
SVM & SCC TUTORIAL

Thomas Huining Feng

April 5, 2004

Contents

1 INTRODUCTION 1

1.1 Overview of DCharts .1

1.1.1 Transition Priorities .1

1.1.2 Importation .2

1.1.3 Macros and Importation Parameters .3

1.2 Overview of SVM .3

1.3 Overview of SCC .4

1.4 License .4

2 SIMULATION IN SVM WITH EXAMPLES 5

2.1 System Requirements .5

2.2 Installation .5

2.3 HelloWorld Example .7

2.4 SVM Command-line Parameters .10

2.5 More Examples .11

2.5.1 An example of macros .11

2.5.2 An example of history states .12

2.5.3 An example of orthogonal components .13

2.5.4 An example of enter/exit actions .14

2.5.5 An example of guards .15

2.5.6 An example of an initializer and a finalizer .16

2.5.7 An example of timed transition .17

2.5.8 An example of importation .18

2.5.9 An example of recursive importation .20

2.5.10 An example of macro redefinition .20

2.5.11 An example of ITF and OTF transition priorities21

2.5.12 An example of priority numbers .23

2.5.13 An example of event parameters .24

2.5.14 An example of model-specific interface .25

3 CODE SYNTHESIS WITH SCC 27

3.1 SCC Command-line Parameters .27

3.2 HelloWorld Example .28

3.2.1 Python code synthesis .28

3.2.2 C++ code synthesis .30

i

3.2.3 Java code synthesis .31

3.2.4 C# code synthesis .32

3.3 An example of model-specific interface .33

3.4 Reusing the Synthesized Code .35

4 SVM INTEGRATED WITH ATOM 3 38

5 DISTRIBUTED SIMULATION WITH SVM 40

5.1 PVM Requirement .40

5.2 SVMDNS Daemon .41

5.3 Distributed Simulation on Top of SVMDNS and PVM .43

5.4 Example .44

6 USING SVM AND SCC IN CYGWIN 48

6.1 Installing Cygwin .48

6.2 Installing PVM3 .49

6.3 Installing Java SDK .51

6.4 Installing PyGame .51

ii

1
INTRODUCTION

This document serves as a user manual for SVM (Statechart Virtual Machine) and SCC (StateChart Com-
piler) developed at the MSDL (Modeling, Simulation and Design Lab) of McGill University, Canada. SVM
is a realtime simulator for DCharts (Design Charts), a formalism extended from David Harel’s statecharts.
SCC is a code synthesizer for DCharts.

For a detailed definition and description of the DCharts formalism and the general idea of SVM and SCC,
the readers are referred to my master’s thesisDCharts, a Formalism for Modeling and Simulation Based
Design of Reactive Software Systems, finished under the supervision of Prof. Hans Vangheluwe at School of
Computer Science, McGill University:

http://msdl.cs.mcgill.ca/people/tfeng/thesis/

The online version of this document is available at:

http://msdl.cs.mcgill.ca/people/tfeng/svmsccdoc/

1.1 Overview of DCharts

DCharts have their roots in David Harel’s statecharts, which have been a part of UML now (with some
modification). There are a number of variants of statecharts, mostly because the semantics of statecharts is
not rigorously defined. This situation limits the reusability of statecharts models.

DCharts reuse all the concepts presented in statecharts. Extensions are added so that DCharts models are
able to express models of all the statecharts variants. They can even be used to model the DCharts formalism
itself. (This capability of meta-modeling is extremely interesting and cool!)

Some of the important extensions to original statecharts are summarized below. A complete description can
be found in my master’s thesis.

1.1.1 Transition Priorities

It is possible to assign different transition priorities to every transition in a DCharts model. Unlike the com-
mon approach of allowing for arbitrary priority numbers for transitions (which is not modular), DCharts
support another scheme based on inner-first and outer-first transition ordering. The meaning of several re-
lated keywords is explained below:

• ITF (Inner Transition First). If this keyword is specified as a property of a state, transitions within the
scopeof that state are ordered by the inner-transition-first manner. A transition ordered before another

http://msdl.cs.mcgill.ca/people/tfeng/thesis/
http://msdl.cs.mcgill.ca/people/tfeng/svmsccdoc/

1.1 Overview of DCharts 2

has higheroverall priority.

Note: A transition is in thescopeof a state iff the source state of the transition is that state or a substate
of that state.

Note: In case of a conflict caused at run-time (i.e., two or more transitions are able to handle a single
event and compete for it), the transition of the highestoverall priority (or one of those transitions of
the highest overall priority) is fired, while the other transitions are simply ignored.

• OTF (Outer Transition First). The inverse ofITF.

• RTO (Reverse Transition Ordering). A state with this property has reversed transition ordering com-
pared to its parent state. Suppose statesA is the parent of stateB. If transitions in the scope of stateA
is ordered in an inner-transition-first way, transitions in the scope of stateB is ordered outer-transition
first. Vice versa.

Note that transitions in the scope of stateB are also in the scope of stateA. The transition ordering
of stateA is considered before the ordering of stateB, while the ordering of stateB overrides the
ordering of stateA within the scope ofB.

If none of the above properties is assigned to a state (the default case), the state inherits the transition ordering
of its parent if any, or follows thetrue or false setting of theInnerTransitionFirst global option if it
is a top-level state.

TheITF andOTF scheme solves most of the run-time conflicts, but not all those conflicts. For example, the
conflict between two transitions with the same source state cannot be solved in this way. To solve this con-
flict, the designer is allowed to assign priority numbers (integers that can be negative) to the two transitions.
For transitions ordered in the same place with theITF andOTF scheme, smaller priority number always
means higher overall priority. Priority numbers are not considered for conflicts that can be solved with the
ITF andOTF scheme. By default, each transition has a priority number of 0.

If conflicts still exist at run-time, for example, two transitions with the same source state and the same priority
number, the transition that is actually triggered is implementation-dependent. Designers should always avoid
this circumstance.

1.1.2 Importation

A model designed in DCharts can also be used as acomponent(or submodel) of another larger model.
When this happens, the designer of the larger model explicitly imports the component by placing it in one of
the leaf states of the larger model (so that the leaf state becomes non-leaf). All the states in the component
become substates of that leaf state (known asimportation state), and transitions between those states defined
in the component are preserved.

Importation is done dynamically. An imported model is loaded only when information about it is needed. For
example, a transition from stateA to stateB is fired, whereB is an importation state. If the imported model
has not been loaded at that time, the simulator/executor loads it and does the importation dynamically. Once
imported, the importation state becomes non-leaf and non-importation state. There is no means to delete
the imported model from the model where it is imported, unless the user rolls the whole model back to a
previous snapshot taken at the time when the imported model has not been loaded yet. Rollback support is
optionally supported by the SVMDCP (SVM Distributed CheckPointing) sub-project, which currently only
supports rollback of the Java code generated by SCC.

A recursive DCharts modelimports itself directly of indirectly. A theoretically infinite state hierarchy is
created in this way. In practice, dynamically importation is always done finite times in a single simulation
or execution, so the state hierarchy of the run-time model is manageable.

Because of the closure under importation property of DCharts, it is always possible to flatten a non-recursive
model with importation by statically importing all its components.

1.2 Overview of SVM 3

1.1.3 Macros and Importation Parameters

Macros are a textual feature of the DCharts description format supported by SVM and SCC. They are
comparable to macros in programming languages like C. Once defined, the left-hand side of a macro can
be used (between square brackets) in the textual description, which is literally substituted by the right-hand
side before simulation/execution of the model.

The right-hand sides of some macros may use other macros, provided that the macros that they use are
defined before them.

A model may specify parameters for its components by redefining their macros. For example, suppose macro
DEST is defined to beStateA in componentC. The textual description ofC may contain such a segment:

MACRO:
DEST = StateA

(Note:MACRO is a descriptor here, which starts the macro segment. Under this descriptor, one or more macros
can be specified.)

In other parts of the description ofC, [DEST] can be used to substituteStateA.

WhenC is imported into an importation state of modelM, the macros defined inC may be redefined. A macro
redefinition is written as a property of the importation state. It serves as the parameter given to the submodel
at run-time before it is loaded. For example, the following is a part of the textual description ofM, which
importsC into importation stateS and redefines theDEST macro ofC to beStateB:

IMPORTATION:
c_submodel = C.des

STATECHART:
...
S [c_submodel] [DEST=StateB]
...

(Note: DCharts model descriptions are usually written in text files ending with postfix.des. IMPORTATION
is the descriptor to start an importation definition segment. In this example, submodelC.des is imported
and given IDc submodel. This ID is used in the state hierarchy to refer to the submodel. The same ID may
be used for multiple importation states, in which case the same component is imported into different states.
S is defined to be an importation state because component IDc submodel is given to it as a property. The
macro redefinition is written as another property between square brackets.)

Macro redefinitions are not supported by SCC but only SVM. This is because SCC statically synthesizes
code in a specific programming language for all the models and components. This is no means to dynami-
cally modify their behavior.

1.2 Overview of SVM

SVM simulates DCharts models in real time.

SVM takes the following steps to process a model description, specified on the command-line:

1. Read in the model description;

2. 1st parse: search for all the macros defined in the model and store them in the memory (macros with
the same names as the parameters specified by the importing model or by the user on the command-
line are ignored);

1.3 Overview of SCC 4

3. 2nd parse: construct all the necessary data structures in the memory according to the model description
under all the other descriptors (for example, the state hierarchy is built by literally combining and
understanding the description under all theSTATECHART descriptors, and a transition is constructed
for eachTRANSITION descriptor);

4. initialize the model by executing itsinitializer (an arbitrary piece of Python code written under the
INITIALIZER descriptor, which is empty by default);

5. simulate the model by running itsinteractor(an arbitrary piece of Python code running in a separate
thread to accept user inputs and interact with the model, as discussed later);

6. wait until the interactor finishes, which means the user stops the simulation, or the model itself ends
the simulation;

7. finalize the model by executing itsfinalizer ((an arbitrary piece of Python code written under the
FINALIZER descriptor, which is empty by default).

More information and releases of SVM can be found at its homepage:

http://msdl.cs.mcgill.ca/people/tfeng/?research=svm

1.3 Overview of SCC

SCC reuses the first parse and the second parse of SVM to construct the same internal structures. It syn-
thesize code in multiple target languages from those internal structures. Currently it supports the following
target languages: Java, C++, C# and Python.

The models are optimized before code synthesis. For example, an unique integer number is assigned to each
event, which is used as the internal representation of the event instead of its string name. The names of states
are also translated into integer numbers. This speeds up the execution by transforming string comparison to
integer comparison.

Compared to the simulation in SVM, execution of the code generated by SCC is much more efficient. How-
ever, the code must be compiled by appropriate compiler for the target language before running. Because
the code is statically generated, the flexibility of dynamically modifying its behavior by means of macro
redefinition is lost.

1.4 License

The sources of SVM and SCC are provided to the public for free. However, on using these tools or redis-
tributing them, the users must agree to the GNU GPL (General Public License) version 2 or later:

SVM and SCC are free software; you can redistribute them and/or modify them under the terms of
the GNU General Public License as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

SVM and SCC are distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with SVM or SCC; if not,
write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

A complete description of the GPL can be acquired from:

http://www.gnu.org/licenses/gpl.html

http://msdl.cs.mcgill.ca/people/tfeng/?research=svm
http://www.gnu.org/licenses/gpl.html

2
SIMULATION IN SVM WITH EXAMPLES

This chapter provides a full explanation on the use of SVM. Example are given to demonstrate several
important descriptors.

2.1 System Requirements

SVM is written in Python. It should be possible to use SVM on all the platforms and operating systems that
support the Python language. However, some features of SVM requires the support from platform-dependent
libraries. They will be highlighted when encountered in the following text. Despite this limitation, all the
features are tested on RedHat Linux 9.0 and the Windows family.

Other requirements:

• Python (http://www.python.org) 2.2 or higher. Because Python is an interpreted language, the
Python environment is required for the execution of SVM.

