # # #

16 # LHS #

17 # # # #
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18 formalisms.transformations.rule.LHS lhs

19 p constraint = {{int: arkm3.object.Clabject}: bool}:

20 ((example.MM.A) match[0]).test + ((example.MM.A) match[1]).test > 10

21

22 example.MM Pre.A a0 lhs

23 pLabel = 1

24 example.MM Pre.A a1 lhs

25 pLabel = 2

26

27 formalisms.transformations.rule.PreConditionPatternContents

28 pattern = lhs

29 element = a0 lhs

30

31 formalisms.transformations.rule.PreConditionPatternContents

32 pattern = lhs

33 element = a1 lhs

34

35 # # # #

36 # RHS #

37 # # # #

38 formalisms.transformations.rule.RHS rhs

39 p action = {{int: arkm3.object.Clabject}: bool}:

40 ((example.MM.A) match[0]).test = ((example.MM.A) match[1]).test

41

42 example.MM Post.A a0 rhs

43 pLabel = 1

44 example.MM Post.A a1 rhs

45 pLabel = 2

46

47 formalisms.transformations.rule.PostConditionPatternContents

48 pattern = rhs

49 element = a0 rhs

50
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51 formalisms.transformations.rule.PostConditionPatternContents

52 pattern = rhs

53 element = a1 rhs

Listing 5.3: An example usage of rule constraints and actions.

An example usage of the p constraint and p action functions is shown in Listing 5.3. On

lines 18-20, an LHS object is instantiated and its p constraint property is given a value.

As noted before, the function receives a mapping between the labels of pattern nodes

(i.e., values of the pLabel attribute - refer to the explanation in the next paragraph)

and the matched elements in the host graph as a parameter, and returns a boolean value.

In this case, the constraint checks whether the sum of the values for the property test

of the matched objects is greater than ten. Only if this constraint evaluates to true is

the match valid.

On lines 38-40, an RHS object is instantiated and its p action property is given a value.

This function is executed after the matched elements in the LHS have been replaced by

the pattern in the RHS. In the example, the value of the test property of the object

which is matched with label 2 is assigned to the test property of the object which is

matched with label 1.

The contents of the patterns are PatternElements, which have a pLabel attribute, en-

abling them to be identified across LHS, NACs and RHS patterns. The same goes for

associations. All concepts of the pattern languages subclass either the class PatternEle-

ment or PatternAssociation. Both are connected to their pattern by the associations

PreConditionPatternContents and PostConditionPatternContents. We model the LHS

and NAC classes as subclasses of the PreConditionPattern class, where a name attribute

is added to the NAC class to be able to identify instances when there is more than one

NAC in a rule, and the RHS class as subclass of the PostConditionPattern class.

1 package formalisms.trainsim

2 package trainsimMM Pre

3 class Train(formalisms.transformations.rule.PreConditionPatternElement)

4

5 class TrainPlace(formalisms.transformations.rule.PreConditionPatternElement)

6 class Rail(TrainPlace)

7 class Split(TrainPlace)
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8

9 association T on TP(formalisms.transformations.rule.PreConditionPatternAssociation)

10 t: from Train<0..1>

11 tp: to TrainPlace<0..1>

12

13 association R to TP(formalisms.transformations.rule.PreConditionPatternAssociation)

14 r: from Rail<0..∗>

15 tp: to TrainPlace<1..1>

16

17 association S to TP(formalisms.transformations.rule.PreConditionPatternAssociation)

18 s: from Split<0..∗>

19 tp: to TrainPlace<0..2>

20

21 package trainsimMM Post

22 class Train(formalisms.transformations.rule.PostConditionPatternElement)

23

24 class TrainPlace(formalisms.transformations.rule.PostConditionPatternElement)

25 class Rail(TrainPlace)

26 class Split(TrainPlace)

27

28 association T on TP(formalisms.transformations.rule.PostConditionPatternAssociation)

29 t: from Train<0..1>

30 tp: to TrainPlace<0..1>

31

32 association R to TP(formalisms.transformations.rule.PostConditionPatternAssociation)

33 r: from Rail<0..∗>

34 tp: to TrainPlace<1..1>

35

36 association S to TP(formalisms.transformations.rule.PostConditionPatternAssociation)

37 s: from Split<0..∗>

38 tp: to TrainPlace<0..2>

Listing 5.4: The RAMified TrainSim metamodel in Ark.
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1 package formalisms.petrinet

2 package petrinetMM Pre

3 class Place(formalisms.transformations.rule.PreConditionPatternElement)

4 {{int: arkm3.object.Clabject}: bool} tokens

5

6 class Transition(formalisms.transformations.rule.PreConditionPatternElement)

7

8 association P to T(formalisms.transformations.rule.PreConditionPatternAssociation)

9 p: from Place<0..∗>

10 t: to Transition<0..∗>

11

12 association T to P(formalisms.transformations.rule.PreConditionPatternAssociation)

13 t: from Transition<0..∗>

14 p: to Place<0..∗>

15

16 package petrinetMM Post

17 class Place(formalisms.transformations.rule.PostConditionPatternElement)

18 {{int: arkm3.object.Clabject}: void} tokens

19

20 class Transition(formalisms.transformations.rule.PostConditionPatternElement)

21

22 association P to T(formalisms.transformations.rule.PostConditionPatternAssociation)

23 p: from Place<0..∗>

24 t: to Transition<0..∗>

25

26 association T to P(formalisms.transformations.rule.PostConditionPatternAssociation)

27 t: from Transition<0..∗>

28 p: to Place<0..∗>

Listing 5.5: The RAMified PetriNet metamodel in Ark.

The transformation metamodel and rule metamodel are reusable metamodels: the trans-

formation metamodel defines a general transformation language, which is used to sched-

ule rules and other transformations. The rule metamodel is reused in the RAMification
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process. For each input and output language of a transformation, a RAMified version

has to be constructed. In Listing 5.4, the RAMified TrainSim metamodel is shown.

One metamodel, called trainsimMM Pre, defines the precondition pattern language, the

other, trainsimMM Post, the postcondition pattern language. The RAMified PetriNet

metamodel is shown in Listing 5.5. Both metamodels contain exactly the same classes

as the metamodels they originate from, with a few modifications, dictated by the RAM-

ification process:

• Relaxation: Firstly, the TrainPlace class has been made concrete, instead of ab-

stract. This allows the abstract class to appear in patterns. For instance, we

might want to match all train places (Rail and Split instances) in an LHS pattern.

Allowing this abstract class to appear in patterns avoids multiple definitions of the

same rule for each concrete class. Secondly, the lower multiplicity of the S to TP

association’s target train place has been removed. This allows instances of the

Split class to appear in patterns without any outgoing associations.

• Augmentation: Each class in the precondition pattern metamodel subclasses the

PreConditionPatternElement class, and each class in the postcondition pattern

metamodel subclasses the PostConditionPatternElement class. Similarly, associ-

ations subclass PreConditionPatternAssociation or PostConditionPatternAssocia-

tion. This adds the pLabel property to each class and association in the pattern

languages. It also allows the RAMified classes to appear in patterns, as they can

now be connected by the PreConditionPatternContents and PostConditionPat-

ternContents associations of the rule metamodel.

• Modification: The type of all properties of each class and association is changed. In

the PetriNet precondition metamodel, the type of the property tokens is changed

to a function which accepts a match object (which is a mapping between labels and

matched elements in the source model) and returns a boolean value. This allows

to model a condition on the value of the tokens value for each Place instance in

a pattern. In the PetriNet postcondition pattern metamodel, the data type is

similarly changed, but now allows to define an action which computes a new value

for the property.
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While the RAMification process can be fully automatised, we developed the examples in

this thesis by hand. In fact, the RAMification process can be described as a model trans-

formation, which transforms a metamodel (which conforms to the ArkM3 metamodel)

into its RAMified version. This is future work.

The transformation, rule, and RAMified metamodels allow the modeller to specify rules,

containing the necessary patterns, and the scheduling of the rules. The kernel is then

responsible for finding all matching submodels of the input model, as specified in the LHS

and NACs, and rewriting them as specified in the RHS. In Section 5.3, we will develop

a graph matching and rewriting algorithm responsible for executing transformations in

Ark.

As an example, the TrainSim-to-PetriNet transformation (see Figure 3.2(b)) is modelled

in Ark in Listing A.1. On lines 2-8, the scheduling of the transformation is defined using

the Exhaust construct, which executes its rules in the order they are listed. The four rules

which the transformation uses, rail to petrinet, rail train to petrinet, split to petrinet,

and split train to petrinet are modelled in subpackages of the formalisms.trainsim. train-

sim to petrinet package.

5.2 Higher-Order Transformations

In the previous section, we explained how we enabled the explicit modelling of rule-based

model-to-model transformations in Ark. As a result, transformations in Ark are models

themselves, which in turn means they can be transformed. A transformation that has a

transformation model as input and/or output is called a Higher-Order Transformation

(HOT). HOTs are an important part of our proposed solution for modelling language

evolution, as they are used for transformation migration (see Chapter 6). In this section,

we will explore how HOTs are modelled in Ark.

Figure 5.2 shows an example HOT. In that example, we want to transform the LHS of

a rule which contains a PetriNet place (for the PetriNet metamodel, see Figure 3.1(b)).

The LHS of the HOT matches a LHS which contains a PetriNet place. Keep in mind that

the source model we are rewriting is now a pattern model, which contains instances of

concepts of a RAMified metamodel. This means that the properties we are matching are

constraints or actions. In other words, the tokens attribute of the PetriNet place in the
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__pLabel = 1

tokens = {{int: Clabject} match: bool}:

  for stmt in match[2].tokens.get_statements():

    if stmt.isinstance('GreaterThan'):

       return True

__pLabel = 2

__p__pLabel = {{int: Clabject} match: bool}:

  return True

__pLabel = 1

tokens = {{int: Clabject} match: void}:

  statements = match[2].tokens.get_statements()

  for stmt in statements:

    if stmt.isinstance('GreaterThan'):

       statements.replace(stmt, LessThan())

__pLabel = 2

__p__pLabel = {{int: Clabject} match: void}:

  return

Figure 5.2: An example of a HOT.

HOT is a constraint over a constraint. The constraint matches those constraints which

contain a ’greater than’ statement. It iterates over all statements of the constraint,

and when it finds an instance of the ArkM3 class GreaterThan, it returns true. The

difference between pLabel and p pLabel is explained later in this section. Basically,

the pLabel attribute is the label of the element in the pattern, and the p pLabel

attribute is a constraint over the pLabel attribute of the element in the source pattern

we are rewriting. The RHS of the HOT rewrites the tokens constraint, by replacing the

GreaterThan instance by a LessThan instance.

From the example, we can see what the necessary elements are for modelling a HOT.

First, it should be possible for transformations and rule elements to appear in patterns.

This means that, just as in the previous section, the transformation and rule metamodel

have to be RAMified. Second, while the metamodels of the PetriNet and TrainSim

languages have been RAMified already, resulting in the metamodels of the pattern lan-

guages used in the definition of rules and transformations, these metamodels have to be

RAMified a second time. It is possible to apply the RAMification process a second time,

because the RAMified metamodel is a metamodel conforming to the ArkM3 metamodel.

This allows for the definition of actions and constraints on the actions and constraints

which are defined in the patterns of the rule which is being transformed by the HOT.

1 package formalisms.transformations

2 package transformation Pre

3 class Step(formalisms.transformations.rule.PreConditionPatternElement)

4 {{int: Clabject}: bool} isStart

5

6 class Transformation(Step)

7 {{int: Clabject}: bool} location
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8 class Rule(Step)

9 {{int: Clabject}: bool} location

10 class Exhaust(Step)

11 {{int: Clabject}: bool} locations

12 class ExhaustRandom(Step)

13 {{int: Clabject}: bool} locations

14

15 association OnFailure(formalisms.transformations.rule.PreConditionPatternAssociation)

16 from step: from Step<0..1>

17 to step: to Step<0..1>

18

19 association OnNotApplicable(formalisms.transformations.rule.PreConditionPatternAssociation)

20 from step: from Step<0..1>

21 to step: to Step<0..1>

22

23 association OnSuccess(formalisms.transformations.rule.PreConditionPatternAssociation)

24 from step: from Step<0..1>

25 to step: to Step<0..1>

26

27 package transformation Post

28 class Step(formalisms.transformations.rule.PostConditionPatternElement)

29 {{int: Clabject}: void} isStart

30

31 class Transformation(Step)

32 {{int: Clabject}: void} location

33 class Rule(Step)

34 {{int: Clabject}: void} location

35 class Exhaust(Step)

36 {{int: Clabject}: void} locations

37 class ExhaustRandom(Step)

38 {{int: Clabject}: void} locations

39

40 association OnFailure(formalisms.transformations.rule.PostConditionPatternAssociation)
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41 from step: from Step<0..1>

42 to step: to Step<0..1>

43

44 association OnNotApplicable(formalisms.transformations.rule.PostConditionPatternAssociation)

45 from step: from Step<0..1>

46 to step: to Step<0..1>

47

48 association OnSuccess(formalisms.transformations.rule.PostConditionPatternAssociation)

49 from step: from Step<0..1>

50 to step: to Step<0..1>

Listing 5.6: The RAMified Transformation metamodel in Ark.

The RAMified transformation metamodel is shown in Listing 5.6. Exactly the same

relax, augment and modify operations as on the TrainSim and PetriNet metamodels

have been performed, as described in the previous section.

1 package formalisms.transformations

2 package rule Pre

3 class PreConditionPattern(formalisms.transformations.rule.PreConditionPatternElement)

4 {{int: Clabject}: bool} p constraint

5 class PostConditionPattern(formalisms.transformations.rule.PreConditionPatternElement)

6 {{int: Clabject}: bool} p action

7

8 class PatternElement(formalisms.transformations.rule.PreConditionPatternElement)

9 {{int: Clabject}: bool} p pLabel

10 class PreConditionPatternElement(PatternElement)

11 class PostConditionPatternElement(PatternElement)

12

13 association PatternAssociation(formalisms.transformations.rule.PreConditionPatternElement)

14 {{int: Clabject}: bool} p pLabel

15 association PreConditionPatternAssociation(PatternAssociation)

16 association PostConditionPatternAssociation(PatternAssociation)

17

18 class NAC(PreConditionPattern)
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19 {{int: Clabject}: bool} name

20 class LHS(PreConditionPattern)

21 class RHS(PreConditionPattern)

22

23 composition PreConditionPatternContents<0..∗>(formalisms.transformations.rule.

PreConditionPatternAssociation)

24 pattern: from PreConditionPattern<1..1>

25 element: to PreConditionPatternElement<0..∗>

26

27 composition PostConditionPatternContents<0..∗>(formalisms.transformations.rule.

PreConditionPatternAssociation)

28 pattern: from PostConditionPattern<1..1>

29 element: to PostConditionPatternElement<0..∗>

30

31 package rule Post

32 class PreConditionPattern(formalisms.transformations.rule.PostConditionPatternElement)

33 {{int: Clabject}: void} p constraint

34 class PostConditionPattern(formalisms.transformations.rule.PostConditionPatternElement)

35 {{int: Clabject}: void} p action

36

37 class PatternElement(formalisms.transformations.rule.PostConditionPatternElement)

38 {{int: Clabject}: void} p pLabel

39 class PreConditionPatternElement(PatternElement)

40 class PostConditionPatternElement(PatternElement)

41

42 association PatternAssociation(formalisms.transformations.rule.PostConditionPatternElement)

43 {{int: Clabject}: void} p pLabel

44 association PreConditionPatternAssociation(PatternAssociation)

45 association PostConditionPatternAssociation(PatternAssociation)

46

47 class NAC(PreConditionPattern)

48 {{int: Clabject}: void} name

49 class LHS(PreConditionPattern)
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50 class RHS(PreConditionPattern)

51

52 composition PreConditionPatternContents<0..∗>(formalisms.transformations.rule.

