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Abstract

This is a summary of a meeting I had with Hans Vangheluwe on Thurs-
day May 24 about numerical methods to solve Functional Differential
Equations (FDE). I describe some observations I’ve made about them
and I give a proof for an upper bound on the global error made when
solving a DDE by the method of steps with a numerical scheme with
known upper bound for an ODE.

Introduction

If a DDE has no delay between 0 and some r > 0, then, using the initial function,
the DDE becomes an ODE on an interval of length r and we can solve it using
normal numerical methods for ODE. Then, using this solution as a new initial
function, we can repeat this procedure on another step of length r, and so on,
like the usual method of steps. The question now is what are the conditions
needed so that this method converges? Some are presented in section 2. Some
observations pertinent to numerical methods are given in section 1.

1 Observations

1.1 Convergence

Euler method with linear interpolation is proved to converge for any Volterra
functional DE1 (where DDE is a special case of) in [3]. Unfortunately, it doesn’t
say at which rate the method converges. Very abstract topological notions
(Banach spaces, etc.) and powerful tools of functional analysis are used in this
article, but it is a little hard to understand it for now... Almost all articles I’ve

1A VFDE is:

y′(t) = F (y, t), t ∈ [t0, β]; y(t) = φ(t), t ∈ [α, t0]

where F :C([α, β] → En) × En is a Volterra Functional, that is, F (y, t) depends on t and on
y(s) for s ∈ [α, t], but is independent of y(s) for s > t; and φ ∈ C([α, β] → En) is a specified
initial function.

1



read which treated of numerical methods made reference to this article, so it
seems to be a strong reference in the domain.

El’gol’ts writes in [5] about approximate methods for the integration of dif-
ferential equations with deviating arguments:

The convergence of these constructed approximate methods to the
exact solution for the steps approaching to zero, and error bounds
may be completely obtained as for equations without deviating ar-
guments; therefore, it is scarcely required to go into explicit details
and is more expedient only to stress some peculiarities arising from
the application of these methods to equations with a deviating ar-
gument. (p. 235)

This could explain why I haven’t seen much developments about error bounds
for numerical solution to DDE’s in the articles I have browsed. The only ex-
plicit descriptions were developed again in the abstract framework of topological
vector space (for example, see [2]). Still, this should be investigated.

1.2 Smoothness

Contrary to ODE’s, the fact that F is C∞ doesn’t imply that the solution to a
DDE will be smooth. For example, consider the simple C∞ DDE with constant
delay:

y′(t) = y(t− 1), t ∈ [0,∞[; y(t) = 1, t ∈ [−1, 0]

This has the unique solution on [−1, 1]:

y =
{

1 for t ≤ 0
1 + t for t ≥ 0

which doesn’t even have a continuous first derivative at t = 0! As noted in [5,
p. 9], this will happen every time the initial function doesn’t satisfy the DDE at
t = t0. But using the methods of steps, we can observe that the solution does get
smoother as the steps advance; and more precisely, in the case of one constant
delay, that the nth derivative of the solution is continuous at the (n + 1)th

step. I don’t know yet the impact of those discontinuities on the convergence of
numerical methods, but it seems from [6] that the numerical scheme needs to
track down those discontinuities to be successful. For example, we couldn’t use
in general a nth order numerical method which assumes that the solution to the
DDE is Cn. But we could instead use lower order methods, until the nth step,
where the solution will become smooth enough for our numerical scheme.

1.3 Interpolation

When using numerical methods to solve a DDE with variable delays, we often
need points that are in between points we have already computed. We thus
normally use interpolation also. The question that could arise is: what is its
effect on the order of convergence of the method? I observed that using linear
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interpolation on Euler’s method (which is linear) didn’t alter its order of conver-
gence. Similarly, I think we can conjecture that using an interpolation method
of order at least as high as the one of our numerical method to solve the ODE
won’t change its order of convergence. But this also needs to be investigated.

2 My Bound

We consider a DDE with one delay, for simplicity:

y′(t) = f
(
t, y(t), y(t− τ(t))

)
, t− τ(t) ≥ α ∀t ∈ [t0, β]

y(t) = φ(t) on [α, t0] (1)

We assume further that τ(t) ≥ r > 0 so that we can apply the method of steps,
that f is continuous and globally Lipschitzian on R2 (for its last 2 variables)
with Lipschitz constant L, and that τ is continuous, so that a unique solution
which depends continuously (in the sup norm) on the initial function φ exists
on the entire interval [α, β] (the proof of this assertion can be found in [4]).