• PyGame (http://www.pygame.org/), the gaming library for the Python language, is required for the
CD player demo and the MP3 player demo, which are distributed with SVM (found in theCDPlayer
directory and theMP3Player directory, respectively). It is not a requirement for SVM itself.

• PVM (Parallel Virtual Machine,http://www.netlib.org/pvm3/) is required for distributed simu-
lations with SVM. However, it is not required for local simulations.

• Cygwin (http://www.cygwin.com/), “a Linux-like environment for Windows”, is required if the
user uses Windows and wants to receive the support for distributed simulations. Tools in Cygwin,
including GNU Make and GCC, are required to build the PYPVM (http://pypvm.sourceforge.
net/) that interfaces Python code with the native PVM library for C.

2.2 Installation

The first step is to obtain SVM. The latest release can be downloaded from its website:

http://msdl.cs.mcgill.ca/people/tfeng/?research=svm

The.tar.gz packages are for Linux. Users may use the following command to extract those packages:

tar zxvf svm-xxxxx.tar.gz

http://www.python.org
http://www.pygame.org/
http://www.netlib.org/pvm3/
http://www.cygwin.com/
http://pypvm.sourceforge.net/
http://pypvm.sourceforge.net/
http://msdl.cs.mcgill.ca/people/tfeng/?research=svm

2.2 Installation 6

(Here,xxxxx is the version number followed by the architecture, orsrc if the package is a source package.)
A new directory will be created with SVM in it.

The.zip packages are for Windows. They can be unpacked with WinZip (http://www.winzip.com/) or
WinRAR (http://www.rarlab.com/).

The users who want to experience the most cutting-edge features of SVM may download it from the CVS
(Concurrent Versions System) server with the following commands (executed in Linux systems or in Cygwin
in Windows):

export CVS_RSH="ssh"
cvs -z3 -d:ext:anoncvs@savannah.nongnu.org:/cvsroot/svm co svm

The CVS server is hosted by Savannah (https://savannah.nongnu.org/). SVM’s project home on Sa-
vannah is at:

https://savannah.nongnu.org/projects/svm

Windows users are strongly advised to use binary distributions. Those distributions build in all the necessary
libraries and do not require the Python environment. The users simply unpack the packages and execute
svm.exe or scc.exe in it.

SVM developers or users of other operating systems (Linux, FreeBSD, SunOS, etc.) may download the
source packages.svm.py andscc.py in the packages contain the main program of SVM and SCC, respec-
tively. They are executable in the Python environment. For example, the following command starts SVM
with no parameter. The command-line help will be printed to the console.

python svm.py

(Supportsvm.py is in the current directory.)

Start-up scriptssvm andscc in the same directory assvm.py andscc.py are written for Linux users. By
adding the SVM directory to thePATH environment variable, the users can invoke SVM and SCC simply by
runningsvm andscc from any directory.

Similarly, scriptssvm.bat andscc.bat are written for Windows users to invoke SVM and SCC from any
directory.

If source packages or CVS versions are used, the users must manually build the PYPVM library before
distributed simulation can be performed:

• Linux users.

Execute “make pypvm” on the command-line in the SVM directory. This will build the PYPVM li-
brary with SCC and copy it to the SVM directory. Before executing the command, the users MUST
confirm the following environment variables are set correctly:

1. PVM ROOT should be set to the path where PVM is installed. For RedHat Linux 9.0, this path is
/usr/share/pvm3. It may be different for other Linux distributions.

2. PVM ARCH should be set to the ID of the architecture. This ID is equal to the name of the sub-
directory of$PVM ROOT/lib. Use the following command to retrieve this ID:

ls -F $PVM_ROOT/lib | grep ’/’ | gawk ’sub(/\//, "", $0)’

• Windows users.

The PYPVM library is prebuilt for Windows users and saved in thelib\win32\Release sub-directory
of the SVM directory. Command “make -f Makefile.win32 pypvm” copies the library to the SVM
directory.

http://www.winzip.com/
http://www.rarlab.com/
https://savannah.nongnu.org/
https://savannah.nongnu.org/projects/svm

2.3 HelloWorld Example 7

2.3 HelloWorld Example

The design and simulation of aHelloWorld example is discussed in this section. This model has two states
A (default state) andB (final state). When simulation is started, only evente is accepted, which changes the
model from stateA to stateB, and prints a “Hello World!” message.

To design a textual model manually, the designer writes the description according to the DCharts textual
syntax (see my master’s thesis) and saves it in a.des file. For this example, the textual description is listed
below:

DESCRIPTION: # description of the model
Hello World Example

STATECHART: # definition of the state hierarchy
A [DS]
B [FS]

TRANSITION: # one single transition
S: A
N: B
E: e
O: [DUMP("Hello World!")]

This description is saved asHelloWorld.des. Several important points about this description are explained
below:

• Three descriptors are used in this example. DescriptorDESCRIPTION starts a segment of description
of the model (usually in natural language). Empty lines or lines with only spaces or tabs are removed
automatically. If a model has multiple description segments, they are literally combined to become one
single description. The default SVM interface prints this description on the screen when the simulation
is started.

• DescriptorSTATECHART starts the definition of the state hierarchy. If a model has several such seg-
ments, they are literally combined before the simulator understands the state hierarchy of the model.
In this example,A andB are the two top-level states. They are defined in separate lines and aligned
left. Substates of a state (if any) should appear in lines immediately under its definition, with more
leading spaces. Sibling states are always aligned left. (Examples of more complex state hierarchies
are discussed later.)

Property[DS] is assigned to stateA, which means it is a default state. Similarly, property[FS] of state
B means it is a final state.

• DescriptorTRANSITION starts the definition of one single transition. In this example, the transition
has the following properties:

1. S property specifies the source state of the transition.

2. N property specifies the destination state of the transition.

3. E property specifies the event that triggers the transition.

4. O property specifies a list of commands to be executed as the output of the transition.[DUMP(...)]
is a predefined macro that prints a message.

• Comments are placed to the right of a “#” mark until the end of the line. They are similar to the C-style
comments behind “//”.

2.3 HelloWorld Example 8

Figure 2.1: Screenshot 1 of theHelloWorld example

To run the model, first make sure thatHelloWorld.des is in the current directory and the SVM directory is
added to thePATH environment variable. Execute the following command:

svm HelloWorld.des

The default graphical interface (Figure 2.1) will be shown, and the simulation is started.

First-time users may not be familiar with this default graphical interface, and brief explanation may be
required. There are two separate windows: the right one is the main window, and the left one is the state
hierarchy window.

• Main window:

1. The left panel of the main window lists all the currently enabled events. When simulation of
the above example is started, evente is enabled because, if it is received, it triggers the only
transition in the model. There are no other enabled events.

2. The output box is the area where messages from the model is printed. In this case, when the
simulation is started, the description is printed automatically to this area.

3. The command box receive interactive commands from the user. During a simulation, three types
of commands are acceptable:

(a) Enabled events (as are listed in the left panel);

(b) debug command, which switches the simulator to the debug mode (discussed later);

(c) exit command, which forces the simulation to stop immediately and closes the SVM win-
dows.

An unaccepted command entered by the user is simply ignored.

4. The “Show State Hierarchy” button is initially disabled. If the user closes the state hierarchy win-
dow, it becomes enabled and clicking on it brings up the state hierarchy window again. (Closing
the main window itself has the same effect as typing theexit command in the command box.)

2.3 HelloWorld Example 9

Figure 2.2: Screenshot 2 of theHelloWorld example

5. The “Snapshot” button takes a snapshot of the current state of the simulation. The snapshot is
saved in a text file, which can be used to resume the simulation at the current state. Snapshotting
is discussed later.

6. The “About SVM” button brings up the about dialog.

7. The “Exit” button provides the same functionality as theexit command.

8. The status bar at the bottom always shows the current state of the model (in the format of Python
list).

• State hierarchy window:

1. The top bar shows the file name of the current model.

2. The state list shows the state hierarchy in a tree style. Leaf states which the model is current in
are highlighted with yellow background.

3. The bottom box shows thefull path of the currently selected state in the state list. The full path
of a state consists of the names of all its superstates and its own name in the order of their levels.
Those names are separated by a dot. For example, the full path of stateA in this example isA. If
A1 is a child ofA, the full path ofA1 is A.A1.

If no state is selected in the state list (as in Figure 2.1), this box is empty.

To send evente to theHelloWorld model, the user should either use the left mouse button to double click
the event name in the enabled event list, or type ine in the command box and then enter. This event triggers
the only transition defined in the model, and message “Hello World!” is printed in the output box (Figure
2.2).

Now, because stateB (the current state) is a final state, there is no enabled event any more, and the enabled
event list becomes empty. To close SVM, the user should either enter commandexit in the command box,
or click the “exit” button with the left mouse button, or close the main window.

2.4 SVM Command-line Parameters 10

2.4 SVM Command-line Parameters

When executed without any command-line parameter, SVM prints out the following messages to the con-
sole:

===
| Python Implementation of Statechart Virtual Machine |
| Version 0.3 |
| Presented by Thomas Feng, Nov. 2003 |
===

Usage: svm [options...] <.des|.snp file> [parameters...]
options:

-c: force curses interface (Linux)
-t: force textual interface
-i <file>: include a file (to the head)
-I <file>: include a file (to the tail)

parameters:
"name=value"

The meaning of the accepted command-line parameters is explained below:

• The -c parameter enforces the curses interface (if the simulated model does not provide a model-
specific interface). Curses is a colorful textual library for Unix-based systems. It is not supported in
Windows.

For example, the users may run theHelloWorld example with the following command:

svm -c HelloWorld.des

• The -t parameter enforces the textual interface (if the simulated model does not provide a model-
specific interface). This interface is suitable for most systems and machines, even if the Tk library is
not supported or no graphical device is available. It is also more efficient than the default graphical
interface.

For example, the users may run theHelloWorld example with the following command:

svm -t HelloWorld.des

• The -i parameter literally inserts a text file to the head of the model description. This option is
very useful when the designer designs a group of models and wants them to share a common part of
description (for example, the interactor or the initializer). In that case, the designer writes the common
part in a separate text file, and inserts the file to the model descriptions at the time of simulation.

Multiple text files can be inserted with multiple-i parameters on the command-line. For example,
a1.des contains the following content:

STATECHART:

a2.des contains the following content:

A [DS]

And a3.des contains the following content:

2.5 More Examples 11

B

To combine those descriptions and simulate the model in SVM, the user should execute the following
command:

svm -i a1.des -i a2.des a3.des

(Note: there must be exactly onemain file on the command-line which is not preceded by the-i
parameter, in this case,a3.des.) The resulting model is equivalent to the following:

STATECHART:
A [DS]
B

(It is a model with two states but without transition.)

• The-I parameter is similar to-i, except that the file is appended to the end of the model description.
As a result, the model discussed above can also be simulated with the following command:

svm -I a2.des -I a3.des a1.des

• The main file follows all the-i parameters and-I parameters (if any). After the main file, the user
may specify one or more macro redefinitions. Those macro redefinitions override the macros defined
in the model, but they do not affect the submodels that are imported into the main model (whose
description is the combination of all the text files that appear in the command-line).

For example,DUMP is a predefined macro (discussed later) used in theHelloWorld example. The ex-
ample prints “Hello World!” when evente is received. To override this macro on the SVM command-
line, the user may execute the following command:

svm -t HelloWorld.des ’DUMP(msg)=print "example:", [msg]’

When evente is received, instead of printing “Hello World!” the model prints “example: Hello
World!”

2.5 More Examples

Several examples are discussed in this section. Each of them is designed to introduce one or more descriptors.
For a complete list and definition of these description, the readers are referred to my master’s thesis.

2.5.1 An example of macros

Macros are defined under theMACRO descriptor. The descriptor is followed by the macros, each of which is
written in a separate line. There may be multipleMACRO descriptors in the same text file.