PreConditionPatternAssociation)

53 pattern: from PreConditionPattern<1..1>

54 element: to PreConditionPatternElement<0..∗>

55

56 composition PostConditionPatternContents<0..∗>(formalisms.transformations.rule.

PreConditionPatternAssociation)

57 pattern: from PostConditionPattern<1..1>

58 element: to PostConditionPatternElement<0..∗>

Listing 5.7: The RAMified Rule metamodel in Ark.

Listing 5.7 shows the RAMified rule metamodel. Again, the metamodel is relaxed, aug-

mented and modified according to the RAMification process. However, there is one

exception. In each pattern, we want to be able to identify all elements by their pLabel

attribute. This includes precondition patterns (LHS, NACs) and postcondition patterns

(RHS) and their contents. These contents are RAMified PatternElements,and they al-

ready have a pLabel attribute. In the RAMification process, we would normally modify

the data type of this attribute to allow constraints and actions to be defined and we

would leave the name of the property intact. In the rule metamodel, we cannot do that,

as we wouldn’t have a pLabel attribute to identify the elements in the patterns of a

HOT. That is why we make an exception. The original pLabel attribute of the Patter-

nElement class is renamed to p pLabel in the RAMified metamodel. This resolves any

ambiguities between the original and the RAMified version: the p pLabel attribute

is used to specify constraints and actions on the pLabel attribute of elements in the

host model. This allows to RAMify a metamodel a virtually infinite amount of times.

RAMifying a metamodel a third time allows to transform models of HOTs. The classes

and associations of this metamodel would contain at least the attributes p p pLabel,

p pLabel, and pLabel. The kernel will need to be aware of this, as it needs to know

that a constraint or action with the name p pLabel is actually a constraint on the

pLabel attribute of the element in the host model.

1 package formalisms.petrinet
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2 package petrinetMM Pre Pre

3 class Place(formalisms.transformations.rule Pre.PreConditionPatternElement)

4 {{int: arkm3.object.Clabject}: bool} tokens

5

6 class Transition(formalisms.transformations.rule Pre.PreConditionPatternElement)

7

8 association P to T(formalisms.transformations.rule Pre.PreConditionPatternAssociation)

9 p: from Place<0..∗>

10 t: to Transition<0..∗>

11

12 association T to P(formalisms.transformations.rule Pre.PreConditionPatternAssociation)

13 t: from Transition<0..∗>

14 p: to Place<0..∗>

15

16 package petrinetMM Pre Post

17 class Place(formalisms.transformations.rule Post.PreConditionPatternElement)

18 {{int: arkm3.object.Clabject}: void} tokens

19

20 class Transition(formalisms.transformations.rule Post.PreConditionPatternElement)

21

22 association P to T(formalisms.transformations.rule Post.PreConditionPatternAssociation)

23 p: from Place<0..∗>

24 t: to Transition<0..∗>

25

26 association T to P(formalisms.transformations.rule Post.PreConditionPatternAssociation)

27 t: from Transition<0..∗>

28 p: to Place<0..∗>

29

30 package petrinetMM Post Pre

31 class Place(formalisms.transformations.rule Pre.PostConditionPatternElement)

32 {{int: arkm3.object.Clabject}: bool} tokens

33

34 class Transition(formalisms.transformations.rule Pre.PostConditionPatternElement)
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35

36 association P to T(formalisms.transformations.rule Pre.PostConditionPatternAssociation)

37 p: from Place<0..∗>

38 t: to Transition<0..∗>

39

40 association T to P(formalisms.transformations.rule Pre.PostConditionPatternAssociation)

41 t: from Transition<0..∗>

42 p: to Place<0..∗>

43

44 package petrinetMM Post Post

45 class Place(formalisms.transformations.rule Post.PostConditionPatternElement)

46 {{int: arkm3.object.Clabject}: void} tokens

47

48 class Transition(formalisms.transformations.rule Post.PostConditionPatternElement)

49

50 association P to T(formalisms.transformations.rule Post.PostConditionPatternAssociation)

51 p: from Place<0..∗>

52 t: to Transition<0..∗>

53

54 association T to P(formalisms.transformations.rule Post.PostConditionPatternAssociation)

55 t: from Transition<0..∗>

56 p: to Place<0..∗>

Listing 5.8: The RAMified PetriNet pattern language metamodel

Listing 5.8 shows the four metamodels which are the result of RAMifying the RAMified

metamodel of the PetriNet language. There are four metamodels because we want to

be able to specify four different kinds of patterns in HOTs:

1. Precondition patterns (LHS, NACs) in the precondition patterns (RHS) of the

HOT. The contents of these patterns are instances of the elements in petrinetMM Pre Pre.

2. Precondition patterns in the postcondition patterns of the HOT. The contents of

these patterns are instances of the elements in petrinetMM Pre Post.
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3. Postcondition patterns in the precondition patterns of the HOT. The contents of

these patterns are instances of the elements in petrinetMM Post Pre.

4. Postcondition patterns in the postcondition patterns of the HOT. The contents of

these patterns are instances of the elements in petrinetMM Post Post.

For instance, in the example rule shown in Figure 5.2, a precondition pattern (LHS)

appears in the LHS of the HOT, and that same precondition pattern appears in the

RHS of the HOT.

1 package example.hot

2 package rule

3 # # # #

4 # LHS #

5 # # # #

6 formalisms.transformations.rule.LHS lhs

7

8 formalisms.transformations.rule Pre.LHS lhs lhs

9 pLabel = 1

10

11 formalisms.petrinet.petrinetMM Pre Pre.Place place lhs lhs

12 pLabel = 2

13 p pLabel = {{int: Clabject} match: bool}:

14 return True

15 tokens = {{int: Clabject} match: bool}:

16 for stmt in match[2].tokens.get statements():

17 if stmt.isinstance(’GreaterThan’):

18 return True

19

20 formalisms.transformations.rule Pre.PreConditionPatternContents lhs lhs to place lhs lhs

21 pattern = lhs lhs

22 element = place lhs lhs

23 pLabel = 3

24

25 formalisms.transformations.rule.PreConditionPatternContents lhs to lhs lhs
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26 pattern = lhs

27 element = lhs lhs

28

29 formalisms.transformations.rule.PreConditionPatternContents lhs to place lhs lhs

30 pattern = lhs

31 element = place lhs lhs

32

33 formalisms.transformations.rule.PreConditionPatternContents lhs to lhs lhs to place lhs lhs

34 pattern = lhs

35 element = lhs lhs to place lhs lhs

36

37 # # # #

38 # RHS #

39 # # # #

40 formalisms.transformations.rule.RHS rhs

41

42 formalisms.transformations.rule Post.LHS lhs rhs

43 pLabel = 1

44

45 formalisms.petrinet.petrinetMM Pre Post.Place place lhs rhs

46 pLabel = 2

47 p pLabel = {{int: Clabject} match: bool}:

48 return

49 tokens = {{int: Clabject} match: void}:

50 statements = match[2].tokens.get statements()

51 for stmt in statements:

52 if stmt.isinstance(’GreaterThan’):

53 statements.replace(stmt, LessThan())

54

55 formalisms.transformations.rule Post.PreConditionPatternContents lhs rhs to place lhs rhs

56 pattern = lhs rhs

57 element = place lhs rhs

58 pLabel = 3
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59

60 formalisms.transformations.rule.PostConditionPatternContents rhs to lhs rhs

61 pattern = rhs

62 element = lhs rhs

63

64 formalisms.transformations.rule.PostConditionPatternContents rhs to place lhs rhs

65 pattern = rhs

66 element = place lhs rhs

67

68 formalisms.transformations.rule.PreConditionPatternContents rhs to lhs rhs to place lhs rhs

69 pattern = rhs

70 element = lhs rhs to place lhs rhs

Listing 5.9: The example HOT of Figure 5.2, modelled in Ark.

In Listing 5.9, the example HOT of Figure 5.2 is shown as it is modelled in Ark. The

LHS of the rule is instantiated on line 6. On lines 8-9, the LHS which is part of the

pattern in the LHS of the HOT is instantiated. Note that the metamodel of this instance

is rule Pre, the RAMified version of the rule metamodel. On lines 11-18, the PetriNet

place instance is instantiated. Its metamodel is the twice RAMified PetriNet metamodel,

called petrinetMM Pre Pre. Similarly, the RHS of the HOT is instantiated on line 40.

The LHS pattern instance of the RHS is instantiated on lines 42-43. Its metamodel is

now rule Post, which contains the RAMified classes of the rule metamodel that appear

in postcondition patterns. Lastly, the PetriNet place is instantiated on lines 45-53.

5.3 Graph Matching Algorithm

The rule and transformation metamodels developed in the previous section, together

with the semi-automatic RAMification process, allow the explicit modelling of rule-

based model transformations. In this section, we will develop a graph matching and

rewriting algorithm which is capable of executing such a transformation specification.

The algorithm is then added to Ark, allowing the execution of transformation models

on host models.

1 match_and_rewrite(lhs , nacs , host_graph , rhs):
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2 for m in match(lhs , host_graph):

3 valid_match = True

4 for nac in nacs:

5 if match(nac , host_graph , initial_match = m):

6 valid_match = False

7

8 if valid_match:

9 rewrite(m, host_graph , rhs)

Listing 5.10: The extend function of the graph matching algorithm.

The high-level match-and-rewrite algorithm’s pseudocode is shown in Listing 5.10. The

algorithm iterates over all matches found for the LHS in the host model. Then, for each

match, it checks whether any NAC matches. The match for the LHS is used as an initial

match, which means that all nodes in the NAC with a label found in the LHS are bound

to the node in the host graph found in the match of the LHS. As an example, consider

the first rule in Figure 3.2(b). The algorithm will first find a match for the rail found

in the LHS. Assume that r1 in the model of Figure 3.2(a) is matched. Then, we pass

this match to the algorithm when we match the NAC, which means that the rail of the

NAC is also bound to r1. The algorithm then continues finding a match for the NAC,

trying to find a train instance which is connected to that rail (which is will fail to do,

as only r2 has a train instance connected to it).

The rest of this section is concerned with developing the matching and rewriting algo-

rithms.

The rewriting algorithm is concerned with creating, deleting and updating elements in

the host model, according to the RHS pattern. The algorithm iterates over all nodes of

the RHS and makes a choice between one of the following actions:

• If a node with the same pLabel is found in the LHS, the properties of the matched

node in the host graph are updated by executing the property actions of the RHS

node.

• If no node with the same pLabel is found in the LHS, a new element is created

in the host graph. The type of the newly created element is the non-RAMified

version of the type of the RHS node. All properties are initialized to their default

values, after which they are updated by executing the property actions of the RHS

node.
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• All matched LHS elements who do not have a corresponding element (with the

same pLabel) in the RHS are deleted from the host graph.

1 extend(state):

2 if mappingIsComplete(state) then

3 storeMatch(state)

4 end if

5 for p, s in suggestMapping(state) do

6 if areCompatible(p, s) then

7 if areSyntacticallyFeasible(p, s) then

8 if areSemanticallyFeasible(p, s) then

9 state.storeMapping(p, s)

10 extend(state)

11 state.undoMapping(p, s)

12 end if

13 end if

14 end if

15 end for

Listing 5.11: The extend function of the graph matching algorithm.

The matching algorithm is a naive combination of the VF2 [52] and Ulmann [53] al-

gorithms, as proposed in [51]. Central to the algorithm is the class State, which keeps

track of where the algorithm is in its execution. Basically, the algorithm considers all

<PatternNode, SourceNode> pairs and stores the mapping if it is feasible. It continues

storing feasible mappings until a complete match is found, meaning that each pattern

node is matched with a source node. A mapping of a pattern node and a source element

is feasible if:

1. They are compatible, meaning they have the same number of incoming and out-

going associations;

2. They are syntactically feasible: the topology of the current mapping corresponds

to a sub-graph of the pattern graph;

3. They are semantically feasible: the type of the pattern element corresponds to

that of the source element and the constraints imposed by the pattern element on

the properties of the source element are satisfied.

These checks are performed by the extend function, shown in Listing 5.11. The function

iterates through all suggested mappings of <PatternNode, SourceNode> pairs. If a
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feasible mapping is found (meaning that a morphism is found between an element of

the source model and an element of the pattern model), the mapping is added to the

current state. Once the match is complete, meaning that all pattern nodes have been

mapped on a source node, the match is stored, and the algorithm attempts to construct

a new complete match. In this way, all combinations of source and pattern nodes are

examined and all matches for the pattern are found.

The goal of this section is to develop the graph matching algorithm in the ArkM3

action language. The algorithm is a complex benchmark to assess the action language’s

expressiveness, proving that the language can be used to model complex constraints

and actions. Furthermore, the algorithm is used to demonstrate the executability of

the modelled transformations. This is a necessary precondition for the evolution of

modelling languages using model transformations, as explained in the next chapter.

We developed the algorithm in three steps. First, we developed the algorithm in Python,

on a simple, self-made data structure. This initial step validated the algorithm and

proved it was applicable on representative match/rewrite examples. We do not elaborate

further on this initial version of the algorithm. Next, we adapted the algorithm in

Python to work on the concrete representation of ArkM3 data structures, which are

Python classes (see Section 5.3.1). Lastly, we developed the algorithm in ArkM3 action

language (see Section 5.3.2).

5.3.1 In Python, on ArkM3 Data Structures

In this section, we will explain how the graph matching and rewriting algorithm was

developed in Python. The algorithm is capable of rewriting a host model created in

Ark, following the specifications of a transformation model created in Ark. Refer to

Appendix B for the full ArkM3 metamodel, which is an updated version from the one

found in [44]. The algorithm is shown in Listing C.1.

While developing this algorithm, missing functionalities in the ArkM3 classes were iden-

tified. This is a necessary step towards implementing the algorithm in the ArkM3 action

language, as we need to make sure that every function is present and works as expected

in ArkM3.
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In what follows, we list the functionality which is required by the algorithm, that is not

yet present in ArkM3. We then explain how the functionality was added.

1. The algorithm requires a way to check the type of an element. Two type checking

functions are needed: one to check the linguistic type of an element (i.e., answering

the question ’Is this element a Clabject?’ - in the rest of this section referred to

as the ’typeof’ operation), and one to check the ontological type of an element

(i.e., answering the question ’Is this element a PetriNet Place?’ - in the rest of

this section referred to as the ’instanceof’ operation) [54]. The linguistic type

of elements is used in the algorithm to distinguish between nodes of the model

(which are represented by Clabject instances) and edges of the model (which are

represented by Association and Composition instances). The ontological type of

elements is used to check whether a mapping of an element of the source model

and an element of the pattern model is semantically viable: they need to be of

compatible types.

2. We need access to the metaverse. On our simple data structure, we added and

removed nodes and edges using the interface of the data structure. Now, we need

to add and remove elements from the source model through the CRUD operations

provided by the metaverse (see Section 4.2 for more details on the metaverse).

3. Access to properties and the values of properties in association and object instances

has to be provided. In the initial version of Ark, this functionality was limited.

Some of these functionalities were already present in Ark, others had to be added. In

what follows, we explain how we implemented these different aspects of the algorithm.