Now, we consider what happens when applying the method of steps with a
numerical scheme of O(g(h)), that is, the global error taking in considera-
tion interpolation between the points we compute is smaller than c · g(h)
for some constant c, where h is the biggest step we have used in the numeri-
cal method. Usually, some smoothness conditions are needed for those errors
bounds. (For example, convergence of Euler method with O(h) is guaranteed if
the solution is at least C2, so that we can apply Taylor’s theorem of order 1)
From the comment in section 1.2, we see that we’ll then have to impose some
stronger conditions on the initial function to be able to use those error bounds.
Hence, we’ll also need the following assumptions:

1. f , τ and φ are smooth enough so that we can use those error bounds
(being C∞ could be nice...)

2. The initial function φ needs to satisfy as many times the DDE as needed
at t0 so that the solution becomes smooth enough for our purpose (see
section 1.2). For example, to use Euler’s method bound, we need that φ
is C2 and that:

• φ′(t0) = f
(
t0, φ(t0), φ(t0 − τ(t0))

)
• φ′′(t0) = f1 + f2 · φ′(t0) + f3 · φ′(t0 − τ(t0)) · (1− τ ′(t0))

Where f1 denotes the partial derivative of f with respect to its first
variable. (We got this condition by implicitly differentiating the DDE
with respect to t.)

This will ensure that the solution is C2 everywhere.
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3. The interpolation method used in our numerical method will make the
solution smooth enough to use our error bounds. (for example, using
cubic spline interpolation would be enough to use Euler’s method since it
yields a function which is C2)

I’m not completely sure for now if all these assumptions are enough for the
proof that will follow. The crucial point is: will I be justified to use the global
error bound given for the ODE? Since I’m giving a summary of what I had
presented to Hans Vangheluwe, I will leave as it is, for now. But it would need
more justifications...

So here we go:

step 1

Given the initial function φ, since τ(t) ≥ r, to obtain the solution of equation (1),
we can simply solve the ODE:

y′(t) = f
(
t, y(t), φ(t− τ(t))

)
for t ∈ [t0, t0 + r] (2)

with our numerical scheme of order g(h). We call w the obtained solution on
[t0, t0 + r] and y the true solution.

step 2

Now, we let:

• w be the numerical solution (in continuation of w from step 1) of:

w′(t) = f
(
t, w(t), w(t− τ(t))

)
for t ∈ [t0 + r, t0 + 2r]; (3)

• x be the true solution of w′(t) = f
(
t, w(t), w(t−τ(t))

)
for t ∈ [t0+r, t0+2r];

• y be the true solution of y′(t) = f
(
t, y(t), y(t−τ(t))

)
for t ∈ [t0+r, t0+2r].

Hence, we see that y is the true solution, while x is a theoretical solution ob-
tained to an approximated problem and w is a doubly approximated solution
(one approximation from the numerical scheme, another approximation from
the ODE using the numerical solution on [t0, t0 + r]).

From our error bound on our numerical method (and assuming our assump-
tions of smoothness are strong enough to use it), we know that

|w(t)− x(t)| ≤ c·g(h) for t ∈ [t0 + r, t0 + 2r] (4)

And since everything is continuous (the weakest condition of smoothness),
we can integrate (2) and (3) to get x and y respectively:

x(t) = w(t0 + r) +
∫ t

t0+r

f
(
s, x(s), w(s− τ(s))

)
ds
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y(t) = y(t0 + r) +
∫ t

t0+r

f
(
s, y(s), y(s− τ(s))