Sometimes the definition of a macro is too long to be understandable in a single line. In that case, the
designer may use a line break “\” at the end of a line to connect it with the next line (preceding spaces and
tabs are preserved in the next line).

macro1.des demonstrates the use of macros:

MACRO:
NEWSTATE = B
DUMP_STATE(state) = print "Current state:", "[state]"

2.5 More Examples 12

STATECHART:
A [DS]
B
C

TRANSITION:
S: A
N: [NEWSTATE]
E: e
O: [DUMP_STATE([NEWSTATE])]

In this example, two macros are defined:NEWSTATE is defined to beB andDUMP STATE is defined to dump
the current state to the console. Once defined, the macros can be used throughout the model description,
with their names placed in square brackets.

In the definition ofDUMP STATE, print is a Python command and prints a message to the console. This
macro has a parameterstate. In the left-hand side, the parameter is placed between parentheses. In the
right-hand side, the value of the parameter can be referred to with the name of the parameter between square
brackets. Designers must keep in mind that parameters are literally substituted by their values when they
are used in other parts of the model description. For example, in this case,[states] is substituted with
[NEWSTATE] in the output of the transition.[NEWSTATE] refers to the value of macroNEWSTATE, which isB.
Because[state] is substituted byB in the right-hand side, to print out this current state as a Python string,
[state] must be placed between quotes.

To execute this example in textual mode, use the following command:

svm -t macro1.des

Here is the result:

[’A’] > e
Current state: B
[’B’] > exit

2.5.2 An example of history states

History states have[HS] or[HS*] properties following their names in the state hierarchy. A state with[HS*]
property is a deep history state. A state with[HS] property but no[HS*] property has a normal history (or
shallow history). When both[HS*] and[HS] are given to a state,[HS] is ignored.

A transition to the (deep or normal) history of a state has[HS] property to distinguish with a transition to
the state itself. The property is written behind theTRANSITION descriptor of that transition.

The following is the description of a model with a history state and a deep history state (history1.des):

STATECHART:
A [DS] [HS]
A1 [DS]
A11 [DS]
A12

A2
B [HS*]
B1 [DS]
B11 [DS]
B12

2.5 More Examples 13

B2

TRANSITION:
S: A.A1.A11
N: A.A1.A12
E: A11-A12

TRANSITION: [HS]
S: A
N: B
E: A-B

TRANSITION:
S: B.B1.B11
N: B.B1.B12
E: B11-B12

TRANSITION: [HS]
S: B
N: A
E: B-A

The result of its simulation is:

[’A.A1.A11’] > A11-A12
[’A.A1.A12’] > A-B
[’B.B1.B11’] > B11-B12
[’B.B1.B12’] > B-A
[’A.A1.A11’] > A-B
[’B.B1.B12’] > exit

Here,A has a normal history whileB has a deep history. The first eventA11-A12 changes the model to
stateA.A1.A12, which is not its default state. The transition triggered by eventA-B has[HS] property, so
it changes the model to the history of stateB. Initially, B’s history is empty, so the model transitions to the
default substate ofB (which is B.B1.B11). EventB11-B12 changes the model to stateB.B1.B12. When
eventB-A is received, the model goes back to the history ofA. The history was recorded at the time when
the model left stateA. At that time, the model was in stateA.A1.A12. However, because the history ofA is
normal history, it only records the child ofA that the model was in (A.A1). As a result, the model changes
the default substate ofA.A1, which isA.A1.A11. When eventA-B is received at this time, the model goes to
the deep history ofB, so the new state before exiting isB.B1.B12.

2.5.3 An example of orthogonal components

Orthogonal components are states with[CS] property (short for Concurrent State). According to the defi-
nition of orthogonal components, if a state is an orthogonal component, all its siblings (other states of the
same parent) must also be orthogonal components. Orthogonal components must also be default children of
their parent, so they must have[DS] property.

An example of orthogonal components (orthogonal1.des) is included below:

STATECHART:
A [DS]
B

2.5 More Examples 14

B1 [CS] [DS]
B11 [DS]
B12
B121 [CS] [DS]
B122 [CS] [DS]

B2 [CS] [DS]
B3 [CS] [DS]

TRANSITION:
S: A
N: B
E: e

TRANSITION:
S: B.B1.B11
N: B.B1.B12
E: f

The result of the simulation of this model in text model is:

[’A’] > e
[’B.B1.B11’, ’B.B2’, ’B.B3’] > f
[’B.B2’, ’B.B3’, ’B.B1.B12.B121’, ’B.B1.B12.B122’] > exit

In this example,B1, B2 andB3 are siblings because they are all children of stateB. They are orthogonal
components with[CS] property and[DS] property. When the model goes to stateB because of evente, it is
concurrently in the three states:B.B1.B11 (the default substate ofB.B1), B.B2 andB.B3. The current state is
printed to the screen as a Python list:[’B.B1.B11’, ’B.B2’, ’B.B3’]. (The sequence of the components
in this list is unimportant.) When eventf is received, the model goes to stateB.B1.B12. Orthogonal compo-
nentsB.B2 andB.B3 are unchanged.B.B1.B12 has two orthogonal components as its children. As a result,
there are 4 components in the current state:[’B.B2’, ’B.B3’, ’B.B1.B12.B121’, ’B.B1.B12.B122’].

2.5.4 An example of enter/exit actions

Enter actions of a state are written under theENTER descriptor. Exit actions are written under theEXIT
descriptor. There may be multipleENTER or EXIT descriptors.

The N (new state) property of anENTER descriptor specifies the state that is entered. TheS (source state)
property of anEXIT descriptor specifies the state that is exited.

The following example (enterexit1.des) demonstrates the use of enter actions and exit actions.

STATECHART:
A [DS]
B [FS]

ENTER:
N: A
O: [DUMP("enter A")]

EXIT:
S: A
O: [DUMP("exit A")]

2.5 More Examples 15

ENTER:
N: B
O: [DUMP("enter B")]

TRANSITION:
S: A
N: B
E: e
O: [DUMP("transition from A to B")]

The result of the simulation is:

enter A
[’A’] > e
transition from A to B
exit A
enter B
[’B’] > exit

In this example, enter actions are defined for statesA andB to print out simple messages. An exit action is
also defined for stateA. A transition changes the model from stateA to stateB. In its output (O property), a
message is also printed.

From the output, one may notice that output of the transition that causes the state change is executed before
exit actions, and exit actions are before enter actions. This semantics of DCharts conforms to the original
statecharts semantics proposed by David Harel. In addition to this fact, in one single transition, exit actions
of a state are always executed before the exit actions of superstates of that state. Conversely, enter actions of
a state are always executed after the enter actions of superstates of that state.

A global option “Harel” specifies whether the semantics of a model strictly conforms to the David Harel’s
semantics. By default it is set totrue. A designer may override this option tofalse to use the alternative
semantics. (This option is discussed later.)

2.5.5 An example of guards

Designers may optionally specify guards (boolean conditions) for transitions and enter/exit actions. The
guard of a transition is tested when the event of the transition is received. The transition is triggered only
if the result of this testing istrue. Similarly, when the model enters or exits a state and if corresponding
enter/exit actions are defined, they are executed only if the guards are evaluated totrue.

The following example (guard1.des) demonstrates the use of guards:

STATECHART:
A [DS]
A1 [DS]
A2
A3

B

ENTER:
N: A
C: 1==1
O: [DUMP("enter A")]

2.5 More Examples 16

EXIT:
S: A
C: 1==0
O: [DUMP("exit A")]

TRANSITION:
S: A
N: B
E: e
C: [INSTATE("A.A1")] or [INSTATE("A.A2")]
O: [DUMP("transition to B")]

The result of the simulation is:

enter A
[’A.A1’] > e
transition to B
[’B’] > exit

When stateA is entered initially, the guard (1==1) of its enter action is tested. Since the result istrue, the
action is executed and “enter A” is printed. When the transition is triggered, its guard is tested. Predefined
macroINSTATE is used to test whether the model is in stateA.A1 of A.A2. The result istrue, so the output
of the transition is also executed. The exit action of stateA is not executed because its guard is evaluated to
false.

2.5.6 An example of an initializer and a finalizer

Each model may have an initializer defined under theINITIALIZER. Designers are allowed to write arbitrary
Python code in the initializer. This code is executed at the very beginning of the simulation, even before the
simulator finds the default states of the model or the enter actions of those default states are executed. If a
model has multipleINITIALIZER descriptors, the code under those descriptors is literally combined.

Similarly, the finalizer is defined under theFINALIZER descriptor. It is a piece of arbitrary Python code.
If multiple FINALIZER descriptors are defined in the model description, they are literally combined. The
finalizer is executed at the very end of the simulation, after the execution of enter actions of the last entered
state. The end of a simulation is defined as one of the following two events:

1. A final state of the model is entered and the final state is a leaf state. If it is not a leaf state, the
simulation ends when all the default leaf substates of that state are entered. (I.e., the simulation of the
model finishes a macro-step.)

2. The user stops the simulation manually. This is usually by closing the SVM main window or entering
theexit command in the command box (or text console).

An example of an initializer and a finalizer (initfinal1.des) is included below:

INITIALIZER:
def print_numbers():
for i in range(10):
print i,

print
[DUMP("initialized")]

2.5 More Examples 17

FINALIZER:
[DUMP("nothing to do in finalizer")]

STATECHART:
A [DS]

TRANSITION:
S: A
N: A
E: e
O: print_numbers()

Here is the simulation result:

initialized
[’A’] > e
0 1 2 3 4 5 6 7 8 9
[’A’] > exit
nothing to do in finalizer

In the initializer shown above, a functionprint numbers is defined to print out numbers from 0 to 9. It
is a Python function that can be invoked in the output of the transition. The designer of a model may also
use the initializer to define more functions, or to import Python modules to be used throughout the model
description, or to initializer the hardware devices that the model controls.

The finalizer may be used to release allocated system resources. In this case, it simply prints out a message.

As is introduced for the first time, the transition in this example is aself-loop, which has the same defini-
tion of source state and new state. Note that in some cases, self-loops change the current state of the model,
because (if the source/new state has substates) they causes the model to go to the default substate(s) of that
state. A self-loop to the deep history of the new state never changes the model state.

2.5.7 An example of timed transition

Timed transitions are automatically triggered after a certain state is entered. The time between the execution
of the enter actions of that state and the triggering of the transition is theinterval of a timed transition.
In a textual description, a timed transition is a transition with aT property but noE property as in normal
transitions. (It is illegal to specify bothT andE for the same transition.)

There are two kinds of timed transitions:

1. Repeated timed transitionsare repeatedly scheduled if the source stateS is equal to the new stateN;

2. Once timed transitionsare scheduled only once ifS is equal toN.

Repeated timed transitions are the default type of timed transitions. This semantics conforms to David
Harel’s original statecharts. Once timed transitions must be explicitly specified by the designer by giving
the[OTT] property to their intervals. (The[RTT] property for repeated timed transitions is negligible.)

The following is an example (timed1.des) of the two kinds of timed transitions:

STATECHART:
A [DS]
B

2.5 More Examples 18

TRANSITION:
S: A
N: B
T: 1 [OTT]
O: [DUMP("start printing")]

TRANSITION:
S: B
N: B
T: 1 # by default, it is [RTT]
O: [DUMP("tick")]

The simulation result is below:

[’A’] > start printing
tick
tick
tick
tick
tick
tick
tick
tick
tick
exit

When started, this model is in stateA, and the first timed transition (with[OTT] property) is scheduled after
1 second. When the transition is triggered, it turns the model to stateB, and another timed transition is
scheduler every 1 second to print out a “tick” message. Note that the current state ([’B’]) of the model is
not printed for timed transitions, which are a kind of internal transitions. As a result, the user can only see
the message keep appearing in the console, until theexit command is entered, when the simulation stops.

A timed transition may have a guard that specifies the condition that must betrue to trigger the transition.
The guard is evaluated after the scheduled time instead of at the time when the transition is scheduled. For
example, if a transition is scheduled 1 second later, its guard is evaluated 1 second later. If the guard is
false, the transition is not triggered. If the transition is a repeated timed transition, it is re-scheduled and
its guard will be evaluated 1 second later again.