1. ’instanceof’ and ’typeof’: In Python, we can check whether an element is of

a specific type by using the isinstance method. In the following code sample, we

check whether the element el is of type Clabject :

isinstance(el, Clabject)

The isinstance operation in principle is a linguistic check, but depending on the ap-

plication, it can act as an ontological check as well. For instance, if we metamodel

the PetriNet language manually in Python, we could use the isinstance operation

to check whether the element el is a Place:
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isinstance(el, Place)

In our trivial data structure, there was no ontological typing. However, in ArkM3,

each element is typed by an element in the metamodel which the model conforms

to. In ArkM3, we both need an operation that checks the linguistic type and one

that checks the ontological type of an element.

• The linguistic check is implemented as a method of the Element class. It

checks whether the name of the class equals the string value passed as a

parameter.

class Element:

def is instance(self, class str):

return str(self. class ) == class str

• The ontological check is implemented by using the typing system of ArkM3.

An instance of a class is typed by that class. A class can have a number of

super types (and those, in their turn can have super types). The ontological

check checks whether an instance is typed ontologically by a class by obtaining

a reference to the class, and checking whether the class is present in the type

hierarchy of the instance, as demonstrated in the following code snippet:

def is instance(x, metaverse):

clazz = metaverse.read(’formalisms.transformations.rule.PatternElement’).

object

types = set([x.get type()]) + x.get type().get all super class()

return types.contains(pattern class)

2. As can be seen in the ontological check, access has to be provided to the meta-

verse. The reference to the metaverse is used to perform CRUD operations on

models and metamodels, and their elements. In the Python algorithm, it is passed

as an argument to the various functions which need it (such as the match and

rewrite functions). In the algorithm which is written in the ArkM3 action lan-

guage (see the next subsection for details), access will have to be provided as

well.
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Having access to the metaverse not only allows us to read elements, we can now

also update, remove and create them. To remove an element el from a model

host graph, the following statement is used:

host graph.get ownedElements().remove(el)

As a model is represented by an ArkM3 package, it is sufficient to remove the

element from the owned elements of the package.

Creating elements is more challenging. We need three parameters for this (as

explained in Section 4.2):

• A location where to create the element.

• The type of the element.

• The values of the properties of the element.

We have a reference to our host graph, so the first point is trivial. A method

was added to both the ArkM3 Package and Classifier classes called get path, which

returns the full path of the element. This results in a string representation of the

location where to create the element. The second point is handled by the RAMified

attributes, which in the right-hand side are actions. We create the element with

default properties, and then let the action fill in the correct values.

The last point is the most challenging, as right now there is no relation between the

elements in the RAMified metamodel and the original metamodel. We could create

a link between them, either in the form of an inheritance relation or traceability

links. However, at this moment we impose the restriction that MM Post is always

named in a similar way (<original metamodel name> Post) and has the same

parent package as the original metamodel. If we then also assume that all classes

in the MM Post package are called the same as in MM, the following statement

creates the correct instance:

a type = node.get type().get parent().get location().get value()[:−5] + ’.’ + node.get type()

.get name().get value()

arkm3.create(host graph.get location().get value(), ArkM3.OBJECT, ’’, a type, False)

This approach is only temporary, until a better method is developed to create a link

between the RAMified metamodel and the original metamodel. One way of doing
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this would be to encode the name of the original metamodel as a property of the

RAMified metamodel. That way, the RAMified metamodel explicitly references

the original metamodel.

3. Classes and associations in metamodels can have a number of properties. These

properties have a type, a name, and a default value. Instances of these classes

and associations can then assign values to those properties. For instance, in the

PetriNet metamodel (Figure 3.1(b)), the Place class declares a property called

tokens, of type integer. An instance of the class in a model then has the option to

assign a value to that property. In ArkM3, a class and an instance of a class are

both represented as a Clabject. The instance clabject has the class clabject as its

type. A clear distinction is made between properties and property values; however,

they are both accessed by the name of the property. So, if x is a subclass of the

PatternElement class in the rule metamodel, the following code would retrieve the

pLabel attribute:

x.get property(StringValue(’ pLabel’))

If y is an instance of the PatternElement class, the pLabel is given a value in y.

The value is accessed with the following code:

y.get propertyValue(StringValue(’ pLabel’))

The addition of these elements allowed us to develop the graph matching and rewriting

algorithm successfully to work on ArkM3 data structures. It is now possible to model

transformations in ArkM3 textual syntax, parse them, and execute them using this

algorithm. For an example transformation modelled in Ark, refer to Listing 5.9.

This algorithm is not very efficient. For large-scale models, it takes a long time to find

the matches and rewrite the host models according to the pattern in the RHS. This

is because the algorithm itself is not efficient (it is a naive algorithm which considers

all possible mappings and does no pruning of the search tree), and it is written on the

wrong level of abstraction, namely for host models in the ArkM3 data structure. In

the future, a more efficient algorithm should be constructed which works directly on the

physical representation of ArkM3 structures: Himesis graphs. It is expected that the

use of T-Core [51] will speed up the algorithm significantly and allow for more advanced
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features, such as a configurable iterator, which can execute the rule on all matches found,

or on the first match found, or on a randomly selected match.

5.3.2 In ArkM3 Action Language

As a last step, the algorithm is written in the Ark action language. It is shown in full

in Listing C.2.

ArkM3 action language is statically typed. This is different from Python, which is a

dynamically typed language. In the ArkM3 algorithm, we need to declare the type of

each variable, and the compiler checks at compile-time whether the operations performed

on elements are allowed and whether the accessed properties are declared in the type

of the element. In the algorithm, we iterate over all elements of a model, but we are

unable to declare the ontological type of the elements. If we want to access type-specific

properties of the element, a new mechanism has to be introduced. In what follows, we

explain how the three challenges identified in the previous section and the challenge with

the static typing system were overcome.

1. For the linguistic check, we can reuse the method defined on the Element class. In

fact, all methods on ArkM3 classes can be executed from within the ArkM3 action

language. The following is a valid statement in the ArkM3 action language (the

check will obviously return true - it is only used as an example here, to demonstrate

the mechanism):

arkm3.object.Clabject c

c.is instance(’Clabject’)

The ontological check is implemented analogously to the check in Python:

arkm3.object.Clabject pattern content class = formalisms.transformations.rule.

PreConditionPatternContents

arkm3.object.Association a

{any} types = set([a.get type()]) + a.get type().get all super class()

types.contains(pattern content class))
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First, the type hierarchy of the association instance a is retrieved. Then, we check

whether any of the types is equal to the PreConditionPatternContents association

type.

2. In ArkM3 action language, access to the metaverse is implicit (while in the Python

algorithm, we need an explicit reference to the metaverse). The following state-

ment reads the PatternElement element from the formalisms.transformations.rule

package and assigns it to the pattern class variable.

arkm3.object.Clabject pattern class = formalisms.transformations.rule.PatternElement

3. When accessing a property of an instance in ArkM3 action language, we are gener-

ally interested in its value. The value of a property is accessed as in the following

example:

class State

formalisms.transformations.rule.PreConditionPattern p

{void: arkm3.action.Constraint} get constraint

get constraint = {void: arkm3.action.Constraint}:

return self.p.p constraint

This code snippet accesses the p constraint property value of the p property (which

is an instance of the PreConditionPattern class) of the self variable (which is an

instance of the State class).

4. The fourth challenge, the static typing system, was overcome by introducing a

casting operator. This allows an arbitrary element to be cast to an instance of a

type in any metamodel. An example of the casting operator is shown below:

arkm3.object.Association edge

int label = ((formalisms.transformations.rule.PatternElement) (edge.get isFrom())). pLabel

Here, the association instance edge’s source is queried by the get isFrom method.

This method returns a generic Clabject instance. However, in this case, we know

that the source element will be a PatternElement, because it is an element in a

pattern model. We can cast it to the PatternElement class and query its pLabel

attribute.



Chapter 6

Modelling Language Evolution in

Ark

In this chapter, we will use the techniques developed in the previous sections for mod-

elling, metamodelling, and model transformation to co-evolve models and transforma-

tions conforming to the original TrainSim language according to the changes made to

the metamodel of the language, as explained in Section 3.2. We will make use of model

transformation to migrate both models (using regular transformations) and transforma-

tion models (using HOTs).

In Section 6.1, we will revisit the example evolution scenario and develop it in ArkM3. In

Section 6.2, we will present techniques for model migration using model transformation.

Lastly, in Section 6.3, transformations are migrated using HOTs.

84
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Figure 6.1: (a) The original TrainSim metamodel and (b) The evolved TrainSim
metamodel.
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Figure 6.2: Architecture of our language evolution approach.

6.1 Example Evolution Scenario

1 package formalisms.trainsim

2 package trainsimMM

3 class Train

4

5 abstract class TrainPlace

6 class Rail(TrainPlace)

7 int length

8 class Junction(TrainPlace)

9

10 class RailStation(Rail)

11

12 association T on TP

13 t: from Train<0..1>
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14 tp: to TrainPlace<0..1>

15

16 association R to TP

17 r: from Rail<0..∗>

18 tp: to TrainPlace<1..1>

19

20 association S to TP Left

21 j: from Junction<0..∗>

22 left: to TrainPlace<2..2>

23

24 association S to TP Right

25 j: from Junction<0..∗>

26 right: to TrainPlace<2..2>

Listing 6.1: The evolved TrainSim metamodel, modelled in Ark.

The example evolution scenario was introduced in Section 3.2. In Figure 6.1, the orig-

inal and evolved metamodels are repeated for clarification. In Listing 6.1, the evolved

metamodel of the TrainSim language is shown, as it is metamodelled in Ark.

In Figure 6.2, the main components of the architecture of our solution for language

evolution are shown. Central to the evolution scenario are the two metamodels of our

running example: MMTrainSim and MMPetriNet. The transformation T maps models in

the TrainSim language on models in the PetriNet language, which is its semantic domain.

As we explained in the previous section, both metamodels are RAMified to obtain the

pattern languages used for constructing rule-based model-to-model transformations. The

transformation T uses both the RAMified metamodels of the TrainSim and PetriNet

languages.

In the example evolution scenario, introduced in Chapter 3, the TrainSim language was

evolved through a series of metamodel adaptations. In the figure, the adaptations are

represented by the difference model ∆MMTrainSim v1. However, this is only a conceptual

model: we do not make use of an explicit difference model in our approach for language

evolution. Instead, the user has to choose an appropriate model migration transforma-

tion for each metamodel adaptation. This is analogous to the approach introduced by
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Hermanssdoerfer et al. in the tool COPE [18]. In COPE, a language developer evolves

the metamodel through the application of a series of coupled operators, which contain

both the metamodel adaptation step and the corresponding model migration. We use a

similar approach, but do not use the concept of coupled operators. We leave the adapta-

tion of the metamodel up to the language developer, and present him with a number of

model migration transformation possibilities. He can then choose the most appropriate

one, or develop one himself. In the figure, the migration transformation which repairs

the conformance relation between models created in the initial version of the TrainSim

language and the adapted metamodel of the language is called ME . The migration

transformation, which is a HOT, that transforms the semantic mapping transformation

T such that it is capable of mapping models created in the evolved TrainSim language

to PetriNet models is called TE .

As represented in Figure 6.2, the two versions of the TrainSim language have two different

metamodels: this in fact creates two modelling languages. When migrating models and

transformations to the new version of the language, we not only have to account for the

differences between the two metamodels; the instances of the metamodel concepts which

have not been changed need to be migrated as well. This has been noted before by a

number of authors. In [28], Rose et al. compare existing co-evolution approaches based

on this source-target relationship. In our approach, we require all unchanged elements

to be migrated explicitly. This requires the development of transformations that simply

copy elements of a version one model to elements of a version two model. As these

transformations are trivial and can be constructed automatically, they are not shown in

the rest of this chapter.

In the next sections, we will explore how to construct migration transformations to co-

evolve both models and transformations in light of the changes made to the metamodel.

6.2 Model Migration

In this section, we will construct a number of transformations which migrate models con-

forming to the original metamodel of the TrainSim language, to restore the conformance

relation with the metamodel of the new version of the language.
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Split
1

Junction
1

Figure 6.3: The migration transformation for the rename operation.

6.2.1 Addition of the RailStation Class

The first change is the addition of the RailStation class as a subclass of the Rail class.

As this is a non-breaking change (the RailStation class is not mandatory, so models

not containing an instance of the RailStation class are valid models, conforming to the

evolved TrainSim metamodel), no migration transformation has to be constructed.

6.2.2 Renaming of the Split Class

1 package formalisms.trainsim

2 package migration.rule1

3 # # # #

4 # LHS #

5 # # # #

6 formalisms.transformations.rule.LHS lhs

7

8 formalisms.trainsim.trainsimMM v1 Pre.Split s lhs

9 pLabel = 1

10

11 formalisms.transformations.rule.PreConditionPatternContents lhs to s lhs

12 pattern = lhs

13 element = s lhs

14

15 # # # #

16 # RHS #

17 # # # #

18 formalisms.transformations.rule.RHS rhs

19

20 formalisms.trainsim.trainsimMM v2 Post.Junction j rhs



Chapter 6. Modelling Language Evolution in ArkM3 89

21 pLabel = 2

22

23 formalisms.transformations.rule.PostConditionPatternContents rhs to j rhs

24 pattern = rhs

25 element = j rhs

Listing 6.2: The migration transformation for the rename operation, modelled in Ark.

The second change is the renaming of the Split class to Junction. Figure 6.3 is a visual

representation of the rule and Listing 6.2 shows the migration transformation for this

change as it is modelled in Ark. The LHS of the rule matches all Split instances, and

the RHS makes sure they are replaced by a Junction instance.

6.2.3 Cardinality Change

Train
1

Train1

TrainPlace

2

3

Figure 6.4: The first migration transformation for the cardinality change.

Train
1Train1

TrainPlace

2

3

Train4

TrainPlace

5

6

TrainPlace

5

Train
1

TrainPlace

5

7

Figure 6.5: The second migration transformation for the cardinality change.

1 package formalisms.trainsim

2 package migration.rule1

3 # # # #

4 # NAC #

5 # # # #
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6 formalisms.transformations.rule.NAC nac

7

8 formalisms.trainsim.trainsimMM v1 Pre.Train t nac

9 pLabel = 1

10

11 formalisms.trainsim.trainsimMM v1 Pre.TrainPlace tp nac

12 pLabel = 2

13

14 formalisms.trainsim.trainsimMM v1 Pre.T on TP t nac on tp nac

15 t = t nac

16 tp = tp nac

17 pLabel = 3

18

19 formalisms.transformations.rule.PreConditionPatternContents nac to t nac

20 pattern = nac

21 element = t nac

22

23 formalisms.transformations.rule.PreConditionPatternContents nac to tp nac

24 pattern = nac

25 element = tp nac

26

27 formalisms.transformations.rule.PreConditionPatternContents nac to t nac on tp nac

28 pattern = nac

29 element = t nac on tp nac

30

31 # # # #

32 # LHS #

33 # # # #

34 formalisms.transformations.rule.LHS lhs

35

36 formalisms.trainsim.trainsimMM v1 Pre.Train t lhs

37 pLabel = 1

38
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39 formalisms.transformations.rule.PreConditionPatternContents lhs to t lhs

40 pattern = lhs

41 element = t lhs

42

43 # # # #

44 # RHS #

45 # # # #

46 formalisms.transformations.rule.RHS rhs

Listing 6.3: The first migration transformation for the cardinality change, modelled

in Ark.

