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Introduction

With this case study (chat room), we demonstrate component-based model
design in UML, and discuss the consistency problems in stages of the development
process.

Component-based Design

e Modularity.
e Reusability.

Consistency

e Intra-consistency. Artifacts in the development process of a model must be
consistent.

e Inter-consistency. All the components of a model must be consistently
function together.

In this case study, we focus on intra-consistency.

Slide 2



Outline

Part | — An Introduction to SVM

e Statechart basics.

e SVM extensions to statecharts.
Part 1| — Chat Room Model Design

e Communication protocol of the chat room model.
e (Class design.

e Sequence diagrams.

e Statecharts.

e Model execution in SVM.

e Conclusion.
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SVM Design

The goal is to build a generalized simulator capable of executing statechart
models.

Design considerations:

e Interpretation vs Compilation. SVM is a statechart interpreter.

e Virtual-time Simulation and Real-time Execution. The same model can
be simulated for analysis purpose and executed as a final product.

e Model Specification. A statechart model is specified in a text file, which is
easy to handle.

e Portability. SVM is implemented in Python and Jython. It is portable to
many operating systems and architectures.

e Functionality. SVM is capable of interpreting a model specified in the
extended statechart formalism.
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Statechart Introduction

Statechart (a discrete-event formalism) is a powerful tool to describe both
software systems and physical systems.

Statechart Elements

O ©

| st | [s2 |
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Simple Statechart Model

STATECHART: TRANSITION:

S1 [DS] S: 52

S2 N: S1

S3 [FS] E: e2

0: [DUMP("e2 is triggered")]

TRANSITION:

S: Sl TRANSITION:

N: S2 S: 52

E: el N: S3

0O: [DUMP("el is triggered")] E: e3

0: [DUMP("finish")]

0O ©
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Hierarchical Statechart Model

STATECHART:
A [DS] [HS*]
C [Ds]

TRANSITION:
S: A.C
N: A.D
E: cd

TRANSITION: [HS]

Slide 8



Extension 1: Model Importation

Motive

Statecharts are not modular and thus hard to reuse. The complexity of a
statechart model exhibits itself even in solving small problems. It is desirable to
divide a large model into smaller parts and assemble them after designing separately.
Individual parts can also be reused.

SVM Extension

SVM presents a general idea of model importation. An imported model is a
full-function model in its own right. When imported, all its states and transitions
are placed in a state of the importing model.

AN

Importation:
modeli.des
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Extension 2: Transition Priorities

Motive

When two or more transitions are enabled by the same event, there is a conflict.
In UML, if the source state of a transition is a substate of the source state of the
other, it gets higher priority (inner-first); however, in the STATEMATE semantics,
it gets lower priority (outer-first). It is desirable to enable both of these schemes.

SVM Extension A.

Every model has a global option: InnerTransitionFirst.

InnerTransitionFirst=1

If the current state is S1.S3 and event e occurs, the new state will be S1.54.
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SVM Extension B.

Every state can be associated with one of the following properties:

e ITF. Inner transition first.
e OTF. Outer transition first.

e RTO. Reverse transition order. (If its parent state is ITF, it is OTF; vice
versa.)

The property of a state override the setting of its parent in its scope.

Options:

InnerTransitionFirst=1

Importation:
modeli.des
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SVM Extension C.

Every transition can be associated with an integer priority number (by default,
it is 0). For conflicts which cannot be solved by extensions A and B, a transition
with the smallest priority number is fired.

A
Priority=-1

A
Priority=1

When e occurs, if the model is in state A and both conditions are true,

x =1
y=1

the state will change to B.
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SVM Extension D.

If conflicts still exist at run-time, which cannot be solved by extensions A, B and
C, the choice is strictly random according to a uniform distribution.

This is usually caused by a design flaw, in which case the designer cannot foresee
a potential conflict in the model.

A

|
A
Priority=0
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Extension 3: Parametrized Model Templates

Motive

Usually a design cannot be reused in a new system without any change or
customization. The importing model should be able to customize the imported

model before placing it in one of its states.
The customization should be restricted and modular.
SVM Extension

Macros can be defined in a macro and used anywhere in its description.

[MYEVENT] MACRO:
° e MYEVENT = e
l TRANSITION:
S: A
|\

° e E: [MYEVENT]
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SVM Extension (Continued)

The designer is allowed to redefine the macros when reusing a model.

[MYEVENT]

Import:
model1.des
Parameters:

MYEVENT=f

The outside world is able to modify the behavior of a model only by parameters,
which is defined in the model with its consent. There is no way to modify its
hard-coded parts.
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Model-based Development Process

Meta-Model manual
transformation

identical
transformation

automatic
transformation

Proof of
Correctness

/ Simulation \
\ Generation/’

~ o - Conformance

Verification

. - =~ < Performance
/ Code \ Metrics
\ Generation /
~ - -~
Execution | Input/Output
'l
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Communication Protocol

. 5 clients and 2 chat rooms in the system. Initially clients not connected. They try
to connect to a random chat room every 1 to 3 seconds. No delay for requests.