2.5.8 An example of importation

Importation is specified in model descriptions in two steps:

1. The designer declares all the components to be imported under theIMPORTATION descriptor. There
may be multipleIMPORTATION descriptors in a single model description. Each component is located
by its file name (usually ending with.des). A GUID (Globally Unique ID) is assigned to each com-
ponent, which is used to referred to the component in other parts of the model description.

2. In the specification of the state hierarchy, the GUIDs of those imported components can be used as
properties for states to make them importation states. The states with such properties must be leaf
states. For example, if property[b] is given to stateA andb is the GUID of a component,A becomes
an importation state, where the component will be dynamically loaded in it during a simulation.

2.5 More Examples 19

The following is a model (import1 a.des) that imports a component into its two leaf states (so that the two
states have exactly the same internal structure):

IMPORTATION:
b = import1_b.des

STATECHART:
A [DS] [b]
B [b]

TRANSITION:
S: A
N: B
E: e

The following is the component (import1 b.des) to be imported by the above model:

STATECHART:
COMP_A [DS]
COMP_B [FS]

TRANSITION:
S: COMP_A
N: COMP_B
E: f

The submodel,import1 b.des is a model in its own right. It is possible to simulate it in SVM with com-
mand:

svm -t import1_b.des

When it is imported intoimport1 a.des, it is regarded as a component. All its states and transitions will
be copied to the importation states at run-time. To simulateimport1 a.des, run the following command
instead:

svm -t import1_a.des

The simulation result is as following:

WARNING: Imported model has final states. They are automatically converted to ordinary states.
[’A.COMP_A’] > f
[’A.COMP_B’] > e
WARNING: Imported model has final states. They are automatically converted to ordinary states.
[’B.COMP_A’] > f
[’B.COMP_B’] > exit

Two warning messages are produced by SVM in this simulation, but the user can safely ignore them. When
the simulation is started, the model is in its default stateA. BecauseA has a property[b] andb is the GUID of
componentimport1 b.des, SVM looks forimport1 .des and import it intoA to find the concrete current
state of the model. When SVM detects a final state is defined in the imported component, it produces a
warning telling the user that the final state is converted into an ordinary state. This is necessary because a
component should not have the ability to terminate the simulation (for modularity).

2.5 More Examples 20

When the user sends thef event, which is handled by the component, the current state of the model changes
from A.COMP A to A.COMP B. After that, evente causes the model to leave stateA and enter stateB. (The
component imported in stateA is not deleted and can be reused later.) BecauseB is also an importation
state, SVM dynamically loads the required component (import1 b,des) in it, and the second warning is
produced. Eventf received after this changes the model from stateB.COMP A to B.COMP B.

2.5.9 An example of recursive importation

Since there is no essential difference between a model and a component, a model may import itself as a
component directly or indirectly. This creates an infinite state hierarchy that cannot be flattened into a state
hierarchy without importation. The following is an example of direct recursive importation (import2.des):

IMPORTATION:
self = import2.des

STATECHART:
A [DS]
B [self]

TRANSITION:
S: A
N: B
E: e

The simulation result is as following:

[’A’] > e
[’B.A’] > e
[’B.B.A’] > e
[’B.B.B.A’] > e
[’B.B.B.B.A’] > e
[’B.B.B.B.B.A’] > e
[’B.B.B.B.B.B.A’] > e
[’B.B.B.B.B.B.B.A’] > exit

In this example, the model imports itself into its importation stateB by giving self (could be any other
identifier) as the ID of its textual description and using this ID as a property of stateB. As a result, when
evente is received,import2.des itself is imported into stateB and the current state becomesB.B.A. At this
time, evente is again acceptable and is handled by the component that is just imported. This importation
continues infinitely.

As an importance notice, it is the designer’s responsibility to ensure there is no dead-lock in the model. If
we slightly modify the above example, dead-lock is created: give the[self] property to stateA or remove
the[DS] of stateA but add it to stateB. In both cases, the default state of the model imports itself, and the
default state of the just imported component again requires an importation. This operation never stops and
the simulation hangs until all the memory is exhausted. SVM would never be able to provide the current
state string to the user, because its length grows to infinity.

If modelA imports modelB and modelB imports modelA, an indirect recursive importation is created, which
is not demonstrated here.

2.5.10 An example of macro redefinition

Macro redefinition for components in a model is accomplished simply by specifying the macros (both left-
hand side and right-hand side) behind the name of the importation state in the state hierarchy. The names

2.5 More Examples 21

of the macros should be the same as those used in the component. The following is an example of macro
redefinition (macro2 a.des), which imports a component and redefines the macros in it:

MACRO:
MYEVENT = e

IMPORTATION:
b = macro2_b.des

STATECHART:
A [DS] [b] [MYEVENT=[MYEVENT]]

The component (macro2 b.des) to be imported into the above model is defined below:

MACRO:
MYEVENT =

STATECHART:
COMP_A [DS]
COMP_B

TRANSITION:
S: COMP_A
N: COMP_B
E: [MYEVENT]

Simulation result:

[’A.COMP_A’] > e
[’A.COMP_B’] > exit

In this example,MYEVENT is a macro defined both inmacro2 a.des andmacro2 b.des. Whenmacro2 b.des
is imported,macro2 a.des redefines itsMYEVENT macro to be the value of its ownMYEVENT macro. (Note
that in the property string[MYEVENT=[MYEVENT]], [MYEVENT] is replaced withe at the time whenmacro2 a.des
is loaded, so it becomes[MYEVENT=e]. As a result, theMYEVENT macro inmacro2 b.des is redefined toe.)

Another type of macro redefinition is done by the user on the command-line to invoke SVM. For example,
the user may execute the following command to override theMYEVENT macro inmacro2 a.des:

svm -t macro2_a.des "MYEVENT=f"

This command redefines theMYEVENT in macro2 a.des to bef. Sincemacro2 a.des redefines theMYEVENT
macro inmacro2 b.des to be its ownMYEVENT macro, the accepted event inmacro2 b.des now becomes
f.

Macro redefinition is the only means for a model to modify the behavior of its components.

2.5.11 An example of ITF and OTF transition priorities

The following is a model (prio1 b.des) that tests the ITF (Inner Transition First) and OTF (Outer Transition
First) transition priorities:

STATECHART:

2.5 More Examples 22

A [DS] [ITF]
A1 [DS] [OTF]
A11 [DS] [RTO]

TRANSITION:
S: A
N: A
E: e
O: [DUMP("transition from A")]

TRANSITION:
S: A.A1
N: A.A1
E: e
O: [DUMP("transition from A.A1")]

TRANSITION:
S: A.A1.A11
N: A.A1.A11
E: e
O: [DUMP("transition from A.A1.A11")]

The following is the simulation result ofprio1 b.des:

[’A.A1.A11’] > e
transition from A.A1
[’A.A1.A11’] > exit

In this model, a conflict on evente is deliberately created. All the three transitions are able to handle event
e when it is received: one transition fromA, one fromA.A1 and the other fromA.A1.A11. StateA is set
to be ITF, so the transition fromA.A1 and the transition fromA.A1.A11 have higher total priority than the
transition fromA. StateA.A1 is set to be OTF, so the transition fromA.A1 has higher total priority than the
transition fromA.A1.A11. (The OTF property ofA.A1 does not affect stateA.) At last, stateA.A1.A11 is
set to be RTO. This means transitions within its scope has a reverse ordering than its parent state, so the
transition ordering of this state is equivalent to ITF. However, there is only one transition within its scope,
so this property does not affect the result.

As a result, the second transition has the highest total priority. It is triggered when evente is received. Its
output prints out the state where it is from:A.A1.

If a top-level state (likeA in the above example) has not explicitly specified its transition priority, it is set to
OTF by default. This behavior can be changed by reverting the global flagInnerTransitionFirst under
theOPTIONS descriptor. More about global options are discussed later.

Because of this global option always presents, the behavior of a component is protected whether it is im-
ported into an importation state with ITF property or an importation state with OTF property. The following
model (prio1 a.des) importsprio1 b.des:

IMPORTATION:
b = prio1_b.des

STATECHART:
A [DS] [OTF] [b]

2.5 More Examples 23

B [ITF]
B1 [RTO] [DS]
B11 [DS] [b]

TRANSITION:
S: A
N: B
E: e
O: [DUMP("A-B")]

TRANSITION:
S: B
N: A
E: e
O: [DUMP("B-A")]

The simulation result is as following:

[’A.A.A1.A11’] > e
A-B
[’B.B1.B2.A.A1.A11’] > e
transition from A.A1
[’B.B1.B2.A.A1.A11’] > exit

In this example, two more transitions participate in the conflict of evente. TheA state ofprio1 a.des is
set to be OTF, so the first transition in the main model has higher priority than theb component in its state
A. This results in the first transition (A-B) in the main model being triggered when evente is received for
the first time. In stateB, the transition has lower total priority than the transitions in the component imported
into B.B1.B11. As a result, when evente is received for the second time, the transition in the component is
triggered (a self-loop on stateB.B1.B2.A.A1.A11).

2.5.12 An example of priority numbers

Priority numbers of transitions are arbitrary integer numbers used to solve conflicts that cannot be solved
with the ITF and OTF mechanism. An example (prio2.des) is shown below:

STATECHART:
A [DS]
A1 [DS] [CS]
A2 [DS] [CS]

TRANSITION:
S: A.A1
N: A.A1
E: e
O: [DUMP("transition from A.A1")]

TRANSITION:
S: A.A2
N: A.A2
E: e
O: [DUMP("transition from A.A2")]

2.5 More Examples 24

TRANSITION: [0]
S: A
N: A
E: f
O: [DUMP("transition 1 from A")]

TRANSITION: [-1]
S: A
N: A
E: f
O: [DUMP("transition 2 from A")]

The simulation result is as following:

[’A.A1’, ’A.A2’] > e
transition from A.A1
transition from A.A2
[’A.A1’, ’A.A2’] > f
transition 2 from A
[’A.A1’, ’A.A2’] > exit

When evente is received in this model, two transitions are able to handle it. However, there is no conflict,
because the two transitions are from two different orthogonal componentsA.A1 andA.A2. Because of this,
both of the transitions are triggered, and two messages are printed to the console. (The sequence of the
triggering of those transitions is implementation-dependent.) When eventf is received, two transitions are
able to handle it, but they are from the same state. A conflict occurs at this time, and only one of those
transitions is triggered. The ITF and OTF scheme can not be applied to this situation, because there is no
superstate-substate relation between their source state. In this case, the transition with a smaller priority
number has higher total priority. As a result, the last transition is triggered.

By default, each transition has a priority number of 0. If the conflict still cannot be solved with priority
numbers, the final decision is implementation dependent.

2.5.13 An example of event parameters

TheEVENT macro is predefined and is used to output an event in a model. This macro accepts one to three
parameters. The first parameter is a string that specifies the event name. The second parameter is usually a
Python list containing arbitrary parameters that are sent with the event. (By default, it is an empty list.) The
transition that handles the event can thus retrieve the parameter list with macroPARAMS. Individual parameter
is accessible with[PARAMS][i], wherei is the index of the parameter in the list. The third parameter of the
EVENT macro may be a lock to be released when the event has been handled (discussed later).

The following example (param1.des) demonstrates the use of the two macros:

STATECHART:
A [DS]
B

TRANSITION:
S: A
N: A
E: e

2.5 More Examples 25

O: [EVENT("f", ["message", "Hello World"])]

TRANSITION:
S: A
N: B
E: f
O: [DUMP([PARAMS][0]+": "+[PARAMS][1])]

The simulation result is as following:

[’A’] > e
message: Hello World
[’B’] > exit

In this example, the user sends evente to the model. The event triggers a self-loop onA. In the output of the
self-loop, eventf is output with two parameters: Python strings"message" and"Hello World". This event
is then handled by the other transition defined in the model. In the output of that transition,[PARAMS][0] is
equal to"message", and[PARAMS][1] is equal to"Hello World".