1 package formalisms.trainsim

2 package migration.rule1

3 # # # #

4 # NAC #

5 # # # #

6 formalisms.transformations.rule.NAC nac1

7 name = ’NAC 1’

8

9 formalisms.trainsim.trainsimMM v1 Pre.Train t nac1

10 pLabel = 1

11

12 formalisms.trainsim.trainsimMM v1 Pre.TrainPlace tp nac1

13 pLabel = 2

14

15 formalisms.trainsim.trainsimMM v1 Pre.T on TP t nac1 on tp nac1

16 t = t nac1

17 tp = tp nac1

18 pLabel = 3

19

20 formalisms.transformations.rule.PreConditionPatternContents nac1 to t nac1

21 pattern = nac1

22 element = t nac1

23
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24 formalisms.transformations.rule.PreConditionPatternContents nac1 to tp nac1

25 pattern = nac1

26 element = tp nac1

27

28 formalisms.transformations.rule.PreConditionPatternContents nac1 to t nac1 on tp nac1

29 pattern = nac1

30 element = t nac1 on tp nac1

31

32 # # # #

33 # NAC #

34 # # # #

35 formalisms.transformations.rule.NAC nac2

36 name = ’NAC 2’

37

38 formalisms.trainsim.trainsimMM v1 Pre.Train t nac2

39 pLabel = 4

40

41 formalisms.trainsim.trainsimMM v1 Pre.TrainPlace tp nac2

42 pLabel = 5

43

44 formalisms.trainsim.trainsimMM v1 Pre.T on TP t nac2 on tp nac2

45 t = t nac2

46 tp = tp nac2

47 pLabel = 6

48

49 formalisms.transformations.rule.PreConditionPatternContents nac2 to t nac2

50 pattern = nac2

51 element = t nac2

52

53 formalisms.transformations.rule.PreConditionPatternContents nac2 to tp nac2

54 pattern = nac2

55 element = tp nac2

56
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57 formalisms.transformations.rule.PreConditionPatternContents nac2 to t nac2 on tp nac2

58 pattern = nac2

59 element = t nac2 on tp nac2

60

61 # # # #

62 # LHS #

63 # # # #

64 formalisms.transformations.rule.LHS lhs

65

66 formalisms.trainsim.trainsimMM v1 Pre.Train t lhs

67 pLabel = 1

68

69 formalisms.trainsim.trainsimMM v1 Pre.TrainPlace tp lhs

70 pLabel = 5

71

72 formalisms.transformations.rule.PreConditionPatternContents lhs to t lhs

73 pattern = lhs

74 element = t lhs

75

76 formalisms.transformations.rule.PreConditionPatternContents lhs to tp lhs

77 pattern = lhs

78 element = tp lhs

79

80 # # # #

81 # RHS #

82 # # # #

83 formalisms.transformations.rule.RHS rhs

84

85 formalisms.trainsim.trainsimMM v2 Post.Train t rhs

86 pLabel = 1

87

88 formalisms.trainsim.trainsimMM v2 Post.TrainPlace tp rhs

89 pLabel = 5
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90

91 formalisms.trainsim.trainsimMM v2 Post.T on TP t rhs on tp rhs

92 t = t rhs

93 tp = tp rhs

94 pLabel = 7

95

96 formalisms.transformations.rule.PostConditionPatternContents rhs to t rhs

97 pattern = rhs

98 element = t rhs

99

100 formalisms.transformations.rule.PostConditionPatternContents rhs to tp rhs

101 pattern = rhs

102 element = tp rhs

103

104 formalisms.transformations.rule.PostConditionPatternContents rhs to t rhs on tp rhs

105 pattern = rhs

106 element = t rhs on tp rhs

Listing 6.4: The second migration transformation for the cardinality change, modelled

in Ark.

The third change is the changing of the cardinality of the T on TP relation. In the new

version of the metamodel, every Train has to be on a TrainPlace. This is an unresolvable

change, but we can make a few suggestions to the modeller as to how the conformance

relation can be restored. Three approaches are discussed here:

1. The first approach is to remove all unconnected trains in non-conforming models.

This will ensure that all trains are connected and the constraint imposed by the

cardinality is satisfied. However, semantic information may be lost by using this

approach, as some of the unconnected trains that are deleted may be vital parts

of the models. The approach is shown graphically in Figure 6.4 and modelled as

a transformation rule in Listing 6.3. The LHS of the rule matches a train, while

the NAC of the rule makes sure the matched train is not connected to a rail. The

RHS is empty, which means that the train matched by the LHS will be deleted in

the host model.
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Figure 6.6: The migration transformation for the relation split change.

2. The second approach is to connect all unconnected trains to an unoccupied rail.

This will also ensure that the constraint imposed by the cardinality is satisfied.

However, all unconnected trains will be connected to a random unoccupied rail

by the transformation. This may not be semantically correct. The migration

transformation rule is shown graphically in Figure 6.5 and modelled in Ark in

Listing 6.4. The LHS matches a train and a train place, and the RHS connects

these two. The rule contains two NACs: the first ensures that the matched train is

not connected to a train place, while the second ensures that no train is connected

to the matched train place.

3. The last possibility is to do no migration at all. This leaves the model in a non-

conforming state, which requires a modeller to go through the models and adapt

them manually. While this is not optimal, it may be the only possibility when we

want to make sure that the semantics of the models are not compromised and to

ensure continuity of the MDE system.

6.2.4 Splitting of Relation

The fourth change is the splitting of the S to TP relation into two relations: S to TP Left

and S to TP Right. As with the last change, this is a non-resolvable change. Again, we

can leave the models in a non-conforming state and let a modeller adapt the models

manually. This will ensure semantic correctness, but it is time-consuming.

1 package formalisms.trainsim

2 package migration.rule1

3 # # # #

4 # LHS #

5 # # # #

6 formalisms.transformations.rule.LHS lhs
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7

8 formalisms.trainsim.trainsimMM v2 Pre.Junction j lhs

9 pLabel = 1

10

11 formalisms.trainsim.trainsimMM v1 Pre.TrainPlace tp lhs 1

12 pLabel = 2

13

14 formalisms.trainsim.trainsimMM v1 Pre.TrainPlace tp lhs 2

15 pLabel = 3

16

17 formalisms.trainsim.trainsimMM v1 Pre.S to TP j lhs to tp lhs 1

18 s = j lhs

19 tp = tp lhs 1

20 pLabel = 4

21

22 formalisms.trainsim.trainsimMM v1 Pre.S to TP j lhs to tp lhs 2

23 s = j lhs

24 tp = tp lhs 2

25 pLabel = 5

26

27 formalisms.transformations.rule.PreConditionPatternContents lhs to j lhs

28 pattern = lhs

29 element = j lhs

30

31 formalisms.transformations.rule.PreConditionPatternContents lhs to tp lhs 1

32 pattern = lhs

33 element = tp lhs 1

34

35 formalisms.transformations.rule.PreConditionPatternContents lhs to tp lhs 2

36 pattern = lhs

37 element = tp lhs 2

38

39 formalisms.transformations.rule.PreConditionPatternContents lhs to j lhs to tp lhs 1
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40 pattern = lhs

41 element = j lhs to tp lhs 1

42

43 formalisms.transformations.rule.PreConditionPatternContents lhs to j lhs to tp lhs 2

44 pattern = lhs

45 element = j lhs to tp lhs 2

46

47 # # # #

48 # RHS #

49 # # # #

50 formalisms.transformations.rule.RHS rhs

51

52 formalisms.trainsim.trainsimMM v2 Post.Junction j rhs

53 pLabel = 1

54

55 formalisms.trainsim.trainsimMM v1 Post.TrainPlace tp rhs 1

56 pLabel = 2

57

58 formalisms.trainsim.trainsimMM v1 Post.TrainPlace tp rhs 2

59 pLabel = 3

60

61 formalisms.trainsim.trainsimMM v2 Post.S to TP Left j rhs to tp rhs 1

62 j = j rhs

63 tp = tp rhs 1

64 pLabel = 6

65

66 formalisms.trainsim.trainsimMM v2 Post.S to TP Right j rhs to tp rhs 2

67 j = j rhs

68 tp = tp rhs 2

69 pLabel = 7

70

71 formalisms.transformations.rule.PostConditionPatternContents rhs to j rhs

72 pattern = rhs
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73 element = j rhs

74

75 formalisms.transformations.rule.PostConditionPatternContents rhs to tp rhs 1

76 pattern = rhs

77 element = tp rhs 1

78

79 formalisms.transformations.rule.PostConditionPatternContents rhs to tp rhs 2

80 pattern = rhs

81 element = tp rhs 2

82

83 formalisms.transformations.rule.PostConditionPatternContents rhs to j rhs to tp rhs 1

84 pattern = rhs

85 element = j rhs to tp rhs 1

86

87 formalisms.transformations.rule.PostConditionPatternContents rhs to j rhs to tp rhs 2

88 pattern = rhs

89 element = j rhs to tp rhs 2

Listing 6.5: The migration transformation for the relation split change, modelled in

Ark.

An automatic way of migrating the models consists of constructing a transformation

which looks at the two outgoing relations of each junction and randomly chooses one as

the left one and one as the right one. This will ensure that all models are syntactically

correct and conforming with the new version of the metamodel. The migration transfor-

mation is shown in Figure 6.6 and modelled in Ark in Listing 6.5. The LHS of the rule

consists of five elements: a junction, two train places and two associations, connecting

the junction to the train places. The RHS also consists of five elements, but replaces

the two associations by a left and a right association.
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6.2.5 Addition of Attribute

1 1

length = 1

1
2

23

length = match[1].length

           + match[2].length

1 23

4
5

Figure 6.7: The migration transformation for the addition of the length attribute.

1 package formalisms.trainsim

2 package migration.rule1

3 # # # #

4 # LHS #

5 # # # #

6 formalisms.transformations.rule.LHS lhs

7

8 formalisms.trainsim.trainsimMM v1 Pre.Rail r lhs

9 pLabel = 1

10

11 formalisms.transformations.rule.PreConditionPatternContents lhs to r lhs

12 pattern = lhs

13 element = r lhs

14

15 # # # #

16 # RHS #

17 # # # #

18 formalisms.transformations.rule.RHS rhs

19

20 formalisms.trainsim.trainsimMM v2 Post.Rail r rhs

21 pLabel = 2

22 length = {{int: Clabject} match: void}:

23 match[2].length = 1
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24

25 formalisms.transformations.rule.PostConditionPatternContents rhs to r rhs

26 pattern = rhs

27 element = r rhs

28

29 package migration.rule2

30 # # # #

31 # NAC #

32 # # # #

33 formalisms.transformations.rule.NAC nac

34 name = ’NAC 1’

35

36 formalisms.trainsim.trainsimMM v2 Pre.Rail r nac 1

37 pLabel = 1

38 length = {{int: Clabject} match: bool}:

39 return True

40

41 formalisms.trainsim.trainsimMM v2 Pre.Rail r nac 2

42 pLabel = 2

43 length = {{int: Clabject} match: bool}:

44 return True

45

46 formalisms.trainsim.trainsimMM v2 Pre.Rail r nac 3

47 pLabel = 4

48 length = {{int: Clabject} match: bool}:

49 return True

50

51 formalisms.trainsim.trainsimMM v2 Pre.R to TP r nac 1 to r nac 2

52 r = r nac 1

53 tp = r nac 2

54 pLabel = 3

55

56 formalisms.trainsim.trainsimMM v2 Pre.R to TP r nac 3 to r nac 2
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57 r = r nac 3

58 tp = r nac 2

59 pLabel = 5

60

61 # # # #

62 # LHS #

63 # # # #

64 formalisms.transformations.rule.LHS lhs

65

66 formalisms.trainsim.trainsimMM v2 Pre.Rail r lhs 1

67 pLabel = 1

68 length = {{int: Clabject} match: bool}:

69 return True

70

71 formalisms.trainsim.trainsimMM v2 Pre.Rail r lhs 2

72 pLabel = 2

73 length = {{int: Clabject} match: bool}:

74 return True

75

76 formalisms.trainsim.trainsimMM v2 Pre.R to TP r lhs 1 to r lhs 2

77 r = r lhs 1

78 tp = r lhs 2

79 pLabel = 3

80

81 formalisms.transformations.rule.PreConditionPatternContents lhs to r lhs 1

82 pattern = lhs

83 element = r lhs 1

84

85 formalisms.transformations.rule.PreConditionPatternContents lhs to r lhs 2

86 pattern = lhs

87 element = r lhs 2

88

89 formalisms.transformations.rule.PreConditionPatternContents lhs to r lhs 1 to r lhs 2
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90 pattern = lhs

91 element = r lhs 1 to r lhs 2

92

93 # # # #

94 # RHS #

95 # # # #

96 formalisms.transformations.rule.RHS rhs

97

98 formalisms.trainsim.trainsimMM v2 Post.Rail r rhs

99 pLabel = 2

100 length = {{int: Clabject} match: void}:

101 match[2].length = match[1].length + match[2].length

102

103 formalisms.transformations.rule.PostConditionPatternContents rhs to r rhs

104 pattern = rhs

105 element = r rhs

Listing 6.6: The migration transformation for the addition of the length attribute,

modelled in Ark.

The fifth and last change is the addition of the attribute length to the Rail class. This

change is also non-resolvable, as a migration transformation cannot be constructed au-

tomatically. However, it is possible to construct a migration transformation manually

which replaces all sequences of n tracks by one single track with length n. The trans-

formation is shown in Figure 6.7 and is modelled in Ark in Listing 6.6. It consists of

two rules. The first one transforms all version one rails to a version two rail of length 1.

The second rule transforms two connected version two rails of arbitrary length to one

version two rail whose length is the sum of the lengths of the two connected rails. A

NAC is added to this rule that prohibits two rails to be connected to the rail with label

2. We only want to transform sequences of rails with one connection between them.
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6.3 Transformation Migration

In this section, transformations that have the TrainSim language as their domain lan-

guage are migrated to the new version of the language. This requires the precondition

patterns of the rules of the transformations to be adapted according to the changes made

to the metamodel. We use HOTs to migrate the transformations.

6.3.1 Addition of the RailStation Class

1

2

1

4

RailStation
Rail

Figure 6.8: The first HOT for the addition of the RailStation class.
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1

5

RailStationRail

4

Figure 6.9: The second HOT for the addition of the RailStation class.

1 package formalisms.trainsim

2 package migration.rule1

3 # # # #

4 # LHS #

5 # # # #

6 formalisms.transformations.rule.LHS lhs

7

8 formalisms.transformations.rule Pre.PreConditionPattern pcp lhs

9 pLabel = 1

10 p constraint = {{int: Clabject} match: bool}:

11 return True
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12

13 formalisms.trainsim.trainsimMM v1 Pre Pre.Rail r pcp lhs

14 pLabel = 2

15 p pLabel = {{int: Clabject} match: bool}:

16 return True

17

18 formalisms.transformations.rule Pre.PreConditionPatternContents pcp lhs to r pcp lhs

19 pattern = pcp lhs

20 element = r pcp lhs

21 pLabel = 3

22

23 formalisms.transformations.rule.PreConditionPatternContents lhs to pcp lhs

24 pattern = lhs

25 element = pcp lhs

26

27 formalisms.transformations.rule.PreConditionPatternContents lhs to r pcp lhs

28 pattern = lhs

29 element = r pcp lhs

30

31 formalisms.transformations.rule.PreConditionPatternContents lhs to pcp lhs to r pcp lhs

32 pattern = lhs

33 element = pcp lhs to r pcp lhs

34

35 # # # #

36 # RHS #

37 # # # #

38 formalisms.transformations.rule.RHS rhs

39

40 formalisms.transformations.rule Post.PreConditionPattern pcp rhs

41 pLabel = 1

42 p constraint = {{int: Clabject} match: void}:

43 return

44
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45 formalisms.trainsim.trainsimMM v2 Pre Post.RailStation rs pcp rhs

46 pLabel = 4

47 p pLabel = {{int: Clabject} match: void}:

48 return

49

50 formalisms.transformations.rule Post.PreConditionPatternContents pcp rhs to rs pcp rhs

51 pattern = pcp rhs

52 element = rs pcp rhs

53 pLabel = 5

54

55 formalisms.transformations.rule.PostConditionPatternContents rhs to pcp rhs

56 pattern = rhs

57 element = pcp rhs

58

59 formalisms.transformations.rule.PostConditionPatternContents rhs to rs pcp rhs

60 pattern = rhs

61 element = rs pcp rhs

62

63 formalisms.transformations.rule.PostConditionPatternContents rhs to pcp rhs to rs pcp rhs

64 pattern = rhs

65 element = pcp rhs to rs pcp rhs

Listing 6.7: The first HOT for the addition of the RailStation class, modelled in Ark.