)
ds

for t ∈ [t0 +r, t0 +2r]. Subtracting, taking the absolute value, using the triangle
inequality and the Lipschitz condition on f (this explains the Lipschitz constant
L), we get:

|x(t)−y(t)| ≤ |w(t0+r)−y(t0+r)|+
∫ t

t0+r

L·max
{
|x(s)−y(s)|, |w(s−τ(s))−y(s−τ(s))|

}
ds

Now, we need to play finely with the inequalities... Since for t ≤ t0 + r, we have
that w is the numerical solution of (2) and y the true solution, we have that

|w(s− τ(s))− y(s− τ(s))| ≤ c·g(h)) for s ∈ [t0 + r, t0 + 2r]

since τ(s) ≥ r. Hence, we get:

|x(t)− y(t)| ≤ c·g(h) +
∫ t

t0+r

L ·max
{
|x(s)− y(s)|, c·g(h)

}
ds

Now the delicate reasoning: everything on the right hand side is positive, thus
we can get the maximum value for |x− y| in the integral inequality by putting
the left hand side equal to the right hand side (try to convince yourself that this
is true!). Identifying |x(t)− y(t)| by z(t), we get:

z(t) = c·g(h) +
∫ t

t0+r

L ·max
{
z(s), c·g(h)

}
ds

From this, we can see that max
{
z(s), c·g(h)

}
= z(s), hence, we obtain a simple

integral equation which can be easily transformed into an equivalent differential
equation (since everything is continuous) which can be solved with an integrat-
ing factor. Sparing you the details, we obtain:

z(t) = c·g(h)eL(t−t0−r) (5)

This is in fact an indirect application of Gronwall-Reid lemma2. And thus,
a genuine (maybe not very tight) upper bound for the global error to (1) on
[t0 + r, t0 + 2r] can be obtained using (4) and (5) and the triangle inequality:

|w − y| ≤ |w − x|+ |x− y| ≤ c·g(h) + c·g(h)eLr

so
|w(t)− y(t)| ≤ c·g(h)(1 + eLr) for t ≤ t0 + 2r (6)

2 Gronwall-Reid is used extensively in the theory of differential equations. It is proven
in [4, p. 72].

Reid’s Lemma. Let C be a given constant and k a given positive continuous function on
an interval J. Let t0 ∈ J. Then if v : J → [0,∞[ is continuous and

v(t) ≤ C +

∣∣∣∣∫ t

t0

k(s)v(s)ds

∣∣∣∣ ∀t in J,

it follows that

v(t) ≤ Ce

∣∣∣∫ t
t0

k(s)ds
∣∣∣ ∀t in J.
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step 3

Using the same notation, we find similarly for t ∈ [t0 + 2r, t0 + 3r]:

|x(t)−y(t)| ≤ |w(t0 + 2r)− y(t0 + 2r)|︸ ︷︷ ︸
≤ cg(h)(1+eLr)

+
∫ t

t0+2r

L·max
{
|x(s)−y(s)|, |w(s− τ(s))− y(s− τ(s))|︸ ︷︷ ︸

≤ cg(h)(1+eLr)

}
ds

where the bounds under the braces were found using (6). Using a very similar
reasoning than in step 2, we get:

|w − y| ≤ |w − x|+ |x− y| ≤ c·g(h) + c·g(h)(1 + eLr)eLr

= c·g(h)(1 + eLr + e2Lr)

With an easy induction, we can thus find that at the nth step,

|w(t)− y(t)| ≤ c·g(h)(1 + eLr + e2Lr + · · ·+ e(n−1)Lr) for t ≤ t0 + nr

So that an upper bound for the global error to (1) on an interval [t0, β] of length
≤ Mr is

error ≤ c·g(h)
eMLr − 1
eLr − 1

≤ D·g(h)

where D is a constant independent of the numerical method and of h. So we
see that the order of the numerical method doesn’t change from ODE
to DDE! We thus obtain, as a corollary, the convergence of this method on a
finite interval since, normally, g(h) → 0 as h → 0. This is quite surprising, so
that the smoothness condition should be carefully verified again...

3 What’s Next

The consequences of the smoothness condition should be investigated. For ex-
ample, I should find an easy example where the fact that the solution is not
smooth at t= t0 makes the Euler method not to converge...

From my discussions with Hans Vangheluwe, two paths are now opened to
me. First of all, in a more pragmatic way, I could investigate how we could use
local truncation error to find error bounds for DDE and thus implement adaptive
step size algorithms (with variable r, for example). On the other hand, I could
dive into the more theoretical framework of functional analysis to look at all the
abstract tools that have been developed to solve numerically those functional
differential equations. In particular, I’m thinking of [1].
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