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I Why are we interested in semantics?

Other than syntax, the pure appearance of a language, we are
also interested in semantics.

• A rigorously defined semantics makes our programs/models software-
platform-independent [MTAL98]. Without such a semantics, it is
impossible for a program/model to be easily ported to another
environment.

• With a rigorous semantics, compiler of a specific programming
language can be automatically generated.

• With a rigorous semantics, models can be tested in its design phrase.
Automatic tools allow designers to prove their properties, analyze
them and finally generate code.
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I What is action semantics?

• A framework for the formal description of programming languages.

• A hybrid of denotational and operational semantics. [Mos02]

• Initially developed by Peter D. Mosses at University of Aarhus, early
1990’s.

• Goal: to give complete formal descriptions of programming languages
and to use these for generating various tools, such as parsers, static
analyzers, interpreters, and compilers.
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I Advantage (1)

• Compared with denotational semantics:

1. Denotational semantics, though very precise and formal, obscures
semantics structures.

2. Action semantics is modular and thus reusable.
3. Action semantics is extensible.
4. Using a language quite like natural English language, action-

semantic descriptions (ASDs) are much more readable than
denotational descriptions.

• ASDs scale up smoothly to realistic programming languages:

1. Provides data types (like byte, int, float, char) and a mechanism
to define and manipulate customized data types.

2. Provides primitive actions to describe primitive semantic structures.
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I Advantage (2)

Example: defining the execution sequence of two actions.

• Action semantics:

A1 then A2

• Denotational semantics (λ-notation):

λε1.λρ.λκ.A1ε1ρ(λε2.A2ε2ρκ)

Denotational semantics, though formal and rigorous, is usually much
more complex than action semantics. [Mos96]

4



I Action semantics for UML

UML only defines the syntax of models. The semantics,
though informally described in a plain natural language, is not precise
enough to specify model behavior. Thus different (meta-)modelling tools
have their own interpretation, limiting the portability and reusability of
models.



I Action semantics for UML

UML only defines the syntax of models. The semantics,
though informally described in a plain natural language, is not precise
enough to specify model behavior. Thus different (meta-)modelling tools
have their own interpretation, limiting the portability and reusability of
models.

Action semantics, as a new semantics originally aimed at describing
programming languages and automatic generation and analysis of
compilers, was proposed to the OMG as an additional package for
UML. [AILKC+00]



I Action semantics for UML

UML only defines the syntax of models. The semantics,
though informally described in a plain natural language, is not precise
enough to specify model behavior. Thus different (meta-)modelling tools
have their own interpretation, limiting the portability and reusability of
models.

Action semantics, as a new semantics originally aimed at describing
programming languages and automatic generation and analysis of
compilers, was proposed to the OMG as an additional package for
UML. [AILKC+00]

It is nicely compatible with other components in UML, including the
Object Constraint Language (OCL). With the OCL extension, ASDs are
allowed to use the OCL syntax, i.e. to navigate among the objects with

the OCL dot-notation.
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I Control flow and data flow (1)

Two kinds of flows control the execution sequence of actions:
control flow and data flow.

• Control flow. An action is executed only after all its antecedents are
completed.

• Data flow. Every action has two sets of input pins (A and A′) and
two sets of output pins (B and B′) associating with it. One of the
input pin sets contains all the required input pins for the action. The
other input pin set contains available pin data at a certain time. Only
when A = A′ can the action be executed. Similarly, only when the
action is completed does B equal to B′.
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I Control flow and data flow (2)

As the data flow carries on, data from the output pins of a
preceding action become a source of the data flow, and then the
confluence reaches the input pins of another action.

All actions are treated as executing concurrently unless explicitly
sequenced by a flow of data or control [AILKC+00].
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I Control flow and data flow (3)
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I Primitive actions

For each kind of actions (which we will see later), there is a set
of primitive actions. They are the atom of actions.

Primitive actions are defined in the level of action semantics. They
are used to make up more complex actions.

As we have seen, then is a primitive action meaning first execute
action A1 and then execute A2.
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I Composite actions (1)

Composite actions allow the composition of simpler actions into
more complex ones. They are recursive structures.

• Group actions. Actions are allowed to group together to represent a
specific design concern. Data flow must be directly connected to the
input pins of the actions in the group, because group actions have
not input pins. Control flow may also cross the group boundary and
be directly connected to subactions.

When group actions are physically connected with control flow, they
are placed in an execution sequence with their predecessors and
successors.
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I Composite actions (2)

• Conditional actions are compositions of clauses, each of
which contains exactly one test action and one body action.

A test action accepts input data from the available input pins, and
produce a truth value. Its associated body action is executed if and
only if the test result is true.

For each execution of a conditional action there must be exactly one
test action returning the true value, while all the other test actions
return false.

Clauses can have noncyclic predecessor-successor relationship among
them. If any of its predecessors is executed, the successor clause could
not be executed. Test actions of unrelated clauses may be executed
concurrently.
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I Composite actions (3)

• Loop action. The loop action provides for repeated execution of
a contained action so long as a test action results in an appropriate
value. It contains exactly one clause of a test action and a body.
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I Read and write actions

Read actions retrieve values from objects, attributes, links
and variables, while write actions write values to them.

• Object actions. Read/write the classifier of an object (given from an
input pin), and produce an output only if it is a read action.

• Attribute actions. Read/write an attribute of an object (given from an
input pin). The action is statically associated with a certain attribute.

• Association actions.
Read: accept n− 1 objects and output the nth object of a link.
Write: perform limited actions (destroy/reorder) on a link.