1 package formalisms.trainsim

2 package migration.rule1

3 # # # #

4 # LHS #

5 # # # #

6 formalisms.transformations.rule.LHS lhs

7

8 formalisms.transformations.rule Pre.PreConditionPattern pcp lhs

9 pLabel = 1

10 p constraint = {{int: Clabject} match: bool}:

11 return True
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12

13 formalisms.trainsim.trainsimMM v1 Pre Pre.Rail r pcp lhs

14 pLabel = 2

15 p pLabel = {{int: Clabject} match: bool}:

16 return True

17

18 formalisms.transformations.rule Pre.PreConditionPatternContents pcp lhs to r pcp lhs

19 pattern = pcp lhs

20 element = r pcp lhs

21 pLabel = 3

22

23 formalisms.transformations.rule Pre.PostConditionPattern pocp lhs

24 pLabel = 4

25 p action = {{int: Clabject} match: bool}:

26 return True

27

28 formalisms.transformations.rule.PreConditionPatternContents lhs to pcp lhs

29 pattern = lhs

30 element = pcp lhs

31

32 formalisms.transformations.rule.PreConditionPatternContents lhs to r lhs

33 pattern = lhs

34 element = r pcp lhs

35

36 formalisms.transformations.rule.PreConditionPatternContents lhs to pcp lhs to r pcp lhs

37 pattern = lhs

38 element = pcp lhs to r pcp lhs

39

40 formalisms.transformations.rule.PreConditionPatternContents lhs to pocp lhs

41 pattern = lhs

42 element = pocp lhs

43

44 # # # #
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45 # RHS #

46 # # # #

47 formalisms.transformations.rule.RHS rhs

48

49 formalisms.transformations.rule Post.PreConditionPattern pcp rhs

50 pLabel = 1

51 p constraint = {{int: Clabject} match: void}:

52 return

53

54 formalisms.trainsim.trainsimMM v2 Pre Post.RailStation r pcp rhs

55 pLabel = 5

56 p pLabel = {{int: Clabject} match: void}:

57 return

58

59 formalisms.transformations.rule Post.PreConditionPatternContents pcp rhs to r pcp rhs

60 pattern = pcp rhs

61 element = r pcp rhs

62 pLabel = 6

63

64 formalisms.transformations.rule.PostConditionPatternContents rhs to pcp rhs

65 pattern = rhs

66 element = pcp rhs

67

68 formalisms.transformations.rule.PostConditionPatternContents rhs to r pcp rhs

69 pattern = rhs

70 element = r pcp rhs

71

72 formalisms.transformations.rule.PostConditionPatternContents rhs to pcp rhs to r rhs

73 pattern = rhs

74 element = pcp rhs to r pcp rhs

Listing 6.8: The second HOT for the addition of the RailStation class.
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Figure 6.10: The HOT for the renaming of the Split class to Junction.

While the addition of the RailStation class is a non-breaking change for models, this

is not the case for transformations. If we want the transformation to cover the whole

domain language, rules have to be added which transform the new element as well. This

can be done manually: a modeller creates a new rule, or several rules, that transform the

new element into structures of the image language and fits them into the rule scheduler.

We also provide two automated HOTs:

1. The first HOT, shown in Figure 6.8 and modelled in Ark in Listing 6.7, creates a

new transformation for the RailStation class based on the transformation definition

of its superclass Rail. As an example, recall the TrainSim-to-PetriNet transforma-

tion from Figure 3.2(b). It could make sense to add a rule that transforms a

RailStation to the same PetriNet structure as a Rail. In our HOT, we match a

precondition pattern in the LHS which contains an instance of the Rail class. The

precondition pattern is then transformed by the RHS, and the instance of the Rail

class is replaced by an instance of the RailStation class.

2. The second HOT (shown in Figure 6.9 and modelled in Ark in Listing 6.8) is

similar, but it creates a transformation without an RHS. This will make the new

transformation non-conforming with the Transformation metamodel, which will

prompt the modeller to ’fix’ the error. He can then fill in the RHS of the rule,

making sure the semantic mapping of the RailStation class is done correctly.

6.3.2 Renaming of the Split Class

1 package formalisms.trainsim

2 package migration.rule1

3 # # # #
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4 # LHS #

5 # # # #

6 formalisms.transformations.rule.LHS lhs

7

8 formalisms.transformations.rule Pre.PreConditionPattern pcp lhs

9 p constraint = {{int: Clabject} match: bool}:

10 return True

11 pLabel = 1

12

13 formalisms.trainsim.trainsimMM v1 Pre Pre.Split s pcp lhs

14 pLabel = 2

15 p pLabel = {{int: Clabject} match: bool}:

16 return True

17

18 formalisms.transformations.rule Pre.PreConditionPatternContents pcp lhs to s pcp lhs

19 pattern = pcp lhs

20 element = s pcp lhs

21 pLabel = 3

22

23 formalisms.transformations.rule.PreConditionPatternContents lhs to pcp

24 pattern = lhs

25 element = pcp lhs

26

27 formalisms.transformations.rule.PreConditionPatternContents lhs to s pcp lhs

28 pattern = lhs

29 element = s pcp lhs

30

31 formalisms.transformations.rule.PreConditionPatternContents lhs to pcp to s pcp lhs

32 pattern = lhs

33 element = pcp lhs to s pcp lhs

34

35 # # # #

36 # RHS #
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37 # # # #

38 formalisms.transformations.rule.RHS rhs

39

40 formalisms.transformations.rule Post.PreConditionPattern pcp rhs

41 p constraint = {{int: Clabject} match: void}:

42 return

43 pLabel = 1

44

45 formalisms.trainsim.trainsimMM v2 Pre Post.Junction j pcp rhs

46 pLabel = 4

47 p pLabel = {{int: Clabject} match: void}:

48 return

49

50 formalisms.transformations.rule Post.PreConditionPatternContents pcp to j pcp rhs

51 pattern = pcp

52 element = j pcp rhs

53 pLabel = 5

54

55 formalisms.transformations.rule.PostConditionPatternContents rhs to pcp

56 pattern = rhs

57 element = pcp rhs

58

59 formalisms.transformations.rule.PostConditionPatternContents rhs to j pcp rhs

60 pattern = rhs

61 element = j pcp rhs

62

63 formalisms.transformations.rule.PostConditionPatternContents rhs to pcp to j pcp rhs

64 pattern = rhs

65 element = pcp to j pcp rhs

Listing 6.9: The HOT for the renaming of the Split class to Junction, modelled in

Ark.

Migrating the transformation in response to the rename change is done similarly to

models: only now, we use a HOT instead of a regular transformation. The HOT is
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Figure 6.11: The HOT for the splitting of the S to TP association.

shown in Figure 6.10 and modelled in Ark in Listing 6.9. In the LHS, a precondition

pattern is matched, containing an instance of the RAMified Split class. In the RHS, this

instance is replaced by an instance of the RAMified Junction class.

6.3.3 Cardinality Change

While the change in the cardinality of the T on TP association required a model mi-

gration, transformations are unaffected. In the RAMified version of the metamodel, the

minimum bound of all cardinalities is removed as part of the relaxation step. In other

words, it is allowed to model an unconnected train in the patterns of a rule, even in the

new version of the language. All changes performed by the RAMification process in the

relaxation step will be non-breaking changes when performed as part of the evolution

process. This includes cardinality changes and making a concrete metamodel class ab-

stract: in patterns, we are allowed to create instances of abstract classes (as they are

made concrete by the RAMification process).

6.3.4 Splitting of Relation

1 package formalisms.trainsim

2 package migration.rule1

3 # # # #

4 # LHS #

5 # # # #

6 formalisms.transformations.rule.LHS lhs

7

8 formalisms.transformations.rule Pre.PreConditionPattern pcp lhs
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9 p constraint = {{int: Clabject} match: bool}:

10 return True

11 pLabel = 1

12

13 formalisms.trainsim.trainsimMM v2 Pre Pre.Junction j pcp lhs

14 pLabel = 2

15 p pLabel = {{int: arkm3.object.Clabject} match: bool}:

16 return True

17

18 formalisms.trainsim.trainsimMM v1 Pre Pre.TrainPlace tp pcp lhs 1

19 pLabel = 3

20 p pLabel = {{int: arkm3.object.Clabject} match: bool}:

21 return True

22

23 formalisms.trainsim.trainsimMM v1 Pre Pre.TrainPlace tp pcp lhs 2

24 pLabel = 4

25 p pLabel = {{int: arkm3.object.Clabject} match: bool}:

26 return True

27

28 formalisms.trainsim.trainsimMM v1 Pre Pre.S to TP j pcp lhs to tp pcp lhs 1

29 s = j pcp lhs

30 tp = tp pcp lhs 1

31 pLabel = 5

32 p pLabel = {{int: arkm3.object.Clabject} match: bool}:

33 return True

34

35 formalisms.trainsim.trainsimMM v1 Pre Pre.S to TP j pcp lhs to tp pcp lhs 2

36 s = j pcp lhs

37 tp = tp pcp lhs 2

38 pLabel = 6

39 p pLabel = {{int: arkm3.object.Clabject} match: bool}:

40 return True

41
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42 formalisms.transformations.rule Pre.PreConditionPatternContents pcp to j pcp lhs

43 pattern = pcp lhs

44 element = j pcp lhs

45 pLabel = 7

46

47 formalisms.transformations.rule Pre.PreConditionPatternContents pcp to tp pcp lhs 1

48 pattern = pcp lhs

49 element = tp pcp lhs 1

50 pLabel = 8

51

52 formalisms.transformations.rule Pre.PreConditionPatternContents pcp to tp pcp lhs 2

53 pattern = pcp lhs

54 element = tp pcp lhs 2

55 pLabel = 9

56

57 formalisms.transformations.rule Pre.PreConditionPatternContents pcp to j pcp lhs to tp pcp lhs 1

58 pattern = pcp lhs

59 element = j pcp lhs to tp pcp lhs 1

60 pLabel = 10

61

62 formalisms.transformations.rule Pre.PreConditionPatternContents pcp to j pcp lhs to tp pcp lhs 2

63 pattern = pcp lhs

64 element = j pcp lhs to tp pcp lhs 2

65 pLabel = 11

66

67 formalisms.transformations.rule.PreConditionPatternContents lhs to pcp lhs

68 pattern = lhs

69 element = pcp lhs

70

71 formalisms.transformations.rule.PreConditionPatternContents lhs to j pcp lhs

72 pattern = lhs

73 element = j pcp lhs

74
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75 formalisms.transformations.rule.PreConditionPatternContents lhs to tp pcp lhs 1

76 pattern = lhs

77 element = tp pcp lhs 1

78

79 formalisms.transformations.rule.PreConditionPatternContents lhs to tp pcp lhs 2

80 pattern = lhs

81 element = tp pcp lhs 2

82

83 formalisms.transformations.rule.PreConditionPatternContents lhs to j pcp lhs to tp pcp lhs 1

84 pattern = lhs

85 element = j pcp lhs to tp pcp lhs 1

86

87 formalisms.transformations.rule.PreConditionPatternContents lhs to j pcp lhs to tp pcp lhs 2

88 pattern = lhs

89 element = j pcp lhs to tp pcp lhs 2

90

91 formalisms.transformations.rule.PreConditionPatternContents lhs to pcp to j pcp lhs

92 pattern = lhs

93 element = pcp to j pcp lhs

94

95 formalisms.transformations.rule.PreConditionPatternContents lhs to pcp to tp pcp lhs 1

96 pattern = lhs

97 element = pcp to tp pcp lhs 1

98

99 formalisms.transformations.rule.PreConditionPatternContents lhs to pcp to tp pcp lhs 2

100 pattern = lhs

101 element = pcp to tp pcp lhs 2

102

103 formalisms.transformations.rule.PreConditionPatternContents

lhs to pcp to j pcp lhs to tp pcp lhs 1

104 pattern = lhs

105 element = pcp to j pcp lhs to tp pcp lhs 1

106
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107 formalisms.transformations.rule.PreConditionPatternContents

lhs to pcp to j pcp lhs to tp pcp lhs 2

108 pattern = lhs

109 element = pcp to j pcp lhs to tp pcp lhs 2

110

111 # # # #

112 # RHS #

113 # # # #

114

115 formalisms.transformations.rule.RHS rhs

116

117 formalisms.transformations.rule Post.PreConditionPattern pcp rhs

118 p constraint = {{int: Clabject} match: void}:

119 return

120 pLabel = 1

121

122 formalisms.trainsim.trainsimMM v2 Pre Post.Junction j pcp rhs

123 pLabel = 2

124 p pLabel = {{int: arkm3.object.Clabject} match: void}:

125 return

126

127 formalisms.trainsim.trainsimMM v1 Pre Post.TrainPlace tp pcp rhs 1

128 pLabel = 3

129 p pLabel = {{int: arkm3.object.Clabject} match: void}:

130 return

131

132 formalisms.trainsim.trainsimMM v1 Pre Post.TrainPlace tp pcp rhs 2

133 pLabel = 4

134 p pLabel = {{int: arkm3.object.Clabject} match: void}:

135 return

136

137 formalisms.trainsim.trainsimMM v2 Pre Post.S to TP Left j pcp rhs to tp left rhs

138 j = j pcp rhs
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139 tp = tp pcp rhs 1

140 pLabel = 12

141 p pLabel = {{int: arkm3.object.Clabject} match: void}:

142 return

143

144 formalisms.trainsim.trainsimMM v2 Pre Post.S to TP Right j pcp rhs to tp right rhs

145 j = j pcp rhs

146 tp = tp pcp rhs 2

147 pLabel = 13

148 p pLabel = {{int: arkm3.object.Clabject} match: void}:

149 return

150

151 formalisms.transformations.rule Post.PreConditionPatternContents pcp rhs to j pcp rhs

152 pattern = pcp rhs

153 element = j pcp rhs

154 pLabel = 7

155

156 formalisms.transformations.rule Post.PreConditionPatternContents pcp rhs to tp pcp rhs 1

157 pattern = pcp rhs

158 element = tp pcp rhs 1

159 pLabel = 8

160

161 formalisms.transformations.rule Post.PreConditionPatternContents pcp rhs to tp pcp rhs 2

162 pattern = pcp rhs

163 element = tp pcp rhs 2

164 pLabel = 9

165

166 formalisms.transformations.rule Post.PreConditionPatternContents pcp to j pcp rhs to tp right rhs

167 pattern = pcp rhs

168 element = j pcp rhs to tp right rhs

169 pLabel = 14

170

171 formalisms.transformations.rule Post.PreConditionPatternContents pcp to j pcp rhs to tp left rhs
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172 pattern = pcp rhs

173 element = j pcp rhs to tp left rhs

174 pLabel = 15

175

176 formalisms.transformations.rule.PostConditionPatternContents rhs to pcp rhs

177 pattern = rhs

178 element = pcp rhs

179

180 formalisms.transformations.rule.PostConditionPatternContents rhs to j pcp rhs

181 pattern = rhs

182 element = j pcp rhs

183

184 formalisms.transformations.rule.PostConditionPatternContents rhs to tp pcp rhs 1

185 pattern = rhs

186 element = tp pcp rhs 1

187

188 formalisms.transformations.rule.PostConditionPatternContents rhs to tp pcp rhs 2

189 pattern = rhs

190 element = tp pcp rhs 2

191

192 formalisms.transformations.rule.PostConditionPatternContents rhs to j pcp rhs to tp left rhs

193 pattern = rhs

194 element = j pcp rhs to tp left rhs

195

196 formalisms.transformations.rule.PostConditionPatternContents rhs to j pcp rhs to tp right rhs

197 pattern = rhs

198 element = j pcp rhs to tp right rhs

199

200 formalisms.transformations.rule.PostConditionPatternContents rhs to pcp rhs to j pcp rhs

201 pattern = rhs

202 element = pcp rhs to j pcp rhs

203

204 formalisms.transformations.rule.PostConditionPatternContents rhs to pcp rhs to tp pcp rhs 1



Chapter 6. Modelling Language Evolution in ArkM3 118

205 pattern = rhs

206 element = pcp rhs to tp pcp rhs 1

207

208 formalisms.transformations.rule.PostConditionPatternContents rhs to pcp rhs to tp pcp rhs 2

209 pattern = lhs

210 element = pcp rhs to tp pcp rhs 2

211

212 formalisms.transformations.rule.PostConditionPatternContents

rhs to pcp to j pcp rhs to tp right rhs

213 pattern = rhs

214 element = pcp to j pcp rhs to tp right rhs

215

216 formalisms.transformations.rule.PostConditionPatternContents

rhs to pcp to j pcp rhs to tp left rhs

217 pattern = rhs

218 element = pcp to j pcp rhs to tp left rhs

Listing 6.10: The HOT for the splitting of the S to TP association, modelled in Ark.