2.5.14 An example of model-specific interface

INTERACTOR is a special descriptor, which starts a piece of Python code to be executed in a thread separated
from the thread of the SVM simulator. (If there are multipleINTERACTOR descriptors, the code under them
is literally concatenated.

The code under theINTERACTOR descriptor is started after the initializer of the model is executed, but before
the simulation of the model actually starts. This code should first initialize the user interface and then call
thestart method of theeventhandler object. This starts the simulation, and the model begins to accept
events and produce outputs. The interactor does not exit after this, but it usually enters a loop. The code in
this loop repeatedly accepts events from the user via the interface, and feeds those events to the model by
calling theEVENT predefined macro or theevent method of theeventhandler object.

The following example (inter1.des) demonstrates a textual model-specific interface:

STATECHART:
A [DS]

INTERACTOR:
import thread
import string

lock=thread.allocate_lock()

make sure the model is started before the events are sent to it
lock.acquire()
eventhandler.start(lock)
lock.acquire()
lock.release()

repeatedly handle events
cmd=""
while cmd!="quit":
sys.__stdout__.write("CMD > ")

2.5 More Examples 26

cmd=string.strip(sys.__stdin__.readline())
if cmd!="quit":

split the cmd into [event, param] tuple
[event, param]=string.split(cmd, ",")

lock.acquire()
[EVENT(string.strip(event), [eval(string.strip(param))], lock)]
lock.acquire()
lock.release()

shutdown the simulator
eventhandler.shutdown()

TRANSITION:
S: A
N: A
E: eval
O: [DUMP("result: "+str([PARAMS][0]))]

The simulation result is as following:

CMD > eval, 1+1
result: 2
CMD > eval, "message"+": %s"%"Hello World"
result: message: Hello World
CMD > eval, 2*3.1415927*0.5
result: 3.1415927
CMD > quit

Here are the two points to be emphasized:

• A lock is used to synchronize the interactor thread with the simulator thread. When the interactor
calls thestart method of theeventhandler (an internal object that represents the simulator with the
model loaded), the start event (a special event) is put on the top of the event queue (a global queue to
record all the events that have not been handled yet). The method returns immediately without waiting
for the actual starting of the simulation.

To avoid the error caused by sending events to the model before it is fully initialized and the simulation
is started correctly, the interactor must wait until the start event is handled. To ensure this, it calls
thestart method of an already acquired lock. The simulator releases the lock when it is started, but
before that, the next acquisition of the same lock is blocked. This blocking causes the interactor thread
to wait until the simulator is started.

• TheEVENT macro is used in the interactor to send events to the model. The names of those events are
the first part of the commands entered by the user (separated from the second part with a comma).
There is exactly one parameter for each event (the second part in the command). Python functioneval
is used in the interactor to constructor the parameter object from the string entered by the user. The
lock is also used to guarantee that the last event is handled before the user enters the next command.

3
CODE SYNTHESIS WITH SCC

SCC is a code synthesis tool distributed in the same package as SVM. It reuses the parser of SVM to
interpret DCharts model descriptions, and then generate code from the internal data structures in different
target languages. Since version 0.3, SCC provides exactly the same support for DCharts as SVM does.

SCC need not be installed separately. Thescc (or scc.bat for Windows) script invokes it on the command-
line. If the Windows binary package is used, the user should look forscc.exe in the SVM directory.

3.1 SCC Command-line Parameters

When SCC is invoked without any parameter, it prints out the following message about the usage:

==
| Python Implementation of Statechart Compiler |
| Version 0.3 |
| Presented by Thomas Feng, Nov. 2003 |
==

Usage: scc [options...] <.des file> [parameters...]
options:

-l <lang>: generate code in language <lang>
supported languages: java (default), cpp, csharp, python

-i <file>: include a file (to the head)
-I <file>: include a file (to the tail)
-q: quiet

language-specific options:
cpp:

--head: generate head file
--ext: include extensions for actions (require Python dynamic library)

python:
--ext: include extensions for actions

parameters:
"name=value"

The following command is the simplest use, which compilesmodel.des into Java sourcemodel.java:

3.2 HelloWorld Example 28

scc model.des

The-i and-I parameters are similar to their counterparts on the SVM command-line.-i is used to insert a
text file to the head of the model description, while-I is used to append a text file to the end of it.

It is also possible to redefine the macros in the model description, as can be done in SVM. The redefined
macros are statically compiled into the generated code. (Note that it is impossible to dynamically redefine
macros in the generated code. If a model redefines macros in its components, those redefinitions are ignored
by SCC.) The model redefinitions are written after the name of the model description. (This is similar to
SVM.)

The-l parameter is followed by the name of the target language. Currently Java, C++, C# and Python are
supported as target languages. For example, to compilemodel.des into model.cpp, execute the following
command:

scc -lcpp model.des

or

scc -l cpp model.des

By default, SCC does not generate any action code or guard in the model. They are simply ignored. This is
because, enabling the action code and guards for target languages other than Python requires extra Python
library. To minimize system requirement and still guarantee unique target-language-independent behavior
of the generated code, SCC ignores all the action code and guards even if Python is the target language.
However, the user may specify the--ext command-line parameter to enable the action code and guards for
sometarget languages. Uniqueness of behavior between different target languages is not guaranteed in this
case. (See the examples discussed later.)

After code is generated, SCC prints out information about the time spent in the code synthesis, the command
to compile the source code in the target language (if the target language is not interpreted), and the command
the execute the model after the generated code is compiled. The user may disable this information with the
-q parameter.

3.2 HelloWorld Example

The sameHelloWorld example as discussed in the SVM chapter is used here. It is compiled into source
code in different target languages. The readers may compare the result of their executions with the simulation
result shown previously.

DESCRIPTION: # description of the model
Hello World Example

STATECHART: # definition of the state hierarchy
A [DS]
B [FS]

TRANSITION: # one single transition
S: A
N: B
E: e
O: [DUMP("Hello World!")]

3.2.1 Python code synthesis

To synthesize Python code from the model description, the user may execute the following command:

3.2 HelloWorld Example 29

scc -lpython HelloWorld.des

HelloWorld.py will be generated. The following information is printed on the console:

Time spent on compilation: 0.010 (sec)
File(s) generated: HelloWorld.py

Command to compile the source: (N/A)
Command to run the compiled code: python HelloWorld.py

This output tells the user that:

1. SCC spent 0.010 second in generating the target code;

2. the only file produced isHelloWorld.py;

3. because target language Python is an interpreted language, it is not necessary to compileHelloWorld.py
before execution;

4. to execute the generated code, execute command:

python HelloWorld.py

Now executeHelloWorld.py and enter some events in the console:

Hello World Example
[’A’] > e
[’B’] > exit

When the execution is started, the model description is printed, and a prompt for input appears. The current
state of the model is also displayed in the format of Python list. If evente is entered, the model correctly
changes to stateB. Commandexit ends the execution and stops the program.

One may notice that the “Hello World!” message was not printed as it was printed in the simulation in SVM.
This is because the output of the transition is ignored by SCC, which defaults not to generate any action code
for the target code. To synthesize code with support for action code, the user should execute the following
command instead:

scc -lpython --ext HelloWorld.des

Again, similar information about the code synthesis is printed on the console:

Time spent on compilation: 0.015 (sec)
File(s) generated: HelloWorld.py

Command to compile the source: (N/A)
Command to run the compiled code: python HelloWorld.py

Now execute the target code again. The result should look like:

3.2 HelloWorld Example 30

Hello World Example
[’A’] > e
Hello World!
[’B’] > exit

This execution result is exactly the same as simulating the model in SVM:

svm -t HelloWorld.des

3.2.2 C++ code synthesis

The same model can also be compiled to equivalent C++ code with the following command:

scc -lcpp HelloWorld.des

The following information is displayed in the console:

Time spent on compilation: 0.045 (sec)
File(s) generated: HelloWorld.cpp

Command to compile the source: g++ -o HelloWorld HelloWorld.cpp
Command to run the compiled code: ./HelloWorld

File HelloWorld.cpp is generated, which can be compiled with G++ (the GNU C++ compiler) with the
following command:

g++ -o HelloWorld HelloWorld.cpp

In Windows, compiling C++ source code with G++ requires Cygwin.

TheHelloWorld executable can be directly executed on the command-line. The result is as following:

Hello World Example
[’A’] > e
[’B’] > exit

The action code is ignored in this executable.

If the user wants to get a C++ head file, which can be included in other C++ sources, he/she may use the
--head command-line parameter. In that case, two files are generated:HelloWorld.h andHelloWorld.cpp.
The G++ command to compile this source is not changed.

The--ext parameter can be used to instruct SCC to include support for the action code and guards. How-
ever, the Python library is required to compile the generated C++ code, and if the model loads user-defined
Python libraries withimport statements, those libraries must be in thePYTHONPATH environment variable.
For example, to synthesize code for theHelloWorld example with action language support, execute the
following command:

scc -lcpp --ext HelloWorld.des

Again,HelloWorld.cpp is generated. The command to compile this C++ source is different and much more
complex:

3.2 HelloWorld Example 31

g++ -I/usr/include/python2.2 -L/usr/lib/python2.2/config -Xlinker -export-dynamic \
HelloWorld.cpp -lpython2.2 -lm -ldl -lpthread -lutil -o HelloWorld

(The user may concatenate the two lines with the ending “\” mark on the first line removed.)

SCC automatically detects the libraries and head files of the Python version that is being used. In the above
example, the Python head files are located at/usr/include/python2.2 and the Python libraries are at
/usr/lib/python2.2/config. Other command-line parameters for G++ depend on the parameters with
which Python itself was compiled. This command-line differs in different systems. If the user does not want
to compile the source with the Python that is being used (the Python in which SCC is executed), he/she must
modify the paths to the head files and libraries according to another version of Python.

When compiled,HelloWorld is the executable, which yields the following result:

Hello World Example
[’A’] > e
Hello World!
[’B’] > exit

This execution result is exactly the same as the execution result ofHelloWorld.py and the simulation result
of HelloWorld.des in SVM.

3.2.3 Java code synthesis

SCC is also able to synthesize Java code from DCharts models. The Java code requires JDK (Java Develop-
ment Kit) to compile to Java byte-code. The most recent version of JDK is downloadable from:

http://java.sun.com/

(JDK 1.4 or above is recommended.)

The following command synthesizes Java code forHelloWorld.des:

scc -ljava HelloWorld.des

The following message is printed out to the console:

Time spent on compilation: 0.007 (sec)
File(s) generated: HelloWorld.java

Command to compile the source: javac HelloWorld.java
Command to run the compiled code: java HelloWorld

HelloWorld.java is the only Java file for the model. It contains the definition of several classes. When it
is compiled withjavac, the following class files are produced in the current directory:

EventList.class
HelloWorld.class
Hierarchy.class
History.class
State.class
StateMachine.class
StringList.class

http://java.sun.com/

3.2 HelloWorld Example 32

Among those class files,HelloWorld.class provides the entrance of the program. To execute it, use the
following command:

java HelloWorld

(Note: the postfix of the main class file is removed.)

The result of the execution is as following:

Hello World Example
[’A’] > e
[’B’] > exit

The--ext parameter is currently not supported for target code in the Java language. Later versions of SCC
will add support for action code and guards. However, to provide this support, an interface between the Java
code and the C library provided by Python is required, which makes the target code platform-dependent.

3.2.4 C# code synthesis

To synthesize C# code for theHelloWorld example, execute the following command:

scc -lcsharp HelloWorld.des

HelloWorld.cs is generated and the following message is printed out to the console:

Time spent on compilation: 0.007 (sec)
File(s) generated: HelloWorld.cs

Command to compile the source: mcs -main:HelloWorld HelloWorld.cs (with Mono)

csc /main:HelloWorld HelloWorld.cs (with .Net Framework SDK)
Command to run the compiled code: mono HelloWorld.exe (with Mono)

HelloWorld.exe (with .Net Framework)

This tells the user how to compile the source and execute the program in Linux and Windows.

• Linux.