. A chat room accepts at most 3 clients. It accepts a connection request if and
only if its capacity is not exceeded.

. The requesting client receives an acceptance or rejection notice immediately.
. A client must be accepted by a chat room before it may send chat messages.
. When connected, a client sends random messages to its chat room every 1 to
5 seconds. No delay for messages. The chat room takes 1 second to process a

message and broadcast it to all other clients connected to it.

. No delay for the broadcast.
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Class Design

e ChatRoom. 2 instances are required. Each of them receives incoming requests
and messages.

request(clientID, roomID)
send(clientID, roomID, msg)

e Client. 5 instances.

accept(clientID)
reject(clientID)
broadcast(clients, msg)

e Manager. 1 instance that relays all the events between clients and chat
rooms.

mbroadcast (clientID, roomID, msg)
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Class Design (Continued)

Manager

-connections: set

+mrequest (clientID:integer, roomID:integer)
+maccept (clientID:integer, roomID:string)
+mreject (clientID:integer, roomID:integer)
+msend (cliendID:integer, msg:string)

+mbroadcast (clientID:integer, roomID:integer, msg:string)

ChatRoom
-clientID: integer

-room|D: integer
-messages: list
+accept (clientID:integer) -clientNum: integer

+reject (clientID:integer)
+broadcast (clients:set,msg:string)

+request (clientID:integer, roomID:integer)
+send(clientID:integer, roomID:integer, msg:string)
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Verification 1: Class Diagram — Protocol

Though this API definition is not functional, the behavior behind the interface is
easily understood. Checking its consistency with the protocol is however difficult or
even impossible because of the following reasons:

e Behavior is hidden behind the interface.
e The protocol is specified in natural language.

e For a well-defined system there can be a number of interface designs. They
may differ substantially.

Slide 21



Sequence Diagrams

The sequence diagrams bring the design to a lower level of abstraction (higher
level of detail) than the class diagram.

Timing
In the protocol description, more than one action can happen at the same time,
though they may be causally related.
request at time 1; accept at time 1
accept at time 1; request at time 1
A tuple (t,s) is used to represent time.
request at time (1.0s, 0); accept at time (1.0s, 1)
accept at time (1.0s, 0); request at time (1.0s, 1)
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Sequence Diagrams (Continued)

o

request

maccept
00

(0s, 2)

Request pattern
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Sequence Diagrams (Continued)

c1 : Client : ChatRoom c2 : Client c3 : Client

msend

1sec

mbroadcast

(1s, 0)
broadcast

broadcast

Message pattern
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Verification 2: Sequence Diagrams — Class Diagram

Collect all the method calls (or incoming events) of a component and check if
they have corresponding definitions in its class design.

For example:

In the request pattern, Manager receives events mrequest, maccept and
mreject. In the message pattern, it receives msend and mbroadcast. These
2 patterns cover all usage. So, its class design must have (and only have) definition
for the corresponding 5 public methods.

This process can be automated.
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Verification 3: Sequence Diagrams — Protocol

Consistency with the original protocol can only be partly checked.

For example:

In the request pattern, if a ChatRoom receives a request at time 0, it accepts
or rejects the Client at time 0. The absolute values of the two times are not
iImportant. Important is that the reply is sent back at exactly the same time, as

specified in the protocol.

A rule-based approach will be introduced in the latter part. (First convert the
protocol into extended REs, then use the REs to check the sequence diagrams.) It
can speed up this checking process.
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Verification 3: Sequence Diagrams — Protocol (Continued)

However, checking is quite limited because of the expressiveness of sequence
diagrams. Eg.:

e Sequence diagrams cannot describe “what should not happen at a certain
time or in a certain period.”

e In the request pattern, if a client sends an mrequest, then the manager
sends a request without time advance, then the chat room sends maccept or

mreject . .. Unfortunately, an inert client that does not send any request cannot
be detected as a problem.
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Statechart Design

Components Client, ChatRoom and Manager are designed in separate
statecharts. Model Chat (the final system) imports five instances of Client,
two instances of ChatRoom and one Manager.

AN Import: Import:

Import: ChatRoom ChatRoom
Manager Parameters: Parameters:
ID=1 ID=2

Import: Import: Import: Import:
Client Client Client Client Client

Parameters: Parameters: Parameters: Parameters: Parameters:
|D=1 |D=2 |D=3 |D=4 |D=5
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Client Component

Initially, it is in the nochat state. |t repeatedly tries to connect to the chat
room via the manager by raising an mrequest event every 1 to 3 seconds (uniformly
distributed), until the request is accepted.

broadcast [ [ID] in [PARAMS][0] ] /
[DUMP([PARAMS][1])]

accept [ [PARAMS][0]==[ID] | .

connected ‘

[ [PARAMIS][0]==[ID] ] _
after(uniform(1,3)) / after(uniform(1,5)) /
[EVENT("mrequest", [ [ID], randint(1,2)])] [EVENT("msend", [ [ID], rand_msg()])]

uniform is a Python function which returns a random real number in a range.
randint returns a random integer.