This change is handled similarly for transformations as for models. Again, we can

choose not to migrate transformations automatically, leaving the modeller to migrate

transformations manually. The second option is to choose the left and right outgoing

associations randomly for each instance of the Junction class. The HOT which performs

this adaptation is shown in Figure 6.11 and modelled in Ark in Listing 6.10. In the LHS,

a precondition pattern is matched which contains an instance of the RAMified Junction

class, connected to two instances of the RAMifeid TrainPlace class. In the RHS, the

associations between the junction and train places are replaced by a right and a left

association. Which of the two associations is replaced by the left association and which

is replaced by the right association is determined by the matcher.

6.3.5 Addition of Attribute

For the addition of the length attribute to the Rail class, no HOT can be constructed

which automatically migrates transformations. The metamodel adaptation requires a
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modeller to migrate each transformation manually. The only thing that can be done is

migrating the version 1 pattern elements to version 2 pattern elements. As discussed in

the introduction of this chapter, we will not show these trivial transformations. As we

cannot know in advance what the semantic mapping of a rail with length n will be, we

leave it up to the language developer to develop a suitable transformation.



Chapter 7

Conclusion

This thesis introduces a solution for modelling language evolution in the existing mod-

elling kernel Ark. We introduce a platform that uses explicit modelling of transfor-

mations to allow for model and transformation migration in response to metamodel

adaptation. Our contributions include:

1. Enabling the explicit modelling of rule-based model-to-model transformations in

Ark. Our approach includes the process of RAMification to construct transforma-

tion languages specific to the input and output languages of the transformation

and allows for HOTs by default.

2. Creating a graph matching algorithm in Ark which is capable of interpreting model

transformation definitions and rewriting a host graph according to this definition.

3. Enabling modelling language evolution by using model transformation, including

the migration of models and transformations. This approach proves that Ark is

capable of supporting modelling language evolution.

Future work includes:

1. Creating a more efficient graph matching and rewriting algorithm based on T-Core,

that works on the underlying Himesis structures of the ArkM3 elements.

2. Explicit modelling of metamodel adaptations. This can either be in the form

of an explicit difference model which captures all adaptations performed on the

120
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metamodel or an operator-based approach, where each metamodel adaptation is

performed by a model transformation.

3. Automatic generation of migration transformations, where possible. This could

be accompanied by a migration transformation library, containing frequently used

migration transformations. This would allow a modeller to semi-automatically

evolve a modelling language together with existing artefacts.

4. Modelling the RAMification process explicitly as a model transformation, which

transforms ArkM3 metamodels.



Appendix A

TrainSim-to-PetriNet

Transformation in Ark

1 package formalisms.trainsim

2 package trainsim to petrinet

3 formalisms.transformations.transformation.Exhaust exhaust

4 isStart = True

5 locations = {’formalisms.trainsim.trainsim to petrinet.rail to petrinet’,

6 ’formalisms.trainsim.trainsim to petrinet.rail train to petrinet’,

7 ’formalisms.trainsim.trainsim to petrinet.split to petrinet’

8 ’formalisms.trainsim.trainsim to petrinet.split train to petrinet’}

9

10 package rail to petrinet

11 # # # #

12 # NAC #

13 # # # #

14 formalisms.transformations.rule.NAC nac

15 name = ’NAC 1’

16

17 formalisms.trainsim.trainsimMM Pre.Rail r nac

18 pLabel = 1

19

20 formalisms.trainsim.trainsimMM Pre.Train t nac

122
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21 pLabel = 2

22

23 formalisms.trainsim.trainsimMM Pre.T on TP t on tp nac

24 t = t nac

25 tp = r nac

26 pLabel = 3

27

28 formalisms.transformations.rule.PreConditionPatternContents nac to r nac

29 pattern = nac

30 element = r nac

31

32 formalisms.transformations.rule.PreConditionPatternContents nac to t nac

33 pattern = nac

34 element = t nac

35

36 formalisms.transformations.rule.PreConditionPatternContents nac to t on tp nac

37 pattern = nac

38 element = t on tp nac

39

40 # # # #

41 # LHS #

42 # # # #

43 formalisms.transformations.rule.LHS lhs

44

45 formalisms.trainsim.trainsimMM Pre.Rail r lhs

46 pLabel = 1

47

48 formalisms.transformations.rule.PreConditionPatternContents lhs to r lhs

49 pattern = lhs

50 element = r lhs

51

52 # # # #

53 # RHS #
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54 # # # #

55 formalisms.transformations.rule.RHS rhs

56

57 formalisms.petrinet.petrinetMM Post.Place free

58 pLabel = 4

59 tokens = {{int: arkm3.object.Clabject} match: void}:

60 match[4].tokens = 1

61

62 formalisms.petrinet.petrinetMM Post.Place rail

63 pLabel = 5

64 tokens = {{int: arkm3.object.Clabject} match: void}:

65 match[5].tokens = 0

66

67 formalisms.petrinet.petrinetMM Post.Transition in rhs

68 pLabel = 6

69

70 formalisms.petrinet.petrinetMM Post.Transition out rhs

71 pLabel = 7

72

73 formalisms.petrinet.petrinetMM Post.P to T free to in rhs

74 p = free

75 t = in rhs

76 pLabel = 8

77

78 formalisms.petrinet.petrinetMM Post.T to P in rhs to rail

79 t = in rhs

80 p = rail

81 pLabel = 9

82

83 formalisms.petrinet.petrinetMM Post.P to T rail to out rhs

84 p = rail

85 t = out rhs

86 pLabel = 10
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87

88 formalisms.petrinet.petrinetMM Post.T to P out rhs to free

89 t = out rhs

90 p = free

91 pLabel = 11

92

93 formalisms.transformations.rule.PostConditionPatternContents rhs to free

94 pattern = rhs

95 element = free

96

97 formalisms.transformations.rule.PostConditionPatternContents rhs to rail

98 pattern = rhs

99 element = rail

100

101 formalisms.transformations.rule.PostConditionPatternContents rhs to in rhs

102 pattern = rhs

103 element = in rhs

104

105 formalisms.transformations.rule.PostConditionPatternContents rhs to out rhs

106 pattern = rhs

107 element = out rhs

108

109 formalisms.transformations.rule.PostConditionPatternContents rhs to free to in rhs

110 pattern = rhs

111 element = free to in rhs

112

113 formalisms.transformations.rule.PostConditionPatternContents rhs to in rhs to rail

114 pattern = rhs

115 element = in rhs to rail

116

117 formalisms.transformations.rule.PostConditionPatternContents rhs to rail to out rhs

118 pattern = rhs

119 element = rail to out rhs
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120

121 formalisms.transformations.rule.PostConditionPatternContents rhs to out rhs to free

122 pattern = rhs

123 element = out rhs to free

124

125 package rail train to petrinet

126 # # # #

127 # LHS #

128 # # # #

129 formalisms.transformations.rule.LHS lhs

130

131 formalisms.trainsim.trainsimMM Pre.Rail r lhs

132 pLabel = 1

133

134 formalisms.trainsim.trainsimMM Pre.Train t lhs

135 pLabel = 2

136

137 formalisms.trainsim.trainsimMM Pre.T on TP t on tp lhs

138 t = t lhs

139 tp = r lhs

140 pLabel = 3

141

142 formalisms.transformations.rule.PreConditionPatternContents lhs to r lhs

143 pattern = lhs

144 element = r lhs

145

146 formalisms.transformations.rule.PreConditionPatternContents lhs to t lhs

147 pattern = lhs

148 element = t lhs

149

150 formalisms.transformations.rule.PreConditionPatternContents lhs to t on tp lhs

151 pattern = lhs

152 element = t on tp lhs
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153

154 # # # #

155 # RHS #

156 # # # #

157 formalisms.transformations.rule.RHS rhs

158

159 formalisms.petrinet.petrinetMM Post.Place free

160 pLabel = 4

161 tokens = {{int: arkm3.object.Clabject} match: void}:

162 match[4].tokens = 0

163

164 formalisms.petrinet.petrinetMM Post.Place rail

165 pLabel = 5

166 tokens = {{int: arkm3.object.Clabject} match: void}:

167 match[5].tokens = 1

168

169 formalisms.petrinet.petrinetMM Post.Transition in rhs

170 pLabel = 6

171

172 formalisms.petrinet.petrinetMM Post.Transition out rhs

173 pLabel = 7

174

175 formalisms.petrinet.petrinetMM Post.P to T free to in rhs

176 p = free

177 t = in rhs

178 pLabel = 8

179

180 formalisms.petrinet.petrinetMM Post.T to P in rhs to rail

181 t = in rhs

182 p = rail

183 pLabel = 9

184

185 formalisms.petrinet.petrinetMM Post.P to T rail to out rhs
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186 p = rail

187 t = out rhs

188 pLabel = 10

189

190 formalisms.petrinet.petrinetMM Post.T to P out rhs to free

191 t = out rhs

192 p = free

193 pLabel = 11

194

195 formalisms.transformations.rule.PostConditionPatternContents rhs to free

196 pattern = rhs

197 element = free

198

199 formalisms.transformations.rule.PostConditionPatternContents rhs to rail

200 pattern = rhs

201 element = rail

202

203 formalisms.transformations.rule.PostConditionPatternContents rhs to in rhs

204 pattern = rhs

205 element = in rhs

206

207 formalisms.transformations.rule.PostConditionPatternContents rhs to out rhs

208 pattern = rhs

209 element = out rhs

210

211 formalisms.transformations.rule.PostConditionPatternContents rhs to free to in rhs

212 pattern = rhs

213 element = free to in rhs

214

215 formalisms.transformations.rule.PostConditionPatternContents rhs to in rhs to rail

216 pattern = rhs

217 element = in rhs to rail

218
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219 formalisms.transformations.rule.PostConditionPatternContents rhs to rail to out rhs

220 pattern = rhs

221 element = rail to out rhs

222

223 formalisms.transformations.rule.PostConditionPatternContents rhs to out rhs to free

224 pattern = rhs

225 element = out rhs to free

226

227 package split to petrinet

228 # # # #

229 # NAC #

230 # # # #

231 formalisms.transformations.rule.NAC nac

232 name = ’NAC 1’

233

234 formalisms.trainsim.trainsimMM Pre.Split s nac

235 pLabel = 1

236

237 formalisms.trainsim.trainsimMM Pre.Train t nac

238 pLabel = 2

239

240 formalisms.trainsim.trainsimMM Pre.T on TP t on tp nac

241 t = t nac

242 tp = s nac

243 pLabel = 3

244

245 formalisms.transformations.rule.PreConditionPatternContents nac to s nac

246 pattern = nac

247 element = s nac

248

249 formalisms.transformations.rule.PreConditionPatternContents nac to t nac

250 pattern = nac

251 element = t nac
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252

253 formalisms.transformations.rule.PreConditionPatternContents nac to t on tp nac

254 pattern = nac

255 element = t on tp nac

256

257 # # # #

258 # LHS #

259 # # # #

260 formalisms.transformations.rule.LHS lhs

261

262 formalisms.trainsim.trainsimMM Pre.Split s lhs

263 pLabel = 1

264

265 formalisms.transformations.rule.PreConditionPatternContents lhs to s lhs

266 pattern = lhs

267 element = s lhs

268

269 # # # #

270 # RHS #

271 # # # #

272 formalisms.transformations.rule.RHS rhs

273

274 formalisms.petrinet.petrinetMM Post.Place free

275 pLabel = 4

276 tokens = {{int: arkm3.object.Clabject} match: void}:

277 match[4].tokens = 1

278

279 formalisms.petrinet.petrinetMM Post.Place rail

280 pLabel = 5

281 tokens = {{int: arkm3.object.Clabject} match: void}:

282 match[5].tokens = 0

283

284 formalisms.petrinet.petrinetMM Post.Transition in rhs
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285 pLabel = 6

286

287 formalisms.petrinet.petrinetMM Post.Transition out1 rhs

288 pLabel = 7

289

290 formalisms.petrinet.petrinetMM Post.Transition out2 rhs

291 pLabel = 8

292

293 formalisms.petrinet.petrinetMM Post.P to T free to in rhs

294 p = free

295 t = in rhs

296 pLabel = 9

297

298 formalisms.petrinet.petrinetMM Post.T to P in rhs to rail

299 t = in rhs

300 p = rail

301 pLabel = 10

302

303 formalisms.petrinet.petrinetMM Post.P to T rail to out1 rhs

304 p = rail

305 t = out1 rhs

306 pLabel = 11

307

308 formalisms.petrinet.petrinetMM Post.P to T rail to out2 rhs

309 p = rail

310 t = out2 rhs

311 pLabel = 12

312

313 formalisms.petrinet.petrinetMM Post.T to P out1 rhs to free

314 t = out1 rhs

315 p = free

316 pLabel = 13

317
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318 formalisms.petrinet.petrinetMM Post.T to P out2 rhs to free

319 t = out2 rhs

320 p = free

321 pLabel = 14

322

323 formalisms.transformations.rule.PostConditionPatternContents rhs to free

324 pattern = rhs

325 element = free

326

327 formalisms.transformations.rule.PostConditionPatternContents rhs to rail

328 pattern = rhs

329 element = rail

330

331 formalisms.transformations.rule.PostConditionPatternContents rhs to in rhs

332 pattern = rhs

333 element = in rhs

334

335 formalisms.transformations.rule.PostConditionPatternContents rhs to out1 rhs

336 pattern = rhs

337 element = out1 rhs

338

339 formalisms.transformations.rule.PostConditionPatternContents rhs to out2 rhs

340 pattern = rhs

341 element = out2 rhs

342

343 formalisms.transformations.rule.PostConditionPatternContents rhs to free to in rhs

344 pattern = rhs

345 element = free to in rhs

346

347 formalisms.transformations.rule.PostConditionPatternContents rhs to in rhs to rail