• Variable actions. Statically associated with variables.
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Computation actions take in input values, perform pure
functional computation on them, and then return output values to
the output pins. They are comparable to the constant functions in
programming languages, which are self-contained and make no change
to the current state.



I Computation actions

Computation actions take in input values, perform pure
functional computation on them, and then return output values to
the output pins. They are comparable to the constant functions in
programming languages, which are self-contained and make no change
to the current state.

Action semantics leaves computation actions as an implementation-
dependent part. Namely, they can be written in any specific programming
language, as long as the modelling tool permits.

14



I Collection actions (1)

An attribute of an object can be a collection, ordered or
unordered. A collection action applies its subaction on all the elements
in the collection at a time.



I Collection actions (1)

An attribute of an object can be a collection, ordered or
unordered. A collection action applies its subaction on all the elements
in the collection at a time.

• Filter actions. A filter action applies its subaction — a test action —
on each element in an unordered collection. Only those resulting in
true is returned.



I Collection actions (1)

An attribute of an object can be a collection, ordered or
unordered. A collection action applies its subaction on all the elements
in the collection at a time.

• Filter actions. A filter action applies its subaction — a test action —
on each element in an unordered collection. Only those resulting in
true is returned.

• Iterate actions. The subaction is performed on each element in the
ordered collection in sequence.



I Collection actions (1)

An attribute of an object can be a collection, ordered or
unordered. A collection action applies its subaction on all the elements
in the collection at a time.

• Filter actions. A filter action applies its subaction — a test action —
on each element in an unordered collection. Only those resulting in
true is returned.

• Iterate actions. The subaction is performed on each element in the
ordered collection in sequence.

• Map actions. Elements in the unordered collection is functionally
mapped to the results of the subaction.
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I Collection actions (2)

• Reduce actions. The subaction is executed for sequentially for
pairs of input elements, until a single output is produced.

Elem ents :

subac tion
subac tion

subac tion

subac tion
a b c d
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I Message actions

Messaging actions provide a mechanism to facilitate
invocation between objects.

At model time, messages are modelled as classes, with attributes as
parameters or return values. Each message class designates a specific
request from the requestor.

Parameters and return values of a request or a reply are stored in
an instance of the message class. Sometimes a request does not need
any parameter or an invocation does not return any value (asynchronous
requests described below are an example), but the message instance
must be sent or received.
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as parameter, it starts an asynchronous invocation. The action returns
no value and the requesting object does not wait for a reply from the
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are on different machines, the requesting one even does not wait until
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I Asynchronous messages

When an object executes an asynchronous action with a message
as parameter, it starts an asynchronous invocation. The action returns
no value and the requesting object does not wait for a reply from the
requested object. When the requesting object and the requested object
are on different machines, the requesting one even does not wait until
the other object actually receives the message.

On receiving the message, the host object might queue it according
to a specific strategy, which is not in the scope of the basic action
semantics.

If values are to be returned, the requested object must execute
another asynchronous or synchronous action to sent them back.
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I Synchronous messages

As a contrast, if the requesting object executes a syncronous
action, it is blocked until a reply is received from the requested object.
Even if there is no return value for the invocation, the requested object
must send back a message indicating the processing is complete, and the
requesting object is allowed to proceed with its jobs.
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I Timing (1)

For sequential models or parts of models, the ordering of
action executions conforms to the timing causality.

For concurrent models or parts of models, the ordering of action
executions is unimportant, unless different action executions are required
to synchronize to access shared variables. At other time, actions may be
executed concurrently or in a meta-model-dependent order.
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I Timing (2)

• The behavior of a model contains a number of execution entities,
each of which has its own life cycle from the creation time till the
destruction time.

• An entity has an identity, which is unique and does not change over
time.

• The dynamic behavior of an entity is a sequence of snapshots, each
of which represents a stable state.

• A change causes a transition between two snapshots of an entity.
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change occurs.



I Timing (3)

• Time is an important property of a change, which specifies when a
change occurs.

• A sequence of changes of an entity over time constitutes a history,
which starts from the creation of the entity and ends with the its
destruction.
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I Timing (4)

The change is placed in a history, which is a sequence of changes
for an entity. The order of those changes conforms to the incremental
order of their time attributes.

In this way, changes are carried out one after another, with the
invariance that the first change (always at time 0) is the creation of the
entity, and the last change its destruction.
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Action semantics gives a better definition on the behavior of
model execution, but there are still gaps left: i.e. the system-dependence
of computational actions and the time for a change to take place.



I Discussion

Action semantics gives a better definition on the behavior of
model execution, but there are still gaps left: i.e. the system-dependence
of computational actions and the time for a change to take place.

It is still not standardized, and currently there are very limited
materials on this subject. Some of the useful articles are listed in the
reference.
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• Get more deeply into action semantics and find some successful
concrete examples. I.e. the tools presented on the action semantics
website http://www.brics.dk/Projects/AS/, like Actress, ASD
Tools, OASIS and Recife Action Tools.
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I The next step

• Get more deeply into action semantics and find some successful
concrete examples. I.e. the tools presented on the action semantics
website http://www.brics.dk/Projects/AS/, like Actress, ASD
Tools, OASIS and Recife Action Tools.

• If a more detailed and precise manual is found, build a prototype of
action semantics interpreter plug-in for the Statechart Virtual Machine
(SVM) — with no much hope to complete in this term.
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I So much for today...

Thank you for your attendance!

Any problems or concerns, please email: thomas@email.com.cn
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