[EVENT(...)], [PARAMS] and [DUMP(...)] are pre-defined. [ID] is user-defined.
after event is raised at a certain time after a state is entered.

accept, reject and broadcast are incoming events.

mrequest and msend are outgoing events.
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ChatRoom Component

It uses a list messages[ID] to queue incoming messages. [his means every
chat room with a unique ID has its own queue.

ChatRoom

request [ [PARAMS][1]==[ID] and clientNum<3] /
[EVENT("maccept”, [ [PARAMS][0], [ID] )], clientNum+=1

request [ [PARAMS][1]==[ID] and clientNum>=3] /
[EVENT("mreject"”, [ [PARAMS][0], [ID] ])]

send [ [PARAMS][1]==[ID] ]/
messages|ID].append after(messages[ID][0][3]+1-[TIME]) /

([PARAMS]+[[TIME]]) [EVENT("check™)]

check
[ len(messages[ID]>11]/
[EVENT("mbroadcast”,
messages|[ID][0][:3])],
check delete messages[ID][0]
[Igc%rr&?sag;s[lzkﬂ 1/ send
"mbroadcast",

delete messages[ID][0] ?Egiségﬁnss[mi?'llol\ﬁg?]?
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Manager Component

The Manager component simply relays messages.

maccept / rec_conn([PARAMS][O], [PARAMS][1]),
[EVENT( ‘accept”, [[PARAMS][0]])]

mbroadcast / [EVENT("broadcast",
[ get_clients([PARAMS][1],
[PARAMS][0]), [PARAMS][2] D] mrequest /
[EVENT(" request ", [PARAMS])]

maccept /
[EVENT("accept' ,[[PARAMS][O]])]

msend / [EVENT( 'send”, [ [PARAMS][0],
get_room([PARAMS][0]), [PARAMS][1] ])]

Function rec_comm(client, room) records a connection in a list when a chat
room accepts a client. get_clients(room, client) looks up the list and returns
all the clients in chat room room, except client. get_room(client) returns the
room ID for client.
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Verification 4: Statecharts — Class Diagram

If event senders are inconsistent with receivers . . .

A program can be written which automatically checks sender-receiver consistency
of all the method calls. For example:

Manager accepts event maccept. This means it provides method maccept in its
class definition.
maccept /
rec_conn ( [PARAMS] [0], [PARAMS] [1]), [EVENT ("accept", [ [PARAMS] [0]])]

In the guard and output of the transition that handles this event, [PARAMS] [0]
and [PARAMS] [1] are used, so it requires at least two parameters.

In the whole Chat model, this method is only called (asynchronously) by the
ChatRoom component. The call provides exactly two parameters.
request [ [PARAMS][1]==[ID] and clientNum<3 ] /
[EVENT ("maccept", [[PARAMS] [0], [ID]])],clientNum+=1
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Model Execution

The statechart model is executed by SVM. Output is dumped to screen or a file
as a list of messages. Each message contains: the time written as a tuple (¢, s), the
sender or receiver with its unique ID, and the message body.

CLOCK: (10.5s,0)

Client O

Says "Hello!" to ChatRoom 1
CLOCK: (11.5s,0)

ChatRoom 1

Broadcasts "Hello!" to all clients except Client O

CLOCK: (11.5s,2)
Client 1

Receives "Hello!" from Client O
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Verification 5: Output Trace — Sequence Diagrams

Sequence
Diagrams

Manual/Automatic Execution
Transformation in SVM

Extended
RE

Automatic
Verification
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Verification 5: Output Trace — Sequence Diagrams (Continued)

Extended RE (Regular Expression)

A rule contains 4 parts:

e Pre-condition, a regular expression used to match a part of the output trace.

e Post-condition, another RE to be found in the output.

e Guard (optional), a boolean expression defining the applicable condition.

e Counter-rule property (optional).

Example: “the sender of a message does NOT receive the broadcast after 1 second”

pre-condition

CLOCK: \((\d+\.{0,1}\d*)s, (\d+\.{0,1}\d*)\)\n\Client
(\d+)\nSays "(.*7)" to ChatRoom (\d+)\n

post-condition

CLOCK: \([(\1+1)]1s, (\d+\.{0,1}\d*)\)\nClient [(\3)]\n
Receives "[(\4)]" from Client [(\3)]\n

guard

[(\1+1)]1<50

counter-rule

true
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Verification 6: Output Trace — Protocol

It is difficult, if not impossible, to prove the model is completely consistent with
the protocol.

Rule-based approach does not work, because it is hard to transform the protocol
(described in natural language) into formal representation.

A series of steps are used to achieve the final, executable design. Information
is lost while converting a design into another in a different formalism. Checking
between intermediate steps does not guarantee the correctness of the final product.
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Conclusion

Part |

SVM is a flexible and modular tool for the extended statechart formalism.

Part ||

Verification 1 Verification 3
(hard) (hard)

Design Design

Verification 2

(with method calls)
Class Sequence
Diagram Diagrams

Verification 5
) ) (with rules in
Design Design extended RE)

Verification 4
(with method calls Execution
and their params) in SVM

Verification 6
(hard)
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