348 pattern = rhs

349 element = in rhs to rail

350
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351 formalisms.transformations.rule.PostConditionPatternContents rhs to rail to out1 rhs

352 pattern = rhs

353 element = rail to out1 rhs

354

355 formalisms.transformations.rule.PostConditionPatternContents rhs to rail to out2 rhs

356 pattern = rhs

357 element = rail to out2 rhs

358

359 formalisms.transformations.rule.PostConditionPatternContents rhs to out1 rhs to free

360 pattern = rhs

361 element = out1 rhs to free

362

363 formalisms.transformations.rule.PostConditionPatternContents rhs to out2 rhs to free

364 pattern = rhs

365 element = out2 rhs to free

366

367 package split train to petrinet

368 # # # #

369 # LHS #

370 # # # #

371 formalisms.transformations.rule.LHS lhs

372

373 formalisms.trainsim.trainsimMM Pre.Split s lhs

374 pLabel = 1

375

376 formalisms.trainsim.trainsimMM Pre.Train t lhs

377 pLabel = 2

378

379 formalisms.trainsim.trainsimMM Pre.T on TP t on tp lhs

380 t = t lhs

381 tp = s lhs

382 pLabel = 3

383
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384 formalisms.transformations.rule.PreConditionPatternContents lhs to s lhs

385 pattern = lhs

386 element = s lhs

387

388 formalisms.transformations.rule.PreConditionPatternContents lhs to t lhs

389 pattern = lhs

390 element = t lhs

391

392 formalisms.transformations.rule.PreConditionPatternContents lhs to t on tp lhs

393 pattern = lhs

394 element = t on tp lhs

395

396 # # # #

397 # RHS #

398 # # # #

399 formalisms.transformations.rule.RHS rhs

400

401 formalisms.petrinet.petrinetMM Post.Place free

402 pLabel = 4

403 tokens = {{int: arkm3.object.Clabject} match: void}:

404 match[4].tokens = 0

405

406 formalisms.petrinet.petrinetMM Post.Place rail

407 pLabel = 5

408 tokens = {{int: arkm3.object.Clabject} match: void}:

409 match[5].tokens = 1

410

411 formalisms.petrinet.petrinetMM Post.Transition in rhs

412 pLabel = 6

413

414 formalisms.petrinet.petrinetMM Post.Transition out1 rhs

415 pLabel = 7

416
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417 formalisms.petrinet.petrinetMM Post.Transition out2 rhs

418 pLabel = 8

419

420 formalisms.petrinet.petrinetMM Post.P to T free to in rhs

421 p = free

422 t = in rhs

423 pLabel = 9

424

425 formalisms.petrinet.petrinetMM Post.T to P in rhs to rail

426 t = in rhs

427 p = rail

428 pLabel = 10

429

430 formalisms.petrinet.petrinetMM Post.P to T rail to out1 rhs

431 p = rail

432 t = out1 rhs

433 pLabel = 11

434

435 formalisms.petrinet.petrinetMM Post.P to T rail to out2 rhs

436 p = rail

437 t = out2 rhs

438 pLabel = 12

439

440 formalisms.petrinet.petrinetMM Post.T to P out1 rhs to free

441 t = out1 rhs

442 p = free

443 pLabel = 13

444

445 formalisms.petrinet.petrinetMM Post.T to P out2 rhs to free

446 t = out2 rhs

447 p = free

448 pLabel = 14

449
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450 formalisms.transformations.rule.PostConditionPatternContents rhs to free

451 pattern = rhs

452 element = free

453

454 formalisms.transformations.rule.PostConditionPatternContents rhs to rail

455 pattern = rhs

456 element = rail

457

458 formalisms.transformations.rule.PostConditionPatternContents rhs to in rhs

459 pattern = rhs

460 element = in rhs

461

462 formalisms.transformations.rule.PostConditionPatternContents rhs to out1 rhs

463 pattern = rhs

464 element = out1 rhs

465

466 formalisms.transformations.rule.PostConditionPatternContents rhs to out2 rhs

467 pattern = rhs

468 element = out2 rhs

469

470 formalisms.transformations.rule.PostConditionPatternContents rhs to free to in rhs

471 pattern = rhs

472 element = free to in rhs

473

474 formalisms.transformations.rule.PostConditionPatternContents rhs to in rhs to rail

475 pattern = rhs

476 element = in rhs to rail

477

478 formalisms.transformations.rule.PostConditionPatternContents rhs to rail to out1 rhs

479 pattern = rhs

480 element = rail to out1 rhs

481

482 formalisms.transformations.rule.PostConditionPatternContents rhs to rail to out2 rhs
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483 pattern = rhs

484 element = rail to out2 rhs

485

486 formalisms.transformations.rule.PostConditionPatternContents rhs to out1 rhs to free

487 pattern = rhs

488 element = out1 rhs to free

489

490 formalisms.transformations.rule.PostConditionPatternContents rhs to out2 rhs to free

491 pattern = rhs

492 element = out2 rhs to free

Listing A.1: The TrainSim-to-PetriNet transformation, modelled in Ark

s
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ArkM3 Metamodels

TypedElement

Element Package

Constraint

Action

parent

ownedElements 1..1

0..*

ownedActions

ownedConstraintshostElement

1..1

hostElement

0..*

0..*

1..1
ActionableElement

Type StringValue

name1..1

NamedElement

type1..1

+set_parent(parent)

+get_parent()

+copy()

+get_container()

+get_element_id()

+add_child(child, role)

+update_child(child, role)

+remove_child(child, role)

+get_elements_with_roles(roles)

+is_dirty()

+set_dirty(dirty)

+is_instance(class_str)

+get_type()

+set_type(type)

+get_name()

+set_name(name)

+get_ownedActions()

+get_ownedConstraints()

Figure B.1: The ArkM3 Element metamodel.
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Figure B.2: The ArkM3 Object metamodel.
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Figure B.3: The ArkM3 DataValue metamodel.
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Figure B.4: The ArkM3 DataType metamodel.
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Figure B.7: The ArkM3 (Action Language) Statement metamodel.
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Appendix C

Graph Matching Algorithm Code

1 ’’’

2 Created on 25−mrt.−2013

3

4 @author: Simon

5 ’’’

6 from arkm3.Action import IdentifierReference

7 from arkm3.ArkM3 import ArkM3

8 from arkm3.DataType import TypeReference

9 from arkm3.DataValue import StringValue

10 from arkm3.Object import Clabject, Association

11

12 class State:

13 ’’’

14 Initializes the state. Parameters:

15 − p: The pattern (LHS, NAC) to be matched.

16 − s: The source model (an ArkM3 package).

17 − arkm3: A reference to the metaverse.

18 ’’’

19 def init (self, p, s, arkm3):

20 self.m p = []

21 self.m s = []

22

145
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23 self.s = s

24 self.p = p

25

26 self.matches = []

27

28 # Read definitions of pattern element classes from the metaverse.

29 pattern class = arkm3.read(’formalisms.transformations.rule.PatternElement’). object

30 pattern association class = arkm3.read(’formalisms.transformations.rule.PatternAssociation’)

. object

31 pattern content class = arkm3.read(’formalisms.transformations.rule.

PreConditionPatternContents’). object

32

33 # Find all elements in the pattern, which are connected to p.

34 pattern contents = []

35 for a in p.get associations().get value():

36 for super type in a.get type().get all super class().get value() + [a.get type()]:

37 if super type == pattern content class:

38 pattern contents.append(a.get isTo())

39

40 # Make a distinction between nodes (Clabjects) and edges (Associations) of the pattern.

41 self.p nodes = []

42 self.p edges = []

43 for c in pattern contents:

44 if isinstance(c, IdentifierReference): c = c.dereference()

45 a type = c.get type()

46 if isinstance(a type, Association):

47 # Ontological check.

48 super classes = c.get type().get all super class().get value()

49 for super class in super classes:

50 if super class.equals(pattern association class):

51 self.p edges.append(c)

52 elif isinstance(a type, Clabject):

53 # Ontological check.
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54 for super class in c.get type().get all super class().get value():

55 if super class == pattern class:

56 self.p nodes.append(c)

57

58 # Make a distinction between nodes (Clabjects) and edges (Associations) of the source model

.

59 self.s nodes = []

60 self.s edges = []

61 for c in self.s.get ownedElements().get value().itervalues():

62 if isinstance(c, IdentifierReference): c = c.dereference()

63 a type = c.get type()

64 if isinstance(a type, Association):

65 self.s edges.append(c)

66 elif isinstance(a type, Clabject):

67 self.s nodes.append(c)

68

69 ’’’

70 Store a <PatternElement, SourceElement> mapping. Parameters:

71 − p: The pattern element.

72 − s: The source model element.

73 ’’’

74 def store mapping(self, p, s):

75 self.m p.append(p)

76 self.m s.append(s)

77

78 ’’’

79 Undo a <PatternElement, SourceElement> mapping. Parameters:

80 − p: The pattern element.

81 − s: The source model element.

82 ’’’

83 def undo mapping(self, p, s):

84 self.m p.remove(p)

85 self.m s.remove(s)
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86

87 ’’’

88 Stores the currently saved <PatternElement, SourceElement> (in self.m p and self.m s) as a

match.

89 A match is a mapping of all pattern elements on a source element.

90 ’’’

91 def store match(self):

92 match = {}

93 for i in range(len(self.m p)):

94 match[self.m p[i].get propertyValue(StringValue(’ pLabel’)).get value().get value().

get value()] = self.m s[i]

95

96 for i in range(len(self.m p)):

97 p properties = self.m p[i].get all properties().get value()

98 for prop in p properties.itervalues():

99 name = prop.get name().get value()

100 if name.startswith(’ p p’):

101 name = name[3:]

102 elif name.startswith(’ p’):

103 continue

104

105 ’’’ execute constraint on property ’’’

106 if not self.m p[i].get propertyValue(name).get value().execute(match):

107 return

108

109 ’’’ execute LHS constraint ’’’

110 if self.matches.count(match) == 0 and self.p.get propertyValue(StringValue(’p constraint’)).

get value().execute(match):

111 self.matches.append(match)

112

113 ’’’

114 Returns True if all pattern elements have been mapped onto a source model element, else False.

115 ’’’
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116 def mapping complete(self):

117 return len(self.m p) == len(self.p nodes + self.p edges)

118

119 ’’’

120 Returns all complete matches of the pattern in the source model.

121 ’’’

122 def get matches(self):

123 return self.matches

124

125 ’’’

126 Suggests a <PatternElement, SourceElement> mapping.

127 ’’’

128 def suggest mapping(state):

129 for p n in state.p nodes + state.p edges:

130 for s n in state.s nodes + state.s edges:

131 if state.m p.count(p n) == 0 and state.m s.count(s n) == 0:

132 yield p n, s n

133

134 ’’’ Returns True if the pattern element ’lhs el’ can be mapped on the source model element ’host el

’. ’’’

135 def is feasible(state, lhs el, host el):

136 ’’’ Mp and Ms after lhs el and host el are added. ’’’

137 f m p = state.m p + [lhs el] # Mp

138 f m s = state.m s + [host el] # Ms

139

140 # A match is a mapping between pattern element labels and source model elements.

141 match = {}

142 for i in range(len(f m p)):

143 match[f m p[i].get propertyValue(StringValue(’ pLabel’)).get value().get value().get value()

] = f m s[i]

144

145 f m p = set(f m p)

146 f m s = set(f m s)
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147

148 # Compute the outgoing and incoming elements of the pattern node.

149 out lhs = set() # out(p)

150 in lhs = set() # in(p)

151

152 if isinstance(lhs el, Association):

153 out lhs.add(lhs el.get isTo())

154 in lhs.add(lhs el.get isFrom())

155 elif isinstance(lhs el, Clabject):

156 for a in lhs el.get associations().get value():

157 if a.get isFrom() == lhs el:

158 out lhs.add(a)

159 elif a.get isTo() == lhs el and a.get isFrom() in state.p nodes:

160 in lhs.add(a)

161

162 # Compute the outgoing and incoming elements of the source model node.

163 out host = set() # out(s)

164 in host = set() # in(s)

165

166 if isinstance(host el, Association):

167 out host.add(host el.get isTo())

168 in host.add(host el.get isFrom())

169 elif isinstance(host el, Clabject):

170 for a in host el.get associations().get value():

171 if a.get isFrom() == host el:

172 out host.add(a)

173 elif a.get isTo() == host el:

174 in host.add(a)

175

176 # in lhs mapped is the set of source model elements which the elements in in lhs are mapped to

177 in lhs mapped = set([match[s.get propertyValue(StringValue(’ pLabel’)).get value().get value().

get value()] for s in in lhs if s.get propertyValue(StringValue(’ pLabel’)).get value().

get value().get value() in match])
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178 # out lhs mapped is the set of source model elements which the elements in out lhs are mapped to

179 out lhs mapped = set([match[s.get propertyValue(StringValue(’ pLabel’)).get value().get value().

get value()] for s in out lhs if s.get propertyValue(StringValue(’ pLabel’)).get value().

get value().get value() in match])

180 inout lhs mapped = in lhs mapped | out lhs mapped

181 inout host = in host | out host

182

183 ’’’ conforms to ’’’

184 feasible = lhs el. class == host el. class and \

185 lhs el.get type().get name() == host el.get type().get name() and \

186 len(out lhs) <= len(out host) and \

187 len(in lhs) <= len(in host) and \

188 len(out lhs & f m p) == len(out host & f m s) and \

189 len(in lhs & f m p) == len(in host & f m s) and \

190 len(in lhs mapped − in host) == 0 and \

191 len(out lhs mapped − out host) == 0 and \

192 len(inout lhs mapped − inout host) == 0

193

194 return feasible

195

196 ’’’ Recursive function which computes all complete matches of a pattern in a source model. ’’’

197 def extend(state):

198 if state.mapping complete():

199 state.store match()

200 return

201

202 suggested mappings = suggest mapping(state)

203 for lhs el, host el in suggested mappings:

204 if is feasible(state, lhs el, host el):

205 state.store mapping(lhs el, host el)

206 extend(state)

207 state.undo mapping(lhs el, host el)

208
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209 ’’’ Returns a list of all complete matches of the pattern ’lhs’ in the source model ’host graph’.

’’’

210 def match(lhs, host graph, arkm3):

211 state = State(lhs, host graph, arkm3)

212 extend(state)

213 return state.get matches()

214

215 ’’’

216 Rewrites a model using the RHS of a rule. Parameters:

217 − match: A match obtained through the match() function.

218 − host graph: The host model (an ArkM3 package).

219 − rhs: The RHS of the rule.

220 − arkm3: A reference to the metaverse.

221 ’’’

222 def rewrite(match, host graph, rhs, arkm3):

223 # in rhs keeps track of the pattern labels of the elements in the RHS.

224 in rhs = set()

225 # new elements is the set of newly created elements by the RHS.

226 new elements = {}

227

228 # Read definitions of pattern element classes from the metaverse.

229 pattern class = arkm3.read(’formalisms.transformations.rule.PatternElement’). object

230 pattern association class = arkm3.read(’formalisms.transformations.rule.PatternAssociation’).

object

231 pattern content class = arkm3.read(’formalisms.transformations.rule.PostConditionPatternContents

’). object

232

233 # Find all elements in the pattern, which are connected to rhs.

234 pattern contents = []

235 for a in rhs.get associations().get value():

236 if pattern content class in a.get all super class().get value() + [a.get type()]:

237 pattern contents.append(a.get isTo())

238
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239 # Make a distinction between nodes (Clabjects) and edges (Associations) of the RHS.