Mono (a C# compiler and run-time environment) must be installed. It is downloadable from:

http://www.go-mono.com/

To compile the C# source generated by SCC, execute the following command:

mcs -main:HelloWorld HelloWorld.cs

Here, the-main parameter is specified on the command-line, which tells Mono the entrance of the
program is in classHelloWorld. (The entrance is theMain method of the class.) This is necessary
because, if the model imports other components, C# classes are also generated for those components
by SCC in the same source file. In that case, there will be multipleMain methods, and the user must
explicitly specify only one class on the Mono command-line with the-main parameter.

After compilation,HelloWorld.exe is produced. It is a valid Windows executable, but in Linux, it
must be executed with the support of Mono:

http://www.go-mono.com/

3.3 An example of model-specific interface 33

mono HelloWorld.exe

(Note: this executable may be executed in Windows with Microsoft .Net Framework installed.)

• Windows.

Microsoft .Net SDK (Software Development Kit) is required to compileHelloWorld.cs in Windows.
The SDK is downloadable from:

http://download.microsoft.com/

To compile the C# source, execute the following command:

csc /main:HelloWorld HelloWorld.cs

Similar to Mono, .Net SDK generatesHelloWorld.exe. The executable can be directly executed in
Windows, but it requires .Net Framework, which is included in the SDK. The end users who only
want to run the executable model may download .Net Framework only from the download website of
Microsoft.

The execution result of the C# program is as following:

Hello World Example
[’A’] > e
[’B’] > exit

Currently the--ext parameter is not supported for the C# target language. All the action code and guards
in the model are ignored.

3.3 An example of model-specific interface

Interactor, like other parts of a model that contain arbitrary Python code (e.g., initializer and finalizer), is
supported by SCC. The interactor of a model is executed in a separate thread, and the exiting of that thread
denotes the end of the execution. If Python is the target language, the thread is created with the methods
provided by thethread native Python module. (This requires the Python environment to be compiled with
thread support.) If C++ is the target language, the thread is created with the functions in the pthread library.
This library is available in both Linux and Windows.

Here is the model (inter1.des) copied from section 2.5.14:

STATECHART:
A [DS]

INTERACTOR:
import thread
import string

lock=thread.allocate_lock()

make sure the model is started before the events are sent to it
lock.acquire()
eventhandler.start(lock)
lock.acquire()

http://download.microsoft.com/

3.3 An example of model-specific interface 34

lock.release()

repeatedly handle events
cmd=""
while cmd!="quit":
sys.__stdout__.write("CMD > ")
cmd=string.strip(sys.__stdin__.readline())
if cmd!="quit":

split the cmd into [event, param] tuple
[event, param]=string.split(cmd, ",")

lock.acquire()
[EVENT(string.strip(event), [eval(string.strip(param))], lock)]
lock.acquire()
lock.release()

shutdown the simulator
eventhandler.shutdown()

TRANSITION:
S: A
N: A
E: eval
O: [DUMP("result: "+str([PARAMS][0]))]

To compile this model into Python code, execute the following command:

scc -lpython --ext inter1.des

The generated Python source (inter1.py) can be executed with command:

python inter1.py

The execution result is as following, which is the same as the result shown in section 2.5.14:

CMD > eval, 1+1
result: 2
CMD > eval, "message"+": %s"%"Hello World"
result: message: Hello World
CMD > eval, 2*3.1415927*0.5
result: 3.1415927
CMD > quit

Similarly, the following is the command to synthesize C++ code from the same model:

scc -lcpp --ext inter1.des

And the following is the command to compile the generated C++ source code (inter1.cpp):

g++ -I/usr/include/python2.2 -L/usr/lib/python2.2/config -Xlinker -export-dynamic \
inter1.cpp -lpython2.2 -lm -ldl -lpthread -lutil -o inter1

The execution result of the binary is exactly the same as above.

3.4 Reusing the Synthesized Code 35

3.4 Reusing the Synthesized Code

The code generated by SCC from a model description can be reused by other applications. In that case, the
code becomes a part of the application, and the end user may not know that this part is generated from a
DCharts model. An example of use is that designer models the control logic of a system in DCharts. The
model can be validated with tools. The designer then synthesizes target code from the model. This code is
thus incorporated into the whole system. It provides robust support for the control logic.

The following is a very simple model (abc.des) that specifies (sort of) control logic:

STATECHART:
A [DS]
B
C
D [FS]

INITIALIZER:
Accept = 0

FINALIZER:
Accept = 1

TRANSITION:
S: A
N: B
E: a

TRANSITION:
S: B
N: C
E: b

TRANSITION:
S: C
N: D
E: c

This model checks whether eventsa, b andc appear in the same order in all the events that it receives. If
the check is successful, the flagAccepted is set to 1; otherwise, it is set to 0. The following event lists are
checked successfully (each character is an event in the string):

abc
aebdac
eghabbabcyucvb

The following are invalid event lists that cause failure:

a
abbdadayule
cababauolp

This model can be executed in SVM:

3.4 Reusing the Synthesized Code 36

svm -t abc.des

However, though theAccept flag is set in the model, it is not displayed to the user (or model tester).

Before being used in an application (written in native Python), the model must first be compiled into Python
source (abc.py) with the following command:

scc -lpython --ext abc.des

This code is used in an application (abc file.py) that tests a text file according to the same logic. The
name of the text file is specified on the command-line:

import code
import sys
import thread

Import the abc class from the abc model (abc.py)
from abc import abc

Get the file name from the command-line
fname=sys.argv[1]

Read in the while file
infile=open(fname, "r")
content=infile.read()
infile.close()

Create an interpreter with the local dictionary
(so that the Accept flag can be access in the current scope)
interpreter=code.InteractiveInterpreter(locals())

Create a lock to synchronize the events
lock=thread.allocate_lock()

Initialize a model with the interpreter
abc_model=abc(interpreter)
abc_model.initModel()

for c in content:
Treat every character as an event and handle it
lock.acquire()
abc_model.event(c, [], lock)
lock.acquire()
lock.release()

Print out the result
if Accept:
print "success"

else:
print "failure"

This Python source is the application that imports the code generated by SCC, and uses the methods in it to
check a text file. Here are several important notes:

3.4 Reusing the Synthesized Code 37

• An interpreter is created and passed to the constructor of theabc class (synthesized from theabc
model). All the action code and guards are executed or tested with this interpreter. If this parameter
of the constructor is omitted, the model automatically creates an interpreter that has a scope different
from those of all the existing Python interpreters.

In this example, the interpreter is created with the local dictionary (returned by the Python function
locals). As a result, the action code is executed as if it is directly written in the current context. The
Accept flag can thus be accessed. (However, this may cause the name conflict between the variables
in the model and the variables in the current scope of the native program.)

• The model must be initialized before it is able to handle events. This is done by calling itsinitModel
method. (This method is different from thestart method that is called from the interactor of the
model.)

• When initialized, the application sends events to the model by invoking itsevent method. As dis-
cussed before, the first parameter is a string that specifies the event name, the second parameter is an
arbitrary Python variable, which is usually a list of parameters for the event, and the third parameter
is a lock that is released when the model finishes handling the event. The last 2 parameters can be
omitted.

Now, edit a text file and type in some characters. Save it asabc test.txt. For example:

dsa dewrevbd
dtgbtyrtvc

To check this file, execute the following command (make sure thatabc.py is in the same directory):

python abc_file.py abc_test.txt

As expected, the result is “success”.

It is similar to reuse the code synthesized in other target languages. This is not discussed here.

4
SVM INTEGRATED WITH ATOM3

SVM can be used as a plugin for AToM3 (A Tool for Multi-formalism Meta-modeling, developed at MSDL,
McGill University by Prof. Hans Vangheluwe). It simulates the DCharts models designed in AToM3 on-the-
fly, and generates textual model descriptions from the graphical models. It is also able to generate target
code directly from the graphical models.

The functionality of the SVM simulator and code synthesizer can be added to an existing AToM3 environ-
ment. If the user does not have AToM3 installed yet, he/she must download it from the AToM3 homepage

http://atom3.cs.mcgill.ca/

and install it manually (simply by extracting the package).

After AToM3 is installed, the user should take the following steps to install the SVM plugin:

1. Download and install a recent version of SVM. Though the CVS version is not stable, it is recom-
mended for AToM3 users, because it has increased compatibility with AToM3 and an improved code
generator.

2. Add the SVM directory to thePATH environment variable andPYTHONPATH environment. This is to
allow the user and the AToM3 environment to invoke SVM directly from any other directory.

3. Copy theplugins/AToM3/DCharts/ directory (and all the files in it) to the AToM3 directory.

4. Start AToM3 and select the “Options” item in the “File” menu. Modify the settings in the “Options”
dialog according to Figure 4.1. (Set the “Dir. for Code Generation” to “DCharts”; Set the “Initial Meta-
Model” is to “DCharts”; and click on the “new” button to insert “DCharts” to the “Path Directories”.)

5. Restart AToM3 and the DCharts meta-model will be loaded automatically. It is now possible to design
DCharts models in the AToM3 environment.

http://atom3.cs.mcgill.ca/

SVM INTEGRATED WITH ATOM3 39

Figure 4.1: Settings in the AToM3 “Options” dialog to enable the DCharts meta-model

5
DISTRIBUTED SIMULATION WITH SVM

SVM supports distributed simulation with PVM (Parallel Virtual Machine). Adistributed modelis divided
into several components conceptually running on multiple machines. PVM hides the configuration of those
machines. Each PVM process is regarded as a conceptual machine that has its unique ID and is able to
communicate with other PVM processes. Multiple PVM processes can run on the same machine. Multiple
machines may be involved in the distributed simulation enabled by PVM, after they are added to the PVM
daemon.

5.1 PVM Requirement

PVM must be installed for this distributed simulation. The source code of PVM is available from its home-
page:

http://www.csm.ornl.gov/pvm/pvm_home.html

For Windows users, a binary installer is provided. For other operating systems, the user must download the
source code and manually compile it according to the readme file in the package. Fortunately, PVM binary
is included in most Linux distributions, such as RedHat Linux 9.0, SuSE Linux 9.0 and Mandrake Linux
9.2.

Some environment variables must be set before using PVM in SVM.PVM ROOT points to the path where
PVM is installed (for RedHat Linux 9.0, it is/usr/share/pvm3). PVM ARCH should be set to the operating
system and architecture of the computer. Its value should be the same as the name of the only subdirectory
in $PVM ROOT/lib (thelib subdirectory in the path where PVM is installed). Use the following command
to set thePVM ARCH variable in Linux systems (assuming the shell is bash):

export PVM ARCH=‘ls -F $PVM ROOT/lib | gawk ’sub(/\//, "");’‘

PVM RSH points to the remote shell to be used by PVM. PVM executes this shell program when it attempts to
connect to another machine. Ifssh is in thePATH environment variable, setPVM RSH to ssh; otherwise, set
it to the full path of thessh program, for example,/usr/bin/ssh. If the user wants to run the PVM con-
sole from any directory, the path$PVM ROOT/lib/$PVM ARCH should be appended to thePATH environment
variable.

To start the PVM daemon, run the PVM console with thepvm command, and enterquit in the PVM prompt.
The PVM console is closed but the PVM daemon is running in the background. Alternately, use the following
Linux command:

http://www.csm.ornl.gov/pvm/pvm_home.html

5.2 SVMDNS Daemon 41

echo quit | pvm

To stop the PVM daemon, run the PVM console and enterhalt, or execute:

echo halt | pvm

To add another machine to the current PVM daemon, start the PVM daemon on the local machine. Make
sure the following conditions are met:

• PVM is correctly installed on the other machine.

• The required environment variables are correctly set on the other machine in its startup script for the
login user.

• PVM daemon hasnotbeen started on the other machine.

