
Fnorb: a CORBA 2.0 ORB for Python

Thomas Huining Feng

MSDL, McGill

http://msdl.cs.mcgill.ca/people/tfeng/

hfeng2@cs.mcgill.ca

http://msdl.cs.mcgill.ca/people/tfeng/
mailto:hfeng2@cs.mcgill.ca

CORBA Overview

The Common Object Request Broker Architecture (CORBA) is an emerging
open distributed object computing infrastructure being standardized by the Object
Management Group (OMG).

CORBA automates many common network programming tasks such as object
registration, location, and activation; request demultiplexing; framing and error-
handling; parameter marshaling and demarshaling; and operation dispatching.

The following figure illustrates the primary components in the OMG Reference
Model architecture.

Slide 2

http://www.omg.org

CORBA Components

• Object Services. Domain-independent interfaces that are used by many
distributed object programs.

– Naming Service – which allows clients to find objects based on names;
– Interface Repository – which allows clients to dynamically look for interfaces;
– Trading Service – which allows clients to find objects based on their properties.

• Common Facilities. Horizontally-oriented interfaces, oriented towards end-user
applications.

• Domain Interfaces. Similar to Object Services and Common Facilities, but
oriented towards specific application domains.

• Application Interfaces. Interfaces developed specifically for a given application.

Slide 3

CORBA ORB Architecture

• Object. A CORBA programming entity that consists of an identity, an interface,
and an implementation, which is known as a servant.

• Servant. An implementation programming language entity that defines the

Slide 4

operations that support a CORBA IDL (Interface Definition Language) interface.

• Client. The program entity that invokes an operation on an object
implementation.

• Object Request Broker (ORB). A mechanism for transparently communicating
client requests to target object implementations.

• ORB Interface. A specification defining an abstract interface for an ORB.

• CORBA IDL stubs and skeletons. The “glue” between the client and server
applications, respectively, and the ORB. The transformation between CORBA IDL
definitions and the target programming language is automated by a CORBA IDL
compiler. The use of a compiler reduces the potential for inconsistencies between
client stubs and server skeletons and increases opportunities for automated
compiler optimizations.

• Dynamic Invocation Interface (DII). The interface allowing a client to directly
access the underlying request mechanisms provided by an ORB.

Slide 5

• Dynamic Skeleton Interface (DSI). The server side’s analogue to the client
side’s DII.

• Object Adapter. An interface associating object implementations with the ORB.

So much for theory. A more detailed overview can be found at: http:
//www.cs.wustl.edu/~schmidt/corba-overview.html

Slide 6

http://www.cs.wustl.edu/~schmidt/corba-overview.html
http://www.cs.wustl.edu/~schmidt/corba-overview.html

Fnorb Introduction

Fnorb is a pure Python implementation of CORBA 2.0 ORB. It has been
successfully used in both Python and Jython.

Current stable version is 1.2, but it does NOT run on our lab machines (Python
2.2, RedHat 9). Use version 1.3, which can be downloaded from CVS.

Website

http://www.fnorb.org/

Download (CVS)

cvs -d:pserver:anonymous@cvs.fnorb.sourceforge.net:/cvsroot/fnorb login

cvs -z3 -d:pserver:anonymous@cvs.fnorb.sourceforge.net:/cvsroot/fnorb co fnorb

Documentation

http://www.fnorb.org/docs/1.2/Fnorb-Guide/

Installation

python setup.py install

Slide 7

http://www.fnorb.org/
http://www.fnorb.org/docs/1.2/Fnorb-Guide/

Fnorb Services

Though CORBA 2.0 standard specified much more services, Fnorb only supports
the two most common services: naming service and interface repository. Other
services such as trading service (which I need in the first place) are not supported.

• Naming service. The service resolving the names ofmodules and interfaces.

A module is a logical entity used to organize interfaces in a tree form. Interfaces
are leaves of the tree, which cannot have sub-interfaces or sub-modules. However,
a module may have sub-modules or interfaces inside it.

Looking for an interface dynamically by its name (and possibly its ancestors’
names) is to traverse the tree until a leave is reached.

Fnorb program fnaming runs in the background and provides naming service.
Environment variable FNORB NAMING SERVICE must be set before using any
client can access the naming service.

For example:
$ fnaming --ior &

Slide 8

IOR:000000... (a very long string)
$ export FNORB NAMING SERVICE=IOR:000000... (copy the same string here)

or alternatively:
$ fnaming --ior > $HOME/.NameService &

$ export FNORB NAMING SERVICE=file:$HOME/.NameService

• Interface repository. The service handling queries of modules and interfaces by
their names or name patterns.

A client application may dynamically traverse the whole tree structure and obtain
related information, such as all the interfaces of a module, all the operations or
attributes of an interface, and all the parameters and their types of an operation.

Similarly, program fnifr runs in the background. Environment variable
FNORB INTERFACE REPOSITORY is used.