240 rhs nodes = []

241 rhs edges = []

242 for c in pattern contents:

243 if isinstance(c, IdentifierReference): c = c.dereference()

244 a type = c.get type()

245 if isinstance(a type, Association):

246 super classes = c.get type().get all super class().get value()

247 for super class in super classes:

248 if super class.equals(pattern association class):

249 rhs edges.append(c)

250 elif isinstance(a type, Clabject):

251 for super class in c.get type().get all super class().get value():

252 if super class == pattern class:

253 rhs nodes.append(c)

254

255 # Iterate over all RHS nodes.

256 for node in rhs nodes:

257 in rhs.add(node.get propertyValue(StringValue(’ pLabel’)).get value().get value().get value

())

258

259 if not node.get propertyValue(StringValue(’ pLabel’)).get value().get value().get value() in

match:

260 ’’’ Create ’’’

261 a type = node.get type().get parent().get location().get value()[:−5] + ’.’ + node.

get type().get name().get value()

262 new elements[node.get propertyValue(StringValue(’ pLabel’)).get value().get value().

get value()] = arkm3.create(host graph.get location().get value(), ArkM3.OBJECT, ’’, a type,

False). object

263

264 ’’’ Update ’’’

265 node properties = node.get type().get all properties().get value()

266 for prop in node properties.itervalues():
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267 name = prop.get name().get value()

268 if name.startswith(’ p p’):

269 ’’’ RAMified pLabel ’’’

270 name = StringValue(name[3:])

271 elif name.startswith(’ p’):

272 ’’’ pLabel, should be ignored here ’’’

273 continue

274

275 ’’’ execute action ’’’

276 node.get propertyValue(name).get value().execute(match)

277

278 # Iterate over all RHS edges.

279 for edge in rhs edges:

280 if not edge.get propertyValue(StringValue(’ pLabel’)).get value().get value().get value() in

match:

281 ’’’ Create ’’’

282 from label = edge.get isFrom().get propertyValue(StringValue(’ pLabel’)).get value().

get value().get value()

283 to label = edge.get isTo().get propertyValue(StringValue(’ pLabel’)).get value().

get value().get value()

284 from node = match[from label] if from label in match else new elements[from label]

285 to node = match[to label] if to label in match else new elements[to label]

286 a type = edge.get type().get parent().get location().get value()[:−5] + ’.’ + edge.

get type().get name().get value()

287 new elements[edge.get propertyValue(StringValue(’ pLabel’)).get value().get value().

get value()] = arkm3.create(host graph.get location().get value(), ArkM3.ASSOCIATIONINSTANCE, ’

’, a type, from node.get location().get value(), to node.get location().get value())

288

289 ’’’ Update ’’’

290 edge properties = edge.get type().get all properties()

291 for prop in edge properties.get value().itervalues():

292 name = prop.get name().get value()

293 if name.startswith(’ p p’):
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294 ’’’ RAMified pLabel ’’’

295 name = StringValue(name[3:])

296 elif name.startswith(’ p’):

297 ’’’ pLabel, should be ignored here ’’’

298 continue

299

300 ’’’ execute action ’’’

301 edge.get propertyValue(name).get value().execute(match)

302

303 in rhs.add(edge.get propertyValue(StringValue(’ pLabel’)).get value().get value().get value

())

304

305 # Find all nodes which are in the LHS, but not in the RHS.

306 in lhs not rhs = list(set(match.keys()) − in rhs)

307 for label in in lhs not rhs:

308 ’’’ Delete ’’’

309 host graph.get ownedElements().delete(match[label].get name())

310

311 ’’’ execute RHS action ’’’

312 rhs.get propertyValue(StringValue(’p action’)).get value().execute(match)

Listing C.1: The graph matching algorithm on ArkM3 data structures, written in

Python

1 package rewriting

2 class State

3 arkm3.object.Package s

4 arkm3.object.Clabject p

5 [arkm3.object.Clabject] m p = []

6 [arkm3.object.Clabject] m s = []

7 [{int: arkm3.object.Clabject}] matches = []

8 [arkm3.object.Clabject] p nodes = []

9 [arkm3.object.Association] p edges = []

10 [arkm3.object.Clabject] s nodes = []

11 [arkm3.object.Association] s edges = []
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12

13 {rewriting.State, arkm3.object.Clabject, arkm3.object.Package: void} init

14 init = {rewriting.State self, arkm3.object.Clabject p, arkm3.object.Package s: void}:

15 self.m p = []

16 self.m s = []

17

18 self.s = s

19 self.p = p

20

21 self.matches = []

22

23 arkm3.object.Clabject pattern class = formalisms.transformations.rule.

PatternElement

24 arkm3.object.Clabject pattern association class = formalisms.transformations.rule.

PatternAssociation

25 arkm3.object.Clabject pattern content class = formalisms.transformations.rule.

PreConditionPatternContents

26

27 # pattern contents

28 [arkm3.object.Clabject] pattern contents = []

29 arkm3.object.Association a

30 for a in p.get associations():

31 {any} types = set([a.get type()]) + a.get type().get all super class()

32 if (types.contains(pattern content class)):

33 pattern contents.append(a.get isTo())

34

35 # differentiate between nodes (clabjects) and edges (associations) of the pattern

36 self.p nodes = []

37 self.p edges = []

38 arkm3.object.Clabject c

39 for c in pattern contents:

40 if (c.is instance(’Association’) and c.get type().get all super class().contains(

pattern association class)):
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41 self.p edges.append(c)

42 elif (c.is instance(’Clabject’) and c.get type().get all super class().contains(pattern class

)):

43 self.p nodes.append(c)

44

45 # differentiate between nodes (clabjects) and edges (associations) of the host graph

46 self.s nodes = []

47 self.s edges = []

48 arkm3.object.Clabject c

49 for c in self.s.get ownedElements():

50 if (c.is instance(’Association’)):

51 self.s edges.append(c)

52 elif (c.is instance(’Clabject’)):

53 self.s nodes.append(c)

54

55 {rewriting.State, arkm3.object.Package, arkm3.object.Package: void} store mapping

56 store mapping = {rewriting.State self, arkm3.object.Package p, arkm3.object.Package s: void}:

57 self.m p.append(p)

58 self.m s.append(s)

59

60 {rewriting.State, arkm3.object.Package, arkm3.object.Package: void} undo mapping

61 undo mapping = {rewriting.State self, arkm3.object.Package p, arkm3.object.Package s: void}:

62 self.m p.delete(p)

63 self.m s.delete(s)

64

65 {rewriting.State: void} store match

66 store match = {rewriting.State self: void}:

67 {int: arkm3.object.Clabject} match = map()

68

69 int i = 0

70 while (i < self.m p.size()):

71 match[self.m p[i]. pLabel] = self.m s[i]

72 i = i + 1
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73

74 i = 0

75 while (i < self.m p.size()):

76 {arkm3.object.Property} p properties = self.m p[i].get all properties()

77 arkm3.object.Property prop

78 for prop in p properties:

79 string name = prop.get name()

80 if (name.find(’ p p’) == 0):

81 name = name[3:]

82 elif (name.find(’ p’) == 0):

83 continue

84

85 if not self.m p[i].get propertyValue(name).get value().execute(match):

86 return

87

88 i = i + 1

89

90 if self.matches.count(match) == 0 and ((formalisms.transformations.rule.PreConditionPattern)

self.p).p constraint.execute(match):

91 self.matches.append(match)

92

93 {rewriting.State: bool} mapping complete

94 mapping complete = {rewriting.State self: bool}:

95 return self.m p.size() == self.p nodes.size() + self.p edges.size()

96

97 {rewriting.State: [{int: arkm3.object.Clabject}]} get matches

98 get matches = {rewriting.State self: [{int: arkm3.object.Clabject}]}:

99 return self.matches

100

101 suggest mappings = {rewriting.State state: [[arkm3.object.Clabject]]}:

102 [[arkm3.object.Clabject]] mappings = []

103

104 arkm3.object.Clabject p n
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105 for p n in state.p nodes + state.p edges:

106 arkm3.object.Clabject s n

107 for s n in state.s nodes + state.s edges:

108 mappings.append([p n, s n])

109

110 return mappings

111

112 is feasible = {rewriting.State state, arkm3.object.Clabject lhs el, arkm3.object.Clabject host el:

bool}:

113 [arkm3.object.Clabject] f m p l = state.m p + [lhs el]

114 [arkm3.object.Clabject] f m s l = state.m s + [host el]

115

116 {int: arkm3.object.Clabject} match = map()

117 int i = 0

118 while (i < f m p l.size()):

119 match[f m p l[i]. pLabel] = f m s l[i]

120 i = i + 1

121

122 {arkm3.object.Clabject} f m p = set(f m p l)

123 {arkm3.object.Clabject} f m s = set(f m s l)

124

125 # compute outgoing and incoming elements of LHS element

126 {arkm3.object.Clabject} out lhs = set()

127 {arkm3.object.Clabject} in lhs = set()

128

129 if (lhs el.is instance(’Association’)):

130 arkm3.object.Association a lhs el = (arkm3.object.Association) lhs el

131 out lhs.add(a lhs el.get isTo())

132 in lhs.add(a lhs el.get isFrom())

133 elif (lhs el.is instance(’Clabject’)):

134 arkm3.object.Association a

135 for a in lhs el.get associations():

136 if (a.get isFrom() == lhs el):
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137 out lhs.add(a)

138 elif (a.get isTo() == lhs el):

139 in lhs.add(a)

140

141 # compute outgoing and incoming elements of host element

142 {arkm3.object.Clabject} out host = set()

143 {arkm3.object.Clabject} in host = set()

144

145 if (host el.is instance(’Association’)):

146 arkm3.object.Association a host el = (arkm3.object.Association) host el

147 out host.add(a host el.get isTo())

148 in host.add(a host el.get isFrom())

149 elif (host el.is instance(’Clabject’)):

150 arkm3.object.Association a

151 for a in host el.get associations():

152 if (a.get isFrom() == host el):

153 out host.add(a)

154 elif (a.get isTo() == host el):

155 in host.add(a)

156

157 {arkm3.object.Clabject} in lhs mapped = set()

158 {arkm3.object.Clabject} out lhs mapped = set()

159 arkm3.object.Clabject el

160 for el in in lhs:

161 if (match.get keys().contains(el. pLabel)):

162 in lhs mapped.add(match[el. pLabel])

163 for el in out lhs:

164 if (match.get keys().contains(el. pLabel)):

165 out lhs mapped.add(match[el. pLabel])

166

167 {arkm3.object.Clabject} inout lhs mapped = in lhs mapped.union(out lhs mapped)

168 {arkm3.object.Clabject} inout host = in host.union(out host)

169
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170 bool feasible = lhs el.get type().get name() == host el.get type().get name()

171 feasible = feasible and out lhs.size() <= out host.size() and in lhs.size() <= in host.size()

172 feasible = feasible and ((out lhs.intersect(f m p)).size() == (out host.intersect(f m p)).size())

and ((in lhs.intersect(f m p)).size() == (in host.intersect(f m p)).size())

173 feasible = feasible and ((in lhs mapped − in host).size() == 0 and (out lhs mapped − out host).

size() == 0)

174 feasible = feasible and (inout lhs mapped − inout host).size() == 0

175

176 return feasible

177

178 extend = {rewriting.State state: void}:

179 if (state.mapping complete()):

180 state.store match()

181 return

182

183 [[arkm3.object.Clabject]] suggested mappings = suggest mappings(state)

184

185 [arkm3.object.Clabject] suggested mapping

186 for suggested mapping in suggested mappings:

187 arkm3.object.Clabject lhs el = suggested mapping[0]

188 arkm3.object.Clabject host el = suggested mapping[1]

189 if state.m p.count(lhs el) == 0 and state.m s.count(host el) == 0:

190 if is feasible(state, lhs el, host el):

191 state.store mapping(lhs el, host el)

192 extend(state)

193 state.undo mapping(lhs el, host el)

194

195 match = {arkm3.object.Package lhs, arkm3.object.Package host graph: [{int: arkm3.object.Clabject

}]}:

196 rewriting.State state = rewriting.State(lhs, host graph)

197 extend(state)

198 return state.get matches()

199
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200 rewrite = {{int: arkm3.object.Clabject} match, arkm3.object.Package host graph, arkm3.object.

Clabject rhs: void}:

201 {int} in rhs = {}

202 {int: arkm3.object.Clabject} new elements = map()

203

204 arkm3.object.Clabject pattern class = formalisms.transformations.rule.PatternElement

205 arkm3.object.Clabject pattern association class = formalisms.transformations.rule.

PatternAssociation

206 arkm3.object.Clabject pattern content class = formalisms.transformations.rule.

PreConditionPatternContents

207

208 # pattern contents

209 [arkm3.object.Clabject] pattern contents = []

210 arkm3.object.Association a

211 for a in rhs.get associations():

212 {any} types = set([a.get type()]) + a.get type().get all super class()

213 if (types.contains(pattern content class)):

214 pattern contents.append(a.get isTo())

215

216 [formalisms.transformations.rule.PatternElement] rhs nodes = []

217 [formalisms.transformations.rule.PatternAssociation] rhs edges = []

218

219 # differentiate between nodes (clabjects) and edges (associations) of the pattern

220 arkm3.object.Clabject c

221 for c in pattern contents:

222 if (c.is instance(’Association’) and c.get type().get all super class().contains(

pattern association class)):

223 rhs edges.append(c)

224 elif (c.is instance(’Clabject’) and c.get type().get all super class().contains(pattern class))

:

225 rhs nodes.append(c)

226

227 arkm3.object.Clabject node
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228 for node in rhs nodes:

229 in rhs.add(node. pLabel)

230 if not match.keys().contains(node. pLabel):

231 # create

232 string a type = node.get type().get parent().get location()[:−5] + ’.’ + node.get type().

get name()

233 new elements[node. pLabel] = create(host graph.get location(), OBJECT, ’’, a type)

234

235 # update

236 {arkm3.object.PropertyValue} node properties = node.get all propertyValues()

237 for prop in node properties:

238 string name = prop.get name()

239 if (name.find(’ p p’) == 0):

240 name = name[3:]

241 elif (name.find(’ p’) == 0):

242 continue

243

244 prop.execute(match)

245

246 for edge in rhs edges:

247 if not match.keys().contains(edge. pLabel):

248 # create

249 arkm3.object.Clabject from node

250 arkm3.object.Clabject to node

251 int from label = ((formalisms.transformations.rule.PatternElement) (edge.get isFrom())).

pLabel

252 int to label = ((formalisms.transformations.rule.PatternElement) edge.get isTo()). pLabel

253 if (match.keys().contains(from label)):

254 from node = match[from label]

255 else:

256 from node = new elements[from label]

257 if (match.keys().contains(to label)):

258 to node = match[to label]
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259 else:

260 to node = new elements[to label]

261 string a type = edge.get type().get parent().get location()[:−5] + ’.’ + edge.get type().

get name()

262 new elements[edge. pLabel] = create(host graph.get location(), ASSOCIATIONINSTANCE, ’’,

a type, from node.get location(), to node.get location())

263

264 # update

265 {arkm3.object.PropertyValue} edge properties = edge.get all propertyValues()

266 for prop in edge properties:

267 string name = prop.get name()

268 if (name.find(’ p p’) == 0):

269 name = name[3:]

270 elif (name.find(’ p’) == 0):

271 continue

272

273 prop.execute(match)

274

275 in rhs.add(edge. pLabel)

276

277 {int} in lhs not rhs = set(match.keys()) − in rhs

278 int label

279 for label in in lhs not rhs:

280 # delete

281 host graph.get ownedElements().remove(match[label])

282

283 # execute RHS action

284 ((formalisms.transformations.rule.PostConditionPattern)rhs).p action.execute(match)

Listing C.2: The graph matching algorithm written in Ark action language.
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