• The current user is able to ssh to the other machine without extra command-line parameters. If another
user name is used on the other machine, specify it in file/.ssh/config. For example, the user
wishes to connect to machinepvm2.private.net via ssh with user nametfeng, put the following
lines in /.ssh/config:

Host pvm2.private.net
User tfeng

Consult the ssh manual for more information about/.ssh/config and ssh protocol 1 and 2, or type
the following command in Linux to get help:

man ssh config -S 5

Theadd command in the PVM console adds a machine to the current PVM daemon. It has a single parameter
which is the host name of the machine to be added. For example, the following commands start the PVM
daemon and add machinepvm2.private.net to it:

echo quit | pvm
echo add pvm2.private.net | pvm

The following command displays the current configuration of the PVM daemon:

echo conf | pvm

Sometimes when PVM applications crash, the PVM daemon cannot be stopped or restarted because of the
trash left in the temporary directory. This can be fixed by removing all the PVM temporary files from the
temporary directory. For Linux, the following command is useful:

rm -rf /tmp/pvm*

5.2 SVMDNS Daemon

SVMDNS (SVM Dynamic Naming Service) is another daemon built on top of the PVM library. It provides
a higher level of interface to SVM processes. For example, in Figure 5.1 there are 4 SVM processes, each
of which has a DCharts component running on it. Those DCharts components communicate with each other
via ports. The SVM processes register themselves to a single SVMDNS daemon. The SVMDNS daemon
invokes functions in the PVM library to create 4 PVM processes, each of them correspond to an SVM
process. The location of those PVM processes depends on the configuration of the PVM daemon. In this
case, PVM processes 1, 2 and 3 are located on machine 1, while PVM process 4 is located on machine 2.
The PVM library hides details of this configuration, but provides a uniform API to SVMDNS.

SVMDNS provides the following functionality to an SVM process:

5.2 SVMDNS Daemon 42

Figure 5.1: Multiple layers for distributed simulation in SVM

• Registration. Each SVM process that interacts with remote components must register itself to the
SVMDNS. By default, the SVM simulator attempts to register itself to SVMDNS if and only if a
model with at least one port is running in it.

• Life-time. Each SVM process registered to SVMDNS must periodically sends a keep-alive message
to the SVM daemon. If the daemon does not receive such a message from an SVM process within
a certain period of time (known aslife-time), information about the SVM process is removed from
SVMDNS’ registry. The life-time can be customized inPVMUtil.py. By default it is 30 seconds.
Each SVM simulator, after it registers itself, sends the keep-alive message to the SVMDNS every half
life-time period.

• Component lookup. SVM processes send the name patterns or types of required components to the
SVMDNS. SVMDNS is able to locate the registered components with those name patterns and types.
It establishes connections between components.

• SVMDNS also maintains the connections between different components. The SVM processes are
ignorant of this information. They simply use ports to identify groups of connected components in
SVMDNS. SVMDNS acts as a router in inter-component communication.

To use SVMDNS, make sure the PVM requirement is satisfied, and compile the PYPVM (http://pypvm.
sourceforge.net/) support with command “make pypvm” in the SVM directory. PYPVM enables access
to the native PVM library from Python code.

The scriptsvmdns in the SVM directory starts the SVMDNS console. The SVMDNS command prompt ap-
pears, and commands can be entered. Thehelp command displays all the available commands and their con-
cise descriptions (Table 5.1). Initially the SVMDNS daemon is not started. To start it, execute the “start”
command. To close the SVMDNS console, execute “exit”. This command does not stop the SVMDNS
daemon, which keeps running in the background. Other commands are explained below:

http://pypvm.sourceforge.net/
http://pypvm.sourceforge.net/

5.3 Distributed Simulation on Top of SVMDNS and PVM 43

SVM DNS User Interface
| SVM DNS is not running.
>>> help
| Statechart Virtual Machine Dynamic Naming System
| USAGE:
| svmdns <param>
| PARAMETERS:
| help print this help message
| check check if DNS has been started
| exec "cmd" execute a python command on the DNS (quotes are removed)
| send "msg" sends msg to the DNS (quotes are removed)
| start starts the DNS
| stop stops the DNS
>>>

Table 5.1: SVMDNS console

• The “check” command checks the current status of the daemon (whether it is started).

• The “exec "cmd"” command executes an arbitrary Python statement on the daemon. It can only be
executed after the daemon is started with the “start” command. The “exec” command is useful for
debugging. For example, “exec "check master started()"” checks the status of the daemon, and
command “exec "print SVMs"” displays all the components registered in the daemon.

• The “send "msg"” command sends a message to the daemon. It can only be executed after the dae-
mon is started with the “start” command. Messages received by the daemon, whether they are sent
from SVM simulators or from the SVMDNS console, are displayed on the console where SVMDNS
is started.

• The “stop” command stops the running daemon. It has no effect if the daemon is not running on the
local machine.

The user may directly execute a command from the shell by runningsvmdns with the command as a
command-line parameter. For example, to check the status, run “svmdns check” in the command-line;
to execute an arbitrary Python statement, run “svmdns exec "cmd"”.

FileDNS in the SVM directory records the PVM ID of the SVMDNS daemon. Once the SVMDNS daemon is
started, it modifies this file with its PVM ID (the return value of C functionpvm mytid()). SVM simulators
use this file to locate the SVMDNS daemon. When the daemon is on another machine, the user must ensure
that the content of theDNS file in its SVM directory is the same as the one on the machine where the SVM
daemon is running. For a distributed simulation, there should be exactly one SVMDNS daemon running in
the background. Each SVM simulator locates the same daemon with theDNS file on their own machines.

5.3 Distributed Simulation on Top of SVMDNS and PVM

SVM supports distributed simulation on top of SVMDNS and PVM. The user should start PVM first and
then SVMDNS. When the two daemons are running in the background, run SVM with a model that contains
at least one port. If the simulator successfully registers itself to the SVMDNS daemon, the message “init
dns success (PID=xxxxxx)” is printed to the console, where “xxxxxx” is a 6-digit integer PVM ID of the
simulator. After the simulator is initialized, the DCharts component running on it may communicate with
other components via the ports defined in it.

5.4 Example 44

Send Wait

message Echo

AFTER(0) / msg=Messages[randint(0, MessageNo−1)], [EVENT("message.send", msg)], [DUMP("Sent: " + msg)]

message.echo / [DUMP("Received: " + [PARAMS])]

Figure 5.2:Sender of theEcho example

Receive Echo
message

message.send / msg=[PARAMS]

AFTER(1) / [EVENT("message.echo", msg)]

Figure 5.3:Echo of theEcho example

5.4 Example

A simpleEcho example is studied in the section. There are two components in the system:Sender andEcho.
TheSender randomly generates a message and sends it to themessage port of theEcho. TheEcho sends
back this message to theSender after 1 second. When theSender receives the message, it sends another
random message to theEcho. This loop continues forever.

The design of the components in AToM3 is shown in Figure 5.2 and Figure 5.3. In Figure 5.3, an input/output
port namedmessage is defined. TheSender component in Figure 5.2 also defines a port calledmessage.
The port of theSender is connected to the port of theEcho. The name pattern of the server with IDEcho
(a name chosen by the designer) isEcho (Figure 5.4). This matches theEcho component only. The link
between theSender port and the server has a property that specify the server portmessage (Figure 5.5).
The enter actions of theSend state of theSender component is hidden. Those actions import necessary
Python libraries and initialize a list of random messages.

When theSender component is loaded into AToM3, the user may press the “to SVM Des.” button to generate
a .des file. The user is prompted for a file name. By default, it is the same name as the AToM3 component
with postfix changed to.des. Here is theSender.des generated by the SVM plugin:

DCharts description generated by SVM-AToM3-plugin, written by Thomas Feng
Source: /home/thomas/Backup/Atom3_2.2/DCharts/models/SimpleEcho/Sender.py
Date: January 15, 2004
Time: 21:29:44

5.4 Example 45

Figure 5.4: Name pattern of theEcho server

Figure 5.5: Port name of theEcho server

COMPONENT:
id = Echo
name = Echo

PORT:
name = message
type = inout

CONNECTIONS:
message -- Echo.message

STATECHART:
Send [DS]
Wait

ENTER:
N: Send
O: from random import randint

Messages=["Hello, everyone!", "Have a nice day!", "How are you today?", "I feel very \
well today!", "The same to you!"]

MessageNo=len(Messages)

TRANSITION:
S: Send
N: Wait
T: 0 [RTT]
C: 1
O: msg=Messages[randint(0, MessageNo-1)]

[EVENT("message.send", msg)]
[DUMP("Sent: " + msg)]

5.4 Example 46

TRANSITION:
S: Wait
N: Send
E: message.echo
C: 1
O: [DUMP("Received: " + [PARAMS])]

Here is theEcho.des:

DCharts description generated by SVM-AToM3-plugin, written by Thomas Feng
Source: /home/thomas/Backup/Atom3_2.2/DCharts/models/SimpleEcho/Echo.py
Date: January 15, 2004
Time: 21:31:4

PORT:
name = message
type = inout

CONNECTIONS:

STATECHART:
Receive [DS]
Echo

TRANSITION:
S: Receive
N: Echo
E: message.send
C: 1
O: msg=[PARAMS]

TRANSITION:
S: Echo
N: Receive
T: 1 [RTT]
C: 1
O: [EVENT("message.echo", msg)]

To simulate this example in AToM3, take the following steps:

1. Install and start PVM (section 5.1).

2. Compile PYPVM and start SVMDNS (section 5.2).

3. Start an instance of AToM3 and loadEcho.py. Click on “simulate in SVM”.

4. Start an instance of AToM3 and loadSender.py. Click on “simulate in SVM”.

5. The output box of theSender component should display such messages as “sent: xxxxxx” and “re-
ceive: xxxxxx”, where “xxxxxx” is a message. The received message should be the same as the last
message being sent.

6. To stop the simulation and close the SVM simulators, click on the “Exit” button.

To simulate this example in SVM, take the following steps:

1. Start an instance of AToM3 and loadEcho.py. Click on “to SVM Des.” to generateEcho.des and
save it in a user-specified directory. Close AToM3.

5.4 Example 47

2. Start an instance of AToM3 and loadSender.py. Click on “to SVM Des.” to generateSender.des.
Close AToM3.

3. Install and start PVM (section 5.1).

4. Compile PYPVM and start SVMDNS (section 5.2).

5. Change to the directory whereEcho.des is in and execute “svm Echo.des”.

6. Change to the directory whereSender.des is in and execute “svm Echo.des”.

6
USING SVM AND SCC IN CYGWIN

SVM (with SCC) can be easily installed in a Linux system (simply by unpacking the package and setting a
few environment variables). However, installing and using it in Windows requires much more effort.

Cygwin (http://www.cygwin.com/) is a Unix-like environment for Windows. It eases the problems of
running SVM in Windows and compiling the code synthesized by SCC. Though it is possible to run SVM
and SCC without Cygwin, the support for such a native Windows environment is limited. The users are
strongly recommended to use Cygwin.

6.1 Installing Cygwin

Cygwin is free and can be downloaded from its website. The setup program allows the users to choose from
the available packages. SVM and SCC users must make sure the following packages and the packages that
they depend on are chosen before performing the installation (however, it is possible to add more packages
after the installation is finished):

1. Python. The Python interpreter should be chosen by default.

2. G++. It is the GNU C++ compiler. In order to compile the C++ source generated by SCC, the users
should have this package installed.

3. GCC. It is the GNU C compiler. It is used to compile the PYPVM module to be used by SVM in
distributed simulations. (However, the users need not compile PYPVM if they are not intended to run
distributed simulations.)

4. Make. The GNU Make utility to automate the building of applications.

5. Bash. It is the shell to be used by the Make files.

6. SunRPC. It is the library required by PVM. Users who want to enable distributed simulations must
install this package.

7. Patch. It is a small utility to apply patches to the PVM source (version 3.4.3) before it can be smoothly
compiled and used by SVM in distributed simulations.

8. UPX. It is a tool to compress executable programs.

http://www.cygwin.com/

6.2 Installing PVM3 49

9. If the users want to keep their SVM and SCC source up-to-date with the CVS, they are highly recom-
mended to install CVS and OpenSSH.

10. XFree86 and XTerm. If the users want to interact with the SVM graphical interface, they must install
these packages.

When Cygwin is installed, it is usually in theCygwin directory of theC: drive. The users can thus start
Cygwin by double clicking on its icon on the desktop (if they choose to create an icon on the desktop at the
end of the installation).