Slide 9

An Easy Way to Start Both Services

First, set both the environment variables:

$ setenv FNORB NAMING SERVICE file:$HOME/.NameService

$ setenv FNORB INTERFACE REPOSITORY file:$HOME/.InterfaceRepository

Then, create script fnstart:
#!/bin/bash
fnaming --ior > ${FNORB_NAMING_SERVICE#file:} &
fnifr --ior > ${FNORB_INTERFACE_REPOSITORY#file:} &

and script fnstop:
FNAMING=‘ps -Cfnaming | grep fnaming | awk ’{print $1}’‘
if [[$FNAMING]]; then

kill $FNAMING
fi
FNIFR=‘ps -Cfnifr | grep fnifr | awk ’{print $1}’‘
if [[$FNIFR]]; then

kill $FNIFR
fi

Slide 10

CORBA IDL

IDL is a system implementation independent language used to describe interfaces
of servants.

Example: (testfnorb.idl)
#pragma prefix "msdl.cs.mcgill.ca"
// with this, the ID of this module is:
// IDL:msdl.cs.mcgill.ca/TestFnorb:1.0
module TestFnorb
{

interface TestFnorbIF
{
string test_string(in string s);

};
};

To compile the IDL definition, run:
$ fnidl testfnorb.idl

Two folders will be generated automatically, which contains Python mapping for

Slide 11

the IDL:

• TestFnorb, which contains the client-side mapping. It is a Python module,
which every client requires to import.

• TestFnorb skel, which contains the skeleton for the server-side.

Note that the name (TestFnorb) of the two folders comes from the module
name specified in the IDL.

Slide 12

Python Implementation of the Server

This server (server.py) runs in the background and provides implementation
for interface Test.TestFnorb.TestFnorbIF.

import required Python modules

from Fnorb.orb import CORBA, BOA

from Fnorb.cos.naming import CosNaming

import server skeleton

import TestFnorb skel

class definition of the implementation

class TestFnorb Impl (TestFnorb skel.TestFnorbIF skel):

def test string(self, s):

print ’Server receives: ’+s

return ’success’

initialize ORB and BOA

orb=CORBA.ORB init()

boa=BOA.BOA init()

Slide 13

build the context to a certain level

ctx=orb.resolve initial references("NameService")

path=[CosNaming.NameComponent(’Test’, ’’),

CosNaming.NameComponent(’TestFnorb’, ’’)]

for i in range(len(path)):

try:

ctx.bind new context(path[:i+1])

except CosNaming.NamingContext.AlreadyBound:

pass

create an object responsible for calls

testfnorb=TestFnorb Impl()

create a ref (What’s ref? God knows.)

ref=boa.create(’TestFnorbIF’, TestFnorb Impl. FNORB ID)

the path of the interface is the old path plus 1 level

path.append(CosNaming.NameComponent(’TestFnorbIF’, ’’))

ctx.rebind(path, ref)

notify BOA the implementation is ready for calls

boa.obj is ready(ref, testfnorb)

start the CORBA mainloop, which will block the current thread

boa. fnorb mainloop()

Slide 14

Python Implementation of Client 1

This client uses the naming service to locate the server, and invokes its
test string operation.

import required Python modules

from Fnorb.orb import CORBA

from Fnorb.cos.naming import CosNaming

import client-side mapping

import TestFnorb

initialize ORB and naming service

orb=CORBA.ORB init()

ctx=orb.resolve initial references(’NameService’)

the path where the server is located

testfnorb=ctx.resolve([CosNaming.NameComponent(’Test’, ’’),

CosNaming.NameComponent(’TestFnorb’, ’’),

CosNaming.NameComponent(’TestFnorbIF’, ’’)])

Slide 15

simple type-checking

if testfnorb. is a(TestFnorb.TestFnorbIF. FNORB ID):

invoke server operation

print ’Client 1 receives: ’+testfnorb.test string(’Hello server!’)

else:

print ’Error!’

Executing the server and the client:

$ python server.py &

$ python client1.py

Server receives: Hello server!

Client 1 receives: success

Slide 16

Python Implementation of Client 2

This client uses the interface repository to dynamically list all the modules, their
interfaces, the attributes and operations of those interfaces, and the parameters of
each operation.

from Fnorb.orb import CORBA

def dump module(ctx, level):

modules=ctx.contents(CORBA.dk Module, 0)

interfaces=ctx.contents(CORBA.dk Interface, 0)

for m in modules:

print ’ ’*level+’+ ’+m. get name()

dump module(m, level+1)

for i in interfaces:

print ’ ’*level+’- ’+i. get name()

desc=i.describe interface()

opers=desc.operations

attrs=desc.attributes

Slide 17

for at in attrs:

print ’ ’*(level+1)+’at ’+at.name

for op in opers:

print ’ ’*(level+1)+’op ’+op.name

params=op.parameters

for p in params:

print ’ ’*(level+2)+p.type.kind().name()+’ ’+p.name

orb=CORBA.ORB init()

ctx=orb.resolve initial references(’InterfaceRepository’)

dump module(ctx, 0)

Executing the server and the client:

$ fnfeed testfnorb.idl

$ python server.py &

$ python client2.py

+ TestFnorb

- TestFnorbIF

op test string

tk string s

Slide 18

That’s it!

Thank you for your attendance!

Any question or concern, please contact:
hfeng2@cs.mcgill.ca

Slide 19

mailto:hfeng2@cs.mcgill.ca