The users may run the setup program again to add more packages to the existing Cygwin installation.

6.2 Installing PVM3

This step is optional and necessary only for those users who are interested in SVM distributed simulations.

PVM (Parallel Virtual Machine) is the underlying library that supports communication among multiple
processes and multiple machines. Its source can be downloaded from its website:

http://www.csm.ornl.gov/pvm/pvm_home.html

PVM is not originally designed for Cygwin, and its version 3.4.3 is used here. The users are highly recom-
mended to download the source from the following location:

http://scicomp.ewha.ac.kr/netlib/pvm3/pvm3.4.3.tgz

Note that newer versions of PVM may be found at:

http://scicomp.ewha.ac.kr/netlib/pvm3/

However, the only version that has been tested and successfully compiled is 3.4.3, and the following patch
is applicable only for that version:

http://msdl.cs.mcgill.ca/people/tfeng/svmsccdoc/pvm3.4.3-Cygwin.patch

The content of the patch is:

Only in pvm3_patched/console: CYGWIN
Only in pvm3_patched/examples: CYGWIN
Only in pvm3_patched/gexamples: CYGWIN
Only in pvm3_patched/lib: CYGWIN
Only in pvm3_patched/libfpvm: CYGWIN
Only in pvm3_patched/pvmgs: CYGWIN
Only in pvm3_patched/rm: CYGWIN
Only in pvm3_patched/src: CYGWIN
diff -uar pvm3/src/lpvm.c pvm3_patched/src/lpvm.c
--- pvm3/src/lpvm.c 2000-02-17 18:12:10.000000000 -0500
+++ pvm3_patched/src/lpvm.c 2004-03-21 18:26:33.069064000 -0500
@@ -619,7 +619,7 @@

#ifndef HASERRORVARS
extern int errno; /* from libc */

-extern char *sys_errlist[];

http://www.csm.ornl.gov/pvm/pvm_home.html
http://scicomp.ewha.ac.kr/netlib/pvm3/pvm3.4.3.tgz
http://scicomp.ewha.ac.kr/netlib/pvm3/
http://msdl.cs.mcgill.ca/people/tfeng/svmsccdoc/pvm3.4.3-Cygwin.patch

6.2 Installing PVM3 50

+//extern char *sys_errlist[];
extern int sys_nerr;
#endif

diff -uar pvm3/src/lpvmgen.c pvm3_patched/src/lpvmgen.c
--- pvm3/src/lpvmgen.c 2000-02-17 18:12:12.000000000 -0500
+++ pvm3_patched/src/lpvmgen.c 2004-03-21 18:26:20.340761600 -0500
@@ -578,7 +578,7 @@

#ifndef HASERRORVARS
extern int errno; /* from libc */

-extern char *sys_errlist[];
+//extern char *sys_errlist[];
extern int sys_nerr;
#endif

diff -uar pvm3/src/pvmlog.c pvm3_patched/src/pvmlog.c
--- pvm3/src/pvmlog.c 2000-02-10 15:46:43.000000000 -0500
+++ pvm3_patched/src/pvmlog.c 2004-03-21 18:25:59.741140800 -0500
@@ -192,7 +192,7 @@
extern int errno; /* from libc */
#ifndef WIN32
extern int sys_nerr;

-extern char *sys_errlist[];
+//extern char *sys_errlist[];
#endif
#endif

Only in pvm3_patched/tracer: CYGWIN
Only in pvm3_patched/xep: CYGWIN

After obtaining the source (pvm3.4.3.tgz) and the above patch (pvm3.4.3-Cygwin.patch), the users may
use the following commands to extract the package and apply the patch (assuming that both files are in the
current directory):

$ tar zxvf pvm3.4.3.tgz
$ patch -p0 < pvm3.4.3-Cygwin.patch

A directory namedpvm3 will be created, which contains the patched source. To build PVM, the users must
first set thePVM ROOT environment variable according to the PVM path. For example, the following com-
mand may be used (suppose the current shell isbash):

export PVM_ROOT=‘pwd‘/pvm3

Then the source can be made with the following command:

make -C pvm3

If all goes well, PVM will be built in thepvm3 directory, and the executables can be found inpvm3/lib/CYGWIN.

The users should set the following environment variables in their startup scripts (/.bashrc for thebash
shell):

6.3 Installing Java SDK 51

1. PVM ROOT. As mentioned above, set it to the PVM path.

2. PVM ARCH. For Cygwin, this variable should always be set toCYGWIN.

3. PATH. The users may add the path of the PVM executables to thePATH environment variable so that
they can be accessed from any directory.

6.3 Installing Java SDK

It is very easy to install Java for use in Cygwin. The users simply download a recent version of J2SDK
(the lowest acceptable version is 1.4), install it, and add the path of the Java tools to thePATH environment
variable.

The Windows drives are mapped in the/cygdrive directory. The names of the sub-directories correspond
to the drive letters. For example, drivec in Windows is mapped to/cygdrive/c. In this way, the users
can find the path (in Cygwin) to access their J2SDK installed in the Windows environment. Placing the
bin subdirectory of the J2SDK path in thePATH environment allows them to run the Java tools from any
directory.

6.4 Installing PyGame

PyGame (http://www.pygame.org/), a gaming library for Python, is required by some example models
of SVM, such as the CD Player and the MP3 Player. Hence, the users are highly recommended to install
PyGame, though it is not necessary for SVM or SCC.

First, the users must download the PyGame source. It is available at:

http://www.pygame.org/download.shtml

The version that is used here is 1.6.

After download the source package (pygame-1.6.tar.gz), the users should extract it, and a directory
namedpygame-1.6 is created.

Before PyGame can be compiled, the users must manually install the SDL library for Cygwin. To do this,
the following steps should be taken:

1. Install Numerical Python. The source package (Numeric-23.1.tar.gz) can be downloaded from:

http://sourceforge.net/projects/numpy/

After downloading the package, extract it and a directory namedNumeric-23.1 is created. Go into
the directory and execute the following command:

python setup.py install build

2. Download the SDL binary for Win32 from the following location:

http://www.pygame.org/ftp/win32-dependencies.zip

Extract the package, and a directory namedprebuilt is created.

3. Getpexports-0.43.zip from any of the following locations:

http://www.pygame.org/download.shtml
http://sourceforge.net/projects/numpy/
http://www.pygame.org/ftp/win32-dependencies.zip

6.4 Installing PyGame 52

http://www.is.lg.ua/ftp/gnuwin32/altbinutils/pexports-0.43.zip
http://www.emmestech.com/software/cygwin/pexports-0.43/pexports-0.43.zip

Extract the package and copypexports.exe to /usr/local/bin.

4. Create the following script (dll2a.sh) in /usr/local/bin:

#!/bin/sh

mkdir -p /usr/local/lib
for fn in "$@"
do
lib=${fn%%.dll};
dest=/usr/local/lib/lib$lib.a
if test -f $dest
then
echo $dest already exists. Skipping ...;

else
echo "$fn ===> /usr/local/lib/lib$lib.a";
pexports.exe $lib.dll > $lib.def && dlltool --def $lib.def --dllname $lib.dll --output-lib lib$lib.a && rm $lib.def;
mv lib$lib.a /usr/local/lib;

fi;
done

5. Go to theprebuilt directory that was just generated, cd to itslib sub-directory. Execute the follow-
ing command (assume/usr/local/bin is in the path):

dll2a.sh *.dll

The script generates several SDL libraries in/usr/local/lib.

6. Copy all the head files (*.h) in prebuilt/include into /usr/local/include/SDL. (Create it if the
directory does not exist yet.)

7. Execute the following commands inprebuilt/lib to allow the execution of the.dll files, and copy
them to/usr/local/bin:

chmod +x *.dll
cp *.dll /usr/local/bin

8. Go to thepygame-1.6 directory and manually create the followingSetup script (it is supposed to be
automatically generated byconfig.py, however,config.py does not work in Cygwin):

#This Setup file is used by the setup.py script to configure the
#python extensions. You will likely use the "config.py" which will
#build a correct Setup file for you based on your system settings.
#If not, the format is simple enough to edit by hand. First change
#the needed command-line flags for each dependency, then comment out
#any unavailable optional modules in the first optional section.

http://www.is.lg.ua/ftp/gnuwin32/altbinutils/pexports-0.43.zip
http://www.emmestech.com/software/cygwin/pexports-0.43/pexports-0.43.zip
dll2a.sh
Setup

6.4 Installing PyGame 53

SDL = -I/NEED_INC_PATH_FIX -L/NEED_LIB_PATH_FIX -lSDL
FONT = -lSDL_ttf
IMAGE = -lSDL_image
MIXER = -lSDL_mixer
SMPEG = -lsmpeg
NUMERIC = -I.

#the following modules are optional. you will want to compile
#everything you can, but you can ignore ones you don’t have
#dependencies for, just comment them out

imageext src/imageext.c $(SDL) $(IMAGE)
font src/font.c $(SDL) $(FONT)
mixer src/mixer.c $(SDL) $(MIXER)
mixer_music src/music.c $(SDL) $(MIXER)
movie src/movie.c $(SDL) $(SMPEG)
surfarray src/surfarray.c $(SDL) $(NUMERIC)
sndarray src/sndarray.c $(SDL) $(NUMERIC) $(MIXER)

#these modules are required for pygame to run. they only require
#SDL as a dependency. these should not be altered

base src/base.c $(SDL)
cdrom src/cdrom.c $(SDL)
constants src/constants.c $(SDL)
display src/display.c $(SDL)
event src/event.c $(SDL)
key src/key.c $(SDL)
mouse src/mouse.c $(SDL)
rect src/rect.c $(SDL)
rwobject src/rwobject.c $(SDL)
surface src/surface.c src/alphablit.c $(SDL)
surflock src/surflock.c $(SDL)
time src/time.c $(SDL)
joystick src/joystick.c $(SDL)
draw src/draw.c $(SDL)
image src/image.c $(SDL)
transform src/transform.c src/rotozoom.c src/scale2x.c $(SDL)

#the following are placeholders. setup.py can use them to help
#auto-copy needed DLLs into the pygame installation folder.
#you can simply ignore these lines under non-windows, no need to
#comment out.
COPYLIB_smpeg $(SDL) $(SMPEG)

Execute the following commands to build and install PyGame (assuming that the current shell is

6.4 Installing PyGame 54

bash):

export LIBRARY_PATH=/usr/local/lib:$LIBRARY_PATH
export CPATH=/usr/local/include/SDL:$CPATH
python setup.py install build

After all these steps, PyGame should have been built for the Python that was used in the build. Try the
following command to see if everything goes right:

python -c "import pygame; print pygame.__version__"

	INTRODUCTION
	Overview of DCharts
	Transition Priorities
	Importation
	Macros and Importation Parameters

	Overview of SVM
	Overview of SCC
	License

	SIMULATION IN SVM WITH EXAMPLES
	System Requirements
	Installation
	HelloWorld Example
	SVM Command-line Parameters
	More Examples
	An example of macros
	An example of history states
	An example of orthogonal components
	An example of enter/exit actions
	An example of guards
	An example of an initializer and a finalizer
	An example of timed transition
	An example of importation
	An example of recursive importation
	An example of macro redefinition
	An example of ITF and OTF transition priorities
	An example of priority numbers
	An example of event parameters
	An example of model-specific interface

	CODE SYNTHESIS WITH SCC
	SCC Command-line Parameters
	HelloWorld Example
	Python code synthesis
	C++ code synthesis
	Java code synthesis
	C# code synthesis

	An example of model-specific interface
	Reusing the Synthesized Code

	SVM INTEGRATED WITH ATOM3
	DISTRIBUTED SIMULATION WITH SVM
	PVM Requirement
	SVMDNS Daemon
	Distributed Simulation on Top of SVMDNS and PVM
	Example

	USING SVM AND SCC IN CYGWIN
	Installing Cygwin
	Installing PVM3
	Installing Java SDK
	Installing PyGame

